xref: /aosp_15_r20/system/nfc/src/gki/ulinux/gki_ulinux.cc (revision 7eba2f3b06c51ae21384f6a4f14577b668a869b3)
1 /******************************************************************************
2  *
3  *  Copyright (C) 1999-2012 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 #include <android-base/logging.h>
19 #include <android-base/stringprintf.h>
20 #include <errno.h>
21 #include <malloc.h>
22 #include <pthread.h> /* must be 1st header defined  */
23 
24 #include "gki_int.h"
25 
26 using android::base::StringPrintf;
27 
28 /* Temp android logging...move to android tgt config file */
29 
30 #ifndef LINUX_NATIVE
31 #else
32 #define LOGV(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__)
33 #define LOGE(format, ...) fprintf(stderr, LOG_TAG format, ##__VA_ARGS__)
34 #define LOGI(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__)
35 
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 
41 #endif
42 
43 /* Define the structure that holds the GKI variables */
44 tGKI_CB gki_cb;
45 
46 #define NANOSEC_PER_MILLISEC (1000000)
47 #define NSEC_PER_SEC (1000 * NANOSEC_PER_MILLISEC)
48 
49 /* works only for 1ms to 1000ms heart beat ranges */
50 #define LINUX_SEC (1000 / TICKS_PER_SEC)
51 // #define GKI_TICK_TIMER_DEBUG
52 
53 /* this kind of mutex go into tGKI_OS control block!!!! */
54 /* static pthread_mutex_t GKI_sched_mutex; */
55 /*static pthread_mutex_t thread_delay_mutex;
56 static pthread_cond_t thread_delay_cond;
57 static pthread_mutex_t gki_timer_update_mutex;
58 static pthread_cond_t   gki_timer_update_cond;
59 */
60 #ifdef NO_GKI_RUN_RETURN
61 static pthread_t timer_thread_id = 0;
62 #endif
63 
64 typedef struct {
65   uint8_t task_id;         /* GKI task id */
66   TASKPTR task_entry;      /* Task entry function*/
67   uintptr_t params;        /* Extra params to pass to task entry function */
68   pthread_cond_t* pCond;   /* for android*/
69   pthread_mutex_t* pMutex; /* for android*/
70 } gki_pthread_info_t;
71 gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS];
72 
73 /*******************************************************************************
74 **
75 ** Function         gki_task_entry
76 **
77 ** Description      entry point of GKI created tasks
78 **
79 ** Returns          void
80 **
81 *******************************************************************************/
gki_task_entry(void * params)82 void* gki_task_entry(void* params) {
83   pthread_t thread_id = pthread_self();
84   gki_pthread_info_t* p_pthread_info = (gki_pthread_info_t*)params;
85   LOG(DEBUG) << StringPrintf(
86       "%s; task_id=%i, thread_id=%lx/%lx, pCond/pMutex=%p/%p", __func__,
87       p_pthread_info->task_id, gki_cb.os.thread_id[p_pthread_info->task_id],
88       pthread_self(), p_pthread_info->pCond, p_pthread_info->pMutex);
89 
90   gki_cb.os.thread_id[p_pthread_info->task_id] = thread_id;
91   /* Call the actual thread entry point */
92   (p_pthread_info->task_entry)(p_pthread_info->params);
93 
94   LOG(WARNING) << StringPrintf("%s; task_id=%i terminating", __func__,
95                                p_pthread_info->task_id);
96 #if (FALSE == GKI_PTHREAD_JOINABLE)
97   gki_cb.os.thread_id[p_pthread_info->task_id] = 0;
98 #endif
99 
100   return nullptr;
101 }
102 /* end android */
103 
104 /*******************************************************************************
105 **
106 ** Function         GKI_init
107 **
108 ** Description      This function is called once at startup to initialize
109 **                  all the timer structures.
110 **
111 ** Returns          void
112 **
113 *******************************************************************************/
114 
GKI_init(void)115 void GKI_init(void) {
116   pthread_mutexattr_t attr;
117   tGKI_OS* p_os;
118 
119   gki_buffer_init();
120   gki_timers_init();
121 
122   /* Start ticks from 0 */
123   gki_cb.com.OSTicks = 0;
124 
125   pthread_mutexattr_init(&attr);
126 
127 #ifndef __CYGWIN__
128   pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
129 #endif
130   p_os = &gki_cb.os;
131   pthread_mutex_init(&p_os->GKI_mutex, &attr);
132   pthread_mutexattr_destroy(&attr);
133   /* pthread_mutex_init(&GKI_sched_mutex, NULL); */
134   /* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */
135   /* pthread_cond_init (&thread_delay_cond, NULL); */
136 
137   /* Initialiase GKI_timer_update suspend variables & mutexes to be in running
138    * state.
139    * this works too even if GKI_NO_TICK_STOP is defined in btld.txt */
140   p_os->no_timer_suspend = GKI_TIMER_TICK_RUN_COND;
141   pthread_mutex_init(&p_os->gki_timer_mutex, nullptr);
142   pthread_cond_init(&p_os->gki_timer_cond, nullptr);
143   pthread_mutex_init(&p_os->gki_end_mutex, nullptr);
144   pthread_cond_init(&p_os->gki_end_cond, nullptr);
145   p_os->end_flag = 0;
146 }
147 
148 /*******************************************************************************
149 **
150 ** Function         GKI_get_os_tick_count
151 **
152 ** Description      This function is called to retrieve the native OS system
153 **                  tick.
154 **
155 ** Returns          Tick count of native OS.
156 **
157 *******************************************************************************/
GKI_get_os_tick_count(void)158 uint32_t GKI_get_os_tick_count(void) {
159   /* TODO - add any OS specific code here */
160   return (gki_cb.com.OSTicks);
161 }
162 
163 /*******************************************************************************
164 **
165 ** Function         GKI_create_task
166 **
167 ** Description      This function is called to create a new OSS task.
168 **
169 ** Parameters:      task_entry  - (input) pointer to the entry function of the
170 **                                        task
171 **                  task_id     - (input) Task id is mapped to priority
172 **                  taskname    - (input) name given to the task
173 **                  stack       - (input) pointer to the top of the stack
174 **                                        (highest memory location)
175 **                  stacksize   - (input) size of the stack allocated for the
176 **                                        task
177 **
178 ** Returns          GKI_SUCCESS if all OK, GKI_FAILURE if any problem
179 **
180 ** NOTE             This function take some parameters that may not be needed
181 **                  by your particular OS. They are here for compatability
182 **                  of the function prototype.
183 **
184 *******************************************************************************/
GKI_create_task(TASKPTR task_entry,uint8_t task_id,int8_t * taskname,uint16_t * stack,uint16_t stacksize,void * pCondVar,void * pMutex)185 uint8_t GKI_create_task(TASKPTR task_entry, uint8_t task_id, int8_t* taskname,
186                         uint16_t* stack, uint16_t stacksize, void* pCondVar,
187                         void* pMutex) {
188   struct sched_param param;
189   int policy, ret = 0;
190   pthread_condattr_t attr;
191   pthread_attr_t attr1;
192 
193   pthread_condattr_init(&attr);
194   pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
195   LOG(DEBUG) << StringPrintf(
196       "%s; func=0x%p  id=%d  name=%s  stack=0x%p  stackSize=%d", __func__,
197       task_entry, task_id, taskname, stack, stacksize);
198 
199   if (task_id >= GKI_MAX_TASKS) {
200     LOG(ERROR) << StringPrintf("%s; Error! task ID > max task allowed",
201                                __func__);
202     pthread_condattr_destroy(&attr);
203     return (GKI_FAILURE);
204   }
205 
206   gki_cb.com.OSRdyTbl[task_id] = TASK_READY;
207   gki_cb.com.OSTName[task_id] = taskname;
208   gki_cb.com.OSWaitTmr[task_id] = 0;
209   gki_cb.com.OSWaitEvt[task_id] = 0;
210 
211   /* Initialize mutex and condition variable objects for events and timeouts */
212   pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], nullptr);
213   pthread_cond_init(&gki_cb.os.thread_evt_cond[task_id], &attr);
214   pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], nullptr);
215   pthread_cond_init(&gki_cb.os.thread_timeout_cond[task_id], &attr);
216 
217   pthread_attr_init(&attr1);
218 /* by default, pthread creates a joinable thread */
219 #if (FALSE == GKI_PTHREAD_JOINABLE)
220   pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED);
221 
222   LOG(DEBUG) << StringPrintf("%s; GKI creating task %i, pCond/pMutex=%p/%p",
223                              __func__, task_id, pCondVar, pMutex);
224 #else
225   LOG(VERBOSE) << StringPrintf("GKI creating JOINABLE task %i", task_id);
226 #endif
227 
228   /* On Android, the new tasks starts running before
229    * 'gki_cb.os.thread_id[task_id]' is initialized */
230   /* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id]
231    * for it calls GKI_wait */
232   gki_pthread_info[task_id].task_id = task_id;
233   gki_pthread_info[task_id].task_entry = task_entry;
234   gki_pthread_info[task_id].params = 0;
235   gki_pthread_info[task_id].pCond = (pthread_cond_t*)pCondVar;
236   gki_pthread_info[task_id].pMutex = (pthread_mutex_t*)pMutex;
237 
238   ret = pthread_create(&gki_cb.os.thread_id[task_id], &attr1, gki_task_entry,
239                        &gki_pthread_info[task_id]);
240 
241   pthread_condattr_destroy(&attr);
242   pthread_attr_destroy(&attr1);
243 
244   if (ret != 0) {
245     LOG(VERBOSE) << StringPrintf("pthread_create failed(%d), %s!", ret, taskname);
246     return GKI_FAILURE;
247   }
248 
249   if (pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, &param) ==
250       0) {
251 #if (PBS_SQL_TASK == TRUE)
252     if (task_id == PBS_SQL_TASK) {
253       LOG(VERBOSE) << StringPrintf("PBS SQL lowest priority task");
254       policy = SCHED_NORMAL;
255     } else
256 #endif
257     {
258       policy = SCHED_RR;
259       param.sched_priority = 30 - task_id - 2;
260     }
261     pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, &param);
262   }
263 
264   LOG(VERBOSE) << StringPrintf("Leaving GKI_create_task %p %d %lx %s %p %d",
265                              task_entry, task_id, gki_cb.os.thread_id[task_id],
266                              taskname, stack, stacksize);
267 
268   return (GKI_SUCCESS);
269 }
270 
271 /*******************************************************************************
272 **
273 ** Function         GKI_shutdown
274 **
275 ** Description      shutdowns the GKI tasks/threads in from max task id to 0 and
276 **                  frees pthread resources!
277 **                  IMPORTANT: in case of join method, GKI_shutdown must be
278 **                  called outside a GKI thread context!
279 **
280 ** Returns          void
281 **
282 *******************************************************************************/
GKI_shutdown(void)283 void GKI_shutdown(void) {
284   uint8_t task_id;
285   volatile int* p_run_cond = &gki_cb.os.no_timer_suspend;
286   int oldCOnd = 0;
287 #if (FALSE == GKI_PTHREAD_JOINABLE)
288   int i = 0;
289 #else
290   int result;
291 #endif
292 
293   /* release threads and set as TASK_DEAD. going from low to high priority fixes
294    * GKI_exception problem due to btu->hci sleep request events  */
295   for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--) {
296     if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD) {
297       /* paranoi settings, make sure that we do not execute any mailbox events
298        */
299       gki_cb.com.OSWaitEvt[task_id - 1] &=
300           ~(TASK_MBOX_0_EVT_MASK | TASK_MBOX_1_EVT_MASK | TASK_MBOX_2_EVT_MASK |
301             TASK_MBOX_3_EVT_MASK);
302       GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT));
303 
304       if (((task_id - 1) == BTU_TASK)) {
305         gki_cb.com.system_tick_running = false;
306         *p_run_cond = GKI_TIMER_TICK_EXIT_COND; /* stop system tick */
307       }
308 #if (FALSE == GKI_PTHREAD_JOINABLE)
309       i = 0;
310 
311       while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10))
312         usleep(100 * 1000);
313 #else
314       /* Skip BTU_TASK due to BTU_TASK is used for GKI_run() and it terminates
315        * after GKI_shutdown().
316        */
317       if ((task_id - 1) != BTU_TASK) {
318         /* wait for proper Arnold Schwarzenegger task state */
319         result = pthread_join(gki_cb.os.thread_id[task_id - 1], NULL);
320         if (result < 0) {
321           LOG(VERBOSE) << StringPrintf("FAILED: result: %d", result);
322         }
323       }
324 #endif
325       LOG(DEBUG) << StringPrintf("%s; task %s dead", __func__,
326                                  gki_cb.com.OSTName[task_id - 1]);
327       GKI_exit_task(task_id - 1);
328     }
329   }
330 
331 #if (FALSE == GKI_PTHREAD_JOINABLE)
332   i = 0;
333 #endif
334 
335 #ifdef NO_GKI_RUN_RETURN
336   shutdown_timer = 1;
337 #endif
338   oldCOnd = *p_run_cond;
339   *p_run_cond = GKI_TIMER_TICK_EXIT_COND;
340   if (oldCOnd == GKI_TIMER_TICK_STOP_COND ||
341       oldCOnd == GKI_TIMER_TICK_EXIT_COND)
342     pthread_cond_signal(&gki_cb.os.gki_timer_cond);
343 
344   pthread_mutex_lock(&gki_cb.os.gki_end_mutex);
345   while (gki_cb.os.end_flag != 1) {
346     pthread_cond_wait(&gki_cb.os.gki_end_cond, &gki_cb.os.gki_end_mutex);
347   }
348   pthread_mutex_unlock(&gki_cb.os.gki_end_mutex);
349 
350 #if (TRUE == GKI_PTHREAD_JOINABLE)
351   result = pthread_join(gki_cb.os.thread_id[BTU_TASK], NULL);
352   if (result < 0) {
353     LOG(DEBUG) << StringPrintf("FAILED: result: %d", result);
354   }
355 #endif
356 
357   pthread_mutex_destroy(&gki_cb.os.GKI_mutex);
358   pthread_mutex_destroy(&gki_cb.os.gki_end_mutex);
359   pthread_cond_destroy(&gki_cb.os.gki_end_cond);
360 }
361 
362 /*******************************************************************************
363  **
364  ** Function        gki_system_tick_start_stop_cback
365  **
366  ** Description     This function starts or stops timer
367  **
368  ** Parameters:     start: TRUE start system tick (again), FALSE stop
369  **
370  ** Returns         void
371  **
372  ******************************************************************************/
gki_system_tick_start_stop_cback(bool start)373 void gki_system_tick_start_stop_cback(bool start) {
374   tGKI_OS* p_os = &gki_cb.os;
375   volatile int* p_run_cond = &p_os->no_timer_suspend;
376   if (start == false) {
377     /* this can lead to a race condition. however as we only read this variable
378      * in the timer loop
379      * we should be fine with this approach. otherwise uncomment below mutexes.
380      */
381     /* GKI_disable(); */
382     *p_run_cond = GKI_TIMER_TICK_STOP_COND;
383     /* GKI_enable(); */
384   } else {
385     /* restart GKI_timer_update() loop */
386     *p_run_cond = GKI_TIMER_TICK_RUN_COND;
387     pthread_mutex_lock(&p_os->gki_timer_mutex);
388     pthread_cond_signal(&p_os->gki_timer_cond);
389     pthread_mutex_unlock(&p_os->gki_timer_mutex);
390   }
391 }
392 
393 /*******************************************************************************
394 **
395 ** Function         timer_thread
396 **
397 ** Description      Timer thread
398 **
399 ** Parameters:      id  - (input) timer ID
400 **
401 ** Returns          void
402 **
403 *******************************************************************************/
404 #ifdef NO_GKI_RUN_RETURN
timer_thread(signed long id)405 void timer_thread(signed long id) {
406   LOG(VERBOSE) << StringPrintf("%s enter", __func__);
407   struct timespec delay;
408   int timeout = 1000; /* 10  ms per system tick  */
409   int err;
410 
411   while (!shutdown_timer) {
412     delay.tv_sec = timeout / 1000;
413     delay.tv_nsec = 1000 * 1000 * (timeout % 1000);
414 
415     /* [u]sleep can't be used because it uses SIGALRM */
416 
417     do {
418       err = nanosleep(&delay, &delay);
419     } while (err < 0 && errno == EINTR);
420 
421     GKI_timer_update(1);
422   }
423   LOG(ERROR) << StringPrintf("%s exit", __func__);
424   return;
425 }
426 #endif
427 
428 /*******************************************************************************
429 **
430 ** Function         GKI_run
431 **
432 ** Description      This function runs a task
433 **
434 ** Parameters:      p_task_id  - (input) pointer to task id
435 **
436 ** Returns          void
437 **
438 ** NOTE             This function is only needed for operating systems where
439 **                  starting a task is a 2-step process. Most OS's do it in
440 **                  one step, If your OS does it in one step, this function
441 **                  should be empty.
442 *******************************************************************************/
GKI_run(void * p_task_id)443 void GKI_run(__attribute__((unused)) void* p_task_id) {
444   LOG(DEBUG) << StringPrintf("%s; enter", __func__);
445   struct timespec delay;
446   int err = 0;
447   volatile int* p_run_cond = &gki_cb.os.no_timer_suspend;
448 
449 #ifndef GKI_NO_TICK_STOP
450   /* register start stop function which disable timer loop in GKI_run() when no
451    * timers are
452    * in any GKI/BTA/BTU this should save power when BTLD is idle! */
453   GKI_timer_queue_register_callback(gki_system_tick_start_stop_cback);
454   LOG(DEBUG) << StringPrintf("%s; Start/Stop GKI_timer_update_registered!",
455                              __func__);
456 #endif
457 
458 #ifdef NO_GKI_RUN_RETURN
459   LOG(VERBOSE) << StringPrintf("GKI_run == NO_GKI_RUN_RETURN");
460   pthread_attr_t timer_attr;
461 
462   shutdown_timer = 0;
463 
464   pthread_attr_init(&timer_attr);
465   pthread_attr_setdetachstate(&timer_attr, PTHREAD_CREATE_DETACHED);
466   if (pthread_create(&timer_thread_id, &timer_attr, timer_thread, NULL) != 0) {
467     LOG(VERBOSE) << StringPrintf(
468         "GKI_run: pthread_create failed to create timer_thread!");
469     return GKI_FAILURE;
470   }
471 #else
472   LOG(DEBUG) << StringPrintf("%s; run_cond(%p)=%d ", __func__, p_run_cond,
473                              *p_run_cond);
474   for (; GKI_TIMER_TICK_EXIT_COND != *p_run_cond;) {
475     do {
476       /* adjust hear bit tick in btld by changning TICKS_PER_SEC!!!!! this
477        * formula works only for
478        * 1-1000ms heart beat units! */
479       delay.tv_sec = LINUX_SEC / 1000;
480       delay.tv_nsec = 1000 * 1000 * (LINUX_SEC % 1000);
481 
482       /* [u]sleep can't be used because it uses SIGALRM */
483       do {
484         err = nanosleep(&delay, &delay);
485       } while (err < 0 && errno == EINTR);
486 
487       if (GKI_TIMER_TICK_RUN_COND != *p_run_cond) break;  // GKI has shutdown
488 
489       /* the unit should be alsways 1 (1 tick). only if you vary for some reason
490        * heart beat tick
491        * e.g. power saving you may want to provide more ticks
492        */
493       GKI_timer_update(1);
494     } while (GKI_TIMER_TICK_RUN_COND == *p_run_cond);
495 
496 /* currently on reason to exit above loop is no_timer_suspend ==
497  * GKI_TIMER_TICK_STOP_COND
498  * block timer main thread till re-armed by  */
499 #ifdef GKI_TICK_TIMER_DEBUG
500     LOG(VERBOSE) << StringPrintf(">>> SUSPENDED");
501 #endif
502     if (GKI_TIMER_TICK_EXIT_COND != *p_run_cond) {
503       pthread_mutex_lock(&gki_cb.os.gki_timer_mutex);
504       pthread_cond_wait(&gki_cb.os.gki_timer_cond, &gki_cb.os.gki_timer_mutex);
505       pthread_mutex_unlock(&gki_cb.os.gki_timer_mutex);
506     }
507     /* potentially we need to adjust os gki_cb.com.OSTicks */
508 
509 #ifdef GKI_TICK_TIMER_DEBUG
510     LOG(VERBOSE) << StringPrintf(">>> RESTARTED run_cond: %d", *p_run_cond);
511 #endif
512   } /* for */
513 #endif
514 
515   pthread_mutex_lock(&gki_cb.os.gki_end_mutex);
516   gki_cb.os.end_flag = 1;
517   pthread_cond_signal(&gki_cb.os.gki_end_cond);
518   pthread_mutex_unlock(&gki_cb.os.gki_end_mutex);
519 
520   gki_cb.com.OSWaitEvt[BTU_TASK] = 0;
521   LOG(VERBOSE) << StringPrintf("%s exit", __func__);
522 }
523 
524 /*******************************************************************************
525 **
526 ** Function         GKI_stop
527 **
528 ** Description      This function is called to stop
529 **                  the tasks and timers when the system is being stopped
530 **
531 ** Returns          void
532 **
533 ** NOTE             This function is NOT called by the Widcomm stack and
534 **                  profiles. If you want to use it in your own implementation,
535 **                  put specific code here.
536 **
537 *******************************************************************************/
GKI_stop(void)538 void GKI_stop(void) {
539   uint8_t task_id;
540 
541   /*  gki_queue_timer_cback(FALSE); */
542   /* TODO - add code here if needed*/
543 
544   for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) {
545     if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) {
546       GKI_exit_task(task_id);
547     }
548   }
549 }
550 
551 /*******************************************************************************
552 **
553 ** Function         GKI_wait
554 **
555 ** Description      This function is called by tasks to wait for a specific
556 **                  event or set of events. The task may specify the duration
557 **                  that it wants to wait for, or 0 if infinite.
558 **
559 ** Parameters:      flag -    (input) the event or set of events to wait for
560 **                  timeout - (input) the duration that the task wants to wait
561 **                                    for the specific events (in system ticks)
562 **
563 **
564 ** Returns          the event mask of received events or zero if timeout
565 **
566 *******************************************************************************/
GKI_wait(uint16_t flag,uint32_t timeout)567 uint16_t GKI_wait(uint16_t flag, uint32_t timeout) {
568   uint16_t evt;
569   uint8_t rtask;
570   struct timespec abstime = {0, 0};
571   int sec;
572   int nano_sec;
573 
574   rtask = GKI_get_taskid();
575   if (rtask >= GKI_MAX_TASKS) {
576     LOG(ERROR) << StringPrintf("%s() Exiting thread; rtask %d >= %d", __func__,
577                                rtask, GKI_MAX_TASKS);
578     return EVENT_MASK(GKI_SHUTDOWN_EVT);
579   }
580 
581   gki_pthread_info_t* p_pthread_info = &gki_pthread_info[rtask];
582   if (p_pthread_info->pCond != nullptr && p_pthread_info->pMutex != nullptr) {
583     LOG(DEBUG) << StringPrintf("%s; task=%i, pCond/pMutex = %p/%p", __func__,
584                                rtask, p_pthread_info->pCond,
585                                p_pthread_info->pMutex);
586     if (pthread_mutex_lock(p_pthread_info->pMutex) != 0) {
587       LOG(ERROR) << StringPrintf("%s; Could not lock mutex", __func__);
588       return EVENT_MASK(GKI_SHUTDOWN_EVT);
589     }
590     if (pthread_cond_signal(p_pthread_info->pCond) != 0) {
591       LOG(ERROR) << StringPrintf("%s; Error calling pthread_cond_signal()",
592                                  __func__);
593       (void)pthread_mutex_unlock(p_pthread_info->pMutex);
594       return EVENT_MASK(GKI_SHUTDOWN_EVT);
595     }
596     if (pthread_mutex_unlock(p_pthread_info->pMutex) != 0) {
597       LOG(ERROR) << StringPrintf("%s; Error unlocking mutex", __func__);
598       return EVENT_MASK(GKI_SHUTDOWN_EVT);
599     }
600     p_pthread_info->pMutex = nullptr;
601     p_pthread_info->pCond = nullptr;
602   }
603   gki_cb.com.OSWaitForEvt[rtask] = flag;
604 
605   /* protect OSWaitEvt[rtask] from modification from an other thread */
606   pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]);
607 
608 #if 0 /* for clean scheduling we probably should always call \
609          pthread_cond_wait() */
610     /* Check if anything in any of the mailboxes. There is a potential race condition where OSTaskQFirst[rtask]
611      has been modified. however this should only result in addtional call to  pthread_cond_wait() but as
612      the cond is met, it will exit immediately (depending on schedulling) */
613     if (gki_cb.com.OSTaskQFirst[rtask][0])
614     gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
615     if (gki_cb.com.OSTaskQFirst[rtask][1])
616     gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
617     if (gki_cb.com.OSTaskQFirst[rtask][2])
618     gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
619     if (gki_cb.com.OSTaskQFirst[rtask][3])
620     gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
621 #endif
622 
623   if (!(gki_cb.com.OSWaitEvt[rtask] & flag)) {
624     if (timeout) {
625       //            timeout = GKI_MS_TO_TICKS(timeout);     /* convert from
626       //            milliseconds to ticks */
627 
628       /* get current system time */
629       //            clock_gettime(CLOCK_MONOTONIC, &currSysTime);
630       //            abstime.tv_sec = currSysTime.time;
631       //            abstime.tv_nsec = NANOSEC_PER_MILLISEC *
632       //            currSysTime.millitm;
633       clock_gettime(CLOCK_MONOTONIC, &abstime);
634 
635       /* add timeout */
636       sec = timeout / 1000;
637       nano_sec = (timeout % 1000) * NANOSEC_PER_MILLISEC;
638       abstime.tv_nsec += nano_sec;
639       if (abstime.tv_nsec > NSEC_PER_SEC) {
640         abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC);
641         abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC;
642       }
643       abstime.tv_sec += sec;
644 
645       pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask],
646                              &gki_cb.os.thread_evt_mutex[rtask], &abstime);
647 
648     } else if (gki_cb.com.OSRdyTbl[rtask] != TASK_DEAD) {
649       pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask],
650                         &gki_cb.os.thread_evt_mutex[rtask]);
651     }
652 
653     /* TODO: check, this is probably neither not needed depending on
654      phtread_cond_wait() implmentation,
655      e.g. it looks like it is implemented as a counter in which case multiple
656      cond_signal
657      should NOT be lost! */
658     // we are waking up after waiting for some events, so refresh variables
659     // no need to call GKI_disable() here as we know that we will have some
660     // events as we've been waking up after condition pending or timeout
661     if (gki_cb.com.OSTaskQFirst[rtask][0])
662       gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
663     if (gki_cb.com.OSTaskQFirst[rtask][1])
664       gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
665     if (gki_cb.com.OSTaskQFirst[rtask][2])
666       gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
667     if (gki_cb.com.OSTaskQFirst[rtask][3])
668       gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
669 
670     if (gki_cb.com.OSWaitEvt[rtask] == EVENT_MASK(GKI_SHUTDOWN_EVT)) {
671       gki_cb.com.OSWaitEvt[rtask] = 0;
672       /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond
673        * is met */
674       pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
675       LOG(WARNING) << StringPrintf("GKI TASK_DEAD received. exit thread %d...",
676                                    rtask);
677 
678 #if (FALSE == GKI_PTHREAD_JOINABLE)
679       gki_cb.os.thread_id[rtask] = 0;
680 #endif
681       return (EVENT_MASK(GKI_SHUTDOWN_EVT));
682     }
683   }
684 
685   /* Clear the wait for event mask */
686   gki_cb.com.OSWaitForEvt[rtask] = 0;
687 
688   /* Return only those bits which user wants... */
689   evt = gki_cb.com.OSWaitEvt[rtask] & flag;
690 
691   /* Clear only those bits which user wants... */
692   gki_cb.com.OSWaitEvt[rtask] &= ~flag;
693 
694   /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when
695    * cond is met */
696   pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
697   return (evt);
698 }
699 
700 /*******************************************************************************
701 **
702 ** Function         GKI_delay
703 **
704 ** Description      This function is called by tasks to sleep unconditionally
705 **                  for a specified amount of time. The duration is in
706 **                  milliseconds
707 **
708 ** Parameters:      timeout -    (input) the duration in milliseconds
709 **
710 ** Returns          void
711 **
712 *******************************************************************************/
713 
GKI_delay(uint32_t timeout)714 void GKI_delay(uint32_t timeout) {
715   uint8_t rtask = GKI_get_taskid();
716   struct timespec delay;
717   int err;
718 
719   LOG(VERBOSE) << StringPrintf("GKI_delay %d %d", rtask, timeout);
720 
721   delay.tv_sec = timeout / 1000;
722   delay.tv_nsec = 1000 * 1000 * (timeout % 1000);
723 
724   /* [u]sleep can't be used because it uses SIGALRM */
725 
726   do {
727     err = nanosleep(&delay, &delay);
728   } while (err < 0 && errno == EINTR);
729 
730   /* Check if task was killed while sleeping */
731   /* NOTE
732   **      if you do not implement task killing, you do not
733   **      need this check.
734   */
735   if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) {
736   }
737 
738   LOG(VERBOSE) << StringPrintf("GKI_delay %d %d done", rtask, timeout);
739   return;
740 }
741 
742 /*******************************************************************************
743 **
744 ** Function         GKI_send_event
745 **
746 ** Description      This function is called by tasks to send events to other
747 **                  tasks. Tasks can also send events to themselves.
748 **
749 ** Parameters:      task_id -  (input) The id of the task to which the event has
750 **                                     to be sent
751 **                  event   -  (input) The event that has to be sent
752 **
753 **
754 ** Returns          GKI_SUCCESS if all OK, else GKI_FAILURE
755 **
756 *******************************************************************************/
GKI_send_event(uint8_t task_id,uint16_t event)757 uint8_t GKI_send_event(uint8_t task_id, uint16_t event) {
758   /* use efficient coding to avoid pipeline stalls */
759   if (task_id < GKI_MAX_TASKS) {
760     /* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */
761     pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]);
762 
763     /* Set the event bit */
764     gki_cb.com.OSWaitEvt[task_id] |= event;
765 
766     pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]);
767 
768     pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]);
769 
770     return (GKI_SUCCESS);
771   }
772   return (GKI_FAILURE);
773 }
774 
775 /*******************************************************************************
776 **
777 ** Function         GKI_isend_event
778 **
779 ** Description      This function is called from ISRs to send events to other
780 **                  tasks. The only difference between this function and
781 **                  GKI_send_event is that this function assumes interrupts are
782 **                  already disabled.
783 **
784 ** Parameters:      task_id -  (input) The destination task Id for the event.
785 **                  event   -  (input) The event flag
786 **
787 ** Returns          GKI_SUCCESS if all OK, else GKI_FAILURE
788 **
789 ** NOTE             This function is NOT called by the Widcomm stack and
790 **                  profiles. If you want to use it in your own implementation,
791 **                  put your code here, otherwise you can delete the entire
792 **                  body of the function.
793 **
794 *******************************************************************************/
GKI_isend_event(uint8_t task_id,uint16_t event)795 uint8_t GKI_isend_event(uint8_t task_id, uint16_t event) {
796   LOG(VERBOSE) << StringPrintf("GKI_isend_event %d %x", task_id, event);
797   LOG(VERBOSE) << StringPrintf("GKI_isend_event %d %x done", task_id, event);
798   return GKI_send_event(task_id, event);
799 }
800 
801 /*******************************************************************************
802 **
803 ** Function         GKI_get_taskid
804 **
805 ** Description      This function gets the currently running task ID.
806 **
807 ** Returns          task ID
808 **
809 ** NOTE             The Widcomm upper stack and profiles may run as a single
810 **                  task. If you only have one GKI task, then you can hard-code
811 **                  this function to return a '1'. Otherwise, you should have
812 **                  some OS-specific method to determine the current task.
813 **
814 *******************************************************************************/
GKI_get_taskid(void)815 uint8_t GKI_get_taskid(void) {
816   int i;
817   pthread_t thread_id = pthread_self();
818   for (i = 0; i < GKI_MAX_TASKS; i++) {
819     if (gki_cb.os.thread_id[i] == thread_id) {
820       return (i);
821     }
822   }
823   return (-1);
824 }
825 
826 /*******************************************************************************
827 **
828 ** Function         GKI_map_taskname
829 **
830 ** Description      This function gets the task name of the taskid passed as
831 **                  arg. If GKI_MAX_TASKS is passed as arg the currently running
832 **                  task name is returned
833 **
834 ** Parameters:      task_id -  (input) The id of the task whose name is being
835 **                  sought. GKI_MAX_TASKS is passed to get the name of the
836 **                  currently running task.
837 **
838 ** Returns          pointer to task name
839 **
840 ** NOTE             this function needs no customization
841 **
842 *******************************************************************************/
GKI_map_taskname(uint8_t task_id)843 int8_t* GKI_map_taskname(uint8_t task_id) {
844   LOG(VERBOSE) << StringPrintf("GKI_map_taskname %d", task_id);
845 
846   if (task_id < GKI_MAX_TASKS) {
847     LOG(VERBOSE) << StringPrintf("GKI_map_taskname %d %s done", task_id,
848                                gki_cb.com.OSTName[task_id]);
849     return (gki_cb.com.OSTName[task_id]);
850   } else if (task_id == GKI_MAX_TASKS) {
851     return (gki_cb.com.OSTName[GKI_get_taskid()]);
852   } else {
853     return (int8_t*)"BAD";
854   }
855 }
856 
857 /*******************************************************************************
858 **
859 ** Function         GKI_enable
860 **
861 ** Description      This function enables interrupts.
862 **
863 ** Returns          void
864 **
865 *******************************************************************************/
GKI_enable(void)866 void GKI_enable(void) {
867   pthread_mutex_unlock(&gki_cb.os.GKI_mutex);
868   /* 	pthread_mutex_xx is nesting save, no need for this: already_disabled =
869    * 0; */
870   return;
871 }
872 
873 /*******************************************************************************
874 **
875 ** Function         GKI_disable
876 **
877 ** Description      This function disables interrupts.
878 **
879 ** Returns          void
880 **
881 *******************************************************************************/
882 
GKI_disable(void)883 void GKI_disable(void) {
884   // LOG(VERBOSE) <<
885   // StringPrintf("GKI_disable");
886 
887   /*	pthread_mutex_xx is nesting save, no need for this: if
888      (!already_disabled) {
889       already_disabled = 1; */
890   pthread_mutex_lock(&gki_cb.os.GKI_mutex);
891   /*  } */
892   // LOG(VERBOSE) <<
893   // StringPrintf("Leaving GKI_disable");
894   return;
895 }
896 
897 /*******************************************************************************
898 **
899 ** Function         GKI_exception
900 **
901 ** Description      This function throws an exception.
902 **                  This is normally only called for a nonrecoverable error.
903 **
904 ** Parameters:      code    -  (input) The code for the error
905 **                  msg     -  (input) The message that has to be logged
906 **
907 ** Returns          void
908 **
909 *******************************************************************************/
910 
GKI_exception(uint16_t code,std::string msg)911 void GKI_exception(uint16_t code, std::string msg) {
912   uint8_t task_id;
913 
914   LOG(ERROR) << StringPrintf("Task State Table");
915 
916   for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) {
917     LOG(ERROR) << StringPrintf("TASK ID [%d] task name [%s] state [%d]",
918                                task_id, gki_cb.com.OSTName[task_id],
919                                gki_cb.com.OSRdyTbl[task_id]);
920   }
921 
922   LOG(ERROR) << StringPrintf("%d %s", code, msg.c_str());
923   LOG(ERROR) << StringPrintf(
924       "********************************************************************");
925   LOG(ERROR) << StringPrintf("* %d %s", code, msg.c_str());
926   LOG(ERROR) << StringPrintf(
927       "********************************************************************");
928 
929   LOG(ERROR) << StringPrintf("%d %s done", code, msg.c_str());
930 
931   return;
932 }
933 
934 /*******************************************************************************
935 **
936 ** Function         GKI_get_time_stamp
937 **
938 ** Description      This function formats the time into a user area
939 **
940 ** Parameters:      tbuf -  (output) the address to the memory containing the
941 **                  formatted time
942 **
943 ** Returns          the address of the user area containing the formatted time
944 **                  The format of the time is ????
945 **
946 ** NOTE             This function is only called by OBEX.
947 **
948 *******************************************************************************/
GKI_get_time_stamp(int8_t * tbuf)949 int8_t* GKI_get_time_stamp(int8_t* tbuf) {
950   uint32_t ms_time;
951   uint32_t s_time;
952   uint32_t m_time;
953   uint32_t h_time;
954   int8_t* p_out = tbuf;
955 
956   ms_time = GKI_TICKS_TO_MS(times(nullptr));
957   s_time = ms_time / 100; /* 100 Ticks per second */
958   m_time = s_time / 60;
959   h_time = m_time / 60;
960 
961   ms_time -= s_time * 100;
962   s_time -= m_time * 60;
963   m_time -= h_time * 60;
964 
965   *p_out++ = (int8_t)((h_time / 10) + '0');
966   *p_out++ = (int8_t)((h_time % 10) + '0');
967   *p_out++ = ':';
968   *p_out++ = (int8_t)((m_time / 10) + '0');
969   *p_out++ = (int8_t)((m_time % 10) + '0');
970   *p_out++ = ':';
971   *p_out++ = (int8_t)((s_time / 10) + '0');
972   *p_out++ = (int8_t)((s_time % 10) + '0');
973   *p_out++ = ':';
974   *p_out++ = (int8_t)((ms_time / 10) + '0');
975   *p_out++ = (int8_t)((ms_time % 10) + '0');
976   *p_out++ = ':';
977   *p_out = 0;
978 
979   return (tbuf);
980 }
981 
982 /*******************************************************************************
983 **
984 ** Function         GKI_register_mempool
985 **
986 ** Description      This function registers a specific memory pool.
987 **
988 ** Parameters:      p_mem -  (input) pointer to the memory pool
989 **
990 ** Returns          void
991 **
992 ** NOTE             This function is NOT called by the Widcomm stack and
993 **                  profiles. If your OS has different memory pools, you
994 **                  can tell GKI the pool to use by calling this function.
995 **
996 *******************************************************************************/
GKI_register_mempool(void * p_mem)997 void GKI_register_mempool(void* p_mem) {
998   gki_cb.com.p_user_mempool = p_mem;
999 
1000   return;
1001 }
1002 
1003 /*******************************************************************************
1004 **
1005 ** Function         GKI_os_malloc
1006 **
1007 ** Description      This function allocates memory
1008 **
1009 ** Parameters:      size -  (input) The size of the memory that has to be
1010 **                  allocated
1011 **
1012 ** Returns          the address of the memory allocated, or NULL if failed
1013 **
1014 ** NOTE             This function is called by the Widcomm stack when
1015 **                  dynamic memory allocation is used.
1016 **
1017 *******************************************************************************/
GKI_os_malloc(uint32_t size)1018 void* GKI_os_malloc(uint32_t size) { return (malloc(size)); }
1019 
1020 /*******************************************************************************
1021 **
1022 ** Function         GKI_os_free
1023 **
1024 ** Description      This function frees memory
1025 **
1026 ** Parameters:      size -  (input) The address of the memory that has to be
1027 **                  freed
1028 **
1029 ** Returns          void
1030 **
1031 ** NOTE             This function is NOT called by the Widcomm stack and
1032 **                  profiles. It is only called from within GKI if dynamic
1033 **
1034 *******************************************************************************/
GKI_os_free(void * p_mem)1035 void GKI_os_free(void* p_mem) {
1036   if (p_mem != nullptr) free(p_mem);
1037   return;
1038 }
1039 
1040 /*******************************************************************************
1041 **
1042 ** Function         GKI_suspend_task()
1043 **
1044 ** Description      This function suspends the task specified in the argument.
1045 **
1046 ** Parameters:      task_id  - (input) the id of the task that has to suspended
1047 **
1048 ** Returns          GKI_SUCCESS if all OK, else GKI_FAILURE
1049 **
1050 ** NOTE             This function is NOT called by the Widcomm stack and
1051 **                  profiles. If you want to implement task suspension
1052 **                  capability, put specific code here.
1053 **
1054 *******************************************************************************/
GKI_suspend_task(uint8_t task_id)1055 uint8_t GKI_suspend_task(uint8_t task_id) {
1056   LOG(VERBOSE) << StringPrintf("GKI_suspend_task %d - NOT implemented", task_id);
1057 
1058   LOG(VERBOSE) << StringPrintf("GKI_suspend_task %d done", task_id);
1059 
1060   return (GKI_SUCCESS);
1061 }
1062 
1063 /*******************************************************************************
1064 **
1065 ** Function         GKI_resume_task()
1066 **
1067 ** Description      This function resumes the task specified in the argument.
1068 **
1069 ** Parameters:      task_id  - (input) the id of the task that has to resumed
1070 **
1071 ** Returns          GKI_SUCCESS if all OK
1072 **
1073 ** NOTE             This function is NOT called by the Widcomm stack and
1074 **                  profiles. If you want to implement task suspension
1075 **                  capability, put specific code here.
1076 **
1077 *******************************************************************************/
GKI_resume_task(uint8_t task_id)1078 uint8_t GKI_resume_task(uint8_t task_id) {
1079   LOG(VERBOSE) << StringPrintf("GKI_resume_task %d - NOT implemented", task_id);
1080 
1081   LOG(VERBOSE) << StringPrintf("GKI_resume_task %d done", task_id);
1082 
1083   return (GKI_SUCCESS);
1084 }
1085 
1086 /*******************************************************************************
1087 **
1088 ** Function         GKI_exit_task
1089 **
1090 ** Description      This function is called to stop a GKI task.
1091 **
1092 ** Parameters:      task_id  - (input) the id of the task that has to be stopped
1093 **
1094 ** Returns          void
1095 **
1096 ** NOTE             This function is NOT called by the Widcomm stack and
1097 **                  profiles. If you want to use it in your own implementation,
1098 **                  put specific code here to kill a task.
1099 **
1100 *******************************************************************************/
GKI_exit_task(uint8_t task_id)1101 void GKI_exit_task(uint8_t task_id) {
1102   if (task_id >= GKI_MAX_TASKS) {
1103     return;
1104   }
1105   GKI_disable();
1106   if (gki_cb.com.OSRdyTbl[task_id] == TASK_DEAD) {
1107     GKI_enable();
1108     LOG(WARNING) << StringPrintf("%s: task_id %d was already stopped.",
1109                                  __func__, task_id);
1110     return;
1111   }
1112   gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD;
1113 
1114   /* Destroy mutex and condition variable objects */
1115   pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]);
1116   pthread_cond_destroy(&gki_cb.os.thread_evt_cond[task_id]);
1117   pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]);
1118   pthread_cond_destroy(&gki_cb.os.thread_timeout_cond[task_id]);
1119 
1120   GKI_enable();
1121 
1122   // GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT));
1123 
1124   LOG(DEBUG) << StringPrintf("%s; %d done", __func__, task_id);
1125   return;
1126 }
1127 
1128 /*******************************************************************************
1129 **
1130 ** Function         GKI_sched_lock
1131 **
1132 ** Description      This function is called by tasks to disable scheduler
1133 **                  task context switching.
1134 **
1135 ** Returns          void
1136 **
1137 ** NOTE             This function is NOT called by the Widcomm stack and
1138 **                  profiles. If you want to use it in your own implementation,
1139 **                  put code here to tell the OS to disable context switching.
1140 **
1141 *******************************************************************************/
GKI_sched_lock(void)1142 void GKI_sched_lock(void) {
1143   LOG(VERBOSE) << StringPrintf("GKI_sched_lock");
1144   GKI_disable();
1145   return;
1146 }
1147 
1148 /*******************************************************************************
1149 **
1150 ** Function         GKI_sched_unlock
1151 **
1152 ** Description      This function is called by tasks to enable scheduler
1153 **                  switching.
1154 **
1155 ** Returns          void
1156 **
1157 ** NOTE             This function is NOT called by the Widcomm stack and
1158 **                  profiles. If you want to use it in your own implementation,
1159 **                  put code here to tell the OS to re-enable context switching.
1160 **
1161 *******************************************************************************/
GKI_sched_unlock(void)1162 void GKI_sched_unlock(void) {
1163   LOG(VERBOSE) << StringPrintf("GKI_sched_unlock");
1164   GKI_enable();
1165 }
1166 
1167 /*******************************************************************************
1168 **
1169 ** Function         GKI_shiftdown
1170 **
1171 ** Description      shift memory down (to make space to insert a record)
1172 **
1173 *******************************************************************************/
GKI_shiftdown(uint8_t * p_mem,uint32_t len,uint32_t shift_amount)1174 void GKI_shiftdown(uint8_t* p_mem, uint32_t len, uint32_t shift_amount) {
1175   uint8_t* ps = p_mem + len - 1;
1176   uint8_t* pd = ps + shift_amount;
1177   uint32_t xx;
1178 
1179   for (xx = 0; xx < len; xx++) *pd-- = *ps--;
1180 }
1181 
1182 /*******************************************************************************
1183 **
1184 ** Function         GKI_shiftup
1185 **
1186 ** Description      shift memory up (to delete a record)
1187 **
1188 *******************************************************************************/
GKI_shiftup(uint8_t * p_dest,uint8_t * p_src,uint32_t len)1189 void GKI_shiftup(uint8_t* p_dest, uint8_t* p_src, uint32_t len) {
1190   uint8_t* ps = p_src;
1191   uint8_t* pd = p_dest;
1192   uint32_t xx;
1193 
1194   for (xx = 0; xx < len; xx++) *pd++ = *ps++;
1195 }
1196