1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <array>
24 #include <memory>
25 #include <optional>
26 #include <random>
27 #include <string>
28 #include <vector>
29
30 #include "android-base/logging.h"
31 #include "android-base/stringprintf.h"
32 #include "android-base/strings.h"
33 #include "android-base/unique_fd.h"
34 #include "arch/instruction_set.h"
35 #include "art_field-inl.h"
36 #include "art_method-inl.h"
37 #include "base/array_ref.h"
38 #include "base/bit_memory_region.h"
39 #include "base/callee_save_type.h"
40 #include "base/file_utils.h"
41 #include "base/globals.h"
42 #include "base/macros.h"
43 #include "base/memfd.h"
44 #include "base/os.h"
45 #include "base/pointer_size.h"
46 #include "base/stl_util.h"
47 #include "base/systrace.h"
48 #include "base/time_utils.h"
49 #include "base/utils.h"
50 #include "class_root-inl.h"
51 #include "dex/art_dex_file_loader.h"
52 #include "dex/dex_file_loader.h"
53 #include "exec_utils.h"
54 #include "gc/accounting/space_bitmap-inl.h"
55 #include "gc/task_processor.h"
56 #include "intern_table-inl.h"
57 #include "mirror/class-inl.h"
58 #include "mirror/executable-inl.h"
59 #include "mirror/object-inl.h"
60 #include "mirror/object-refvisitor-inl.h"
61 #include "mirror/var_handle.h"
62 #include "oat/image-inl.h"
63 #include "oat/image.h"
64 #include "oat/oat.h"
65 #include "oat/oat_file.h"
66 #include "profile/profile_compilation_info.h"
67 #include "runtime.h"
68 #include "runtime_globals.h"
69 #include "space-inl.h"
70
71 namespace art HIDDEN {
72 namespace gc {
73 namespace space {
74
75 namespace {
76
77 using ::android::base::Join;
78 using ::android::base::StringAppendF;
79 using ::android::base::StringPrintf;
80
81 // We do not allow the boot image and extensions to take more than 1GiB. They are
82 // supposed to be much smaller and allocating more that this would likely fail anyway.
83 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
84
85 } // namespace
86
87 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
88
ImageSpace(const std::string & image_filename,const char * image_location,const std::vector<std::string> & profile_files,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)89 ImageSpace::ImageSpace(const std::string& image_filename,
90 const char* image_location,
91 const std::vector<std::string>& profile_files,
92 MemMap&& mem_map,
93 accounting::ContinuousSpaceBitmap&& live_bitmap,
94 uint8_t* end)
95 : MemMapSpace(image_filename,
96 std::move(mem_map),
97 mem_map.Begin(),
98 end,
99 end,
100 kGcRetentionPolicyNeverCollect),
101 live_bitmap_(std::move(live_bitmap)),
102 oat_file_non_owned_(nullptr),
103 image_location_(image_location),
104 profile_files_(profile_files) {
105 DCHECK(live_bitmap_.IsValid());
106 }
107
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)108 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
109 CHECK_ALIGNED(min_delta, kElfSegmentAlignment);
110 CHECK_ALIGNED(max_delta, kElfSegmentAlignment);
111 CHECK_LT(min_delta, max_delta);
112
113 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
114 if (r % 2 == 0) {
115 r = RoundUp(r, kElfSegmentAlignment);
116 } else {
117 r = RoundDown(r, kElfSegmentAlignment);
118 }
119 CHECK_LE(min_delta, r);
120 CHECK_GE(max_delta, r);
121 CHECK_ALIGNED(r, kElfSegmentAlignment);
122 return r;
123 }
124
ChooseRelocationOffsetDelta()125 static int32_t ChooseRelocationOffsetDelta() {
126 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
127 }
128
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename)129 static bool FindImageFilenameImpl(const char* image_location,
130 const InstructionSet image_isa,
131 bool* has_system,
132 std::string* system_filename) {
133 *has_system = false;
134
135 // image_location = /system/framework/boot.art
136 // system_image_location = /system/framework/<image_isa>/boot.art
137 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
138 if (OS::FileExists(system_image_filename.c_str())) {
139 *system_filename = system_image_filename;
140 *has_system = true;
141 }
142
143 return *has_system;
144 }
145
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system)146 bool ImageSpace::FindImageFilename(const char* image_location,
147 const InstructionSet image_isa,
148 std::string* system_filename,
149 bool* has_system) {
150 return FindImageFilenameImpl(image_location,
151 image_isa,
152 has_system,
153 system_filename);
154 }
155
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)156 static bool ReadSpecificImageHeader(File* image_file,
157 const char* file_description,
158 /*out*/ImageHeader* image_header,
159 /*out*/std::string* error_msg) {
160 if (!image_file->PreadFully(image_header, sizeof(ImageHeader), /*offset=*/ 0)) {
161 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
162 return false;
163 }
164 if (!image_header->IsValid()) {
165 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
166 return false;
167 }
168 return true;
169 }
170
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)171 static bool ReadSpecificImageHeader(const char* filename,
172 /*out*/ImageHeader* image_header,
173 /*out*/std::string* error_msg) {
174 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
175 if (image_file.get() == nullptr) {
176 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
177 return false;
178 }
179 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
180 }
181
ReadSpecificImageHeader(const char * filename,std::string * error_msg)182 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
183 std::string* error_msg) {
184 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
185 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
186 return nullptr;
187 }
188 return hdr;
189 }
190
VerifyImageAllocations()191 void ImageSpace::VerifyImageAllocations() {
192 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
193 while (current < End()) {
194 CHECK_ALIGNED(current, kObjectAlignment);
195 auto* obj = reinterpret_cast<mirror::Object*>(current);
196 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
197 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
198 if (kUseBakerReadBarrier) {
199 obj->AssertReadBarrierState();
200 }
201 current += RoundUp(obj->SizeOf(), kObjectAlignment);
202 }
203 }
204
205 // Helper class for relocating from one range of memory to another.
206 class RelocationRange {
207 public:
208 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)209 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
210 : source_(source),
211 dest_(dest),
212 length_(length) {}
213
InSource(uintptr_t address) const214 bool InSource(uintptr_t address) const {
215 return address - source_ < length_;
216 }
217
InDest(const void * dest) const218 bool InDest(const void* dest) const {
219 return InDest(reinterpret_cast<uintptr_t>(dest));
220 }
221
InDest(uintptr_t address) const222 bool InDest(uintptr_t address) const {
223 return address - dest_ < length_;
224 }
225
226 // Translate a source address to the destination space.
ToDest(uintptr_t address) const227 uintptr_t ToDest(uintptr_t address) const {
228 DCHECK(InSource(address));
229 return address + Delta();
230 }
231
232 template <typename T>
ToDest(T * src) const233 T* ToDest(T* src) const {
234 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
235 }
236
237 // Returns the delta between the dest from the source.
Delta() const238 uintptr_t Delta() const {
239 return dest_ - source_;
240 }
241
Source() const242 uintptr_t Source() const {
243 return source_;
244 }
245
Dest() const246 uintptr_t Dest() const {
247 return dest_;
248 }
249
Length() const250 uintptr_t Length() const {
251 return length_;
252 }
253
254 private:
255 const uintptr_t source_;
256 const uintptr_t dest_;
257 const uintptr_t length_;
258 };
259
operator <<(std::ostream & os,const RelocationRange & reloc)260 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
261 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
262 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
263 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
264 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
265 }
266
267 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
268 class ImageSpace::PatchObjectVisitor final {
269 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)270 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
271 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
272
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)273 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
274 REQUIRES_SHARED(Locks::mutator_lock_) {
275 // A mirror::Class object consists of
276 // - instance fields inherited from j.l.Object,
277 // - instance fields inherited from j.l.Class,
278 // - embedded tables (vtable, interface method table),
279 // - static fields of the class itself.
280 // The reference fields are at the start of each field section (this is how the
281 // ClassLinker orders fields; except when that would create a gap between superclass
282 // fields and the first reference of the subclass due to alignment, it can be filled
283 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
284
285 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
286 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
287 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
288 // This should be the only reference field in j.l.Object and we assert that below.
289 DCHECK_EQ(class_class,
290 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
291 klass->SetFieldObjectWithoutWriteBarrier<
292 /*kTransactionActive=*/ false,
293 /*kCheckTransaction=*/ true,
294 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
295 // Then patch the reference instance fields described by j.l.Class.class.
296 // Use the sizeof(Object) to determine where these reference fields start;
297 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
298 // after patching but the j.l.Class may not have been patched yet.
299 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
300 DCHECK_NE(num_reference_instance_fields, 0u);
301 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
302 MemberOffset instance_field_offset(sizeof(mirror::Object));
303 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
304 PatchReferenceField(klass, instance_field_offset);
305 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
306 "Heap reference sizes equality check.");
307 instance_field_offset =
308 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
309 }
310 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
311 // we can get a reference to j.l.Object.class and assert that it has only one
312 // reference instance field (the `klass_` patched above).
313 if (kIsDebugBuild && klass == class_class) {
314 ObjPtr<mirror::Class> object_class =
315 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
316 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
317 }
318 // Then patch static fields.
319 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
320 if (num_reference_static_fields != 0u) {
321 MemberOffset static_field_offset =
322 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
323 for (size_t i = 0; i != num_reference_static_fields; ++i) {
324 PatchReferenceField(klass, static_field_offset);
325 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
326 "Heap reference sizes equality check.");
327 static_field_offset =
328 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
329 }
330 }
331 // Then patch native pointers.
332 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
333 }
334
335 template <typename T>
operator ()(T * ptr,void ** dest_addr) const336 T* operator()(T* ptr, [[maybe_unused]] void** dest_addr) const {
337 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
338 }
339
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)340 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
341 REQUIRES_SHARED(Locks::mutator_lock_) {
342 // Fully patch the pointer array, including the `klass_` field.
343 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
344
345 int32_t length = pointer_array->GetLength<kVerifyNone>();
346 for (int32_t i = 0; i != length; ++i) {
347 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
348 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
349 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
350 }
351 }
352
VisitObject(mirror::Object * object)353 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
354 // Visit all reference fields.
355 object->VisitReferences</*kVisitNativeRoots=*/ false,
356 kVerifyNone,
357 kWithoutReadBarrier>(*this, *this);
358 // This function should not be called for classes.
359 DCHECK(!object->IsClass<kVerifyNone>());
360 }
361
362 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const363 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
364 MemberOffset field_offset,
365 bool is_static)
366 const REQUIRES_SHARED(Locks::mutator_lock_) {
367 DCHECK(!is_static);
368 PatchReferenceField(object, field_offset);
369 }
370 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const371 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
372 REQUIRES_SHARED(Locks::mutator_lock_) {
373 DCHECK(klass->IsTypeOfReferenceClass());
374 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
375 }
376 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const377 void VisitRootIfNonNull(
378 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const379 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
380
VisitNativeDexCacheArray(mirror::NativeArray<T> * array)381 template <typename T> void VisitNativeDexCacheArray(mirror::NativeArray<T>* array)
382 REQUIRES_SHARED(Locks::mutator_lock_) {
383 if (array == nullptr) {
384 return;
385 }
386 DCHECK_ALIGNED(array, static_cast<size_t>(kPointerSize));
387 uint32_t size = (kPointerSize == PointerSize::k32)
388 ? reinterpret_cast<uint32_t*>(array)[-1]
389 : dchecked_integral_cast<uint32_t>(reinterpret_cast<uint64_t*>(array)[-1]);
390 for (uint32_t i = 0; i < size; ++i) {
391 PatchNativePointer(array->GetPtrEntryPtrSize(i, kPointerSize));
392 }
393 }
394
VisitGcRootDexCacheArray(mirror::GcRootArray<T> * array)395 template <typename T> void VisitGcRootDexCacheArray(mirror::GcRootArray<T>* array)
396 REQUIRES_SHARED(Locks::mutator_lock_) {
397 if (array == nullptr) {
398 return;
399 }
400 DCHECK_ALIGNED(array, sizeof(GcRoot<T>));
401 static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
402 uint32_t size = reinterpret_cast<uint32_t*>(array)[-1];
403 for (uint32_t i = 0; i < size; ++i) {
404 PatchGcRoot(array->GetGcRootAddress(i));
405 }
406 }
407
VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)408 void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
409 REQUIRES_SHARED(Locks::mutator_lock_) {
410 mirror::NativeArray<ArtMethod>* old_resolved_methods = dex_cache->GetResolvedMethodsArray();
411 if (old_resolved_methods != nullptr) {
412 mirror::NativeArray<ArtMethod>* resolved_methods = native_visitor_(old_resolved_methods);
413 dex_cache->SetResolvedMethodsArray(resolved_methods);
414 VisitNativeDexCacheArray(resolved_methods);
415 }
416
417 mirror::NativeArray<ArtField>* old_resolved_fields = dex_cache->GetResolvedFieldsArray();
418 if (old_resolved_fields != nullptr) {
419 mirror::NativeArray<ArtField>* resolved_fields = native_visitor_(old_resolved_fields);
420 dex_cache->SetResolvedFieldsArray(resolved_fields);
421 VisitNativeDexCacheArray(resolved_fields);
422 }
423
424 mirror::GcRootArray<mirror::String>* old_strings = dex_cache->GetStringsArray();
425 if (old_strings != nullptr) {
426 mirror::GcRootArray<mirror::String>* strings = native_visitor_(old_strings);
427 dex_cache->SetStringsArray(strings);
428 VisitGcRootDexCacheArray(strings);
429 }
430
431 mirror::GcRootArray<mirror::Class>* old_types = dex_cache->GetResolvedTypesArray();
432 if (old_types != nullptr) {
433 mirror::GcRootArray<mirror::Class>* types = native_visitor_(old_types);
434 dex_cache->SetResolvedTypesArray(types);
435 VisitGcRootDexCacheArray(types);
436 }
437 }
438
439 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const440 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
441 REQUIRES_SHARED(Locks::mutator_lock_) {
442 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
443 T* old_value = root->template Read<kWithoutReadBarrier>();
444 DCHECK(kMayBeNull || old_value != nullptr);
445 if (!kMayBeNull || old_value != nullptr) {
446 *root = GcRoot<T>(heap_visitor_(old_value));
447 }
448 }
449
450 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const451 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
452 if (kPointerSize == PointerSize::k64) {
453 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
454 T* old_value = reinterpret_cast64<T*>(*raw_entry);
455 DCHECK(kMayBeNull || old_value != nullptr);
456 if (!kMayBeNull || old_value != nullptr) {
457 T* new_value = native_visitor_(old_value);
458 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
459 }
460 } else {
461 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
462 T* old_value = reinterpret_cast32<T*>(*raw_entry);
463 DCHECK(kMayBeNull || old_value != nullptr);
464 if (!kMayBeNull || old_value != nullptr) {
465 T* new_value = native_visitor_(old_value);
466 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
467 }
468 }
469 }
470
471 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const472 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
473 REQUIRES_SHARED(Locks::mutator_lock_) {
474 ObjPtr<mirror::Object> old_value =
475 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
476 DCHECK(kMayBeNull || old_value != nullptr);
477 if (!kMayBeNull || old_value != nullptr) {
478 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
479 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
480 /*kCheckTransaction=*/ true,
481 kVerifyNone>(offset, new_value);
482 }
483 }
484
485 private:
486 // Heap objects visitor.
487 HeapVisitor heap_visitor_;
488
489 // Native objects visitor.
490 NativeVisitor native_visitor_;
491 };
492
493 template <typename ReferenceVisitor>
494 class ImageSpace::ClassTableVisitor final {
495 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)496 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
497 : reference_visitor_(reference_visitor) {}
498
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const499 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
500 REQUIRES_SHARED(Locks::mutator_lock_) {
501 DCHECK(root->AsMirrorPtr() != nullptr);
502 root->Assign(reference_visitor_(root->AsMirrorPtr()));
503 }
504
505 private:
506 ReferenceVisitor reference_visitor_;
507 };
508
509 class ImageSpace::RemapInternedStringsVisitor {
510 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)511 explicit RemapInternedStringsVisitor(
512 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
513 REQUIRES_SHARED(Locks::mutator_lock_)
514 : intern_remap_(intern_remap),
515 string_class_(GetStringClass()) {}
516
517 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const518 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
519 MemberOffset field_offset,
520 [[maybe_unused]] bool is_static) const
521 REQUIRES_SHARED(Locks::mutator_lock_) {
522 ObjPtr<mirror::Object> old_value =
523 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
524 if (old_value != nullptr &&
525 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
526 auto it = intern_remap_.find(old_value->AsString().Ptr());
527 if (it != intern_remap_.end()) {
528 mirror::String* new_value = it->second;
529 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
530 /*kCheckTransaction=*/ true,
531 kVerifyNone>(field_offset, new_value);
532 }
533 }
534 }
535 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const536 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
537 REQUIRES_SHARED(Locks::mutator_lock_) {
538 DCHECK(klass->IsTypeOfReferenceClass());
539 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
540 }
541 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const542 void VisitRootIfNonNull(
543 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const544 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
545
546 private:
GetStringClass()547 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
548 DCHECK(!intern_remap_.empty());
549 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
550 }
551
552 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
553 mirror::Class* const string_class_;
554 };
555
556 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
557 // nested class), but not declare functions in the header.
558 class ImageSpace::Loader {
559 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)560 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
561 const char* image_location,
562 const OatFile* oat_file,
563 ArrayRef<ImageSpace* const> boot_image_spaces,
564 /*out*/std::string* error_msg)
565 REQUIRES(!Locks::mutator_lock_) {
566 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
567
568 if (gPageSize != kMinPageSize) {
569 *error_msg = "Loading app image is only supported on devices with 4K page size";
570 return nullptr;
571 }
572
573 std::unique_ptr<ImageSpace> space = Init(image_filename,
574 image_location,
575 &logger,
576 /*image_reservation=*/ nullptr,
577 error_msg);
578 if (space != nullptr) {
579 space->oat_file_non_owned_ = oat_file;
580 const ImageHeader& image_header = space->GetImageHeader();
581
582 // Check the oat file checksum.
583 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
584 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
585 // Note image_oat_checksum is 0 for images generated by the runtime.
586 if (image_oat_checksum != 0u && oat_checksum != image_oat_checksum) {
587 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
588 oat_checksum,
589 image_oat_checksum,
590 image_filename);
591 return nullptr;
592 }
593 size_t boot_image_space_dependencies;
594 if (!ValidateBootImageChecksum(image_filename,
595 image_header,
596 oat_file,
597 boot_image_spaces,
598 &boot_image_space_dependencies,
599 error_msg)) {
600 DCHECK(!error_msg->empty());
601 return nullptr;
602 }
603
604 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(),
605 kElfSegmentAlignment);
606 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
607 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
608 return nullptr;
609 }
610
611 {
612 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
613 const PointerSize pointer_size = image_header.GetPointerSize();
614 uint32_t boot_image_begin =
615 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
616 bool result;
617 if (pointer_size == PointerSize::k64) {
618 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
619 space->GetMemMap()->Begin(),
620 space->GetLiveBitmap(),
621 oat_file,
622 error_msg);
623 } else {
624 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
625 space->GetMemMap()->Begin(),
626 space->GetLiveBitmap(),
627 oat_file,
628 error_msg);
629 }
630 if (!result) {
631 return nullptr;
632 }
633 }
634
635 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
636 if (boot_image_space_dependencies != boot_image_spaces.size()) {
637 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
638 // There shall be no duplicates with boot image spaces this app image depends on.
639 ArrayRef<ImageSpace* const> old_spaces =
640 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
641 SafeMap<mirror::String*, mirror::String*> intern_remap;
642 ScopedObjectAccess soa(Thread::Current());
643 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
644 if (!intern_remap.empty()) {
645 RemapInternedStringDuplicates(intern_remap, space.get());
646 }
647 }
648
649 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
650 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
651 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
652 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
653 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
654 << method;
655 }
656
657 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
658 }
659 if (VLOG_IS_ON(image)) {
660 logger.Dump(LOG_STREAM(INFO));
661 }
662 return space;
663 }
664
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)665 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
666 const char* image_location,
667 TimingLogger* logger,
668 /*inout*/MemMap* image_reservation,
669 /*out*/std::string* error_msg) {
670 CHECK(image_filename != nullptr);
671 CHECK(image_location != nullptr);
672
673 std::unique_ptr<File> file;
674 {
675 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
676 file.reset(OS::OpenFileForReading(image_filename));
677 if (file == nullptr) {
678 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
679 return nullptr;
680 }
681 }
682 return Init(file.get(),
683 image_filename,
684 image_location,
685 /*profile_files=*/ {},
686 /*allow_direct_mapping=*/ true,
687 logger,
688 image_reservation,
689 error_msg);
690 }
691
Init(File * file,const char * image_filename,const char * image_location,const std::vector<std::string> & profile_files,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)692 static std::unique_ptr<ImageSpace> Init(File* file,
693 const char* image_filename,
694 const char* image_location,
695 const std::vector<std::string>& profile_files,
696 bool allow_direct_mapping,
697 TimingLogger* logger,
698 /*inout*/MemMap* image_reservation,
699 /*out*/std::string* error_msg) {
700 CHECK(image_filename != nullptr);
701 CHECK(image_location != nullptr);
702
703 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
704
705 ImageHeader image_header;
706 {
707 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
708 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
709 if (!success || !image_header.IsValid()) {
710 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
711 return nullptr;
712 }
713 }
714 // Check that the file is larger or equal to the header size + data size.
715 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
716 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
717 *error_msg = StringPrintf(
718 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
719 image_file_size,
720 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
721 return nullptr;
722 }
723
724 if (VLOG_IS_ON(startup)) {
725 LOG(INFO) << "Dumping image sections";
726 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
727 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
728 auto& section = image_header.GetImageSection(section_idx);
729 LOG(INFO) << section_idx << " start="
730 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
731 << section;
732 }
733 }
734
735 const auto& bitmap_section = image_header.GetImageBitmapSection();
736 // The location we want to map from is the first aligned page after the end of the stored
737 // (possibly compressed) data.
738 const size_t image_bitmap_offset =
739 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kElfSegmentAlignment);
740 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
741 if (end_of_bitmap != image_file_size) {
742 *error_msg = StringPrintf(
743 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
744 image_file_size,
745 end_of_bitmap);
746 return nullptr;
747 }
748
749 // GetImageBegin is the preferred address to map the image. If we manage to map the
750 // image at the image begin, the amount of fixup work required is minimized.
751 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
752 // avoid reading proc maps for a mapping failure and slowing everything down.
753 // For the boot image, we have already reserved the memory and we load the image
754 // into the `image_reservation`.
755 MemMap map = LoadImageFile(
756 image_filename,
757 image_location,
758 image_header,
759 file->Fd(),
760 allow_direct_mapping,
761 logger,
762 image_reservation,
763 error_msg);
764 if (!map.IsValid()) {
765 DCHECK(!error_msg->empty());
766 return nullptr;
767 }
768 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
769
770 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
771 PROT_READ,
772 MAP_PRIVATE,
773 file->Fd(),
774 image_bitmap_offset,
775 /*low_4gb=*/ false,
776 image_filename,
777 error_msg);
778 if (!image_bitmap_map.IsValid()) {
779 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
780 return nullptr;
781 }
782 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
783 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
784 image_filename,
785 bitmap_index));
786 // Bitmap only needs to cover until the end of the mirror objects section.
787 const ImageSection& image_objects = image_header.GetObjectsSection();
788 // We only want the mirror object, not the ArtFields and ArtMethods.
789 uint8_t* const image_end = map.Begin() + image_objects.End();
790 accounting::ContinuousSpaceBitmap bitmap;
791 {
792 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
793 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
794 bitmap_name,
795 std::move(image_bitmap_map),
796 reinterpret_cast<uint8_t*>(map.Begin()),
797 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
798 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
799 if (!bitmap.IsValid()) {
800 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
801 return nullptr;
802 }
803 }
804 // We only want the mirror object, not the ArtFields and ArtMethods.
805 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
806 image_location,
807 profile_files,
808 std::move(map),
809 std::move(bitmap),
810 image_end));
811 return space;
812 }
813
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)814 static bool CheckImageComponentCount(const ImageSpace& space,
815 uint32_t expected_component_count,
816 /*out*/std::string* error_msg) {
817 const ImageHeader& header = space.GetImageHeader();
818 if (header.GetComponentCount() != expected_component_count) {
819 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
820 space.GetImageFilename().c_str(),
821 header.GetComponentCount(),
822 expected_component_count);
823 return false;
824 }
825 return true;
826 }
827
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)828 static bool CheckImageReservationSize(const ImageSpace& space,
829 uint32_t expected_reservation_size,
830 /*out*/std::string* error_msg) {
831 const ImageHeader& header = space.GetImageHeader();
832 if (header.GetImageReservationSize() != expected_reservation_size) {
833 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
834 space.GetImageFilename().c_str(),
835 header.GetImageReservationSize(),
836 expected_reservation_size);
837 return false;
838 }
839 return true;
840 }
841
842 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)843 static void RemoveInternTableDuplicates(
844 const Container& old_spaces,
845 /*inout*/ImageSpace* new_space,
846 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
847 REQUIRES_SHARED(Locks::mutator_lock_) {
848 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
849 if (new_interns.Size() != 0u) {
850 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
851 size_t new_read_count;
852 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
853 for (const auto& old_space : old_spaces) {
854 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
855 if (old_interns.Size() != 0u) {
856 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
857 size_t old_read_count;
858 InternTable::UnorderedSet old_set(
859 old_data, /*make_copy_of_data=*/ false, &old_read_count);
860 RemoveDuplicates(old_set, &new_set, intern_remap);
861 }
862 }
863 }
864 }
865
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)866 static void RemapInternedStringDuplicates(
867 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
868 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
869 RemapInternedStringsVisitor visitor(intern_remap);
870 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
871 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
872 DCHECK_ALIGNED(objects_end, kObjectAlignment);
873 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
874 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
875 object->VisitReferences</*kVisitNativeRoots=*/ false,
876 kVerifyNone,
877 kWithoutReadBarrier>(visitor, visitor);
878 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
879 }
880 }
881
882 private:
883 // Remove duplicates found in the `old_set` from the `new_set`.
884 // Record the removed Strings for remapping. No read barriers are needed as the
885 // tables are either just being loaded and not yet a part of the heap, or boot
886 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)887 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
888 /*inout*/InternTable::UnorderedSet* new_set,
889 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
890 REQUIRES_SHARED(Locks::mutator_lock_) {
891 if (old_set.size() < new_set->size()) {
892 for (const GcRoot<mirror::String>& old_s : old_set) {
893 auto new_it = new_set->find(old_s);
894 if (UNLIKELY(new_it != new_set->end())) {
895 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
896 new_set->erase(new_it);
897 }
898 }
899 } else {
900 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
901 auto old_it = old_set.find(*new_it);
902 if (UNLIKELY(old_it != old_set.end())) {
903 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
904 old_it->Read<kWithoutReadBarrier>());
905 new_it = new_set->erase(new_it);
906 } else {
907 ++new_it;
908 }
909 }
910 }
911 }
912
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)913 static bool ValidateBootImageChecksum(const char* image_filename,
914 const ImageHeader& image_header,
915 const OatFile* oat_file,
916 ArrayRef<ImageSpace* const> boot_image_spaces,
917 /*out*/size_t* boot_image_space_dependencies,
918 /*out*/std::string* error_msg) {
919 // Use the boot image component count to calculate the checksum from
920 // the appropriate number of boot image chunks.
921 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
922 size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces);
923 if (boot_image_component_count > expected_image_component_count) {
924 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
925 boot_image_component_count,
926 expected_image_component_count,
927 image_filename);
928 return false;
929 }
930 uint32_t checksum = 0u;
931 size_t chunk_count = 0u;
932 size_t space_pos = 0u;
933 uint64_t boot_image_size = 0u;
934 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
935 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
936 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
937 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
938 "%u is between %zu and %zu",
939 image_filename,
940 boot_image_component_count,
941 component_count,
942 component_count + current_header.GetComponentCount());
943 return false;
944 }
945 component_count += current_header.GetComponentCount();
946 checksum ^= current_header.GetImageChecksum();
947 chunk_count += 1u;
948 space_pos += current_header.GetImageSpaceCount();
949 boot_image_size += current_header.GetImageReservationSize();
950 }
951 if (image_header.GetBootImageChecksum() != checksum) {
952 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
953 image_header.GetBootImageChecksum(),
954 checksum,
955 image_filename);
956 return false;
957 }
958 if (image_header.GetBootImageSize() != boot_image_size) {
959 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
960 image_header.GetBootImageSize(),
961 boot_image_size,
962 image_filename);
963 return false;
964 }
965 // Oat checksums, if present, have already been validated, so we know that
966 // they match the loaded image spaces. Therefore, we just verify that they
967 // are consistent in the number of boot image chunks they list by looking
968 // for the kImageChecksumPrefix at the start of each component.
969 const char* oat_boot_class_path_checksums =
970 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
971 if (oat_boot_class_path_checksums != nullptr) {
972 size_t oat_bcp_chunk_count = 0u;
973 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
974 oat_bcp_chunk_count += 1u;
975 // Find the start of the next component if any.
976 const char* separator = strchr(oat_boot_class_path_checksums, ':');
977 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
978 }
979 if (oat_bcp_chunk_count != chunk_count) {
980 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
981 oat_bcp_chunk_count,
982 chunk_count,
983 image_filename);
984 return false;
985 }
986 }
987 *boot_image_space_dependencies = space_pos;
988 return true;
989 }
990
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)991 static MemMap LoadImageFile(const char* image_filename,
992 const char* image_location,
993 const ImageHeader& image_header,
994 int fd,
995 bool allow_direct_mapping,
996 TimingLogger* logger,
997 /*inout*/MemMap* image_reservation,
998 /*out*/std::string* error_msg) {
999 TimingLogger::ScopedTiming timing("MapImageFile", logger);
1000
1001 // The runtime might not be available at this point if we're running dex2oat or oatdump, in
1002 // which case we just truncate the madvise optimization limit completely.
1003 Runtime* runtime = Runtime::Current();
1004 const size_t madvise_size_limit = runtime ? runtime->GetMadviseWillNeedSizeArt() : 0;
1005
1006 const bool is_compressed = image_header.HasCompressedBlock();
1007 if (!is_compressed && allow_direct_mapping) {
1008 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
1009 // The reserved memory size is aligned up to kElfSegmentAlignment to ensure
1010 // that the next reserved area will be aligned to the value.
1011 MemMap map = MemMap::MapFileAtAddress(
1012 address,
1013 CondRoundUp<kPageSizeAgnostic>(image_header.GetImageSize(), kElfSegmentAlignment),
1014 PROT_READ | PROT_WRITE,
1015 MAP_PRIVATE,
1016 fd,
1017 /*start=*/0,
1018 /*low_4gb=*/true,
1019 image_filename,
1020 /*reuse=*/false,
1021 image_reservation,
1022 error_msg);
1023 if (map.IsValid()) {
1024 Runtime::MadviseFileForRange(
1025 madvise_size_limit, map.Size(), map.Begin(), map.End(), image_filename);
1026 }
1027 return map;
1028 }
1029
1030 // Reserve output and copy/decompress into it.
1031 // The reserved memory size is aligned up to kElfSegmentAlignment to ensure
1032 // that the next reserved area will be aligned to the value.
1033 MemMap map = MemMap::MapAnonymous(image_location,
1034 CondRoundUp<kPageSizeAgnostic>(image_header.GetImageSize(),
1035 kElfSegmentAlignment),
1036 PROT_READ | PROT_WRITE,
1037 /*low_4gb=*/ true,
1038 image_reservation,
1039 error_msg);
1040 if (map.IsValid()) {
1041 const size_t stored_size = image_header.GetDataSize();
1042 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1043 PROT_READ,
1044 MAP_PRIVATE,
1045 fd,
1046 /*start=*/ 0,
1047 /*low_4gb=*/ false,
1048 image_filename,
1049 error_msg);
1050 if (!temp_map.IsValid()) {
1051 DCHECK(error_msg == nullptr || !error_msg->empty());
1052 return MemMap::Invalid();
1053 }
1054
1055 Runtime::MadviseFileForRange(
1056 madvise_size_limit, temp_map.Size(), temp_map.Begin(), temp_map.End(), image_filename);
1057
1058 if (is_compressed) {
1059 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
1060
1061 Runtime::ScopedThreadPoolUsage stpu;
1062 ThreadPool* const pool = stpu.GetThreadPool();
1063 const uint64_t start = NanoTime();
1064 Thread* const self = Thread::Current();
1065 static constexpr size_t kMinBlocks = 2u;
1066 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
1067 bool failed_decompression = false;
1068 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
1069 auto function = [&](Thread*) {
1070 const uint64_t start2 = NanoTime();
1071 ScopedTrace trace("LZ4 decompress block");
1072 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
1073 /*in_ptr=*/temp_map.Begin(),
1074 error_msg);
1075 if (!result) {
1076 failed_decompression = true;
1077 if (error_msg != nullptr) {
1078 *error_msg = "Failed to decompress image block " + *error_msg;
1079 }
1080 }
1081 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
1082 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1083 };
1084 if (use_parallel) {
1085 pool->AddTask(self, new FunctionTask(std::move(function)));
1086 } else {
1087 function(self);
1088 }
1089 }
1090 if (use_parallel) {
1091 ScopedTrace trace("Waiting for workers");
1092 pool->Wait(self, true, false);
1093 }
1094 const uint64_t time = NanoTime() - start;
1095 // Add one 1 ns to prevent possible divide by 0.
1096 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1097 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1098 << "/s)";
1099 if (failed_decompression) {
1100 DCHECK(error_msg == nullptr || !error_msg->empty());
1101 return MemMap::Invalid();
1102 }
1103 } else {
1104 DCHECK(!allow_direct_mapping);
1105 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1106 // This prevents wasting memory by kernel keeping the contents of the file alive
1107 // despite these contents being unreachable once the file descriptor is closed
1108 // and mmapped memory is copied for all existing mappings.
1109 //
1110 // Most pages would be copied during relocation while there is only one mapping.
1111 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1112 // as required for forking from zygote, but there would still be some pages
1113 // wasted anyway and we want to avoid that. (For example, static synchronized
1114 // methods use the class object for locking and thus modify its lockword.)
1115
1116 // No other process should race to overwrite the extension in memfd.
1117 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1118 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1119 }
1120 }
1121
1122 return map;
1123 }
1124
1125 class EmptyRange {
1126 public:
InSource(uintptr_t) const1127 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1128 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1129 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const {
1130 LOG(FATAL) << "Unreachable";
1131 UNREACHABLE();
1132 }
1133 };
1134
1135 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1136 class ForwardAddress {
1137 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1138 explicit ForwardAddress(const Range0& range0 = Range0(),
1139 const Range1& range1 = Range1(),
1140 const Range2& range2 = Range2())
1141 : range0_(range0), range1_(range1), range2_(range2) {}
1142
1143 // Return the relocated address of a heap object.
1144 // Null checks must be performed in the caller (for performance reasons).
1145 template <typename T>
operator ()(T * src) const1146 ALWAYS_INLINE T* operator()(T* src) const {
1147 DCHECK(src != nullptr);
1148 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1149 if (range2_.InSource(uint_src)) {
1150 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1151 }
1152 if (range1_.InSource(uint_src)) {
1153 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1154 }
1155 CHECK(range0_.InSource(uint_src))
1156 << reinterpret_cast<const void*>(src) << " not in "
1157 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1158 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1159 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1160 }
1161
1162 private:
1163 const Range0 range0_;
1164 const Range1 range1_;
1165 const Range2 range2_;
1166 };
1167
1168 template <typename Forward>
1169 class FixupRootVisitor {
1170 public:
1171 template<typename... Args>
FixupRootVisitor(Args...args)1172 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1173
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1174 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1175 REQUIRES_SHARED(Locks::mutator_lock_) {
1176 if (!root->IsNull()) {
1177 VisitRoot(root);
1178 }
1179 }
1180
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1181 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1182 REQUIRES_SHARED(Locks::mutator_lock_) {
1183 mirror::Object* ref = root->AsMirrorPtr();
1184 mirror::Object* new_ref = forward_(ref);
1185 if (ref != new_ref) {
1186 root->Assign(new_ref);
1187 }
1188 }
1189
1190 private:
1191 Forward forward_;
1192 };
1193
1194 template <typename Forward>
1195 class FixupObjectVisitor {
1196 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1197 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1198 const Forward& forward)
1199 : visited_(visited), forward_(forward) {}
1200
1201 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1202 ALWAYS_INLINE void VisitRootIfNonNull(
1203 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
1204
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1205 ALWAYS_INLINE void VisitRoot(
1206 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
1207
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1208 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1209 MemberOffset offset,
1210 [[maybe_unused]] bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1211 // Space is not yet added to the heap, don't do a read barrier.
1212 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1213 offset);
1214 if (ref != nullptr) {
1215 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1216 // image.
1217 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1218 }
1219 }
1220
1221 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1222 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1223 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1224 DCHECK(klass->IsTypeOfReferenceClass());
1225 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1226 }
1227
operator ()(mirror::Object * obj) const1228 void operator()(mirror::Object* obj) const
1229 NO_THREAD_SAFETY_ANALYSIS {
1230 if (!visited_->Set(obj)) {
1231 // Not already visited.
1232 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1233 *this,
1234 *this);
1235 CHECK(!obj->IsClass());
1236 }
1237 }
1238
1239 private:
1240 gc::accounting::ContinuousSpaceBitmap* const visited_;
1241 Forward forward_;
1242 };
1243
1244 // Relocate an image space mapped at target_base which possibly used to be at a different base
1245 // address. In place means modifying a single ImageSpace in place rather than relocating from
1246 // one ImageSpace to another.
1247 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1248 static bool RelocateInPlace(uint32_t boot_image_begin,
1249 uint8_t* target_base,
1250 accounting::ContinuousSpaceBitmap* bitmap,
1251 const OatFile* app_oat_file,
1252 std::string* error_msg) {
1253 DCHECK(error_msg != nullptr);
1254 // Set up sections.
1255 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1256 const uint32_t boot_image_size = image_header->GetBootImageSize();
1257 const ImageSection& objects_section = image_header->GetObjectsSection();
1258 // Where the app image objects are mapped to.
1259 uint8_t* objects_location = target_base + objects_section.Offset();
1260 TimingLogger logger(__FUNCTION__, true, false);
1261 RelocationRange boot_image(image_header->GetBootImageBegin(),
1262 boot_image_begin,
1263 boot_image_size);
1264 // Metadata is everything after the objects section, use exclusion to be safe.
1265 RelocationRange app_image_metadata(
1266 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1267 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1268 image_header->GetImageSize() - objects_section.End());
1269 // App image heap objects, may be mapped in the heap.
1270 RelocationRange app_image_objects(
1271 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1272 reinterpret_cast<uintptr_t>(objects_location),
1273 objects_section.Size());
1274 // Use the oat data section since this is where the OatFile::Begin is.
1275 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1276 // Not necessarily in low 4GB.
1277 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1278 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1279 VLOG(image) << "App image metadata " << app_image_metadata;
1280 VLOG(image) << "App image objects " << app_image_objects;
1281 VLOG(image) << "App oat " << app_oat;
1282 VLOG(image) << "Boot image " << boot_image;
1283 // True if we need to fixup any heap pointers.
1284 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1285 app_image_objects.Delta() != 0;
1286 if (!fixup_image) {
1287 // Nothing to fix up.
1288 return true;
1289 }
1290
1291 // TODO: Assert that the app image does not contain any Method, Constructor,
1292 // FieldVarHandle or StaticFieldVarHandle. These require extra relocation
1293 // for the `ArtMethod*` and `ArtField*` pointers they contain.
1294
1295 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1296 ForwardObject forward_object(boot_image, app_image_objects);
1297 ForwardObject forward_metadata(boot_image, app_image_metadata);
1298 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1299 ForwardCode forward_code(boot_image, app_oat);
1300 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1301 forward_object,
1302 forward_metadata);
1303 if (fixup_image) {
1304 // Two pass approach, fix up all classes first, then fix up non class-objects.
1305 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1306 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1307 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1308 target_base,
1309 image_header->GetImageSize()));
1310 {
1311 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1312 const auto& class_table_section = image_header->GetClassTableSection();
1313 if (class_table_section.Size() > 0u) {
1314 ScopedObjectAccess soa(Thread::Current());
1315 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1316 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1317 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1318 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1319 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1320 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1321 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1322 image_roots->GetWithoutChecks<kVerifyNone,
1323 kWithoutReadBarrier>(class_roots_index).Ptr()));
1324 ObjPtr<mirror::Class> class_class =
1325 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1326 ClassTableVisitor class_table_visitor(forward_object);
1327 size_t read_count = 0u;
1328 const uint8_t* data = target_base + class_table_section.Offset();
1329 // We avoid making a copy of the data since we want modifications to be propagated to the
1330 // memory map.
1331 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1332 for (ClassTable::TableSlot& slot : temp_set) {
1333 slot.VisitRoot(class_table_visitor);
1334 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1335 if (!app_image_objects.InDest(klass.Ptr())) {
1336 continue;
1337 }
1338 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1339 CHECK(!already_marked) << "App image class already visited";
1340 patch_object_visitor.VisitClass(klass, class_class);
1341 // Then patch the non-embedded vtable and iftable.
1342 ObjPtr<mirror::PointerArray> vtable =
1343 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1344 if (vtable != nullptr &&
1345 app_image_objects.InDest(vtable.Ptr()) &&
1346 !visited_bitmap.Set(vtable.Ptr())) {
1347 patch_object_visitor.VisitPointerArray(vtable);
1348 }
1349 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1350 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1351 // Avoid processing the fields of iftable since we will process them later anyways
1352 // below.
1353 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1354 for (int32_t i = 0; i != ifcount; ++i) {
1355 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1356 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1357 if (unpatched_ifarray != nullptr) {
1358 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1359 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1360 if (app_image_objects.InDest(ifarray.Ptr()) &&
1361 !visited_bitmap.Set(ifarray.Ptr())) {
1362 patch_object_visitor.VisitPointerArray(ifarray);
1363 }
1364 }
1365 }
1366 }
1367 }
1368 }
1369 }
1370
1371 // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is
1372 // probably not required).
1373 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1374 ScopedObjectAccess soa(Thread::Current());
1375 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1376 // Need to update the image to be at the target base.
1377 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1378 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1379 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1380 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1381 // Fixup image roots.
1382 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1383 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1384 image_header->RelocateImageReferences(app_image_objects.Delta());
1385 image_header->RelocateBootImageReferences(boot_image.Delta());
1386 CHECK_EQ(image_header->GetImageBegin(), target_base);
1387
1388 // Fix up dex cache arrays.
1389 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1390 image_header->GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
1391 ->AsObjectArray<mirror::DexCache, kVerifyNone>();
1392 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1393 ObjPtr<mirror::DexCache> dex_cache =
1394 dex_caches->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(i);
1395 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1396 }
1397 }
1398 {
1399 // Only touches objects in the app image, no need for mutator lock.
1400 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1401 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1402 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1403 // TODO: Consider a separate visitor for runtime vs normal methods.
1404 if (UNLIKELY(method.IsRuntimeMethod())) {
1405 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1406 if (table != nullptr) {
1407 ImtConflictTable* new_table = forward_metadata(table);
1408 if (table != new_table) {
1409 method.SetImtConflictTable(new_table, kPointerSize);
1410 }
1411 }
1412 } else {
1413 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1414 if (method.IsNative()) {
1415 const void* old_native_code = method.GetEntryPointFromJniPtrSize(kPointerSize);
1416 const void* new_native_code = forward_code(old_native_code);
1417 if (old_native_code != new_native_code) {
1418 method.SetEntryPointFromJniPtrSize(new_native_code, kPointerSize);
1419 }
1420 }
1421 }
1422 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1423 const void* new_code = forward_code(old_code);
1424 if (old_code != new_code) {
1425 method.SetEntryPointFromQuickCompiledCode(new_code);
1426 }
1427 }, target_base, kPointerSize);
1428 }
1429 if (fixup_image) {
1430 {
1431 // Only touches objects in the app image, no need for mutator lock.
1432 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1433 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1434 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1435 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1436 &field.DeclaringClassRoot());
1437 }, target_base);
1438 }
1439 {
1440 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1441 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1442 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1443 }
1444 {
1445 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1446 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1447 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1448 }
1449 // Fix up the intern table.
1450 const auto& intern_table_section = image_header->GetInternedStringsSection();
1451 if (intern_table_section.Size() > 0u) {
1452 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1453 ScopedObjectAccess soa(Thread::Current());
1454 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1455 // Fixup the pointers in the newly written intern table to contain image addresses.
1456 InternTable temp_intern_table;
1457 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1458 // so that the VisitRoots() will update the memory directly rather than the copies.
1459 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1460 [&](InternTable::UnorderedSet& strings)
1461 REQUIRES_SHARED(Locks::mutator_lock_) {
1462 for (GcRoot<mirror::String>& root : strings) {
1463 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1464 }
1465 }, /*is_boot_image=*/ false);
1466 }
1467 }
1468 if (VLOG_IS_ON(image)) {
1469 logger.Dump(LOG_STREAM(INFO));
1470 }
1471 return true;
1472 }
1473 };
1474
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1475 void ImageSpace::AppendImageChecksum(uint32_t component_count,
1476 uint32_t checksum,
1477 /*inout*/ std::string* checksums) {
1478 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1479 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1480 }
1481
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1482 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1483 uint32_t checksum,
1484 /*inout*/std::string_view* oat_checksums,
1485 /*out*/std::string* error_msg) {
1486 std::string image_checksum;
1487 ImageSpace::AppendImageChecksum(component_count, checksum, &image_checksum);
1488 if (!oat_checksums->starts_with(image_checksum)) {
1489 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1490 std::string(*oat_checksums).c_str(),
1491 image_checksum.c_str());
1492 return false;
1493 }
1494 oat_checksums->remove_prefix(image_checksum.size());
1495 return true;
1496 }
1497
GetPrimaryImageLocation()1498 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1499 DCHECK(!image_locations_.empty());
1500 std::string location = image_locations_[0];
1501 size_t profile_separator_pos = location.find(kProfileSeparator);
1502 if (profile_separator_pos != std::string::npos) {
1503 location.resize(profile_separator_pos);
1504 }
1505 if (location.find('/') == std::string::npos) {
1506 // No path, so use the path from the first boot class path component.
1507 size_t slash_pos = boot_class_path_.empty()
1508 ? std::string::npos
1509 : boot_class_path_[0].rfind('/');
1510 if (slash_pos == std::string::npos) {
1511 return std::string();
1512 }
1513 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1514 }
1515 return location;
1516 }
1517
VerifyImageLocation(ArrayRef<const std::string> components,size_t * named_components_count,std::string * error_msg)1518 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1519 ArrayRef<const std::string> components,
1520 /*out*/size_t* named_components_count,
1521 /*out*/std::string* error_msg) {
1522 DCHECK(named_components_count != nullptr);
1523
1524 // Validate boot class path. Require a path and non-empty name in each component.
1525 for (const std::string& bcp_component : boot_class_path_) {
1526 size_t bcp_slash_pos = bcp_component.rfind('/');
1527 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1528 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1529 return false;
1530 }
1531 }
1532
1533 // Validate the format of image location components.
1534 size_t components_size = components.size();
1535 if (components_size == 0u) {
1536 *error_msg = "Empty image location.";
1537 return false;
1538 }
1539 size_t wildcards_start = components_size; // No wildcards.
1540 for (size_t i = 0; i != components_size; ++i) {
1541 const std::string& component = components[i];
1542 DCHECK(!component.empty()); // Guaranteed by Split().
1543 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1544 size_t wildcard_pos = component.find('*');
1545 if (wildcard_pos == std::string::npos) {
1546 if (wildcards_start != components.size()) {
1547 *error_msg =
1548 StringPrintf("Image component without wildcard after component with wildcard: %s",
1549 component.c_str());
1550 return false;
1551 }
1552 for (size_t j = 0; j < parts.size(); j++) {
1553 if (parts[j].empty()) {
1554 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1555 component.c_str());
1556 return false;
1557 }
1558 if (parts[j].back() == '/') {
1559 *error_msg = StringPrintf("%s name ends with path separator: %s",
1560 j == 0 ? "Image component" : "Profile",
1561 component.c_str());
1562 return false;
1563 }
1564 }
1565 } else {
1566 if (parts.size() > 1) {
1567 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1568 component.c_str());
1569 return false;
1570 }
1571 if (wildcards_start == components_size) {
1572 wildcards_start = i;
1573 }
1574 // Wildcard must be the last character.
1575 if (wildcard_pos != component.size() - 1u) {
1576 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1577 return false;
1578 }
1579 // And it must be either plain wildcard or preceded by a path separator.
1580 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1581 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1582 component.c_str());
1583 return false;
1584 }
1585 if (i == 0) {
1586 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1587 return false;
1588 }
1589 }
1590 }
1591
1592 *named_components_count = wildcards_start;
1593 return true;
1594 }
1595
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1596 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1597 ArrayRef<const std::string> named_components,
1598 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1599 /*out*/std::string* error_msg) {
1600 DCHECK(!named_components.empty());
1601 DCHECK(named_component_locations->empty());
1602 named_component_locations->reserve(named_components.size());
1603 size_t bcp_component_count = boot_class_path_.size();
1604 size_t bcp_pos = 0;
1605 std::string base_name;
1606 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1607 std::string component = named_components[i];
1608 std::vector<std::string> profile_filenames; // Empty.
1609 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1610 for (size_t j = 0; j < parts.size(); j++) {
1611 if (j == 0) {
1612 component = std::move(parts[j]);
1613 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1614 } else {
1615 profile_filenames.push_back(std::move(parts[j]));
1616 DCHECK(!profile_filenames.back().empty()); // Checked by VerifyImageLocation()
1617 }
1618 }
1619 size_t slash_pos = component.rfind('/');
1620 std::string base_location;
1621 if (i == 0u) {
1622 // The primary boot image name is taken as provided. It forms the base
1623 // for expanding the extension filenames.
1624 if (slash_pos != std::string::npos) {
1625 base_name = component.substr(slash_pos + 1u);
1626 base_location = component;
1627 } else {
1628 base_name = component;
1629 base_location = GetBcpComponentPath(0u) + component;
1630 }
1631 } else {
1632 std::string to_match;
1633 if (slash_pos != std::string::npos) {
1634 // If we have the full path, we just need to match the filename to the BCP component.
1635 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1636 to_match = component;
1637 }
1638 while (true) {
1639 if (slash_pos == std::string::npos) {
1640 // If we do not have a full path, we need to update the path based on the BCP location.
1641 std::string path = GetBcpComponentPath(bcp_pos);
1642 to_match = path + component;
1643 base_location = path + base_name;
1644 }
1645 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1646 break;
1647 }
1648 ++bcp_pos;
1649 if (bcp_pos == bcp_component_count) {
1650 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1651 component.c_str());
1652 return false;
1653 }
1654 }
1655 }
1656 for (std::string& profile_filename : profile_filenames) {
1657 if (profile_filename.find('/') == std::string::npos) {
1658 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1659 }
1660 }
1661 NamedComponentLocation location;
1662 location.base_location = base_location;
1663 location.bcp_index = bcp_pos;
1664 location.profile_filenames = profile_filenames;
1665 named_component_locations->push_back(location);
1666 ++bcp_pos;
1667 }
1668 return true;
1669 }
1670
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1671 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1672 const ImageHeader& header,
1673 /*out*/std::string* error_msg) {
1674 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1675 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1676 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1677 file_description,
1678 boot_image_component_count,
1679 chunks_.empty() ? "should be 0" : "should not be 0");
1680 return false;
1681 }
1682 uint32_t component_count = 0u;
1683 uint32_t composite_checksum = 0u;
1684 uint64_t boot_image_size = 0u;
1685 for (const ImageChunk& chunk : chunks_) {
1686 if (component_count == boot_image_component_count) {
1687 break; // Hit the component count.
1688 }
1689 if (chunk.start_index != component_count) {
1690 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1691 }
1692 if (chunk.component_count > boot_image_component_count - component_count) {
1693 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1694 "%u is between %u and %u",
1695 file_description,
1696 boot_image_component_count,
1697 component_count,
1698 component_count + chunk.component_count);
1699 return false;
1700 }
1701 component_count += chunk.component_count;
1702 composite_checksum ^= chunk.checksum;
1703 boot_image_size += chunk.reservation_size;
1704 }
1705 DCHECK_LE(component_count, boot_image_component_count);
1706 if (component_count != boot_image_component_count) {
1707 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
1708 file_description,
1709 boot_image_component_count,
1710 component_count);
1711 return false;
1712 }
1713 if (composite_checksum != header.GetBootImageChecksum()) {
1714 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
1715 file_description,
1716 header.GetBootImageChecksum(),
1717 composite_checksum);
1718 return false;
1719 }
1720 if (boot_image_size != header.GetBootImageSize()) {
1721 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
1722 file_description,
1723 header.GetBootImageSize(),
1724 boot_image_size);
1725 return false;
1726 }
1727 return true;
1728 }
1729
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)1730 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
1731 size_t bcp_index,
1732 const char* file_description,
1733 /*out*/std::string* error_msg) {
1734 size_t bcp_component_count = boot_class_path_.size();
1735 DCHECK_LT(bcp_index, bcp_component_count);
1736 size_t allowed_component_count = bcp_component_count - bcp_index;
1737 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
1738 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
1739
1740 if (header.GetComponentCount() == 0u ||
1741 header.GetComponentCount() > allowed_component_count) {
1742 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1743 "expected non-zero and <= %zu",
1744 file_description,
1745 header.GetComponentCount(),
1746 allowed_component_count);
1747 return false;
1748 }
1749 if (header.GetImageReservationSize() > allowed_reservation_size) {
1750 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
1751 file_description,
1752 header.GetImageReservationSize(),
1753 allowed_reservation_size);
1754 return false;
1755 }
1756 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
1757 return false;
1758 }
1759
1760 return true;
1761 }
1762
ValidateOatFile(const std::string & base_location,const std::string & base_filename,size_t bcp_index,size_t component_count,std::string * error_msg)1763 bool ImageSpace::BootImageLayout::ValidateOatFile(
1764 const std::string& base_location,
1765 const std::string& base_filename,
1766 size_t bcp_index,
1767 size_t component_count,
1768 /*out*/std::string* error_msg) {
1769 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1770 std::string art_location = ExpandLocation(base_location, bcp_index);
1771 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1772 std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(art_location);
1773 int oat_fd = bcp_index < boot_class_path_oat_files_.size()
1774 ? boot_class_path_oat_files_[bcp_index].Fd()
1775 : -1;
1776 int vdex_fd = bcp_index < boot_class_path_vdex_files_.size()
1777 ? boot_class_path_vdex_files_[bcp_index].Fd()
1778 : -1;
1779 auto dex_filenames =
1780 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, component_count);
1781 ArrayRef<File> dex_files =
1782 bcp_index + component_count < boot_class_path_files_.size() ?
1783 ArrayRef<File>(boot_class_path_files_).SubArray(bcp_index, component_count) :
1784 ArrayRef<File>();
1785 // We open the oat file here only for validating that it's up-to-date. We don't open it as
1786 // executable or mmap it to a reserved space. This `OatFile` object will be dropped after
1787 // validation, and will not go into the `ImageSpace`.
1788 std::unique_ptr<OatFile> oat_file;
1789 DCHECK_EQ(oat_fd >= 0, vdex_fd >= 0);
1790 if (oat_fd >= 0) {
1791 oat_file.reset(OatFile::Open(
1792 /*zip_fd=*/ -1,
1793 vdex_fd,
1794 oat_fd,
1795 oat_location,
1796 /*executable=*/ false,
1797 /*low_4gb=*/ false,
1798 dex_filenames,
1799 dex_files,
1800 /*reservation=*/ nullptr,
1801 error_msg));
1802 } else {
1803 oat_file.reset(OatFile::Open(
1804 /*zip_fd=*/ -1,
1805 oat_filename,
1806 oat_location,
1807 /*executable=*/ false,
1808 /*low_4gb=*/ false,
1809 dex_filenames,
1810 dex_files,
1811 /*reservation=*/ nullptr,
1812 error_msg));
1813 }
1814 if (oat_file == nullptr) {
1815 *error_msg = StringPrintf("Failed to open oat file '%s' when validating it for image '%s': %s",
1816 oat_filename.c_str(),
1817 art_location.c_str(),
1818 error_msg->c_str());
1819 return false;
1820 }
1821 if (!ImageSpace::ValidateOatFile(
1822 *oat_file, error_msg, dex_filenames, dex_files, apex_versions_)) {
1823 return false;
1824 }
1825 return true;
1826 }
1827
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)1828 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
1829 const std::string& base_filename,
1830 size_t bcp_index,
1831 /*out*/std::string* error_msg) {
1832 DCHECK_LE(next_bcp_index_, bcp_index);
1833 DCHECK_LT(bcp_index, boot_class_path_.size());
1834
1835 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
1836 int bcp_image_fd = bcp_index < boot_class_path_image_files_.size() ?
1837 boot_class_path_image_files_[bcp_index].Fd() :
1838 -1;
1839 ImageHeader header;
1840 // When BCP image is provided as FD, it needs to be dup'ed (since it's stored in unique_fd) so
1841 // that it can later be used in LoadComponents.
1842 auto image_file = bcp_image_fd >= 0
1843 ? std::make_unique<File>(DupCloexec(bcp_image_fd), actual_filename, /*check_usage=*/ false)
1844 : std::unique_ptr<File>(OS::OpenFileForReading(actual_filename.c_str()));
1845 if (!image_file || !image_file->IsOpened()) {
1846 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header",
1847 actual_filename.c_str());
1848 return false;
1849 }
1850 if (!ReadSpecificImageHeader(image_file.get(), actual_filename.c_str(), &header, error_msg)) {
1851 return false;
1852 }
1853 const char* file_description = actual_filename.c_str();
1854 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
1855 return false;
1856 }
1857
1858 // Validate oat files. We do it here so that the boot image will be re-compiled in memory if it's
1859 // outdated.
1860 size_t component_count = (header.GetImageSpaceCount() == 1u) ? header.GetComponentCount() : 1u;
1861 for (size_t i = 0; i < header.GetImageSpaceCount(); i++) {
1862 if (!ValidateOatFile(base_location, base_filename, bcp_index + i, component_count, error_msg)) {
1863 return false;
1864 }
1865 }
1866
1867 if (chunks_.empty()) {
1868 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
1869 }
1870 ImageChunk chunk;
1871 chunk.base_location = base_location;
1872 chunk.base_filename = base_filename;
1873 chunk.start_index = bcp_index;
1874 chunk.component_count = header.GetComponentCount();
1875 chunk.image_space_count = header.GetImageSpaceCount();
1876 chunk.reservation_size = header.GetImageReservationSize();
1877 chunk.checksum = header.GetImageChecksum();
1878 chunk.boot_image_component_count = header.GetBootImageComponentCount();
1879 chunk.boot_image_checksum = header.GetBootImageChecksum();
1880 chunk.boot_image_size = header.GetBootImageSize();
1881 chunks_.push_back(std::move(chunk));
1882 next_bcp_index_ = bcp_index + header.GetComponentCount();
1883 total_component_count_ += header.GetComponentCount();
1884 total_reservation_size_ += header.GetImageReservationSize();
1885 return true;
1886 }
1887
CompileBootclasspathElements(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::vector<std::string> & profile_filenames,ArrayRef<const std::string> dependencies,std::string * error_msg)1888 bool ImageSpace::BootImageLayout::CompileBootclasspathElements(
1889 const std::string& base_location,
1890 const std::string& base_filename,
1891 size_t bcp_index,
1892 const std::vector<std::string>& profile_filenames,
1893 ArrayRef<const std::string> dependencies,
1894 /*out*/std::string* error_msg) {
1895 DCHECK_LE(total_component_count_, next_bcp_index_);
1896 DCHECK_LE(next_bcp_index_, bcp_index);
1897 size_t bcp_component_count = boot_class_path_.size();
1898 DCHECK_LT(bcp_index, bcp_component_count);
1899 DCHECK(!profile_filenames.empty());
1900 if (total_component_count_ != bcp_index) {
1901 // We require all previous BCP components to have a boot image space (primary or extension).
1902 *error_msg = "Cannot compile extension because of missing dependencies.";
1903 return false;
1904 }
1905 Runtime* runtime = Runtime::Current();
1906 if (!runtime->IsImageDex2OatEnabled()) {
1907 *error_msg = "Cannot compile bootclasspath because dex2oat for image compilation is disabled.";
1908 return false;
1909 }
1910
1911 // Check dependencies.
1912 DCHECK_EQ(dependencies.empty(), bcp_index == 0);
1913 size_t dependency_component_count = 0;
1914 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
1915 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
1916 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
1917 return false;
1918 }
1919 dependency_component_count += chunks_[i].component_count;
1920 }
1921
1922 // Collect locations from the profile.
1923 std::set<std::string> dex_locations;
1924 for (const std::string& profile_filename : profile_filenames) {
1925 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
1926 if (profile_file == nullptr) {
1927 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
1928 profile_filename.c_str(),
1929 strerror(errno));
1930 return false;
1931 }
1932
1933 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
1934 // to store the dex locations in uncompressed section of the file.
1935 auto collect_fn = [&dex_locations](const std::string& dex_location,
1936 [[maybe_unused]] uint32_t checksum) {
1937 dex_locations.insert(dex_location); // Just collect locations.
1938 return false; // Do not read the profile data.
1939 };
1940 ProfileCompilationInfo info(/*for_boot_image=*/ true);
1941 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
1942 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
1943 return false;
1944 }
1945 }
1946
1947 // Match boot class path components to locations from profile.
1948 // Note that the profile records only filenames without paths.
1949 size_t bcp_end = bcp_index;
1950 for (; bcp_end != bcp_component_count; ++bcp_end) {
1951 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
1952 size_t slash_pos = bcp_component.rfind('/');
1953 DCHECK_NE(slash_pos, std::string::npos);
1954 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
1955 if (dex_locations.count(bcp_component_name) == 0u) {
1956 break; // Did not find the current location in dex file.
1957 }
1958 }
1959
1960 if (bcp_end == bcp_index) {
1961 // No data for the first (requested) component.
1962 *error_msg = StringPrintf("The profile does not contain data for %s",
1963 boot_class_path_locations_[bcp_index].c_str());
1964 return false;
1965 }
1966
1967 // Create in-memory files.
1968 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1969 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
1970 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1971 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
1972 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
1973 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
1974 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
1975 *error_msg = StringPrintf("Failed to create memfd handles for compiling bootclasspath for %s",
1976 boot_class_path_locations_[bcp_index].c_str());
1977 return false;
1978 }
1979
1980 // Construct the dex2oat command line.
1981 std::string dex2oat = runtime->GetCompilerExecutable();
1982 ArrayRef<const std::string> head_bcp =
1983 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1984 ArrayRef<const std::string> head_bcp_locations =
1985 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1986 ArrayRef<const std::string> bcp_to_compile =
1987 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1988 ArrayRef<const std::string> bcp_to_compile_locations =
1989 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1990 std::string boot_class_path = head_bcp.empty() ?
1991 Join(bcp_to_compile, ':') :
1992 Join(head_bcp, ':') + ':' + Join(bcp_to_compile, ':');
1993 std::string boot_class_path_locations =
1994 head_bcp_locations.empty() ?
1995 Join(bcp_to_compile_locations, ':') :
1996 Join(head_bcp_locations, ':') + ':' + Join(bcp_to_compile_locations, ':');
1997
1998 std::vector<std::string> args;
1999 args.push_back(dex2oat);
2000 args.push_back("--runtime-arg");
2001 args.push_back("-Xbootclasspath:" + boot_class_path);
2002 args.push_back("--runtime-arg");
2003 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
2004 if (dependencies.empty()) {
2005 args.push_back(android::base::StringPrintf("--base=0x%08x", ART_BASE_ADDRESS));
2006 } else {
2007 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
2008 }
2009 for (size_t i = bcp_index; i != bcp_end; ++i) {
2010 args.push_back("--dex-file=" + boot_class_path_[i]);
2011 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
2012 }
2013 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
2014 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
2015 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
2016 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
2017 args.push_back("--single-image");
2018 args.push_back("--image-format=uncompressed");
2019
2020 // We currently cannot guarantee that the boot class path has no verification failures.
2021 // And we do not want to compile anything, compilation should be done by JIT in zygote.
2022 args.push_back("--compiler-filter=verify");
2023
2024 // Pass the profiles.
2025 for (const std::string& profile_filename : profile_filenames) {
2026 args.push_back("--profile-file=" + profile_filename);
2027 }
2028
2029 // Do not let the file descriptor numbers change the compilation output.
2030 args.push_back("--avoid-storing-invocation");
2031
2032 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
2033
2034 if (!kIsTargetBuild) {
2035 args.push_back("--host");
2036 }
2037
2038 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
2039 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
2040 args.push_back(compiler_option);
2041 }
2042
2043 // Compile.
2044 VLOG(image) << "Compiling boot bootclasspath for " << (bcp_end - bcp_index)
2045 << " components, starting from " << boot_class_path_locations_[bcp_index];
2046 if (!Exec(args, error_msg)) {
2047 return false;
2048 }
2049
2050 // Read and validate the image header.
2051 ImageHeader header;
2052 {
2053 File image_file(art_fd.release(), /*check_usage=*/ false);
2054 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2055 return false;
2056 }
2057 art_fd.reset(image_file.Release());
2058 }
2059 const char* file_description = "compiled image file";
2060 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2061 return false;
2062 }
2063
2064 DCHECK_EQ(chunks_.empty(), dependencies.empty());
2065 ImageChunk chunk;
2066 chunk.base_location = base_location;
2067 chunk.base_filename = base_filename;
2068 chunk.profile_files = profile_filenames;
2069 chunk.start_index = bcp_index;
2070 chunk.component_count = header.GetComponentCount();
2071 chunk.image_space_count = header.GetImageSpaceCount();
2072 chunk.reservation_size = header.GetImageReservationSize();
2073 chunk.checksum = header.GetImageChecksum();
2074 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2075 chunk.boot_image_checksum = header.GetBootImageChecksum();
2076 chunk.boot_image_size = header.GetBootImageSize();
2077 chunk.art_fd.reset(art_fd.release());
2078 chunk.vdex_fd.reset(vdex_fd.release());
2079 chunk.oat_fd.reset(oat_fd.release());
2080 chunks_.push_back(std::move(chunk));
2081 next_bcp_index_ = bcp_index + header.GetComponentCount();
2082 total_component_count_ += header.GetComponentCount();
2083 total_reservation_size_ += header.GetImageReservationSize();
2084 return true;
2085 }
2086
2087 template <typename FilenameFn>
Load(FilenameFn && filename_fn,bool allow_in_memory_compilation,std::string * error_msg)2088 bool ImageSpace::BootImageLayout::Load(FilenameFn&& filename_fn,
2089 bool allow_in_memory_compilation,
2090 /*out*/ std::string* error_msg) {
2091 DCHECK(GetChunks().empty());
2092 DCHECK_EQ(GetBaseAddress(), 0u);
2093
2094 ArrayRef<const std::string> components = image_locations_;
2095 size_t named_components_count = 0u;
2096 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2097 return false;
2098 }
2099
2100 ArrayRef<const std::string> named_components =
2101 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2102
2103 std::vector<NamedComponentLocation> named_component_locations;
2104 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2105 return false;
2106 }
2107
2108 // Load the image headers of named components.
2109 DCHECK_EQ(named_component_locations.size(), named_components.size());
2110 const size_t bcp_component_count = boot_class_path_.size();
2111 size_t bcp_pos = 0u;
2112 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2113 const std::string& base_location = named_component_locations[i].base_location;
2114 size_t bcp_index = named_component_locations[i].bcp_index;
2115 const std::vector<std::string>& profile_filenames =
2116 named_component_locations[i].profile_filenames;
2117 DCHECK_EQ(i == 0, bcp_index == 0);
2118 if (bcp_index < bcp_pos) {
2119 DCHECK_NE(i, 0u);
2120 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2121 continue;
2122 }
2123 std::string local_error_msg;
2124 std::string base_filename;
2125 if (!filename_fn(base_location, &base_filename, &local_error_msg) ||
2126 !ReadHeader(base_location, base_filename, bcp_index, &local_error_msg)) {
2127 LOG(ERROR) << "Error reading named image component header for " << base_location
2128 << ", error: " << local_error_msg;
2129 // If the primary boot image is invalid, we generate a single full image. This is faster than
2130 // generating the primary boot image and the extension separately.
2131 if (bcp_index == 0) {
2132 if (!allow_in_memory_compilation) {
2133 // The boot image is unusable and we can't continue by generating a boot image in memory.
2134 // All we can do is to return.
2135 *error_msg = std::move(local_error_msg);
2136 return false;
2137 }
2138 // We must at least have profiles for the core libraries.
2139 if (profile_filenames.empty()) {
2140 *error_msg = "Full boot image cannot be compiled because no profile is provided.";
2141 return false;
2142 }
2143 std::vector<std::string> all_profiles;
2144 for (const NamedComponentLocation& named_component_location : named_component_locations) {
2145 const std::vector<std::string>& profiles = named_component_location.profile_filenames;
2146 all_profiles.insert(all_profiles.end(), profiles.begin(), profiles.end());
2147 }
2148 if (!CompileBootclasspathElements(base_location,
2149 base_filename,
2150 /*bcp_index=*/ 0,
2151 all_profiles,
2152 /*dependencies=*/ ArrayRef<const std::string>{},
2153 &local_error_msg)) {
2154 *error_msg =
2155 StringPrintf("Full boot image cannot be compiled: %s", local_error_msg.c_str());
2156 return false;
2157 }
2158 // No extensions are needed.
2159 return true;
2160 }
2161 bool should_compile_extension = allow_in_memory_compilation && !profile_filenames.empty();
2162 if (!should_compile_extension ||
2163 !CompileBootclasspathElements(base_location,
2164 base_filename,
2165 bcp_index,
2166 profile_filenames,
2167 components.SubArray(/*pos=*/ 0, /*length=*/ 1),
2168 &local_error_msg)) {
2169 if (should_compile_extension) {
2170 LOG(ERROR) << "Error compiling boot image extension for " << boot_class_path_[bcp_index]
2171 << ", error: " << local_error_msg;
2172 }
2173 bcp_pos = bcp_index + 1u; // Skip at least this component.
2174 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2175 continue;
2176 }
2177 }
2178 bcp_pos = GetNextBcpIndex();
2179 }
2180
2181 // Look for remaining components if there are any wildcard specifications.
2182 ArrayRef<const std::string> search_paths = components.SubArray(/*pos=*/ named_components_count);
2183 if (!search_paths.empty()) {
2184 const std::string& primary_base_location = named_component_locations[0].base_location;
2185 size_t base_slash_pos = primary_base_location.rfind('/');
2186 DCHECK_NE(base_slash_pos, std::string::npos);
2187 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2188 DCHECK(!base_name.empty());
2189 while (bcp_pos != bcp_component_count) {
2190 const std::string& bcp_component = boot_class_path_[bcp_pos];
2191 bool found = false;
2192 for (const std::string& path : search_paths) {
2193 std::string base_location;
2194 if (path.size() == 1u) {
2195 DCHECK_EQ(path, "*");
2196 size_t slash_pos = bcp_component.rfind('/');
2197 DCHECK_NE(slash_pos, std::string::npos);
2198 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2199 } else {
2200 DCHECK(path.ends_with("/*"));
2201 base_location = path.substr(0u, path.size() - 1u) + base_name;
2202 }
2203 std::string err_msg; // Ignored.
2204 std::string base_filename;
2205 if (filename_fn(base_location, &base_filename, &err_msg) &&
2206 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2207 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2208 bcp_pos = GetNextBcpIndex();
2209 found = true;
2210 break;
2211 }
2212 }
2213 if (!found) {
2214 ++bcp_pos;
2215 }
2216 }
2217 }
2218
2219 return true;
2220 }
2221
LoadFromSystem(InstructionSet image_isa,bool allow_in_memory_compilation,std::string * error_msg)2222 bool ImageSpace::BootImageLayout::LoadFromSystem(InstructionSet image_isa,
2223 bool allow_in_memory_compilation,
2224 /*out*/ std::string* error_msg) {
2225 auto filename_fn = [image_isa](const std::string& location,
2226 /*out*/ std::string* filename,
2227 [[maybe_unused]] /*out*/ std::string* err_msg) {
2228 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2229 return true;
2230 };
2231 return Load(filename_fn, allow_in_memory_compilation, error_msg);
2232 }
2233
2234 class ImageSpace::BootImageLoader {
2235 public:
2236 // Creates an instance.
2237 // `apex_versions` is created from `Runtime::GetApexVersions` and must outlive this instance.
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_oat_files,const std::vector<std::string> & image_locations,InstructionSet image_isa,bool relocate,bool executable,const std::string * apex_versions)2238 BootImageLoader(const std::vector<std::string>& boot_class_path,
2239 const std::vector<std::string>& boot_class_path_locations,
2240 ArrayRef<File> boot_class_path_files,
2241 ArrayRef<File> boot_class_path_image_files,
2242 ArrayRef<File> boot_class_path_vdex_files,
2243 ArrayRef<File> boot_class_path_oat_files,
2244 const std::vector<std::string>& image_locations,
2245 InstructionSet image_isa,
2246 bool relocate,
2247 bool executable,
2248 const std::string* apex_versions)
2249 : boot_class_path_(boot_class_path),
2250 boot_class_path_locations_(boot_class_path_locations),
2251 boot_class_path_files_(boot_class_path_files),
2252 boot_class_path_image_files_(boot_class_path_image_files),
2253 boot_class_path_vdex_files_(boot_class_path_vdex_files),
2254 boot_class_path_oat_files_(boot_class_path_oat_files),
2255 image_locations_(image_locations),
2256 image_isa_(image_isa),
2257 relocate_(relocate),
2258 executable_(executable),
2259 has_system_(false),
2260 apex_versions_(apex_versions) {}
2261
FindImageFiles()2262 void FindImageFiles() {
2263 BootImageLayout layout(image_locations_,
2264 boot_class_path_,
2265 boot_class_path_locations_,
2266 boot_class_path_files_,
2267 boot_class_path_image_files_,
2268 boot_class_path_vdex_files_,
2269 boot_class_path_oat_files_,
2270 apex_versions_);
2271 std::string image_location = layout.GetPrimaryImageLocation();
2272 std::string system_filename;
2273 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2274 image_isa_,
2275 &has_system_,
2276 &system_filename);
2277 DCHECK_EQ(found_image, has_system_);
2278 }
2279
HasSystem() const2280 bool HasSystem() const { return has_system_; }
2281
2282 bool LoadFromSystem(size_t extra_reservation_size,
2283 bool allow_in_memory_compilation,
2284 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2285 /*out*/MemMap* extra_reservation,
2286 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2287
2288 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2289 bool LoadImage(
2290 const BootImageLayout& layout,
2291 bool validate_oat_file,
2292 size_t extra_reservation_size,
2293 TimingLogger* logger,
2294 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2295 /*out*/MemMap* extra_reservation,
2296 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2297 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2298 DCHECK(!chunks.empty());
2299 const uint32_t base_address = layout.GetBaseAddress();
2300 const size_t image_component_count = layout.GetTotalComponentCount();
2301 const size_t image_reservation_size = layout.GetTotalReservationSize();
2302
2303 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2304 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2305 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2306 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2307 // the `extra_reservation_size` would have to be really excessive to fail this check.
2308 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2309 return false;
2310 }
2311
2312 // Reserve address space. If relocating, choose a random address for ALSR.
2313 uint8_t* addr = reinterpret_cast<uint8_t*>(
2314 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2315 MemMap image_reservation =
2316 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2317 if (!image_reservation.IsValid()) {
2318 return false;
2319 }
2320
2321 // Load components.
2322 std::vector<std::unique_ptr<ImageSpace>> spaces;
2323 spaces.reserve(image_component_count);
2324 size_t max_image_space_dependencies = 0u;
2325 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2326 const BootImageLayout::ImageChunk& chunk = chunks[i];
2327 std::string extension_error_msg;
2328 uint8_t* old_reservation_begin = image_reservation.Begin();
2329 size_t old_reservation_size = image_reservation.Size();
2330 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2331 if (!LoadComponents(chunk,
2332 validate_oat_file,
2333 max_image_space_dependencies,
2334 logger,
2335 &spaces,
2336 &image_reservation,
2337 (i == 0) ? error_msg : &extension_error_msg)) {
2338 // Failed to load the chunk. If this is the primary boot image, report the error.
2339 if (i == 0) {
2340 return false;
2341 }
2342 // For extension, shrink the reservation (and remap if needed, see below).
2343 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2344 if (new_reservation_size == 0u) {
2345 DCHECK_EQ(extra_reservation_size, 0u);
2346 DCHECK_EQ(i + 1u, num_chunks);
2347 image_reservation.Reset();
2348 } else if (old_reservation_begin != image_reservation.Begin()) {
2349 // Part of the image reservation has been used and then unmapped when
2350 // rollling back the partial boot image extension load. Try to remap
2351 // the image reservation. As this should be running single-threaded,
2352 // the address range should still be available to mmap().
2353 image_reservation.Reset();
2354 std::string remap_error_msg;
2355 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2356 new_reservation_size,
2357 &remap_error_msg);
2358 if (!image_reservation.IsValid()) {
2359 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2360 "to load boot image extension (%s: %s): %s",
2361 boot_class_path_locations_[chunk.start_index].c_str(),
2362 extension_error_msg.c_str(),
2363 remap_error_msg.c_str());
2364 return false;
2365 }
2366 } else {
2367 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2368 image_reservation.SetSize(new_reservation_size);
2369 }
2370 LOG(ERROR) << "Failed to load boot image extension "
2371 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2372 }
2373 // Update `max_image_space_dependencies` if all previous BCP components
2374 // were covered and loading the current chunk succeeded.
2375 size_t total_component_count = 0;
2376 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2377 total_component_count += space->GetComponentCount();
2378 }
2379 if (max_image_space_dependencies == chunk.start_index &&
2380 total_component_count == chunk.start_index + chunk.component_count) {
2381 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2382 }
2383 }
2384
2385 MemMap local_extra_reservation;
2386 if (!RemapExtraReservation(extra_reservation_size,
2387 &image_reservation,
2388 &local_extra_reservation,
2389 error_msg)) {
2390 return false;
2391 }
2392
2393 MaybeRelocateSpaces(spaces, logger);
2394 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2395 boot_image_spaces->swap(spaces);
2396 *extra_reservation = std::move(local_extra_reservation);
2397 return true;
2398 }
2399
2400 private:
2401 class SimpleRelocateVisitor {
2402 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2403 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2404 : diff_(diff), begin_(begin), size_(size) {}
2405
2406 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2407 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2408 SimpleRelocateVisitor(uint32_t base_diff,
2409 uint32_t current_diff,
2410 uint32_t bound,
2411 uint32_t begin,
2412 uint32_t size)
2413 : SimpleRelocateVisitor(base_diff, begin, size) {
2414 // Check arguments unused by this class.
2415 DCHECK_EQ(base_diff, current_diff);
2416 DCHECK_EQ(bound, begin);
2417 }
2418
2419 template <typename T>
operator ()(T * src) const2420 ALWAYS_INLINE T* operator()(T* src) const {
2421 DCHECK(InSource(src));
2422 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2423 return reinterpret_cast32<T*>(raw_src + diff_);
2424 }
2425
2426 template <typename T>
InSource(T * ptr) const2427 ALWAYS_INLINE bool InSource(T* ptr) const {
2428 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2429 return raw_ptr - begin_ < size_;
2430 }
2431
2432 template <typename T>
InDest(T * ptr) const2433 ALWAYS_INLINE bool InDest(T* ptr) const {
2434 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2435 uint32_t src_ptr = raw_ptr - diff_;
2436 return src_ptr - begin_ < size_;
2437 }
2438
2439 private:
2440 const uint32_t diff_;
2441 const uint32_t begin_;
2442 const uint32_t size_;
2443 };
2444
2445 class SplitRangeRelocateVisitor {
2446 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2447 SplitRangeRelocateVisitor(uint32_t base_diff,
2448 uint32_t current_diff,
2449 uint32_t bound,
2450 uint32_t begin,
2451 uint32_t size)
2452 : base_diff_(base_diff),
2453 current_diff_(current_diff),
2454 bound_(bound),
2455 begin_(begin),
2456 size_(size) {
2457 DCHECK_NE(begin_, bound_);
2458 // The bound separates the boot image range and the extension range.
2459 DCHECK_LT(bound_ - begin_, size_);
2460 }
2461
2462 template <typename T>
operator ()(T * src) const2463 ALWAYS_INLINE T* operator()(T* src) const {
2464 DCHECK(InSource(src));
2465 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2466 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2467 return reinterpret_cast32<T*>(raw_src + diff);
2468 }
2469
2470 template <typename T>
InSource(T * ptr) const2471 ALWAYS_INLINE bool InSource(T* ptr) const {
2472 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2473 return raw_ptr - begin_ < size_;
2474 }
2475
2476 private:
2477 const uint32_t base_diff_;
2478 const uint32_t current_diff_;
2479 const uint32_t bound_;
2480 const uint32_t begin_;
2481 const uint32_t size_;
2482 };
2483
PointerAddress(ArtMethod * method,MemberOffset offset)2484 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2485 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2486 }
2487
2488 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2489 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2490 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2491 DCHECK(!spaces.empty());
2492 gc::accounting::ContinuousSpaceBitmap patched_objects(
2493 gc::accounting::ContinuousSpaceBitmap::Create(
2494 "Marked objects",
2495 spaces.front()->Begin(),
2496 spaces.back()->End() - spaces.front()->Begin()));
2497 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2498 size_t base_image_space_count = base_header.GetImageSpaceCount();
2499 DCHECK_LE(base_image_space_count, spaces.size());
2500 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2501 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2502 base_diff64,
2503 &patched_objects);
2504
2505 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2506 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2507 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2508 DCHECK_LE(ext_image_space_count, size - i);
2509 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2510 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2511 base_diff64,
2512 &patched_objects);
2513 i += ext_image_space_count;
2514 }
2515 }
2516
2517 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2518 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2519 int64_t base_diff64,
2520 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2521 REQUIRES_SHARED(Locks::mutator_lock_) {
2522 DCHECK(!spaces.empty());
2523 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2524 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2525 uint32_t image_size = first_header.GetImageReservationSize();
2526 DCHECK_NE(image_size, 0u);
2527 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2528 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2529 if (kExtension) {
2530 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2531 }
2532 int64_t current_diff64 = kExtension
2533 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2534 static_cast<int64_t>(image_begin)
2535 : base_diff64;
2536 if (base_diff64 == 0 && current_diff64 == 0) {
2537 return;
2538 }
2539 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2540 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2541
2542 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2543 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2544 using MainRelocateVisitor = typename std::conditional<
2545 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2546 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2547 MainRelocateVisitor main_relocate_visitor(
2548 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2549
2550 using MainPatchRelocateVisitor =
2551 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2552 using SimplePatchRelocateVisitor =
2553 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2554 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2555 main_relocate_visitor);
2556 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2557 simple_relocate_visitor);
2558
2559 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2560 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2561 ObjPtr<mirror::Class> class_class;
2562 ObjPtr<mirror::Class> method_class;
2563 ObjPtr<mirror::Class> constructor_class;
2564 ObjPtr<mirror::Class> field_var_handle_class;
2565 ObjPtr<mirror::Class> static_field_var_handle_class;
2566 {
2567 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2568 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2569 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2570
2571 SimpleRelocateVisitor base_relocate_visitor(
2572 base_diff,
2573 source_begin,
2574 kExtension ? source_size - image_size : image_size);
2575 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2576 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2577 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2578 image_roots->GetWithoutChecks<kVerifyNone,
2579 kWithoutReadBarrier>(class_roots_index).Ptr()));
2580 if (kExtension) {
2581 // Class roots must have been visited if we relocated the primary boot image.
2582 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2583 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2584 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2585 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2586 field_var_handle_class =
2587 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots);
2588 static_field_var_handle_class =
2589 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots);
2590 } else {
2591 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2592 class_class = simple_relocate_visitor(
2593 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2594 method_class = simple_relocate_visitor(
2595 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2596 constructor_class = simple_relocate_visitor(
2597 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2598 field_var_handle_class = simple_relocate_visitor(
2599 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2600 static_field_var_handle_class = simple_relocate_visitor(
2601 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2602 }
2603 }
2604
2605 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2606 // First patch the image header.
2607 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2608 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2609
2610 // Patch fields and methods.
2611 const ImageHeader& image_header = space->GetImageHeader();
2612 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2613 // Fields always reference class in the current image.
2614 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2615 &field.DeclaringClassRoot());
2616 }, space->Begin());
2617 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2618 REQUIRES_SHARED(Locks::mutator_lock_) {
2619 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2620 if (!method.HasCodeItem()) {
2621 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2622 main_patch_object_visitor.PatchNativePointer(data_address);
2623 }
2624 void** entrypoint_address =
2625 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2626 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2627 }, space->Begin(), kPointerSize);
2628 auto method_table_visitor = [&](ArtMethod* method) {
2629 DCHECK(method != nullptr);
2630 return main_relocate_visitor(method);
2631 };
2632 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2633 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2634 image_header.VisitJniStubMethods</*kUpdate=*/ true>(method_table_visitor,
2635 space->Begin(),
2636 kPointerSize);
2637
2638 // Patch the intern table.
2639 if (image_header.GetInternedStringsSection().Size() != 0u) {
2640 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2641 size_t read_count;
2642 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2643 for (GcRoot<mirror::String>& slot : temp_set) {
2644 // The intern table contains only strings in the current image.
2645 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2646 }
2647 }
2648
2649 // Patch the class table and classes, so that we can traverse class hierarchy to
2650 // determine the types of other objects when we visit them later.
2651 if (image_header.GetClassTableSection().Size() != 0u) {
2652 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2653 size_t read_count;
2654 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2655 DCHECK(!temp_set.empty());
2656 // The class table contains only classes in the current image.
2657 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2658 for (ClassTable::TableSlot& slot : temp_set) {
2659 slot.VisitRoot(class_table_visitor);
2660 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2661 DCHECK(klass != nullptr);
2662 DCHECK(!patched_objects->Test(klass.Ptr()));
2663 patched_objects->Set(klass.Ptr());
2664 main_patch_object_visitor.VisitClass(klass, class_class);
2665 // Then patch the non-embedded vtable and iftable.
2666 ObjPtr<mirror::PointerArray> vtable =
2667 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2668 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2669 !patched_objects->Set(vtable.Ptr())) {
2670 main_patch_object_visitor.VisitPointerArray(vtable);
2671 }
2672 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2673 if (kExtension ? simple_relocate_visitor.InDest(iftable.Ptr()) : iftable != nullptr) {
2674 int32_t ifcount = iftable->Count<kVerifyNone>();
2675 for (int32_t i = 0; i != ifcount; ++i) {
2676 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2677 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2678 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2679 : unpatched_ifarray != nullptr) {
2680 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2681 ObjPtr<mirror::PointerArray> ifarray =
2682 simple_relocate_visitor(unpatched_ifarray.Ptr());
2683 if (!patched_objects->Set(ifarray.Ptr())) {
2684 main_patch_object_visitor.VisitPointerArray(ifarray);
2685 }
2686 }
2687 }
2688 }
2689 }
2690 }
2691 }
2692
2693 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2694 const ImageHeader& image_header = space->GetImageHeader();
2695
2696 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2697 uint32_t objects_end = image_header.GetObjectsSection().Size();
2698 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2699 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2700 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2701 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2702 if (!patched_objects->Test(object)) {
2703 // This is the last pass over objects, so we do not need to Set().
2704 main_patch_object_visitor.VisitObject(object);
2705 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2706 if (klass == method_class || klass == constructor_class) {
2707 // Patch the ArtMethod* in the mirror::Executable subobject.
2708 ObjPtr<mirror::Executable> as_executable =
2709 ObjPtr<mirror::Executable>::DownCast(object);
2710 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2711 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2712 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2713 /*kCheckTransaction=*/ true,
2714 kVerifyNone>(patched_method);
2715 } else if (klass == field_var_handle_class || klass == static_field_var_handle_class) {
2716 // Patch the ArtField* in the mirror::FieldVarHandle subobject.
2717 ObjPtr<mirror::FieldVarHandle> as_field_var_handle =
2718 ObjPtr<mirror::FieldVarHandle>::DownCast(object);
2719 ArtField* unpatched_field = as_field_var_handle->GetArtField<kVerifyNone>();
2720 ArtField* patched_field = main_relocate_visitor(unpatched_field);
2721 as_field_var_handle->SetArtField<kVerifyNone>(patched_field);
2722 }
2723 }
2724 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2725 }
2726 }
2727 if (kIsDebugBuild && !kExtension) {
2728 // We used just Test() instead of Set() above but we need to use Set()
2729 // for class roots to satisfy a DCHECK() for extensions.
2730 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2731 patched_objects->Set(class_roots.Ptr());
2732 }
2733 }
2734
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2735 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2736 TimingLogger* logger)
2737 REQUIRES_SHARED(Locks::mutator_lock_) {
2738 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2739 ImageSpace* first_space = spaces.front().get();
2740 const ImageHeader& first_space_header = first_space->GetImageHeader();
2741 int64_t base_diff64 =
2742 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2743 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2744 if (!relocate_) {
2745 DCHECK_EQ(base_diff64, 0);
2746 }
2747
2748 // While `Thread::Current()` is null, the `ScopedDebugDisallowReadBarriers`
2749 // cannot be used but the class `ReadBarrier` shall not allow read barriers anyway.
2750 // For some gtests we actually have an initialized `Thread:Current()`.
2751 std::optional<ScopedDebugDisallowReadBarriers> sddrb(std::nullopt);
2752 if (kCheckDebugDisallowReadBarrierCount && Thread::Current() != nullptr) {
2753 sddrb.emplace(Thread::Current());
2754 }
2755
2756 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2757 PointerSize pointer_size = first_space_header.GetPointerSize();
2758 if (pointer_size == PointerSize::k64) {
2759 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
2760 } else {
2761 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
2762 }
2763 }
2764
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)2765 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2766 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
2767 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
2768 DCHECK(!spaces.empty());
2769 size_t num_spaces = spaces.size();
2770 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
2771 size_t primary_image_count = primary_header.GetImageSpaceCount();
2772 size_t primary_image_component_count = primary_header.GetComponentCount();
2773 DCHECK_LE(primary_image_count, num_spaces);
2774 // The primary boot image can be generated with `--single-image` on device, when generated
2775 // in-memory or with odrefresh.
2776 DCHECK(primary_image_count == primary_image_component_count || primary_image_count == 1);
2777 size_t component_count = primary_image_component_count;
2778 size_t space_pos = primary_image_count;
2779 while (space_pos != num_spaces) {
2780 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
2781 size_t image_space_count = current_header.GetImageSpaceCount();
2782 DCHECK_LE(image_space_count, num_spaces - space_pos);
2783 size_t dependency_component_count = current_header.GetBootImageComponentCount();
2784 DCHECK_LE(dependency_component_count, component_count);
2785 if (dependency_component_count < component_count) {
2786 // There shall be no duplicate strings with the components that this space depends on.
2787 // Find the end of the dependencies, i.e. start of non-dependency images.
2788 size_t start_component_count = primary_image_component_count;
2789 size_t start_pos = primary_image_count;
2790 while (start_component_count != dependency_component_count) {
2791 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
2792 DCHECK_LE(dependency_header.GetComponentCount(),
2793 dependency_component_count - start_component_count);
2794 start_component_count += dependency_header.GetComponentCount();
2795 start_pos += dependency_header.GetImageSpaceCount();
2796 }
2797 // Remove duplicates from all intern tables belonging to the chunk.
2798 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
2799 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
2800 SafeMap<mirror::String*, mirror::String*> intern_remap;
2801 for (size_t i = 0; i != image_space_count; ++i) {
2802 ImageSpace* new_space = spaces[space_pos + i].get();
2803 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
2804 }
2805 // Remap string for all spaces belonging to the chunk.
2806 if (!intern_remap.empty()) {
2807 for (size_t i = 0; i != image_space_count; ++i) {
2808 ImageSpace* new_space = spaces[space_pos + i].get();
2809 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
2810 }
2811 }
2812 }
2813 component_count += current_header.GetComponentCount();
2814 space_pos += image_space_count;
2815 }
2816 }
2817
Load(const std::string & image_location,const std::string & image_filename,const std::vector<std::string> & profile_files,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2818 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
2819 const std::string& image_filename,
2820 const std::vector<std::string>& profile_files,
2821 android::base::unique_fd art_fd,
2822 TimingLogger* logger,
2823 /*inout*/MemMap* image_reservation,
2824 /*out*/std::string* error_msg)
2825 REQUIRES_SHARED(Locks::mutator_lock_) {
2826 if (art_fd.get() != -1) {
2827 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2828 << image_location << " for compiled extension";
2829
2830 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
2831 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
2832 image_filename.c_str(),
2833 image_location.c_str(),
2834 profile_files,
2835 /*allow_direct_mapping=*/ false,
2836 logger,
2837 image_reservation,
2838 error_msg);
2839 // Note: We're closing the image file descriptor here when we destroy
2840 // the `image_file` as we no longer need it.
2841 return result;
2842 }
2843
2844 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2845 << image_location;
2846
2847 // If we are in /system we can assume the image is good. We can also
2848 // assume this if we are using a relocated image (i.e. image checksum
2849 // matches) since this is only different by the offset. We need this to
2850 // make sure that host tests continue to work.
2851 // Since we are the boot image, pass null since we load the oat file from the boot image oat
2852 // file name.
2853 return Loader::Init(image_filename.c_str(),
2854 image_location.c_str(),
2855 logger,
2856 image_reservation,
2857 error_msg);
2858 }
2859
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,ArrayRef<File> dex_files,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2860 bool OpenOatFile(ImageSpace* space,
2861 android::base::unique_fd vdex_fd,
2862 android::base::unique_fd oat_fd,
2863 ArrayRef<const std::string> dex_filenames,
2864 ArrayRef<File> dex_files,
2865 bool validate_oat_file,
2866 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
2867 TimingLogger* logger,
2868 /*inout*/ MemMap* image_reservation,
2869 /*out*/ std::string* error_msg) {
2870 // VerifyImageAllocations() will be called later in Runtime::Init()
2871 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
2872 // and ArtField::java_lang_reflect_ArtField_, which are used from
2873 // Object::SizeOf() which VerifyImageAllocations() calls, are not
2874 // set yet at this point.
2875 DCHECK(image_reservation != nullptr);
2876 std::unique_ptr<OatFile> oat_file;
2877 {
2878 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
2879 std::string oat_filename =
2880 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
2881 std::string oat_location =
2882 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
2883
2884 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
2885 if (vdex_fd.get() == -1) {
2886 oat_file.reset(OatFile::Open(/*zip_fd=*/-1,
2887 oat_filename,
2888 oat_location,
2889 executable_,
2890 /*low_4gb=*/false,
2891 dex_filenames,
2892 dex_files,
2893 image_reservation,
2894 error_msg));
2895 } else {
2896 oat_file.reset(OatFile::Open(/*zip_fd=*/-1,
2897 vdex_fd.get(),
2898 oat_fd.get(),
2899 oat_location,
2900 executable_,
2901 /*low_4gb=*/false,
2902 dex_filenames,
2903 dex_files,
2904 image_reservation,
2905 error_msg));
2906 // We no longer need the file descriptors and they will be closed by
2907 // the unique_fd destructor when we leave this function.
2908 }
2909
2910 if (oat_file == nullptr) {
2911 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
2912 oat_filename.c_str(),
2913 space->GetName(),
2914 error_msg->c_str());
2915 return false;
2916 }
2917 const ImageHeader& image_header = space->GetImageHeader();
2918 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
2919 uint32_t image_oat_checksum = image_header.GetOatChecksum();
2920 if (oat_checksum != image_oat_checksum) {
2921 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
2922 " 0x%x in image %s",
2923 oat_checksum,
2924 image_oat_checksum,
2925 space->GetName());
2926 return false;
2927 }
2928 const char* oat_boot_class_path =
2929 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
2930 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
2931 const char* oat_boot_class_path_checksums =
2932 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
2933 oat_boot_class_path_checksums =
2934 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
2935 size_t component_count = image_header.GetComponentCount();
2936 if (component_count == 0u) {
2937 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
2938 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
2939 " in image %s",
2940 oat_boot_class_path,
2941 oat_boot_class_path_checksums,
2942 space->GetName());
2943 return false;
2944 }
2945 } else if (dependencies.empty()) {
2946 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
2947 boot_class_path_locations_).SubArray(0u, component_count), ':');
2948 if (expected_boot_class_path != oat_boot_class_path) {
2949 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
2950 "boot class path %s in image %s",
2951 oat_boot_class_path,
2952 expected_boot_class_path.c_str(),
2953 space->GetName());
2954 return false;
2955 }
2956 } else {
2957 std::string local_error_msg;
2958 if (!VerifyBootClassPathChecksums(
2959 oat_boot_class_path_checksums,
2960 oat_boot_class_path,
2961 dependencies,
2962 ArrayRef<const std::string>(boot_class_path_locations_),
2963 ArrayRef<const std::string>(boot_class_path_),
2964 &local_error_msg)) {
2965 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
2966 oat_boot_class_path,
2967 oat_boot_class_path_checksums,
2968 space->GetName(),
2969 local_error_msg.c_str());
2970 return false;
2971 }
2972 }
2973 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
2974 CHECK(image_header.GetOatDataBegin() != nullptr);
2975 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
2976 if (oat_file->Begin() != oat_data_begin) {
2977 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
2978 " %p v. %p",
2979 oat_filename.c_str(),
2980 space->GetName(),
2981 oat_file->Begin(),
2982 oat_data_begin);
2983 return false;
2984 }
2985 }
2986 if (validate_oat_file) {
2987 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
2988 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
2989 DCHECK(!error_msg->empty());
2990 return false;
2991 }
2992 }
2993
2994 // As an optimization, madvise the oat file into memory if it's being used
2995 // for execution with an active runtime. This can significantly improve
2996 // ZygoteInit class preload performance.
2997 if (executable_) {
2998 Runtime* runtime = Runtime::Current();
2999 if (runtime != nullptr) {
3000 Runtime::MadviseFileForRange(runtime->GetMadviseWillNeedSizeOdex(),
3001 oat_file->Size(),
3002 oat_file->Begin(),
3003 oat_file->End(),
3004 oat_file->GetLocation());
3005 }
3006 }
3007
3008 space->oat_file_ = std::move(oat_file);
3009 space->oat_file_non_owned_ = space->oat_file_.get();
3010
3011 return true;
3012 }
3013
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)3014 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
3015 bool validate_oat_file,
3016 size_t max_image_space_dependencies,
3017 TimingLogger* logger,
3018 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
3019 /*inout*/MemMap* image_reservation,
3020 /*out*/std::string* error_msg)
3021 REQUIRES_SHARED(Locks::mutator_lock_) {
3022 // Make sure we destroy the spaces we created if we're returning an error.
3023 // Note that this can unmap part of the original `image_reservation`.
3024 class Guard {
3025 public:
3026 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
3027 : spaces_(spaces_in), committed_(spaces_->size()) {}
3028 void Commit() {
3029 DCHECK_LT(committed_, spaces_->size());
3030 committed_ = spaces_->size();
3031 }
3032 ~Guard() {
3033 DCHECK_LE(committed_, spaces_->size());
3034 spaces_->resize(committed_);
3035 }
3036 private:
3037 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
3038 size_t committed_;
3039 };
3040 Guard guard(spaces);
3041
3042 bool is_extension = (chunk.start_index != 0u);
3043 DCHECK_NE(spaces->empty(), is_extension);
3044 if (max_image_space_dependencies < chunk.boot_image_component_count) {
3045 DCHECK(is_extension);
3046 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
3047 boot_class_path_locations_[chunk.start_index].c_str(),
3048 max_image_space_dependencies,
3049 chunk.boot_image_component_count);
3050 return false;
3051 }
3052 ArrayRef<const std::string> requested_bcp_locations =
3053 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
3054 chunk.start_index, chunk.image_space_count);
3055 std::vector<std::string> locations =
3056 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
3057 std::vector<std::string> filenames =
3058 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
3059 DCHECK_EQ(locations.size(), filenames.size());
3060 size_t max_dependency_count = spaces->size();
3061 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3062 android::base::unique_fd image_fd;
3063 if (chunk.art_fd.get() >= 0) {
3064 DCHECK_EQ(locations.size(), 1u);
3065 image_fd = std::move(chunk.art_fd);
3066 } else {
3067 size_t pos = chunk.start_index + i;
3068 int arg_image_fd =
3069 pos < boot_class_path_image_files_.size() ? boot_class_path_image_files_[pos].Fd() : -1;
3070 if (arg_image_fd >= 0) {
3071 image_fd.reset(DupCloexec(arg_image_fd));
3072 }
3073 }
3074 spaces->push_back(Load(locations[i],
3075 filenames[i],
3076 chunk.profile_files,
3077 std::move(image_fd),
3078 logger,
3079 image_reservation,
3080 error_msg));
3081 const ImageSpace* space = spaces->back().get();
3082 if (space == nullptr) {
3083 return false;
3084 }
3085 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3086 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3087 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3088 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3089 return false;
3090 }
3091 const ImageHeader& header = space->GetImageHeader();
3092 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3093 chunk.image_space_count != header.GetImageSpaceCount() ||
3094 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3095 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3096 chunk.boot_image_size != header.GetBootImageSize())) {
3097 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3098 "checksum: 0x%08x -> 0x%08x,"
3099 "image_space_count: %u -> %u"
3100 "boot_image_component_count: %u -> %u, "
3101 "boot_image_checksum: 0x%08x -> 0x%08x"
3102 "boot_image_size: 0x%08x -> 0x%08x",
3103 space->GetImageFilename().c_str(),
3104 chunk.checksum,
3105 chunk.image_space_count,
3106 header.GetImageSpaceCount(),
3107 header.GetImageChecksum(),
3108 chunk.boot_image_component_count,
3109 header.GetBootImageComponentCount(),
3110 chunk.boot_image_checksum,
3111 header.GetBootImageChecksum(),
3112 chunk.boot_image_size,
3113 header.GetBootImageSize());
3114 return false;
3115 }
3116 }
3117 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3118 size_t dependency_count = 0;
3119 size_t dependency_component_count = 0;
3120 while (dependency_component_count < chunk.boot_image_component_count &&
3121 dependency_count < max_dependency_count) {
3122 const ImageHeader& current_header = (*spaces)[dependency_count]->GetImageHeader();
3123 dependency_component_count += current_header.GetComponentCount();
3124 dependency_count += current_header.GetImageSpaceCount();
3125 }
3126 if (dependency_component_count != chunk.boot_image_component_count) {
3127 *error_msg = StringPrintf(
3128 "Unable to find dependencies from image spaces; boot_image_component_count: %u",
3129 chunk.boot_image_component_count);
3130 return false;
3131 }
3132 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3133 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3134 /*pos=*/ 0u, dependency_count);
3135 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3136 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3137 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3138
3139 size_t pos = chunk.start_index + i;
3140 ArrayRef<File> boot_class_path_files =
3141 boot_class_path_files_.empty() ?
3142 ArrayRef<File>() :
3143 boot_class_path_files_.SubArray(/*pos=*/pos, bcp_chunk_size);
3144
3145 // Select vdex and oat FD if any exists.
3146 android::base::unique_fd vdex_fd;
3147 android::base::unique_fd oat_fd;
3148 if (chunk.vdex_fd.get() >= 0) {
3149 DCHECK_EQ(locations.size(), 1u);
3150 vdex_fd = std::move(chunk.vdex_fd);
3151 } else {
3152 int arg_vdex_fd =
3153 pos < boot_class_path_vdex_files_.size() ? boot_class_path_vdex_files_[pos].Fd() : -1;
3154 if (arg_vdex_fd >= 0) {
3155 vdex_fd.reset(DupCloexec(arg_vdex_fd));
3156 }
3157 }
3158 if (chunk.oat_fd.get() >= 0) {
3159 DCHECK_EQ(locations.size(), 1u);
3160 oat_fd = std::move(chunk.oat_fd);
3161 } else {
3162 int arg_oat_fd =
3163 pos < boot_class_path_oat_files_.size() ? boot_class_path_oat_files_[pos].Fd() : -1;
3164 if (arg_oat_fd >= 0) {
3165 oat_fd.reset(DupCloexec(arg_oat_fd));
3166 }
3167 }
3168
3169 if (!OpenOatFile(space,
3170 std::move(vdex_fd),
3171 std::move(oat_fd),
3172 boot_class_path_.SubArray(/*pos=*/pos, bcp_chunk_size),
3173 boot_class_path_files,
3174 validate_oat_file,
3175 dependencies,
3176 logger,
3177 image_reservation,
3178 error_msg)) {
3179 return false;
3180 }
3181 }
3182
3183 guard.Commit();
3184 return true;
3185 }
3186
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3187 MemMap ReserveBootImageMemory(uint8_t* addr,
3188 uint32_t reservation_size,
3189 /*out*/std::string* error_msg) {
3190 DCHECK_ALIGNED(reservation_size, kElfSegmentAlignment);
3191 DCHECK_ALIGNED(addr, kElfSegmentAlignment);
3192 return MemMap::MapAnonymous("Boot image reservation",
3193 addr,
3194 reservation_size,
3195 PROT_NONE,
3196 /*low_4gb=*/ true,
3197 /*reuse=*/ false,
3198 /*reservation=*/ nullptr,
3199 error_msg);
3200 }
3201
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3202 bool RemapExtraReservation(size_t extra_reservation_size,
3203 /*inout*/MemMap* image_reservation,
3204 /*out*/MemMap* extra_reservation,
3205 /*out*/std::string* error_msg) {
3206 DCHECK_ALIGNED(extra_reservation_size, kElfSegmentAlignment);
3207 DCHECK(!extra_reservation->IsValid());
3208 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3209 if (extra_reservation_size != expected_size) {
3210 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3211 extra_reservation_size,
3212 expected_size);
3213 return false;
3214 }
3215 if (extra_reservation_size != 0u) {
3216 DCHECK(image_reservation->IsValid());
3217 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3218 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3219 "Boot image extra reservation",
3220 PROT_NONE,
3221 error_msg);
3222 if (!extra_reservation->IsValid()) {
3223 return false;
3224 }
3225 }
3226 DCHECK(!image_reservation->IsValid());
3227 return true;
3228 }
3229
3230 const ArrayRef<const std::string> boot_class_path_;
3231 const ArrayRef<const std::string> boot_class_path_locations_;
3232 ArrayRef<File> boot_class_path_files_;
3233 ArrayRef<File> boot_class_path_image_files_;
3234 ArrayRef<File> boot_class_path_vdex_files_;
3235 ArrayRef<File> boot_class_path_oat_files_;
3236 const ArrayRef<const std::string> image_locations_;
3237 const InstructionSet image_isa_;
3238 const bool relocate_;
3239 const bool executable_;
3240 bool has_system_;
3241 const std::string* apex_versions_;
3242 };
3243
LoadFromSystem(size_t extra_reservation_size,bool allow_in_memory_compilation,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3244 bool ImageSpace::BootImageLoader::LoadFromSystem(
3245 size_t extra_reservation_size,
3246 bool allow_in_memory_compilation,
3247 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3248 /*out*/MemMap* extra_reservation,
3249 /*out*/std::string* error_msg) {
3250 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3251
3252 if (gPageSize != kMinPageSize) {
3253 *error_msg = "Loading boot image is only supported on devices with 4K page size";
3254 return false;
3255 }
3256
3257 BootImageLayout layout(image_locations_,
3258 boot_class_path_,
3259 boot_class_path_locations_,
3260 boot_class_path_files_,
3261 boot_class_path_image_files_,
3262 boot_class_path_vdex_files_,
3263 boot_class_path_oat_files_,
3264 apex_versions_);
3265 if (!layout.LoadFromSystem(image_isa_, allow_in_memory_compilation, error_msg)) {
3266 return false;
3267 }
3268
3269 // Load the image. We don't validate oat files in this stage because they have been validated
3270 // before.
3271 if (!LoadImage(layout,
3272 /*validate_oat_file=*/ false,
3273 extra_reservation_size,
3274 &logger,
3275 boot_image_spaces,
3276 extra_reservation,
3277 error_msg)) {
3278 return false;
3279 }
3280
3281 if (VLOG_IS_ON(image)) {
3282 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3283 << *boot_image_spaces->front();
3284 logger.Dump(LOG_STREAM(INFO));
3285 }
3286 return true;
3287 }
3288
IsBootClassPathOnDisk(InstructionSet image_isa)3289 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3290 Runtime* runtime = Runtime::Current();
3291 BootImageLayout layout(ArrayRef<const std::string>(runtime->GetImageLocations()),
3292 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3293 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()),
3294 runtime->GetBootClassPathFiles(),
3295 runtime->GetBootClassPathImageFiles(),
3296 runtime->GetBootClassPathVdexFiles(),
3297 runtime->GetBootClassPathOatFiles(),
3298 &runtime->GetApexVersions());
3299 const std::string image_location = layout.GetPrimaryImageLocation();
3300 std::unique_ptr<ImageHeader> image_header;
3301 std::string error_msg;
3302
3303 std::string system_filename;
3304 bool has_system = false;
3305
3306 if (FindImageFilename(image_location.c_str(),
3307 image_isa,
3308 &system_filename,
3309 &has_system)) {
3310 DCHECK(has_system);
3311 image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg);
3312 }
3313
3314 return image_header != nullptr;
3315 }
3316
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_odex_files,const std::vector<std::string> & image_locations,const InstructionSet image_isa,bool relocate,bool executable,size_t extra_reservation_size,bool allow_in_memory_compilation,const std::string & apex_versions,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3317 bool ImageSpace::LoadBootImage(const std::vector<std::string>& boot_class_path,
3318 const std::vector<std::string>& boot_class_path_locations,
3319 ArrayRef<File> boot_class_path_files,
3320 ArrayRef<File> boot_class_path_image_files,
3321 ArrayRef<File> boot_class_path_vdex_files,
3322 ArrayRef<File> boot_class_path_odex_files,
3323 const std::vector<std::string>& image_locations,
3324 const InstructionSet image_isa,
3325 bool relocate,
3326 bool executable,
3327 size_t extra_reservation_size,
3328 bool allow_in_memory_compilation,
3329 const std::string& apex_versions,
3330 /*out*/ std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3331 /*out*/ MemMap* extra_reservation) {
3332 ScopedTrace trace(__FUNCTION__);
3333
3334 DCHECK(boot_image_spaces != nullptr);
3335 DCHECK(boot_image_spaces->empty());
3336 DCHECK_ALIGNED(extra_reservation_size, kElfSegmentAlignment);
3337 DCHECK(extra_reservation != nullptr);
3338 DCHECK_NE(image_isa, InstructionSet::kNone);
3339
3340 if (image_locations.empty()) {
3341 return false;
3342 }
3343
3344 BootImageLoader loader(boot_class_path,
3345 boot_class_path_locations,
3346 boot_class_path_files,
3347 boot_class_path_image_files,
3348 boot_class_path_vdex_files,
3349 boot_class_path_odex_files,
3350 image_locations,
3351 image_isa,
3352 relocate,
3353 executable,
3354 &apex_versions);
3355 loader.FindImageFiles();
3356
3357 std::string error_msg;
3358 if (loader.LoadFromSystem(extra_reservation_size,
3359 allow_in_memory_compilation,
3360 boot_image_spaces,
3361 extra_reservation,
3362 &error_msg)) {
3363 return true;
3364 }
3365 LOG(ERROR) << "Could not create image space with image file '"
3366 << Join(image_locations, kComponentSeparator)
3367 << "'. Attempting to fall back to imageless running. Error was: "
3368 << error_msg;
3369
3370 return false;
3371 }
3372
~ImageSpace()3373 ImageSpace::~ImageSpace() {
3374 // Everything done by member destructors. Classes forward-declared in header are now defined.
3375 }
3376
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3377 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3378 const OatFile* oat_file,
3379 std::string* error_msg) {
3380 // Note: The oat file has already been validated.
3381 const std::vector<ImageSpace*>& boot_image_spaces =
3382 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3383 return CreateFromAppImage(image,
3384 oat_file,
3385 ArrayRef<ImageSpace* const>(boot_image_spaces),
3386 error_msg);
3387 }
3388
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3389 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3390 const char* image,
3391 const OatFile* oat_file,
3392 ArrayRef<ImageSpace* const> boot_image_spaces,
3393 std::string* error_msg) {
3394 return Loader::InitAppImage(image,
3395 image,
3396 oat_file,
3397 boot_image_spaces,
3398 error_msg);
3399 }
3400
GetOatFile() const3401 const OatFile* ImageSpace::GetOatFile() const {
3402 return oat_file_non_owned_;
3403 }
3404
ReleaseOatFile()3405 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3406 CHECK(oat_file_ != nullptr);
3407 return std::move(oat_file_);
3408 }
3409
Dump(std::ostream & os) const3410 void ImageSpace::Dump(std::ostream& os) const {
3411 os << GetType()
3412 << " begin=" << reinterpret_cast<void*>(Begin())
3413 << ",end=" << reinterpret_cast<void*>(End())
3414 << ",size=" << PrettySize(Size())
3415 << ",name=\"" << GetName() << "\"]";
3416 }
3417
ValidateApexVersions(const OatHeader & oat_header,const std::string & apex_versions,const std::string & file_location,std::string * error_msg)3418 bool ImageSpace::ValidateApexVersions(const OatHeader& oat_header,
3419 const std::string& apex_versions,
3420 const std::string& file_location,
3421 std::string* error_msg) {
3422 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3423 if (oat_header.GetKeyValueStoreSize() == 0) {
3424 return true;
3425 }
3426
3427 const char* oat_apex_versions = oat_header.GetStoreValueByKey(OatHeader::kApexVersionsKey);
3428 if (oat_apex_versions == nullptr) {
3429 *error_msg = StringPrintf("ValidateApexVersions failed to get APEX versions from oat file '%s'",
3430 file_location.c_str());
3431 return false;
3432 }
3433 // For a boot image, it can be generated from a subset of the bootclasspath.
3434 // For an app image, some dex files get compiled with a subset of the bootclasspath.
3435 // For such cases, the OAT APEX versions will be a prefix of the runtime APEX versions.
3436 if (!apex_versions.starts_with(oat_apex_versions)) {
3437 *error_msg = StringPrintf(
3438 "ValidateApexVersions found APEX versions mismatch between oat file '%s' and the runtime "
3439 "(Oat file: '%s', Runtime: '%s')",
3440 file_location.c_str(),
3441 oat_apex_versions,
3442 apex_versions.c_str());
3443 return false;
3444 }
3445 return true;
3446 }
3447
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3448 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3449 DCHECK(Runtime::Current() != nullptr);
3450 return ValidateOatFile(oat_file, error_msg, {}, {}, Runtime::Current()->GetApexVersions());
3451 }
3452
ValidateOatFile(const OatFile & oat_file,std::string * error_msg,ArrayRef<const std::string> dex_filenames,ArrayRef<File> dex_files,const std::string & apex_versions)3453 bool ImageSpace::ValidateOatFile(const OatFile& oat_file,
3454 std::string* error_msg,
3455 ArrayRef<const std::string> dex_filenames,
3456 ArrayRef<File> dex_files,
3457 const std::string& apex_versions) {
3458 if (!ValidateApexVersions(oat_file.GetOatHeader(),
3459 apex_versions,
3460 oat_file.GetLocation(),
3461 error_msg)) {
3462 return false;
3463 }
3464
3465 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3466 if (oat_file.GetOatHeader().GetKeyValueStoreSize() != 0 &&
3467 oat_file.GetOatHeader().IsConcurrentCopying() != gUseReadBarrier) {
3468 *error_msg =
3469 ART_FORMAT("ValidateOatFile found read barrier state mismatch (oat file: {}, runtime: {})",
3470 oat_file.GetOatHeader().IsConcurrentCopying(),
3471 gUseReadBarrier);
3472 return false;
3473 }
3474
3475 size_t dex_file_index = 0; // Counts only primary dex files.
3476 const std::vector<const OatDexFile*>& oat_dex_files = oat_file.GetOatDexFiles();
3477 for (size_t i = 0; i < oat_dex_files.size();) {
3478 DCHECK(dex_filenames.empty() || dex_file_index < dex_filenames.size());
3479 const std::string& dex_file_location = dex_filenames.empty() ?
3480 oat_dex_files[i]->GetDexFileLocation() :
3481 dex_filenames[dex_file_index];
3482 File no_file; // Invalid object.
3483 File& dex_file = dex_file_index < dex_files.size() ? dex_files[dex_file_index] : no_file;
3484 dex_file_index++;
3485
3486 if (DexFileLoader::IsMultiDexLocation(oat_dex_files[i]->GetDexFileLocation())) {
3487 return false; // Expected primary dex file.
3488 }
3489 uint32_t oat_checksum = DexFileLoader::GetMultiDexChecksum(oat_dex_files, &i);
3490
3491 // Original checksum.
3492 std::optional<uint32_t> dex_checksum;
3493 ArtDexFileLoader dex_loader(&dex_file, dex_file_location);
3494 bool ok = dex_loader.GetMultiDexChecksum(&dex_checksum, error_msg);
3495 if (!ok) {
3496 *error_msg = StringPrintf(
3497 "ValidateOatFile failed to get checksum of dex file '%s' "
3498 "referenced by oat file %s: %s",
3499 dex_file_location.c_str(),
3500 oat_file.GetLocation().c_str(),
3501 error_msg->c_str());
3502 return false;
3503 }
3504 CHECK(dex_checksum.has_value());
3505
3506 if (oat_checksum != dex_checksum) {
3507 *error_msg = StringPrintf(
3508 "ValidateOatFile found checksum mismatch between oat file "
3509 "'%s' and dex file '%s' (0x%x != 0x%x)",
3510 oat_file.GetLocation().c_str(),
3511 dex_file_location.c_str(),
3512 oat_checksum,
3513 dex_checksum.value());
3514 return false;
3515 }
3516 }
3517 return true;
3518 }
3519
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3520 std::string ImageSpace::GetBootClassPathChecksums(
3521 ArrayRef<ImageSpace* const> image_spaces,
3522 ArrayRef<const DexFile* const> boot_class_path) {
3523 DCHECK(!boot_class_path.empty());
3524 size_t bcp_pos = 0u;
3525 std::string boot_image_checksum;
3526
3527 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3528 const ImageSpace* main_space = image_spaces[image_pos];
3529 // Caller must make sure that the image spaces correspond to the head of the BCP.
3530 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3531 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3532 boot_class_path[bcp_pos]->GetLocation());
3533 const ImageHeader& current_header = main_space->GetImageHeader();
3534 uint32_t image_space_count = current_header.GetImageSpaceCount();
3535 DCHECK_NE(image_space_count, 0u);
3536 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3537 if (image_pos != 0u) {
3538 boot_image_checksum += ':';
3539 }
3540 uint32_t component_count = current_header.GetComponentCount();
3541 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3542 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3543 const ImageSpace* space = image_spaces[image_pos + space_index];
3544 const OatFile* oat_file = space->oat_file_non_owned_;
3545 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3546 if (kIsDebugBuild) {
3547 CHECK_NE(num_dex_files, 0u);
3548 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3549 for (size_t i = 0; i != num_dex_files; ++i) {
3550 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3551 boot_class_path[bcp_pos + i]->GetLocation());
3552 }
3553 }
3554 bcp_pos += num_dex_files;
3555 }
3556 image_pos += image_space_count;
3557 }
3558
3559 ArrayRef<const DexFile* const> boot_class_path_tail =
3560 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3561 DCHECK(boot_class_path_tail.empty() ||
3562 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation()));
3563 for (size_t i = 0; i < boot_class_path_tail.size();) {
3564 uint32_t checksum = DexFileLoader::GetMultiDexChecksum(boot_class_path_tail, &i);
3565 if (!boot_image_checksum.empty()) {
3566 boot_image_checksum += ':';
3567 }
3568 boot_image_checksum += kDexFileChecksumPrefix;
3569 StringAppendF(&boot_image_checksum, "/%08x", checksum);
3570 }
3571 return boot_image_checksum;
3572 }
3573
GetNumberOfComponents(ArrayRef<ImageSpace * const> image_spaces)3574 size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) {
3575 size_t n = 0;
3576 for (auto&& is : image_spaces) {
3577 n += is->GetComponentCount();
3578 }
3579 return n;
3580 }
3581
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3582 size_t ImageSpace::CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3583 ArrayRef<const std::string> boot_class_path,
3584 /*out*/std::string* error_msg) {
3585 // Check that the oat BCP is a prefix of current BCP locations and count components.
3586 size_t component_count = 0u;
3587 std::string_view remaining_bcp(oat_boot_class_path);
3588 bool bcp_ok = false;
3589 for (const std::string& location : boot_class_path) {
3590 if (!remaining_bcp.starts_with(location)) {
3591 break;
3592 }
3593 remaining_bcp.remove_prefix(location.size());
3594 ++component_count;
3595 if (remaining_bcp.empty()) {
3596 bcp_ok = true;
3597 break;
3598 }
3599 if (!remaining_bcp.starts_with(":")) {
3600 break;
3601 }
3602 remaining_bcp.remove_prefix(1u);
3603 }
3604 if (!bcp_ok) {
3605 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3606 " runtime boot class path (%s)",
3607 std::string(oat_boot_class_path).c_str(),
3608 Join(boot_class_path, ':').c_str());
3609 return static_cast<size_t>(-1);
3610 }
3611 return component_count;
3612 }
3613
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3614 bool ImageSpace::VerifyBootClassPathChecksums(
3615 std::string_view oat_checksums,
3616 std::string_view oat_boot_class_path,
3617 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
3618 ArrayRef<const std::string> boot_class_path_locations,
3619 ArrayRef<const std::string> boot_class_path,
3620 /*out*/std::string* error_msg) {
3621 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
3622 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
3623 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3624 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3625 return false;
3626 }
3627
3628 size_t oat_bcp_size =
3629 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3630 if (oat_bcp_size == static_cast<size_t>(-1)) {
3631 DCHECK(!error_msg->empty());
3632 return false;
3633 }
3634 const size_t num_image_spaces = image_spaces.size();
3635 size_t dependency_component_count = 0;
3636 for (const std::unique_ptr<ImageSpace>& space : image_spaces) {
3637 dependency_component_count += space->GetComponentCount();
3638 }
3639 if (dependency_component_count != oat_bcp_size) {
3640 *error_msg = StringPrintf("Image header records %s dependencies (%zu) than BCP (%zu)",
3641 dependency_component_count < oat_bcp_size ? "less" : "more",
3642 dependency_component_count,
3643 oat_bcp_size);
3644 return false;
3645 }
3646
3647 // Verify image checksums.
3648 size_t bcp_pos = 0u;
3649 size_t image_pos = 0u;
3650 while (image_pos != num_image_spaces && oat_checksums.starts_with("i")) {
3651 // Verify the current image checksum.
3652 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
3653 uint32_t image_space_count = current_header.GetImageSpaceCount();
3654 DCHECK_NE(image_space_count, 0u);
3655 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3656 uint32_t component_count = current_header.GetComponentCount();
3657 uint32_t checksum = current_header.GetImageChecksum();
3658 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
3659 DCHECK(!error_msg->empty());
3660 return false;
3661 }
3662
3663 if (kIsDebugBuild) {
3664 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3665 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
3666 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3667 CHECK_NE(num_dex_files, 0u);
3668 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
3669 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
3670 CHECK(!DexFileLoader::IsMultiDexLocation(main_location));
3671 size_t num_base_locations = 1u;
3672 for (size_t i = 1u; i != num_dex_files; ++i) {
3673 if (!DexFileLoader::IsMultiDexLocation(
3674 oat_file->GetOatDexFiles()[i]->GetDexFileLocation())) {
3675 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
3676 ++num_base_locations;
3677 }
3678 }
3679 if (image_space_count == 1u) {
3680 CHECK_EQ(num_base_locations, component_count);
3681 }
3682 }
3683 }
3684
3685 image_pos += image_space_count;
3686 bcp_pos += component_count;
3687
3688 if (!oat_checksums.starts_with(":")) {
3689 // Check that we've reached the end of checksums and BCP.
3690 if (!oat_checksums.empty()) {
3691 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
3692 std::string(oat_checksums).c_str());
3693 return false;
3694 }
3695 if (bcp_pos != oat_bcp_size) {
3696 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
3697 bcp_pos,
3698 oat_bcp_size);
3699 return false;
3700 }
3701 return true;
3702 }
3703 oat_checksums.remove_prefix(1u);
3704 }
3705
3706 // We do not allow dependencies of extensions on dex files. That would require
3707 // interleaving the loading of the images with opening the other BCP dex files.
3708 return false;
3709 }
3710
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)3711 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
3712 ArrayRef<const std::string> dex_locations,
3713 const std::string& image_location,
3714 bool boot_image_extension) {
3715 DCHECK(!dex_locations.empty());
3716
3717 // Find the path.
3718 size_t last_slash = image_location.rfind('/');
3719 CHECK_NE(last_slash, std::string::npos);
3720
3721 // We also need to honor path components that were encoded through '@'. Otherwise the loading
3722 // code won't be able to find the images.
3723 if (image_location.find('@', last_slash) != std::string::npos) {
3724 last_slash = image_location.rfind('@');
3725 }
3726
3727 // Find the dot separating the primary image name from the extension.
3728 size_t last_dot = image_location.rfind('.');
3729 // Extract the extension and base (the path and primary image name).
3730 std::string extension;
3731 std::string base = image_location;
3732 if (last_dot != std::string::npos && last_dot > last_slash) {
3733 extension = image_location.substr(last_dot); // Including the dot.
3734 base.resize(last_dot);
3735 }
3736 // For non-empty primary image name, add '-' to the `base`.
3737 if (last_slash + 1u != base.size()) {
3738 base += '-';
3739 }
3740
3741 std::vector<std::string> locations;
3742 locations.reserve(dex_locations.size());
3743 size_t start_index = 0u;
3744 if (!boot_image_extension) {
3745 start_index = 1u;
3746 locations.push_back(image_location);
3747 }
3748
3749 // Now create the other names. Use a counted loop to skip the first one if needed.
3750 for (size_t i = start_index; i < dex_locations.size(); ++i) {
3751 // Replace path with `base` (i.e. image path and prefix) and replace the original
3752 // extension (if any) with `extension`.
3753 std::string name = dex_locations[i];
3754 size_t last_dex_slash = name.rfind('/');
3755 if (last_dex_slash != std::string::npos) {
3756 name = name.substr(last_dex_slash + 1);
3757 }
3758 size_t last_dex_dot = name.rfind('.');
3759 if (last_dex_dot != std::string::npos) {
3760 name.resize(last_dex_dot);
3761 }
3762 locations.push_back(ART_FORMAT("{}{}{}", base, name, extension));
3763 }
3764 return locations;
3765 }
3766
DumpSections(std::ostream & os) const3767 void ImageSpace::DumpSections(std::ostream& os) const {
3768 const uint8_t* base = Begin();
3769 const ImageHeader& header = GetImageHeader();
3770 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
3771 auto section_type = static_cast<ImageHeader::ImageSections>(i);
3772 const ImageSection& section = header.GetImageSection(section_type);
3773 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
3774 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
3775 }
3776 }
3777
ReleaseMetadata()3778 void ImageSpace::ReleaseMetadata() {
3779 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
3780 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
3781 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
3782 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), gPageSize);
3783 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), gPageSize);
3784 if (page_begin < page_end) {
3785 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
3786 }
3787 }
3788
3789 } // namespace space
3790 } // namespace gc
3791 } // namespace art
3792