1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtl8723b_hal.h>
12 #include "hal_com_h2c.h"
13 
_FWDownloadEnable(struct adapter * padapter,bool enable)14 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
15 {
16 	u8 tmp, count = 0;
17 
18 	if (enable) {
19 		/*  8051 enable */
20 		tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
21 		rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
22 
23 		tmp = rtw_read8(padapter, REG_MCUFWDL);
24 		rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
25 
26 		do {
27 			tmp = rtw_read8(padapter, REG_MCUFWDL);
28 			if (tmp & 0x01)
29 				break;
30 			rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
31 			msleep(1);
32 		} while (count++ < 100);
33 
34 		/*  8051 reset */
35 		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
36 		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
37 	} else {
38 		/*  MCU firmware download disable. */
39 		tmp = rtw_read8(padapter, REG_MCUFWDL);
40 		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
41 	}
42 }
43 
_BlockWrite(struct adapter * padapter,void * buffer,u32 buffSize)44 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
45 {
46 	int ret = _SUCCESS;
47 
48 	u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
49 	u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
50 	u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
51 	u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
52 	u32 remainSize_p1 = 0, remainSize_p2 = 0;
53 	u8 *bufferPtr = buffer;
54 	u32 i = 0, offset = 0;
55 
56 	/* 3 Phase #1 */
57 	blockCount_p1 = buffSize / blockSize_p1;
58 	remainSize_p1 = buffSize % blockSize_p1;
59 
60 	for (i = 0; i < blockCount_p1; i++) {
61 		ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
62 		if (ret == _FAIL) {
63 			netdev_dbg(padapter->pnetdev, "write failed at %s %d, block:%d\n",
64 				   __func__, __LINE__, i);
65 			goto exit;
66 		}
67 	}
68 
69 	/* 3 Phase #2 */
70 	if (remainSize_p1) {
71 		offset = blockCount_p1 * blockSize_p1;
72 
73 		blockCount_p2 = remainSize_p1/blockSize_p2;
74 		remainSize_p2 = remainSize_p1%blockSize_p2;
75 	}
76 
77 	/* 3 Phase #3 */
78 	if (remainSize_p2) {
79 		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
80 
81 		blockCount_p3 = remainSize_p2 / blockSize_p3;
82 
83 		for (i = 0; i < blockCount_p3; i++) {
84 			ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
85 
86 			if (ret == _FAIL) {
87 				netdev_dbg(padapter->pnetdev, "write failed at %s %d, block:%d\n",
88 					   __func__, __LINE__, i);
89 				goto exit;
90 			}
91 		}
92 	}
93 exit:
94 	return ret;
95 }
96 
_PageWrite(struct adapter * padapter,u32 page,void * buffer,u32 size)97 static int _PageWrite(
98 	struct adapter *padapter,
99 	u32 page,
100 	void *buffer,
101 	u32 size
102 )
103 {
104 	u8 value8;
105 	u8 u8Page = (u8) (page & 0x07);
106 
107 	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
108 	rtw_write8(padapter, REG_MCUFWDL+2, value8);
109 
110 	return _BlockWrite(padapter, buffer, size);
111 }
112 
_WriteFW(struct adapter * padapter,void * buffer,u32 size)113 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
114 {
115 	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
116 	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
117 	int ret = _SUCCESS;
118 	u32 pageNums, remainSize;
119 	u32 page, offset;
120 	u8 *bufferPtr = buffer;
121 
122 	pageNums = size / MAX_DLFW_PAGE_SIZE;
123 	remainSize = size % MAX_DLFW_PAGE_SIZE;
124 
125 	for (page = 0; page < pageNums; page++) {
126 		offset = page * MAX_DLFW_PAGE_SIZE;
127 		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
128 
129 		if (ret == _FAIL) {
130 			netdev_dbg(padapter->pnetdev, "page write failed at %s %d\n",
131 				   __func__, __LINE__);
132 			goto exit;
133 		}
134 	}
135 
136 	if (remainSize) {
137 		offset = pageNums * MAX_DLFW_PAGE_SIZE;
138 		page = pageNums;
139 		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
140 
141 		if (ret == _FAIL) {
142 			netdev_dbg(padapter->pnetdev, "remaining page write failed at %s %d\n",
143 				   __func__, __LINE__);
144 			goto exit;
145 		}
146 	}
147 
148 exit:
149 	return ret;
150 }
151 
_8051Reset8723(struct adapter * padapter)152 void _8051Reset8723(struct adapter *padapter)
153 {
154 	u8 cpu_rst;
155 	u8 io_rst;
156 
157 
158 	/*  Reset 8051(WLMCU) IO wrapper */
159 	/*  0x1c[8] = 0 */
160 	/*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
161 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
162 	io_rst &= ~BIT(0);
163 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
164 
165 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
166 	cpu_rst &= ~BIT(2);
167 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
168 
169 	/*  Enable 8051 IO wrapper */
170 	/*  0x1c[8] = 1 */
171 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
172 	io_rst |= BIT(0);
173 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
174 
175 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
176 	cpu_rst |= BIT(2);
177 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
178 }
179 
180 u8 g_fwdl_chksum_fail;
181 
polling_fwdl_chksum(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)182 static s32 polling_fwdl_chksum(
183 	struct adapter *adapter, u32 min_cnt, u32 timeout_ms
184 )
185 {
186 	s32 ret = _FAIL;
187 	u32 value32;
188 	unsigned long start = jiffies;
189 	u32 cnt = 0;
190 
191 	/* polling CheckSum report */
192 	do {
193 		cnt++;
194 		value32 = rtw_read32(adapter, REG_MCUFWDL);
195 		if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
196 			break;
197 		yield();
198 	} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
199 
200 	if (!(value32 & FWDL_ChkSum_rpt)) {
201 		goto exit;
202 	}
203 
204 	if (g_fwdl_chksum_fail) {
205 		g_fwdl_chksum_fail--;
206 		goto exit;
207 	}
208 
209 	ret = _SUCCESS;
210 
211 exit:
212 
213 	return ret;
214 }
215 
216 u8 g_fwdl_wintint_rdy_fail;
217 
_FWFreeToGo(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)218 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
219 {
220 	s32 ret = _FAIL;
221 	u32 value32;
222 	unsigned long start = jiffies;
223 	u32 cnt = 0;
224 
225 	value32 = rtw_read32(adapter, REG_MCUFWDL);
226 	value32 |= MCUFWDL_RDY;
227 	value32 &= ~WINTINI_RDY;
228 	rtw_write32(adapter, REG_MCUFWDL, value32);
229 
230 	_8051Reset8723(adapter);
231 
232 	/*  polling for FW ready */
233 	do {
234 		cnt++;
235 		value32 = rtw_read32(adapter, REG_MCUFWDL);
236 		if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
237 			break;
238 		yield();
239 	} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
240 
241 	if (!(value32 & WINTINI_RDY)) {
242 		goto exit;
243 	}
244 
245 	if (g_fwdl_wintint_rdy_fail) {
246 		g_fwdl_wintint_rdy_fail--;
247 		goto exit;
248 	}
249 
250 	ret = _SUCCESS;
251 
252 exit:
253 
254 	return ret;
255 }
256 
257 #define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
258 
rtl8723b_FirmwareSelfReset(struct adapter * padapter)259 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
260 {
261 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
262 	u8 u1bTmp;
263 	u8 Delay = 100;
264 
265 	if (
266 		!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
267 	) { /*  after 88C Fw v33.1 */
268 		/* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
269 		rtw_write8(padapter, REG_HMETFR+3, 0x20);
270 
271 		u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
272 		while (u1bTmp & BIT2) {
273 			Delay--;
274 			if (Delay == 0)
275 				break;
276 			udelay(50);
277 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
278 		}
279 
280 		if (Delay == 0) {
281 			/* force firmware reset */
282 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
283 			rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
284 		}
285 	}
286 }
287 
288 /*  */
289 /* 	Description: */
290 /* 		Download 8192C firmware code. */
291 /*  */
292 /*  */
rtl8723b_FirmwareDownload(struct adapter * padapter,bool bUsedWoWLANFw)293 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
294 {
295 	s32 rtStatus = _SUCCESS;
296 	u8 write_fw = 0;
297 	unsigned long fwdl_start_time;
298 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
299 	struct rt_firmware *pFirmware;
300 	struct rt_firmware *pBTFirmware;
301 	struct rt_firmware_hdr *pFwHdr = NULL;
302 	u8 *pFirmwareBuf;
303 	u32 FirmwareLen;
304 	const struct firmware *fw;
305 	struct device *device = dvobj_to_dev(padapter->dvobj);
306 	u8 *fwfilepath;
307 	struct dvobj_priv *psdpriv = padapter->dvobj;
308 	struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
309 	u8 tmp_ps;
310 
311 	pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
312 	if (!pFirmware)
313 		return _FAIL;
314 	pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
315 	if (!pBTFirmware) {
316 		kfree(pFirmware);
317 		return _FAIL;
318 	}
319 	tmp_ps = rtw_read8(padapter, 0xa3);
320 	tmp_ps &= 0xf8;
321 	tmp_ps |= 0x02;
322 	/* 1. write 0xA3[:2:0] = 3b'010 */
323 	rtw_write8(padapter, 0xa3, tmp_ps);
324 	/* 2. read power_state = 0xA0[1:0] */
325 	tmp_ps = rtw_read8(padapter, 0xa0);
326 	tmp_ps &= 0x03;
327 	if (tmp_ps != 0x01)
328 		pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
329 
330 	fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
331 
332 	pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
333 
334 	rtStatus = request_firmware(&fw, fwfilepath, device);
335 	if (rtStatus) {
336 		pr_err("Request firmware failed with error 0x%x\n", rtStatus);
337 		rtStatus = _FAIL;
338 		goto exit;
339 	}
340 
341 	if (!fw) {
342 		pr_err("Firmware %s not available\n", fwfilepath);
343 		rtStatus = _FAIL;
344 		goto exit;
345 	}
346 
347 	if (fw->size > FW_8723B_SIZE) {
348 		rtStatus = _FAIL;
349 		goto exit;
350 	}
351 
352 	pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
353 	if (!pFirmware->fw_buffer_sz) {
354 		rtStatus = _FAIL;
355 		goto exit;
356 	}
357 
358 	pFirmware->fw_length = fw->size;
359 	release_firmware(fw);
360 	if (pFirmware->fw_length > FW_8723B_SIZE) {
361 		rtStatus = _FAIL;
362 		netdev_emerg(padapter->pnetdev,
363 			     "Firmware size:%u exceed %u\n",
364 			     pFirmware->fw_length, FW_8723B_SIZE);
365 		goto release_fw1;
366 	}
367 
368 	pFirmwareBuf = pFirmware->fw_buffer_sz;
369 	FirmwareLen = pFirmware->fw_length;
370 
371 	/*  To Check Fw header. Added by tynli. 2009.12.04. */
372 	pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
373 
374 	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
375 	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
376 	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
377 
378 	if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
379 		/*  Shift 32 bytes for FW header */
380 		pFirmwareBuf = pFirmwareBuf + 32;
381 		FirmwareLen = FirmwareLen - 32;
382 	}
383 
384 	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
385 	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
386 	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
387 		rtw_write8(padapter, REG_MCUFWDL, 0x00);
388 		rtl8723b_FirmwareSelfReset(padapter);
389 	}
390 
391 	_FWDownloadEnable(padapter, true);
392 	fwdl_start_time = jiffies;
393 	while (
394 		!padapter->bDriverStopped &&
395 		!padapter->bSurpriseRemoved &&
396 		(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
397 	) {
398 		/* reset FWDL chksum */
399 		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
400 
401 		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
402 		if (rtStatus != _SUCCESS)
403 			continue;
404 
405 		rtStatus = polling_fwdl_chksum(padapter, 5, 50);
406 		if (rtStatus == _SUCCESS)
407 			break;
408 	}
409 	_FWDownloadEnable(padapter, false);
410 	if (_SUCCESS != rtStatus)
411 		goto fwdl_stat;
412 
413 	rtStatus = _FWFreeToGo(padapter, 10, 200);
414 	if (_SUCCESS != rtStatus)
415 		goto fwdl_stat;
416 
417 fwdl_stat:
418 
419 exit:
420 	kfree(pFirmware->fw_buffer_sz);
421 	kfree(pFirmware);
422 release_fw1:
423 	kfree(pBTFirmware);
424 	return rtStatus;
425 }
426 
rtl8723b_InitializeFirmwareVars(struct adapter * padapter)427 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
428 {
429 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
430 
431 	/*  Init Fw LPS related. */
432 	adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
433 
434 	/* Init H2C cmd. */
435 	rtw_write8(padapter, REG_HMETFR, 0x0f);
436 
437 	/*  Init H2C counter. by tynli. 2009.12.09. */
438 	pHalData->LastHMEBoxNum = 0;
439 /* pHalData->H2CQueueHead = 0; */
440 /* pHalData->H2CQueueTail = 0; */
441 /* pHalData->H2CStopInsertQueue = false; */
442 }
443 
444 /*  */
445 /* 				Efuse related code */
446 /*  */
hal_EfuseSwitchToBank(struct adapter * padapter,u8 bank,bool bPseudoTest)447 static u8 hal_EfuseSwitchToBank(
448 	struct adapter *padapter, u8 bank, bool bPseudoTest
449 )
450 {
451 	u8 bRet = false;
452 	u32 value32 = 0;
453 #ifdef HAL_EFUSE_MEMORY
454 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
455 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
456 #endif
457 
458 
459 	if (bPseudoTest) {
460 #ifdef HAL_EFUSE_MEMORY
461 		pEfuseHal->fakeEfuseBank = bank;
462 #else
463 		fakeEfuseBank = bank;
464 #endif
465 		bRet = true;
466 	} else {
467 		value32 = rtw_read32(padapter, EFUSE_TEST);
468 		bRet = true;
469 		switch (bank) {
470 		case 0:
471 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
472 			break;
473 		case 1:
474 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
475 			break;
476 		case 2:
477 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
478 			break;
479 		case 3:
480 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
481 			break;
482 		default:
483 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
484 			bRet = false;
485 			break;
486 		}
487 		rtw_write32(padapter, EFUSE_TEST, value32);
488 	}
489 
490 	return bRet;
491 }
492 
Hal_GetEfuseDefinition(struct adapter * padapter,u8 efuseType,u8 type,void * pOut,bool bPseudoTest)493 void Hal_GetEfuseDefinition(
494 	struct adapter *padapter,
495 	u8 efuseType,
496 	u8 type,
497 	void *pOut,
498 	bool bPseudoTest
499 )
500 {
501 	switch (type) {
502 	case TYPE_EFUSE_MAX_SECTION:
503 		{
504 			u8 *pMax_section;
505 			pMax_section = pOut;
506 
507 			if (efuseType == EFUSE_WIFI)
508 				*pMax_section = EFUSE_MAX_SECTION_8723B;
509 			else
510 				*pMax_section = EFUSE_BT_MAX_SECTION;
511 		}
512 		break;
513 
514 	case TYPE_EFUSE_REAL_CONTENT_LEN:
515 		{
516 			u16 *pu2Tmp;
517 			pu2Tmp = pOut;
518 
519 			if (efuseType == EFUSE_WIFI)
520 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
521 			else
522 				*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
523 		}
524 		break;
525 
526 	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
527 		{
528 			u16 *pu2Tmp;
529 			pu2Tmp = pOut;
530 
531 			if (efuseType == EFUSE_WIFI)
532 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
533 			else
534 				*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
535 		}
536 		break;
537 
538 	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
539 		{
540 			u16 *pu2Tmp;
541 			pu2Tmp = pOut;
542 
543 			if (efuseType == EFUSE_WIFI)
544 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
545 			else
546 				*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
547 		}
548 		break;
549 
550 	case TYPE_EFUSE_MAP_LEN:
551 		{
552 			u16 *pu2Tmp;
553 			pu2Tmp = pOut;
554 
555 			if (efuseType == EFUSE_WIFI)
556 				*pu2Tmp = EFUSE_MAX_MAP_LEN;
557 			else
558 				*pu2Tmp = EFUSE_BT_MAP_LEN;
559 		}
560 		break;
561 
562 	case TYPE_EFUSE_PROTECT_BYTES_BANK:
563 		{
564 			u8 *pu1Tmp;
565 			pu1Tmp = pOut;
566 
567 			if (efuseType == EFUSE_WIFI)
568 				*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
569 			else
570 				*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
571 		}
572 		break;
573 
574 	case TYPE_EFUSE_CONTENT_LEN_BANK:
575 		{
576 			u16 *pu2Tmp;
577 			pu2Tmp = pOut;
578 
579 			if (efuseType == EFUSE_WIFI)
580 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
581 			else
582 				*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
583 		}
584 		break;
585 
586 	default:
587 		{
588 			u8 *pu1Tmp;
589 			pu1Tmp = pOut;
590 			*pu1Tmp = 0;
591 		}
592 		break;
593 	}
594 }
595 
596 #define VOLTAGE_V25		0x03
597 
598 /*  */
599 /* 	The following is for compile ok */
600 /* 	That should be merged with the original in the future */
601 /*  */
602 #define EFUSE_ACCESS_ON_8723			0x69	/*  For RTL8723 only. */
603 #define REG_EFUSE_ACCESS_8723			0x00CF	/*  Efuse access protection for RTL8723 */
604 
Hal_EfusePowerSwitch(struct adapter * padapter,u8 bWrite,u8 PwrState)605 void Hal_EfusePowerSwitch(
606 	struct adapter *padapter, u8 bWrite, u8 PwrState
607 )
608 {
609 	u8 tempval;
610 	u16 tmpV16;
611 
612 
613 	if (PwrState) {
614 		/*  To avoid cannot access efuse registers after disable/enable several times during DTM test. */
615 		/*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
616 		tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
617 		if (tempval & BIT(0)) { /*  SDIO local register is suspend */
618 			u8 count = 0;
619 
620 
621 			tempval &= ~BIT(0);
622 			rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
623 
624 			/*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
625 			do {
626 				tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
627 				tempval &= 0x3;
628 				if (tempval == 0x02)
629 					break;
630 
631 				count++;
632 				if (count >= 100)
633 					break;
634 
635 				mdelay(10);
636 			} while (1);
637 		}
638 
639 		rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
640 
641 		/*  Reset: 0x0000h[28], default valid */
642 		tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
643 		if (!(tmpV16 & FEN_ELDR)) {
644 			tmpV16 |= FEN_ELDR;
645 			rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
646 		}
647 
648 		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
649 		tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
650 		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
651 			tmpV16 |= (LOADER_CLK_EN | ANA8M);
652 			rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
653 		}
654 
655 		if (bWrite) {
656 			/*  Enable LDO 2.5V before read/write action */
657 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
658 			tempval &= 0x0F;
659 			tempval |= (VOLTAGE_V25 << 4);
660 			rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
661 
662 			/* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
663 		}
664 	} else {
665 		rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
666 
667 		if (bWrite) {
668 			/*  Disable LDO 2.5V after read/write action */
669 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
670 			rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
671 		}
672 
673 	}
674 }
675 
hal_ReadEFuse_WiFi(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)676 static void hal_ReadEFuse_WiFi(
677 	struct adapter *padapter,
678 	u16 _offset,
679 	u16 _size_byte,
680 	u8 *pbuf,
681 	bool bPseudoTest
682 )
683 {
684 #ifdef HAL_EFUSE_MEMORY
685 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
686 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
687 #endif
688 	u8 *efuseTbl = NULL;
689 	u16 eFuse_Addr = 0;
690 	u8 offset, wden;
691 	u8 efuseHeader, efuseExtHdr, efuseData;
692 	u16 i, total, used;
693 	u8 efuse_usage = 0;
694 
695 	/*  */
696 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
697 	/*  */
698 	if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
699 		return;
700 
701 	efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
702 	if (!efuseTbl)
703 		return;
704 
705 	/*  0xff will be efuse default value instead of 0x00. */
706 	memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
707 
708 	/*  switch bank back to bank 0 for later BT and wifi use. */
709 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
710 
711 	while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
712 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
713 		if (efuseHeader == 0xFF)
714 			break;
715 
716 		/*  Check PG header for section num. */
717 		if (EXT_HEADER(efuseHeader)) { /* extended header */
718 			offset = GET_HDR_OFFSET_2_0(efuseHeader);
719 
720 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
721 			if (ALL_WORDS_DISABLED(efuseExtHdr))
722 				continue;
723 
724 			offset |= ((efuseExtHdr & 0xF0) >> 1);
725 			wden = (efuseExtHdr & 0x0F);
726 		} else {
727 			offset = ((efuseHeader >> 4) & 0x0f);
728 			wden = (efuseHeader & 0x0f);
729 		}
730 
731 		if (offset < EFUSE_MAX_SECTION_8723B) {
732 			u16 addr;
733 			/*  Get word enable value from PG header */
734 
735 			addr = offset * PGPKT_DATA_SIZE;
736 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
737 				/*  Check word enable condition in the section */
738 				if (!(wden & (0x01<<i))) {
739 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
740 					efuseTbl[addr] = efuseData;
741 
742 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
743 					efuseTbl[addr+1] = efuseData;
744 				}
745 				addr += 2;
746 			}
747 		} else {
748 			eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
749 		}
750 	}
751 
752 	/*  Copy from Efuse map to output pointer memory!!! */
753 	for (i = 0; i < _size_byte; i++)
754 		pbuf[i] = efuseTbl[_offset+i];
755 
756 	/*  Calculate Efuse utilization */
757 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
758 	used = eFuse_Addr - 1;
759 	efuse_usage = (u8)((used*100)/total);
760 	if (bPseudoTest) {
761 #ifdef HAL_EFUSE_MEMORY
762 		pEfuseHal->fakeEfuseUsedBytes = used;
763 #else
764 		fakeEfuseUsedBytes = used;
765 #endif
766 	} else {
767 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
768 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
769 	}
770 
771 	kfree(efuseTbl);
772 }
773 
hal_ReadEFuse_BT(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)774 static void hal_ReadEFuse_BT(
775 	struct adapter *padapter,
776 	u16 _offset,
777 	u16 _size_byte,
778 	u8 *pbuf,
779 	bool bPseudoTest
780 )
781 {
782 #ifdef HAL_EFUSE_MEMORY
783 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
784 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
785 #endif
786 	u8 *efuseTbl;
787 	u8 bank;
788 	u16 eFuse_Addr;
789 	u8 efuseHeader, efuseExtHdr, efuseData;
790 	u8 offset, wden;
791 	u16 i, total, used;
792 	u8 efuse_usage;
793 
794 
795 	/*  */
796 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
797 	/*  */
798 	if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
799 		return;
800 
801 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
802 	if (!efuseTbl)
803 		return;
804 
805 	/*  0xff will be efuse default value instead of 0x00. */
806 	memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
807 
808 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
809 
810 	for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
811 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
812 			goto exit;
813 
814 		eFuse_Addr = 0;
815 
816 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
817 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
818 			if (efuseHeader == 0xFF)
819 				break;
820 
821 			/*  Check PG header for section num. */
822 			if (EXT_HEADER(efuseHeader)) { /* extended header */
823 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
824 
825 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
826 				if (ALL_WORDS_DISABLED(efuseExtHdr))
827 					continue;
828 
829 
830 				offset |= ((efuseExtHdr & 0xF0) >> 1);
831 				wden = (efuseExtHdr & 0x0F);
832 			} else {
833 				offset = ((efuseHeader >> 4) & 0x0f);
834 				wden = (efuseHeader & 0x0f);
835 			}
836 
837 			if (offset < EFUSE_BT_MAX_SECTION) {
838 				u16 addr;
839 
840 				addr = offset * PGPKT_DATA_SIZE;
841 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
842 					/*  Check word enable condition in the section */
843 					if (!(wden & (0x01<<i))) {
844 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
845 						efuseTbl[addr] = efuseData;
846 
847 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
848 						efuseTbl[addr+1] = efuseData;
849 					}
850 					addr += 2;
851 				}
852 			} else {
853 				eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
854 			}
855 		}
856 
857 		if ((eFuse_Addr - 1) < total)
858 			break;
859 
860 	}
861 
862 	/*  switch bank back to bank 0 for later BT and wifi use. */
863 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
864 
865 	/*  Copy from Efuse map to output pointer memory!!! */
866 	for (i = 0; i < _size_byte; i++)
867 		pbuf[i] = efuseTbl[_offset+i];
868 
869 	/*  */
870 	/*  Calculate Efuse utilization. */
871 	/*  */
872 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
873 	used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
874 	efuse_usage = (u8)((used*100)/total);
875 	if (bPseudoTest) {
876 #ifdef HAL_EFUSE_MEMORY
877 		pEfuseHal->fakeBTEfuseUsedBytes = used;
878 #else
879 		fakeBTEfuseUsedBytes = used;
880 #endif
881 	} else {
882 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
883 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
884 	}
885 
886 exit:
887 	kfree(efuseTbl);
888 }
889 
Hal_ReadEFuse(struct adapter * padapter,u8 efuseType,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)890 void Hal_ReadEFuse(
891 	struct adapter *padapter,
892 	u8 efuseType,
893 	u16 _offset,
894 	u16 _size_byte,
895 	u8 *pbuf,
896 	bool bPseudoTest
897 )
898 {
899 	if (efuseType == EFUSE_WIFI)
900 		hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
901 	else
902 		hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
903 }
904 
hal_EfuseGetCurrentSize_WiFi(struct adapter * padapter,bool bPseudoTest)905 static u16 hal_EfuseGetCurrentSize_WiFi(
906 	struct adapter *padapter, bool bPseudoTest
907 )
908 {
909 #ifdef HAL_EFUSE_MEMORY
910 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
911 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
912 #endif
913 	u16 efuse_addr = 0;
914 	u16 start_addr = 0; /*  for debug */
915 	u8 hworden = 0;
916 	u8 efuse_data, word_cnts = 0;
917 	u32 count = 0; /*  for debug */
918 
919 
920 	if (bPseudoTest) {
921 #ifdef HAL_EFUSE_MEMORY
922 		efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
923 #else
924 		efuse_addr = (u16)fakeEfuseUsedBytes;
925 #endif
926 	} else
927 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
928 
929 	start_addr = efuse_addr;
930 
931 	/*  switch bank back to bank 0 for later BT and wifi use. */
932 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
933 
934 	count = 0;
935 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
936 		if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
937 			goto error;
938 
939 		if (efuse_data == 0xFF)
940 			break;
941 
942 		if ((start_addr != 0) && (efuse_addr == start_addr)) {
943 			count++;
944 
945 			efuse_data = 0xFF;
946 			if (count < 4) {
947 				/*  try again! */
948 
949 				if (count > 2) {
950 					/*  try again form address 0 */
951 					efuse_addr = 0;
952 					start_addr = 0;
953 				}
954 
955 				continue;
956 			}
957 
958 			goto error;
959 		}
960 
961 		if (EXT_HEADER(efuse_data)) {
962 			efuse_addr++;
963 			efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
964 			if (ALL_WORDS_DISABLED(efuse_data))
965 				continue;
966 
967 			hworden = efuse_data & 0x0F;
968 		} else {
969 			hworden = efuse_data & 0x0F;
970 		}
971 
972 		word_cnts = Efuse_CalculateWordCnts(hworden);
973 		efuse_addr += (word_cnts*2)+1;
974 	}
975 
976 	if (bPseudoTest) {
977 #ifdef HAL_EFUSE_MEMORY
978 		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
979 #else
980 		fakeEfuseUsedBytes = efuse_addr;
981 #endif
982 	} else
983 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
984 
985 	goto exit;
986 
987 error:
988 	/*  report max size to prevent write efuse */
989 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
990 
991 exit:
992 
993 	return efuse_addr;
994 }
995 
hal_EfuseGetCurrentSize_BT(struct adapter * padapter,u8 bPseudoTest)996 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
997 {
998 #ifdef HAL_EFUSE_MEMORY
999 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1000 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1001 #endif
1002 	u16 btusedbytes;
1003 	u16 efuse_addr;
1004 	u8 bank, startBank;
1005 	u8 hworden = 0;
1006 	u8 efuse_data, word_cnts = 0;
1007 	u16 retU2 = 0;
1008 
1009 	if (bPseudoTest) {
1010 #ifdef HAL_EFUSE_MEMORY
1011 		btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1012 #else
1013 		btusedbytes = fakeBTEfuseUsedBytes;
1014 #endif
1015 	} else
1016 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1017 
1018 	efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1019 	startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1020 
1021 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1022 
1023 	for (bank = startBank; bank < 3; bank++) {
1024 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1025 			/* bank = EFUSE_MAX_BANK; */
1026 			break;
1027 
1028 		/*  only when bank is switched we have to reset the efuse_addr. */
1029 		if (bank != startBank)
1030 			efuse_addr = 0;
1031 
1032 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1033 			if (efuse_OneByteRead(padapter, efuse_addr,
1034 					      &efuse_data, bPseudoTest) == false)
1035 				/* bank = EFUSE_MAX_BANK; */
1036 				break;
1037 
1038 			if (efuse_data == 0xFF)
1039 				break;
1040 
1041 			if (EXT_HEADER(efuse_data)) {
1042 				efuse_addr++;
1043 				efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1044 
1045 				if (ALL_WORDS_DISABLED(efuse_data)) {
1046 					efuse_addr++;
1047 					continue;
1048 				}
1049 
1050 				hworden = efuse_data & 0x0F;
1051 			} else {
1052 				hworden =  efuse_data & 0x0F;
1053 			}
1054 
1055 			word_cnts = Efuse_CalculateWordCnts(hworden);
1056 			/* read next header */
1057 			efuse_addr += (word_cnts*2)+1;
1058 		}
1059 
1060 		/*  Check if we need to check next bank efuse */
1061 		if (efuse_addr < retU2)
1062 			break; /*  don't need to check next bank. */
1063 	}
1064 
1065 	retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1066 	if (bPseudoTest) {
1067 		pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1068 	} else {
1069 		pEfuseHal->BTEfuseUsedBytes = retU2;
1070 	}
1071 
1072 	return retU2;
1073 }
1074 
Hal_EfuseGetCurrentSize(struct adapter * padapter,u8 efuseType,bool bPseudoTest)1075 u16 Hal_EfuseGetCurrentSize(
1076 	struct adapter *padapter, u8 efuseType, bool bPseudoTest
1077 )
1078 {
1079 	u16 ret = 0;
1080 
1081 	if (efuseType == EFUSE_WIFI)
1082 		ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1083 	else
1084 		ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1085 
1086 	return ret;
1087 }
1088 
Hal_EfuseWordEnableDataWrite(struct adapter * padapter,u16 efuse_addr,u8 word_en,u8 * data,bool bPseudoTest)1089 static u8 Hal_EfuseWordEnableDataWrite(
1090 	struct adapter *padapter,
1091 	u16 efuse_addr,
1092 	u8 word_en,
1093 	u8 *data,
1094 	bool bPseudoTest
1095 )
1096 {
1097 	u16 tmpaddr = 0;
1098 	u16 start_addr = efuse_addr;
1099 	u8 badworden = 0x0F;
1100 	u8 tmpdata[PGPKT_DATA_SIZE];
1101 
1102 	memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1103 
1104 	if (!(word_en & BIT(0))) {
1105 		tmpaddr = start_addr;
1106 		efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1107 		efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1108 
1109 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1110 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1111 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1112 			badworden &= (~BIT(0));
1113 		}
1114 	}
1115 	if (!(word_en & BIT(1))) {
1116 		tmpaddr = start_addr;
1117 		efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1118 		efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1119 
1120 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1121 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1122 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1123 			badworden &= (~BIT(1));
1124 		}
1125 	}
1126 
1127 	if (!(word_en & BIT(2))) {
1128 		tmpaddr = start_addr;
1129 		efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1130 		efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1131 
1132 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1133 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1134 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1135 			badworden &= (~BIT(2));
1136 		}
1137 	}
1138 
1139 	if (!(word_en & BIT(3))) {
1140 		tmpaddr = start_addr;
1141 		efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1142 		efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1143 
1144 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1145 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1146 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1147 			badworden &= (~BIT(3));
1148 		}
1149 	}
1150 
1151 	return badworden;
1152 }
1153 
ReadChipVersion8723B(struct adapter * padapter)1154 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1155 {
1156 	u32 value32;
1157 	struct hal_version ChipVersion;
1158 	struct hal_com_data *pHalData;
1159 
1160 /* YJ, TODO, move read chip type here */
1161 	pHalData = GET_HAL_DATA(padapter);
1162 
1163 	value32 = rtw_read32(padapter, REG_SYS_CFG);
1164 	ChipVersion.ICType = CHIP_8723B;
1165 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1166 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1167 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1168 
1169 	/*  For regulator mode. by tynli. 2011.01.14 */
1170 	pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1171 
1172 	value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1173 	ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);	/*  ROM code version. */
1174 
1175 	/*  For multi-function consideration. Added by Roger, 2010.10.06. */
1176 	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1177 	value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1178 	pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1179 	pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1180 	pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1181 	pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1182 
1183 	dump_chip_info(ChipVersion);
1184 
1185 	pHalData->VersionID = ChipVersion;
1186 
1187 	return ChipVersion;
1188 }
1189 
rtl8723b_read_chip_version(struct adapter * padapter)1190 void rtl8723b_read_chip_version(struct adapter *padapter)
1191 {
1192 	ReadChipVersion8723B(padapter);
1193 }
1194 
rtl8723b_InitBeaconParameters(struct adapter * padapter)1195 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1196 {
1197 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1198 	u16 val16;
1199 	u8 val8;
1200 
1201 
1202 	val8 = DIS_TSF_UDT;
1203 	val16 = val8 | (val8 << 8); /*  port0 and port1 */
1204 
1205 	/*  Enable prot0 beacon function for PSTDMA */
1206 	val16 |= EN_BCN_FUNCTION;
1207 
1208 	rtw_write16(padapter, REG_BCN_CTRL, val16);
1209 
1210 	/*  TODO: Remove these magic number */
1211 	rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1212 	/*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1213 	/*  so don't set this register on STA mode. */
1214 	if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1215 		rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1216 	rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1217 
1218 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1219 	/*  because test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1220 	rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1221 
1222 	pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1223 	pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1224 	pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1225 	pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1226 	pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1227 }
1228 
_InitBurstPktLen_8723BS(struct adapter * Adapter)1229 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1230 {
1231 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1232 
1233 	rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1234 	rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);		/* for VHT packet length 11K */
1235 	rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1236 	rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1237 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1238 	if (pHalData->AMPDUBurstMode)
1239 		rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1240 	rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1241 
1242 	/*  ARFB table 9 for 11ac 5G 2SS */
1243 	rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1244 	if (IS_NORMAL_CHIP(pHalData->VersionID))
1245 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1246 	else
1247 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1248 
1249 	/*  ARFB table 10 for 11ac 5G 1SS */
1250 	rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1251 	rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1252 }
1253 
ResumeTxBeacon(struct adapter * padapter)1254 static void ResumeTxBeacon(struct adapter *padapter)
1255 {
1256 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1257 
1258 	pHalData->RegFwHwTxQCtrl |= BIT(6);
1259 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1260 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1261 	pHalData->RegReg542 |= BIT(0);
1262 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1263 }
1264 
StopTxBeacon(struct adapter * padapter)1265 static void StopTxBeacon(struct adapter *padapter)
1266 {
1267 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1268 
1269 	pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1270 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1271 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1272 	pHalData->RegReg542 &= ~BIT(0);
1273 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1274 
1275 	CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
1276 }
1277 
_BeaconFunctionEnable(struct adapter * padapter,u8 Enable,u8 Linked)1278 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1279 {
1280 	rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1281 	rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1282 }
1283 
rtl8723b_SetBeaconRelatedRegisters(struct adapter * padapter)1284 void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1285 {
1286 	u8 val8;
1287 	u32 value32;
1288 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1289 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1290 	u32 bcn_ctrl_reg;
1291 
1292 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
1293 
1294 	/* REG_BCN_INTERVAL */
1295 	/* REG_BCNDMATIM */
1296 	/* REG_ATIMWND */
1297 	/* REG_TBTT_PROHIBIT */
1298 	/* REG_DRVERLYINT */
1299 	/* REG_BCN_MAX_ERR */
1300 	/* REG_BCNTCFG (0x510) */
1301 	/* REG_DUAL_TSF_RST */
1302 	/* REG_BCN_CTRL (0x550) */
1303 
1304 
1305 	bcn_ctrl_reg = REG_BCN_CTRL;
1306 
1307 	/*  */
1308 	/*  ATIM window */
1309 	/*  */
1310 	rtw_write16(padapter, REG_ATIMWND, 2);
1311 
1312 	/*  */
1313 	/*  Beacon interval (in unit of TU). */
1314 	/*  */
1315 	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1316 
1317 	rtl8723b_InitBeaconParameters(padapter);
1318 
1319 	rtw_write8(padapter, REG_SLOT, 0x09);
1320 
1321 	/*  */
1322 	/*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1323 	/*  */
1324 	value32 = rtw_read32(padapter, REG_TCR);
1325 	value32 &= ~TSFRST;
1326 	rtw_write32(padapter, REG_TCR, value32);
1327 
1328 	value32 |= TSFRST;
1329 	rtw_write32(padapter, REG_TCR, value32);
1330 
1331 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1332 	if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1333 		rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1334 		rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1335 	}
1336 
1337 	_BeaconFunctionEnable(padapter, true, true);
1338 
1339 	ResumeTxBeacon(padapter);
1340 	val8 = rtw_read8(padapter, bcn_ctrl_reg);
1341 	val8 |= DIS_BCNQ_SUB;
1342 	rtw_write8(padapter, bcn_ctrl_reg, val8);
1343 }
1344 
rtl8723b_SetHalODMVar(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,bool bSet)1345 static void rtl8723b_SetHalODMVar(
1346 	struct adapter *Adapter,
1347 	enum hal_odm_variable eVariable,
1348 	void *pValue1,
1349 	bool bSet
1350 )
1351 {
1352 	SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1353 }
1354 
hal_notch_filter_8723b(struct adapter * adapter,bool enable)1355 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1356 {
1357 	if (enable)
1358 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1359 	else
1360 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1361 }
1362 
UpdateHalRAMask8723B(struct adapter * padapter,u32 mac_id,u8 rssi_level)1363 void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1364 {
1365 	u32 mask, rate_bitmap;
1366 	u8 shortGIrate = false;
1367 	struct sta_info *psta;
1368 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1369 	struct dm_priv *pdmpriv = &pHalData->dmpriv;
1370 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1371 	struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1372 
1373 	if (mac_id >= NUM_STA) /* CAM_SIZE */
1374 		return;
1375 
1376 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1377 	if (!psta)
1378 		return;
1379 
1380 	shortGIrate = query_ra_short_GI(psta);
1381 
1382 	mask = psta->ra_mask;
1383 
1384 	rate_bitmap = 0xffffffff;
1385 	rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1386 
1387 	mask &= rate_bitmap;
1388 
1389 	rate_bitmap = hal_btcoex_GetRaMask(padapter);
1390 	mask &= ~rate_bitmap;
1391 
1392 	if (pHalData->fw_ractrl) {
1393 		rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1394 	}
1395 
1396 	/* set correct initial date rate for each mac_id */
1397 	pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1398 }
1399 
1400 
rtl8723b_set_hal_ops(struct hal_ops * pHalFunc)1401 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1402 {
1403 	/*  Efuse related function */
1404 	pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1405 
1406 	pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1407 
1408 	pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1409 	pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1410 
1411 	pHalFunc->c2h_handler = c2h_handler_8723b;
1412 	pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1413 
1414 	pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1415 }
1416 
rtl8723b_InitAntenna_Selection(struct adapter * padapter)1417 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1418 {
1419 	u8 val;
1420 
1421 	val = rtw_read8(padapter, REG_LEDCFG2);
1422 	/*  Let 8051 take control antenna setting */
1423 	val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
1424 	rtw_write8(padapter, REG_LEDCFG2, val);
1425 }
1426 
rtl8723b_init_default_value(struct adapter * padapter)1427 void rtl8723b_init_default_value(struct adapter *padapter)
1428 {
1429 	struct hal_com_data *pHalData;
1430 	struct dm_priv *pdmpriv;
1431 	u8 i;
1432 
1433 
1434 	pHalData = GET_HAL_DATA(padapter);
1435 	pdmpriv = &pHalData->dmpriv;
1436 
1437 	padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1438 
1439 	/*  init default value */
1440 	pHalData->fw_ractrl = false;
1441 	pHalData->bIQKInitialized = false;
1442 	if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1443 		pHalData->LastHMEBoxNum = 0;
1444 
1445 	pHalData->bIQKInitialized = false;
1446 
1447 	/*  init dm default value */
1448 	pdmpriv->TM_Trigger = 0;/* for IQK */
1449 /* 	pdmpriv->binitialized = false; */
1450 /* 	pdmpriv->prv_traffic_idx = 3; */
1451 /* 	pdmpriv->initialize = 0; */
1452 
1453 	pdmpriv->ThermalValue_HP_index = 0;
1454 	for (i = 0; i < HP_THERMAL_NUM; i++)
1455 		pdmpriv->ThermalValue_HP[i] = 0;
1456 
1457 	/*  init Efuse variables */
1458 	pHalData->EfuseUsedBytes = 0;
1459 	pHalData->EfuseUsedPercentage = 0;
1460 #ifdef HAL_EFUSE_MEMORY
1461 	pHalData->EfuseHal.fakeEfuseBank = 0;
1462 	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1463 	memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1464 	memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1465 	memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1466 	pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1467 	pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1468 	memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1469 	memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1470 	memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1471 	pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1472 	memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1473 	memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1474 	memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1475 #endif
1476 }
1477 
GetEEPROMSize8723B(struct adapter * padapter)1478 u8 GetEEPROMSize8723B(struct adapter *padapter)
1479 {
1480 	u8 size = 0;
1481 	u32 cr;
1482 
1483 	cr = rtw_read16(padapter, REG_9346CR);
1484 	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
1485 	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
1486 
1487 	return size;
1488 }
1489 
1490 /*  */
1491 /*  */
1492 /*  LLT R/W/Init function */
1493 /*  */
1494 /*  */
rtl8723b_InitLLTTable(struct adapter * padapter)1495 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
1496 {
1497 	unsigned long start, passing_time;
1498 	u32 val32;
1499 	s32 ret;
1500 
1501 
1502 	ret = _FAIL;
1503 
1504 	val32 = rtw_read32(padapter, REG_AUTO_LLT);
1505 	val32 |= BIT_AUTO_INIT_LLT;
1506 	rtw_write32(padapter, REG_AUTO_LLT, val32);
1507 
1508 	start = jiffies;
1509 
1510 	do {
1511 		val32 = rtw_read32(padapter, REG_AUTO_LLT);
1512 		if (!(val32 & BIT_AUTO_INIT_LLT)) {
1513 			ret = _SUCCESS;
1514 			break;
1515 		}
1516 
1517 		passing_time = jiffies_to_msecs(jiffies - start);
1518 		if (passing_time > 1000)
1519 			break;
1520 
1521 		msleep(1);
1522 	} while (1);
1523 
1524 	return ret;
1525 }
1526 
hal_get_chnl_group_8723b(u8 channel,u8 * group)1527 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
1528 {
1529 	if (1  <= channel && channel <= 2)
1530 		*group = 0;
1531 	else if (3  <= channel && channel <= 5)
1532 		*group = 1;
1533 	else if (6  <= channel && channel <= 8)
1534 		*group = 2;
1535 	else if (9  <= channel && channel <= 11)
1536 		*group = 3;
1537 	else if (12 <= channel && channel <= 14)
1538 		*group = 4;
1539 }
1540 
Hal_InitPGData(struct adapter * padapter,u8 * PROMContent)1541 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
1542 {
1543 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1544 
1545 	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
1546 		if (!pEEPROM->EepromOrEfuse) {
1547 			/*  Read EFUSE real map to shadow. */
1548 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
1549 			memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
1550 		}
1551 	} else {/* autoload fail */
1552 		if (!pEEPROM->EepromOrEfuse)
1553 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
1554 		memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
1555 	}
1556 }
1557 
Hal_EfuseParseIDCode(struct adapter * padapter,u8 * hwinfo)1558 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
1559 {
1560 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1561 /* 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter); */
1562 	u16 EEPROMId;
1563 
1564 
1565 	/*  Check 0x8129 again for making sure autoload status!! */
1566 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
1567 	if (EEPROMId != RTL_EEPROM_ID) {
1568 		pEEPROM->bautoload_fail_flag = true;
1569 	} else
1570 		pEEPROM->bautoload_fail_flag = false;
1571 }
1572 
Hal_ReadPowerValueFromPROM_8723B(struct adapter * Adapter,struct TxPowerInfo24G * pwrInfo24G,u8 * PROMContent,bool AutoLoadFail)1573 static void Hal_ReadPowerValueFromPROM_8723B(
1574 	struct adapter *Adapter,
1575 	struct TxPowerInfo24G *pwrInfo24G,
1576 	u8 *PROMContent,
1577 	bool AutoLoadFail
1578 )
1579 {
1580 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1581 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
1582 
1583 	memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
1584 
1585 	if (0xFF == PROMContent[eeAddr+1])
1586 		AutoLoadFail = true;
1587 
1588 	if (AutoLoadFail) {
1589 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
1590 			/* 2.4G default value */
1591 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
1592 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1593 				pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1594 			}
1595 
1596 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1597 				if (TxCount == 0) {
1598 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
1599 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
1600 				} else {
1601 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1602 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1603 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1604 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1605 				}
1606 			}
1607 		}
1608 
1609 		return;
1610 	}
1611 
1612 	pHalData->bTXPowerDataReadFromEEPORM = true;		/* YJ, move, 120316 */
1613 
1614 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
1615 		/* 2 2.4G default value */
1616 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
1617 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
1618 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
1619 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1620 		}
1621 
1622 		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
1623 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
1624 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
1625 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
1626 		}
1627 
1628 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1629 			if (TxCount == 0) {
1630 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
1631 				if (PROMContent[eeAddr] == 0xFF)
1632 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_HT20_DIFF;
1633 				else {
1634 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
1635 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1636 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
1637 				}
1638 
1639 				if (PROMContent[eeAddr] == 0xFF)
1640 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
1641 				else {
1642 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1643 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1644 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
1645 				}
1646 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
1647 				eeAddr++;
1648 			} else {
1649 				if (PROMContent[eeAddr] == 0xFF)
1650 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1651 				else {
1652 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
1653 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1654 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
1655 				}
1656 
1657 				if (PROMContent[eeAddr] == 0xFF)
1658 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1659 				else {
1660 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1661 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1662 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
1663 				}
1664 				eeAddr++;
1665 
1666 				if (PROMContent[eeAddr] == 0xFF)
1667 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1668 				else {
1669 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
1670 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1671 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
1672 				}
1673 
1674 				if (PROMContent[eeAddr] == 0xFF)
1675 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1676 				else {
1677 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1678 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1679 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
1680 				}
1681 				eeAddr++;
1682 			}
1683 		}
1684 	}
1685 }
1686 
1687 
Hal_EfuseParseTxPowerInfo_8723B(struct adapter * padapter,u8 * PROMContent,bool AutoLoadFail)1688 void Hal_EfuseParseTxPowerInfo_8723B(
1689 	struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
1690 )
1691 {
1692 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1693 	struct TxPowerInfo24G	pwrInfo24G;
1694 	u8 	rfPath, ch, TxCount = 1;
1695 
1696 	Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
1697 	for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
1698 		for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
1699 			u8 group = 0;
1700 
1701 			hal_get_chnl_group_8723b(ch + 1, &group);
1702 
1703 			if (ch == 14-1) {
1704 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
1705 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
1706 			} else {
1707 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
1708 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
1709 			}
1710 		}
1711 
1712 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1713 			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
1714 			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
1715 			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
1716 			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
1717 		}
1718 	}
1719 
1720 	/*  2010/10/19 MH Add Regulator recognize for CU. */
1721 	if (!AutoLoadFail) {
1722 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);	/* bit0~2 */
1723 		if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
1724 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
1725 	} else
1726 		pHalData->EEPROMRegulatory = 0;
1727 }
1728 
Hal_EfuseParseBTCoexistInfo_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1729 void Hal_EfuseParseBTCoexistInfo_8723B(
1730 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1731 )
1732 {
1733 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1734 	u8 tempval;
1735 	u32 tmpu4;
1736 
1737 	if (!AutoLoadFail) {
1738 		tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1739 		if (tmpu4 & BT_FUNC_EN)
1740 			pHalData->EEPROMBluetoothCoexist = true;
1741 		else
1742 			pHalData->EEPROMBluetoothCoexist = false;
1743 
1744 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
1745 
1746 		tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
1747 		if (tempval != 0xFF) {
1748 			pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
1749 			/*  EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
1750 			/*  EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
1751 			if (tempval & BIT(6))
1752 				pHalData->ant_path = RF_PATH_B;
1753 			else
1754 				pHalData->ant_path = RF_PATH_A;
1755 		} else {
1756 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
1757 			if (pHalData->PackageType == PACKAGE_QFN68)
1758 				pHalData->ant_path = RF_PATH_B;
1759 			else
1760 				pHalData->ant_path = RF_PATH_A;
1761 		}
1762 	} else {
1763 		pHalData->EEPROMBluetoothCoexist = false;
1764 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
1765 		pHalData->EEPROMBluetoothAntNum = Ant_x1;
1766 		pHalData->ant_path = RF_PATH_A;
1767 	}
1768 
1769 	if (padapter->registrypriv.ant_num > 0) {
1770 		switch (padapter->registrypriv.ant_num) {
1771 		case 1:
1772 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
1773 			break;
1774 		case 2:
1775 			pHalData->EEPROMBluetoothAntNum = Ant_x2;
1776 			break;
1777 		default:
1778 			break;
1779 		}
1780 	}
1781 
1782 	hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
1783 	hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
1784 	if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
1785 		hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
1786 }
1787 
Hal_EfuseParseEEPROMVer_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1788 void Hal_EfuseParseEEPROMVer_8723B(
1789 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1790 )
1791 {
1792 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1793 
1794 	if (!AutoLoadFail)
1795 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
1796 	else
1797 		pHalData->EEPROMVersion = 1;
1798 }
1799 
1800 
1801 
Hal_EfuseParsePackageType_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1802 void Hal_EfuseParsePackageType_8723B(
1803 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1804 )
1805 {
1806 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1807 	u8 package;
1808 	u8 efuseContent;
1809 
1810 	Efuse_PowerSwitch(padapter, false, true);
1811 	efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
1812 	Efuse_PowerSwitch(padapter, false, false);
1813 
1814 	package = efuseContent & 0x7;
1815 	switch (package) {
1816 	case 0x4:
1817 		pHalData->PackageType = PACKAGE_TFBGA79;
1818 		break;
1819 	case 0x5:
1820 		pHalData->PackageType = PACKAGE_TFBGA90;
1821 		break;
1822 	case 0x6:
1823 		pHalData->PackageType = PACKAGE_QFN68;
1824 		break;
1825 	case 0x7:
1826 		pHalData->PackageType = PACKAGE_TFBGA80;
1827 		break;
1828 
1829 	default:
1830 		pHalData->PackageType = PACKAGE_DEFAULT;
1831 		break;
1832 	}
1833 }
1834 
1835 
Hal_EfuseParseVoltage_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1836 void Hal_EfuseParseVoltage_8723B(
1837 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1838 )
1839 {
1840 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1841 
1842 	/* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
1843 	pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
1844 }
1845 
Hal_EfuseParseChnlPlan_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1846 void Hal_EfuseParseChnlPlan_8723B(
1847 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1848 )
1849 {
1850 	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
1851 		padapter,
1852 		hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
1853 		padapter->registrypriv.channel_plan,
1854 		RT_CHANNEL_DOMAIN_WORLD_NULL,
1855 		AutoLoadFail
1856 	);
1857 
1858 	Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
1859 }
1860 
Hal_EfuseParseCustomerID_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1861 void Hal_EfuseParseCustomerID_8723B(
1862 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1863 )
1864 {
1865 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1866 
1867 	if (!AutoLoadFail)
1868 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
1869 	else
1870 		pHalData->EEPROMCustomerID = 0;
1871 }
1872 
Hal_EfuseParseAntennaDiversity_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1873 void Hal_EfuseParseAntennaDiversity_8723B(
1874 	struct adapter *padapter,
1875 	u8 *hwinfo,
1876 	bool AutoLoadFail
1877 )
1878 {
1879 }
1880 
Hal_EfuseParseXtal_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1881 void Hal_EfuseParseXtal_8723B(
1882 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1883 )
1884 {
1885 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1886 
1887 	if (!AutoLoadFail) {
1888 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
1889 		if (pHalData->CrystalCap == 0xFF)
1890 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;	   /* what value should 8812 set? */
1891 	} else
1892 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
1893 }
1894 
1895 
Hal_EfuseParseThermalMeter_8723B(struct adapter * padapter,u8 * PROMContent,u8 AutoLoadFail)1896 void Hal_EfuseParseThermalMeter_8723B(
1897 	struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
1898 )
1899 {
1900 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1901 
1902 	/*  */
1903 	/*  ThermalMeter from EEPROM */
1904 	/*  */
1905 	if (!AutoLoadFail)
1906 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
1907 	else
1908 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
1909 
1910 	if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
1911 		pHalData->bAPKThermalMeterIgnore = true;
1912 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
1913 	}
1914 }
1915 
1916 
Hal_ReadRFGainOffset(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)1917 void Hal_ReadRFGainOffset(
1918 	struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
1919 )
1920 {
1921 	/*  */
1922 	/*  BB_RF Gain Offset from EEPROM */
1923 	/*  */
1924 
1925 	if (!AutoloadFail) {
1926 		Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
1927 		Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
1928 	} else {
1929 		Adapter->eeprompriv.EEPROMRFGainOffset = 0;
1930 		Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
1931 	}
1932 }
1933 
BWMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)1934 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
1935 {
1936 	u8 BWSettingOfDesc = 0;
1937 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1938 
1939 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
1940 		if (pattrib->bwmode == CHANNEL_WIDTH_40)
1941 			BWSettingOfDesc = 1;
1942 		else
1943 			BWSettingOfDesc = 0;
1944 	} else
1945 		BWSettingOfDesc = 0;
1946 
1947 	/* if (pTcb->bBTTxPacket) */
1948 	/* 	BWSettingOfDesc = 0; */
1949 
1950 	return BWSettingOfDesc;
1951 }
1952 
SCMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)1953 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
1954 {
1955 	u8 SCSettingOfDesc = 0;
1956 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1957 
1958 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
1959 		if (pattrib->bwmode == CHANNEL_WIDTH_40) {
1960 			SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1961 		} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
1962 			if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
1963 				SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
1964 			} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
1965 				SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
1966 			} else {
1967 				SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1968 			}
1969 		}
1970 	} else {
1971 		SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1972 	}
1973 
1974 	return SCSettingOfDesc;
1975 }
1976 
rtl8723b_cal_txdesc_chksum(struct tx_desc * ptxdesc)1977 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
1978 {
1979 	u16 *usPtr = (u16 *)ptxdesc;
1980 	u32 count;
1981 	u32 index;
1982 	u16 checksum = 0;
1983 
1984 
1985 	/*  Clear first */
1986 	ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
1987 
1988 	/*  checksum is always calculated by first 32 bytes, */
1989 	/*  and it doesn't depend on TX DESC length. */
1990 	/*  Thomas, Lucas@SD4, 20130515 */
1991 	count = 16;
1992 
1993 	for (index = 0; index < count; index++) {
1994 		checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
1995 	}
1996 
1997 	ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
1998 }
1999 
fill_txdesc_sectype(struct pkt_attrib * pattrib)2000 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2001 {
2002 	u8 sectype = 0;
2003 	if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2004 		switch (pattrib->encrypt) {
2005 		/*  SEC_TYPE */
2006 		case _WEP40_:
2007 		case _WEP104_:
2008 		case _TKIP_:
2009 		case _TKIP_WTMIC_:
2010 			sectype = 1;
2011 			break;
2012 
2013 		case _AES_:
2014 			sectype = 3;
2015 			break;
2016 
2017 		case _NO_PRIVACY_:
2018 		default:
2019 			break;
2020 		}
2021 	}
2022 	return sectype;
2023 }
2024 
fill_txdesc_vcs_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2025 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2026 {
2027 	if (pattrib->vcs_mode) {
2028 		switch (pattrib->vcs_mode) {
2029 		case RTS_CTS:
2030 			ptxdesc->rtsen = 1;
2031 			/*  ENABLE HW RTS */
2032 			ptxdesc->hw_rts_en = 1;
2033 			break;
2034 
2035 		case CTS_TO_SELF:
2036 			ptxdesc->cts2self = 1;
2037 			break;
2038 
2039 		case NONE_VCS:
2040 		default:
2041 			break;
2042 		}
2043 
2044 		ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
2045 		ptxdesc->rts_ratefb_lmt = 0xF;
2046 
2047 		if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2048 			ptxdesc->rts_short = 1;
2049 
2050 		/*  Set RTS BW */
2051 		if (pattrib->ht_en)
2052 			ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2053 	}
2054 }
2055 
fill_txdesc_phy_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2056 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2057 {
2058 	if (pattrib->ht_en) {
2059 		ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2060 
2061 		ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2062 	}
2063 }
2064 
rtl8723b_fill_default_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2065 static void rtl8723b_fill_default_txdesc(
2066 	struct xmit_frame *pxmitframe, u8 *pbuf
2067 )
2068 {
2069 	struct adapter *padapter;
2070 	struct hal_com_data *pHalData;
2071 	struct mlme_ext_priv *pmlmeext;
2072 	struct mlme_ext_info *pmlmeinfo;
2073 	struct pkt_attrib *pattrib;
2074 	struct txdesc_8723b *ptxdesc;
2075 	s32 bmcst;
2076 
2077 	memset(pbuf, 0, TXDESC_SIZE);
2078 
2079 	padapter = pxmitframe->padapter;
2080 	pHalData = GET_HAL_DATA(padapter);
2081 	pmlmeext = &padapter->mlmeextpriv;
2082 	pmlmeinfo = &(pmlmeext->mlmext_info);
2083 
2084 	pattrib = &pxmitframe->attrib;
2085 	bmcst = is_multicast_ether_addr(pattrib->ra);
2086 
2087 	ptxdesc = (struct txdesc_8723b *)pbuf;
2088 
2089 	if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2090 		u8 drv_userate = 0;
2091 
2092 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2093 		ptxdesc->rate_id = pattrib->raid;
2094 		ptxdesc->qsel = pattrib->qsel;
2095 		ptxdesc->seq = pattrib->seqnum;
2096 
2097 		ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2098 		fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2099 
2100 		if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2101 			drv_userate = 1;
2102 
2103 		if (
2104 			(pattrib->ether_type != 0x888e) &&
2105 			(pattrib->ether_type != 0x0806) &&
2106 			(pattrib->ether_type != 0x88B4) &&
2107 			(pattrib->dhcp_pkt != 1) &&
2108 			(drv_userate != 1)
2109 		) {
2110 			/*  Non EAP & ARP & DHCP type data packet */
2111 
2112 			if (pattrib->ampdu_en) {
2113 				ptxdesc->agg_en = 1; /*  AGG EN */
2114 				ptxdesc->max_agg_num = 0x1f;
2115 				ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2116 			} else
2117 				ptxdesc->bk = 1; /*  AGG BK */
2118 
2119 			fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2120 
2121 			ptxdesc->data_ratefb_lmt = 0x1F;
2122 
2123 			if (!pHalData->fw_ractrl) {
2124 				ptxdesc->userate = 1;
2125 
2126 				if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2127 					ptxdesc->data_short = 1;
2128 
2129 				ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2130 			}
2131 
2132 			if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
2133 				ptxdesc->userate = 1;
2134 				if (padapter->fix_rate & BIT(7))
2135 					ptxdesc->data_short = 1;
2136 
2137 				ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2138 				ptxdesc->disdatafb = 1;
2139 			}
2140 
2141 			if (pattrib->ldpc)
2142 				ptxdesc->data_ldpc = 1;
2143 			if (pattrib->stbc)
2144 				ptxdesc->data_stbc = 1;
2145 		} else {
2146 			/*  EAP data packet and ARP packet. */
2147 			/*  Use the 1M data rate to send the EAP/ARP packet. */
2148 			/*  This will maybe make the handshake smooth. */
2149 
2150 			ptxdesc->bk = 1; /*  AGG BK */
2151 			ptxdesc->userate = 1; /*  driver uses rate */
2152 			if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2153 				ptxdesc->data_short = 1;/*  DATA_SHORT */
2154 			ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2155 		}
2156 
2157 		ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2158 	} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2159 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2160 		ptxdesc->qsel = pattrib->qsel;
2161 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2162 		ptxdesc->seq = pattrib->seqnum;
2163 		ptxdesc->userate = 1; /*  driver uses rate, 1M */
2164 
2165 		ptxdesc->mbssid = pattrib->mbssid & 0xF;
2166 
2167 		ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
2168 		if (pattrib->retry_ctrl) {
2169 			ptxdesc->data_rt_lmt = 6;
2170 		} else {
2171 			ptxdesc->data_rt_lmt = 12;
2172 		}
2173 
2174 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2175 
2176 		/*  CCX-TXRPT ack for xmit mgmt frames. */
2177 		if (pxmitframe->ack_report) {
2178 			ptxdesc->spe_rpt = 1;
2179 			ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2180 		}
2181 	} else {
2182 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2183 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2184 		ptxdesc->qsel = pattrib->qsel;
2185 		ptxdesc->seq = pattrib->seqnum;
2186 		ptxdesc->userate = 1; /*  driver uses rate */
2187 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2188 	}
2189 
2190 	ptxdesc->pktlen = pattrib->last_txcmdsz;
2191 	ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2192 
2193 	if (bmcst)
2194 		ptxdesc->bmc = 1;
2195 
2196 	/* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2197 	 * (1) The sequence number of each non-Qos frame / broadcast /
2198 	 * multicast / mgnt frame should be controlled by Hw because Fw
2199 	 * will also send null data which we cannot control when Fw LPS
2200 	 * enable.
2201 	 * --> default enable non-Qos data sequence number. 2010.06.23.
2202 	 * by tynli.
2203 	 * (2) Enable HW SEQ control for beacon packet, because we use
2204 	 * Hw beacon.
2205 	 * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2206 	 * packets.
2207 	 * 2010.06.23. Added by tynli.
2208 	 */
2209 	if (!pattrib->qos_en) /*  Hw set sequence number */
2210 		ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
2211 }
2212 
2213 /* Description:
2214  *
2215  * Parameters:
2216  *	pxmitframe	xmitframe
2217  *	pbuf		where to fill tx desc
2218  */
rtl8723b_update_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2219 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2220 {
2221 	struct tx_desc *pdesc;
2222 
2223 	rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2224 	pdesc = (struct tx_desc *)pbuf;
2225 	rtl8723b_cal_txdesc_chksum(pdesc);
2226 }
2227 
2228 /*  */
2229 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2230 /* 			in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2231 /* 			Fw can tell Hw to send these packet derectly. */
2232 /*  Added by tynli. 2009.10.15. */
2233 /*  */
2234 /* type1:pspoll, type2:null */
rtl8723b_fill_fake_txdesc(struct adapter * padapter,u8 * pDesc,u32 BufferLen,u8 IsPsPoll,u8 IsBTQosNull,u8 bDataFrame)2235 void rtl8723b_fill_fake_txdesc(
2236 	struct adapter *padapter,
2237 	u8 *pDesc,
2238 	u32 BufferLen,
2239 	u8 IsPsPoll,
2240 	u8 IsBTQosNull,
2241 	u8 bDataFrame
2242 )
2243 {
2244 	/*  Clear all status */
2245 	memset(pDesc, 0, TXDESC_SIZE);
2246 
2247 	SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2248 	SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2249 
2250 	SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
2251 
2252 	SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
2253 	SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
2254 
2255 	/*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error value by Hw. */
2256 	if (IsPsPoll) {
2257 		SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2258 	} else {
2259 		SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
2260 		SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2261 	}
2262 
2263 	if (IsBTQosNull) {
2264 		SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2265 	}
2266 
2267 	SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
2268 	SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2269 
2270 	SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2271 
2272 	/*  */
2273 	/*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2274 	/*  */
2275 	if (bDataFrame) {
2276 		u32 EncAlg;
2277 
2278 		EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2279 		switch (EncAlg) {
2280 		case _NO_PRIVACY_:
2281 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2282 			break;
2283 		case _WEP40_:
2284 		case _WEP104_:
2285 		case _TKIP_:
2286 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2287 			break;
2288 		case _SMS4_:
2289 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2290 			break;
2291 		case _AES_:
2292 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2293 			break;
2294 		default:
2295 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2296 			break;
2297 		}
2298 	}
2299 
2300 	/*  USB interface drop packet if the checksum of descriptor isn't correct. */
2301 	/*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2302 	rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2303 }
2304 
hw_var_set_opmode(struct adapter * padapter,u8 variable,u8 * val)2305 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2306 {
2307 	u8 val8;
2308 	u8 mode = *((u8 *)val);
2309 
2310 	{
2311 		/*  disable Port0 TSF update */
2312 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2313 		val8 |= DIS_TSF_UDT;
2314 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2315 
2316 		/*  set net_type */
2317 		Set_MSR(padapter, mode);
2318 
2319 		if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2320 			{
2321 				StopTxBeacon(padapter);
2322 			}
2323 
2324 			/*  disable atim wnd */
2325 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2326 			/* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2327 		} else if (mode == _HW_STATE_ADHOC_) {
2328 			ResumeTxBeacon(padapter);
2329 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2330 		} else if (mode == _HW_STATE_AP_) {
2331 
2332 			ResumeTxBeacon(padapter);
2333 
2334 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2335 
2336 			/* Set RCR */
2337 			rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2338 			/* enable to rx data frame */
2339 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2340 			/* enable to rx ps-poll */
2341 			rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2342 
2343 			/* Beacon Control related register for first time */
2344 			rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
2345 
2346 			/* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2347 			rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
2348 			rtw_write16(padapter, REG_BCNTCFG, 0x00);
2349 			rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2350 			rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
2351 
2352 			/* reset TSF */
2353 			rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2354 
2355 			/* enable BCN0 Function for if1 */
2356 			/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2357 			rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2358 
2359 			/* SW_BCN_SEL - Port0 */
2360 			/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2361 			rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2362 
2363 			/*  select BCN on port 0 */
2364 			rtw_write8(
2365 				padapter,
2366 				REG_CCK_CHECK_8723B,
2367 				(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2368 			);
2369 
2370 			/*  dis BCN1 ATIM  WND if if2 is station */
2371 			val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2372 			val8 |= DIS_ATIM;
2373 			rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2374 		}
2375 	}
2376 }
2377 
hw_var_set_macaddr(struct adapter * padapter,u8 variable,u8 * val)2378 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2379 {
2380 	u8 idx = 0;
2381 	u32 reg_macid;
2382 
2383 	reg_macid = REG_MACID;
2384 
2385 	for (idx = 0 ; idx < 6; idx++)
2386 		rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2387 }
2388 
hw_var_set_bssid(struct adapter * padapter,u8 variable,u8 * val)2389 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2390 {
2391 	u8 idx = 0;
2392 	u32 reg_bssid;
2393 
2394 	reg_bssid = REG_BSSID;
2395 
2396 	for (idx = 0 ; idx < 6; idx++)
2397 		rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2398 }
2399 
hw_var_set_bcn_func(struct adapter * padapter,u8 variable,u8 * val)2400 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2401 {
2402 	u32 bcn_ctrl_reg;
2403 
2404 	bcn_ctrl_reg = REG_BCN_CTRL;
2405 
2406 	if (*(u8 *)val)
2407 		rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2408 	else {
2409 		u8 val8;
2410 		val8 = rtw_read8(padapter, bcn_ctrl_reg);
2411 		val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2412 
2413 		/*  Always enable port0 beacon function for PSTDMA */
2414 		if (REG_BCN_CTRL == bcn_ctrl_reg)
2415 			val8 |= EN_BCN_FUNCTION;
2416 
2417 		rtw_write8(padapter, bcn_ctrl_reg, val8);
2418 	}
2419 }
2420 
hw_var_set_correct_tsf(struct adapter * padapter,u8 variable,u8 * val)2421 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2422 {
2423 	u8 val8;
2424 	u64 tsf;
2425 	struct mlme_ext_priv *pmlmeext;
2426 	struct mlme_ext_info *pmlmeinfo;
2427 
2428 
2429 	pmlmeext = &padapter->mlmeextpriv;
2430 	pmlmeinfo = &pmlmeext->mlmext_info;
2431 
2432 	tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2433 
2434 	if (
2435 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2436 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2437 	)
2438 		StopTxBeacon(padapter);
2439 
2440 	{
2441 		/*  disable related TSF function */
2442 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2443 		val8 &= ~EN_BCN_FUNCTION;
2444 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2445 
2446 		rtw_write32(padapter, REG_TSFTR, tsf);
2447 		rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2448 
2449 		/*  enable related TSF function */
2450 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2451 		val8 |= EN_BCN_FUNCTION;
2452 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2453 	}
2454 
2455 	if (
2456 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2457 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2458 	)
2459 		ResumeTxBeacon(padapter);
2460 }
2461 
hw_var_set_mlme_disconnect(struct adapter * padapter,u8 variable,u8 * val)2462 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
2463 {
2464 	u8 val8;
2465 
2466 	/*  Set RCR to not to receive data frame when NO LINK state */
2467 	/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
2468 	/*  reject all data frames */
2469 	rtw_write16(padapter, REG_RXFLTMAP2, 0);
2470 
2471 	/*  reset TSF */
2472 	rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2473 
2474 	/*  disable update TSF */
2475 	val8 = rtw_read8(padapter, REG_BCN_CTRL);
2476 	val8 |= DIS_TSF_UDT;
2477 	rtw_write8(padapter, REG_BCN_CTRL, val8);
2478 }
2479 
hw_var_set_mlme_sitesurvey(struct adapter * padapter,u8 variable,u8 * val)2480 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
2481 {
2482 	u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
2483 	u16 value_rxfltmap2;
2484 	u8 val8;
2485 	struct hal_com_data *pHalData;
2486 	struct mlme_priv *pmlmepriv;
2487 
2488 
2489 	pHalData = GET_HAL_DATA(padapter);
2490 	pmlmepriv = &padapter->mlmepriv;
2491 
2492 	reg_bcn_ctl = REG_BCN_CTRL;
2493 
2494 	rcr_clear_bit = RCR_CBSSID_BCN;
2495 
2496 	/*  config RCR to receive different BSSID & not to receive data frame */
2497 	value_rxfltmap2 = 0;
2498 
2499 	if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
2500 		rcr_clear_bit = RCR_CBSSID_BCN;
2501 
2502 	value_rcr = rtw_read32(padapter, REG_RCR);
2503 
2504 	if (*((u8 *)val)) {
2505 		/*  under sitesurvey */
2506 		value_rcr &= ~(rcr_clear_bit);
2507 		rtw_write32(padapter, REG_RCR, value_rcr);
2508 
2509 		rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
2510 
2511 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
2512 			/*  disable update TSF */
2513 			val8 = rtw_read8(padapter, reg_bcn_ctl);
2514 			val8 |= DIS_TSF_UDT;
2515 			rtw_write8(padapter, reg_bcn_ctl, val8);
2516 		}
2517 
2518 		/*  Save original RRSR setting. */
2519 		pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
2520 	} else {
2521 		/*  sitesurvey done */
2522 		if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
2523 			/*  enable to rx data frame */
2524 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2525 
2526 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
2527 			/*  enable update TSF */
2528 			val8 = rtw_read8(padapter, reg_bcn_ctl);
2529 			val8 &= ~DIS_TSF_UDT;
2530 			rtw_write8(padapter, reg_bcn_ctl, val8);
2531 		}
2532 
2533 		value_rcr |= rcr_clear_bit;
2534 		rtw_write32(padapter, REG_RCR, value_rcr);
2535 
2536 		/*  Restore original RRSR setting. */
2537 		rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
2538 	}
2539 }
2540 
hw_var_set_mlme_join(struct adapter * padapter,u8 variable,u8 * val)2541 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
2542 {
2543 	u8 val8;
2544 	u16 val16;
2545 	u32 val32;
2546 	u8 RetryLimit;
2547 	u8 type;
2548 	struct mlme_priv *pmlmepriv;
2549 	struct eeprom_priv *pEEPROM;
2550 
2551 
2552 	RetryLimit = 0x30;
2553 	type = *(u8 *)val;
2554 	pmlmepriv = &padapter->mlmepriv;
2555 	pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2556 
2557 	if (type == 0) { /*  prepare to join */
2558 		/* enable to rx data frame.Accept all data frame */
2559 		/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
2560 		rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2561 
2562 		val32 = rtw_read32(padapter, REG_RCR);
2563 		if (padapter->in_cta_test)
2564 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
2565 		else
2566 			val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
2567 		rtw_write32(padapter, REG_RCR, val32);
2568 
2569 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
2570 			RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
2571 		else /*  Ad-hoc Mode */
2572 			RetryLimit = 0x7;
2573 	} else if (type == 1) /* joinbss_event call back when join res < 0 */
2574 		rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
2575 	else if (type == 2) { /* sta add event call back */
2576 		/* enable update TSF */
2577 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2578 		val8 &= ~DIS_TSF_UDT;
2579 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2580 
2581 		if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
2582 			RetryLimit = 0x7;
2583 	}
2584 
2585 	val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
2586 	rtw_write16(padapter, REG_RL, val16);
2587 }
2588 
CCX_FwC2HTxRpt_8723b(struct adapter * padapter,u8 * pdata,u8 len)2589 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
2590 {
2591 
2592 #define	GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
2593 #define	GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
2594 
2595 	if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
2596 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
2597 	}
2598 /*
2599 	else if (seq_no != padapter->xmitpriv.seq_no) {
2600 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
2601 	}
2602 */
2603 	else
2604 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
2605 }
2606 
c2h_id_filter_ccx_8723b(u8 * buf)2607 s32 c2h_id_filter_ccx_8723b(u8 *buf)
2608 {
2609 	struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
2610 	s32 ret = false;
2611 	if (c2h_evt->id == C2H_CCX_TX_RPT)
2612 		ret = true;
2613 
2614 	return ret;
2615 }
2616 
2617 
c2h_handler_8723b(struct adapter * padapter,u8 * buf)2618 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
2619 {
2620 	struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
2621 	s32 ret = _SUCCESS;
2622 
2623 	if (!pC2hEvent) {
2624 		ret = _FAIL;
2625 		goto exit;
2626 	}
2627 
2628 	switch (pC2hEvent->id) {
2629 	case C2H_AP_RPT_RSP:
2630 		break;
2631 	case C2H_DBG:
2632 		{
2633 		}
2634 		break;
2635 
2636 	case C2H_CCX_TX_RPT:
2637 /* 			CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
2638 		break;
2639 
2640 	case C2H_EXT_RA_RPT:
2641 /* 			C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
2642 		break;
2643 
2644 	case C2H_HW_INFO_EXCH:
2645 		break;
2646 
2647 	case C2H_8723B_BT_INFO:
2648 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
2649 		break;
2650 
2651 	default:
2652 		break;
2653 	}
2654 
2655 	/*  Clear event to notify FW we have read the command. */
2656 	/*  Note: */
2657 	/* 	If this field isn't clear, the FW won't update the next command message. */
2658 /* 	rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
2659 exit:
2660 	return ret;
2661 }
2662 
process_c2h_event(struct adapter * padapter,struct c2h_evt_hdr_t * pC2hEvent,u8 * c2hBuf)2663 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
2664 {
2665 	if (!c2hBuf)
2666 		return;
2667 
2668 	switch (pC2hEvent->CmdID) {
2669 	case C2H_AP_RPT_RSP:
2670 		break;
2671 	case C2H_DBG:
2672 		{
2673 		}
2674 		break;
2675 
2676 	case C2H_CCX_TX_RPT:
2677 /* 			CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
2678 		break;
2679 
2680 	case C2H_EXT_RA_RPT:
2681 /* 			C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
2682 		break;
2683 
2684 	case C2H_HW_INFO_EXCH:
2685 		break;
2686 
2687 	case C2H_8723B_BT_INFO:
2688 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
2689 		break;
2690 
2691 	default:
2692 		break;
2693 	}
2694 }
2695 
C2HPacketHandler_8723B(struct adapter * padapter,u8 * pbuffer,u16 length)2696 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
2697 {
2698 	struct c2h_evt_hdr_t	C2hEvent;
2699 	u8 *tmpBuf = NULL;
2700 	C2hEvent.CmdID = pbuffer[0];
2701 	C2hEvent.CmdSeq = pbuffer[1];
2702 	C2hEvent.CmdLen = length-2;
2703 	tmpBuf = pbuffer+2;
2704 
2705 	process_c2h_event(padapter, &C2hEvent, tmpBuf);
2706 	/* c2h_handler_8723b(padapter,&C2hEvent); */
2707 }
2708 
SetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)2709 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
2710 {
2711 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2712 	u8 val8;
2713 	u32 val32;
2714 
2715 	switch (variable) {
2716 	case HW_VAR_MEDIA_STATUS:
2717 		val8 = rtw_read8(padapter, MSR) & 0x0c;
2718 		val8 |= *val;
2719 		rtw_write8(padapter, MSR, val8);
2720 		break;
2721 
2722 	case HW_VAR_MEDIA_STATUS1:
2723 		val8 = rtw_read8(padapter, MSR) & 0x03;
2724 		val8 |= *val << 2;
2725 		rtw_write8(padapter, MSR, val8);
2726 		break;
2727 
2728 	case HW_VAR_SET_OPMODE:
2729 		hw_var_set_opmode(padapter, variable, val);
2730 		break;
2731 
2732 	case HW_VAR_MAC_ADDR:
2733 		hw_var_set_macaddr(padapter, variable, val);
2734 		break;
2735 
2736 	case HW_VAR_BSSID:
2737 		hw_var_set_bssid(padapter, variable, val);
2738 		break;
2739 
2740 	case HW_VAR_BASIC_RATE:
2741 	{
2742 		struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
2743 		u16 BrateCfg = 0;
2744 		u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
2745 		u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
2746 
2747 		HalSetBrateCfg(padapter, val, &BrateCfg);
2748 
2749 		/* apply force and allow mask */
2750 		BrateCfg |= rrsr_2g_force_mask;
2751 		BrateCfg &= rrsr_2g_allow_mask;
2752 
2753 		/* IOT consideration */
2754 		if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
2755 			/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
2756 			if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
2757 				BrateCfg |= RRSR_6M;
2758 		}
2759 
2760 		pHalData->BasicRateSet = BrateCfg;
2761 
2762 		/*  Set RRSR rate table. */
2763 		rtw_write16(padapter, REG_RRSR, BrateCfg);
2764 		rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
2765 	}
2766 		break;
2767 
2768 	case HW_VAR_TXPAUSE:
2769 		rtw_write8(padapter, REG_TXPAUSE, *val);
2770 		break;
2771 
2772 	case HW_VAR_BCN_FUNC:
2773 		hw_var_set_bcn_func(padapter, variable, val);
2774 		break;
2775 
2776 	case HW_VAR_CORRECT_TSF:
2777 		hw_var_set_correct_tsf(padapter, variable, val);
2778 		break;
2779 
2780 	case HW_VAR_CHECK_BSSID:
2781 		{
2782 			u32 val32;
2783 			val32 = rtw_read32(padapter, REG_RCR);
2784 			if (*val)
2785 				val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
2786 			else
2787 				val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
2788 			rtw_write32(padapter, REG_RCR, val32);
2789 		}
2790 		break;
2791 
2792 	case HW_VAR_MLME_DISCONNECT:
2793 		hw_var_set_mlme_disconnect(padapter, variable, val);
2794 		break;
2795 
2796 	case HW_VAR_MLME_SITESURVEY:
2797 		hw_var_set_mlme_sitesurvey(padapter, variable,  val);
2798 
2799 		hal_btcoex_ScanNotify(padapter, *val?true:false);
2800 		break;
2801 
2802 	case HW_VAR_MLME_JOIN:
2803 		hw_var_set_mlme_join(padapter, variable, val);
2804 
2805 		switch (*val) {
2806 		case 0:
2807 			/*  prepare to join */
2808 			hal_btcoex_ConnectNotify(padapter, true);
2809 			break;
2810 		case 1:
2811 			/*  joinbss_event callback when join res < 0 */
2812 			hal_btcoex_ConnectNotify(padapter, false);
2813 			break;
2814 		case 2:
2815 			/*  sta add event callback */
2816 /* 				rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
2817 			break;
2818 		}
2819 		break;
2820 
2821 	case HW_VAR_ON_RCR_AM:
2822 		val32 = rtw_read32(padapter, REG_RCR);
2823 		val32 |= RCR_AM;
2824 		rtw_write32(padapter, REG_RCR, val32);
2825 		break;
2826 
2827 	case HW_VAR_OFF_RCR_AM:
2828 		val32 = rtw_read32(padapter, REG_RCR);
2829 		val32 &= ~RCR_AM;
2830 		rtw_write32(padapter, REG_RCR, val32);
2831 		break;
2832 
2833 	case HW_VAR_BEACON_INTERVAL:
2834 		rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
2835 		break;
2836 
2837 	case HW_VAR_SLOT_TIME:
2838 		rtw_write8(padapter, REG_SLOT, *val);
2839 		break;
2840 
2841 	case HW_VAR_RESP_SIFS:
2842 		/* SIFS_Timer = 0x0a0a0808; */
2843 		/* RESP_SIFS for CCK */
2844 		rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
2845 		rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
2846 		/* RESP_SIFS for OFDM */
2847 		rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
2848 		rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
2849 		break;
2850 
2851 	case HW_VAR_ACK_PREAMBLE:
2852 		{
2853 			u8 regTmp;
2854 			u8 bShortPreamble = *val;
2855 
2856 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
2857 			/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
2858 			regTmp = 0;
2859 			if (bShortPreamble)
2860 				regTmp |= 0x80;
2861 			rtw_write8(padapter, REG_RRSR+2, regTmp);
2862 		}
2863 		break;
2864 
2865 	case HW_VAR_CAM_EMPTY_ENTRY:
2866 		{
2867 			u8 ucIndex = *val;
2868 			u8 i;
2869 			u32 ulCommand = 0;
2870 			u32 ulContent = 0;
2871 			u32 ulEncAlgo = CAM_AES;
2872 
2873 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
2874 				/*  filled id in CAM config 2 byte */
2875 				if (i == 0) {
2876 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
2877 					/* ulContent |= CAM_VALID; */
2878 				} else
2879 					ulContent = 0;
2880 
2881 				/*  polling bit, and No Write enable, and address */
2882 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
2883 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
2884 				/*  write content 0 is equal to mark as invalid */
2885 				rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
2886 				rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
2887 			}
2888 		}
2889 		break;
2890 
2891 	case HW_VAR_CAM_INVALID_ALL:
2892 		rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
2893 		break;
2894 
2895 	case HW_VAR_CAM_WRITE:
2896 		{
2897 			u32 cmd;
2898 			u32 *cam_val = (u32 *)val;
2899 
2900 			rtw_write32(padapter, WCAMI, cam_val[0]);
2901 
2902 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
2903 			rtw_write32(padapter, RWCAM, cmd);
2904 		}
2905 		break;
2906 
2907 	case HW_VAR_AC_PARAM_VO:
2908 		rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
2909 		break;
2910 
2911 	case HW_VAR_AC_PARAM_VI:
2912 		rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
2913 		break;
2914 
2915 	case HW_VAR_AC_PARAM_BE:
2916 		pHalData->AcParam_BE = ((u32 *)(val))[0];
2917 		rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
2918 		break;
2919 
2920 	case HW_VAR_AC_PARAM_BK:
2921 		rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
2922 		break;
2923 
2924 	case HW_VAR_ACM_CTRL:
2925 		{
2926 			u8 ctrl = *((u8 *)val);
2927 			u8 hwctrl = 0;
2928 
2929 			if (ctrl != 0) {
2930 				hwctrl |= AcmHw_HwEn;
2931 
2932 				if (ctrl & BIT(1)) /*  BE */
2933 					hwctrl |= AcmHw_BeqEn;
2934 
2935 				if (ctrl & BIT(2)) /*  VI */
2936 					hwctrl |= AcmHw_ViqEn;
2937 
2938 				if (ctrl & BIT(3)) /*  VO */
2939 					hwctrl |= AcmHw_VoqEn;
2940 			}
2941 
2942 			rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
2943 		}
2944 		break;
2945 
2946 	case HW_VAR_AMPDU_FACTOR:
2947 		{
2948 			u32 AMPDULen =  (*((u8 *)val));
2949 
2950 			if (AMPDULen < HT_AGG_SIZE_32K)
2951 				AMPDULen = (0x2000 << (*((u8 *)val)))-1;
2952 			else
2953 				AMPDULen = 0x7fff;
2954 
2955 			rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
2956 		}
2957 		break;
2958 
2959 	case HW_VAR_H2C_FW_PWRMODE:
2960 		{
2961 			u8 psmode = *val;
2962 
2963 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
2964 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
2965 			if (psmode != PS_MODE_ACTIVE) {
2966 				ODM_RF_Saving(&pHalData->odmpriv, true);
2967 			}
2968 
2969 			/* if (psmode != PS_MODE_ACTIVE)	{ */
2970 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
2971 			/*  else { */
2972 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
2973 			/*  */
2974 			rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
2975 		}
2976 		break;
2977 	case HW_VAR_H2C_PS_TUNE_PARAM:
2978 		rtl8723b_set_FwPsTuneParam_cmd(padapter);
2979 		break;
2980 
2981 	case HW_VAR_H2C_FW_JOINBSSRPT:
2982 		rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
2983 		break;
2984 
2985 	case HW_VAR_INITIAL_GAIN:
2986 		{
2987 			struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
2988 			u32 rx_gain = *(u32 *)val;
2989 
2990 			if (rx_gain == 0xff) {/* restore rx gain */
2991 				ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
2992 			} else {
2993 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
2994 				ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
2995 			}
2996 		}
2997 		break;
2998 
2999 	case HW_VAR_EFUSE_USAGE:
3000 		pHalData->EfuseUsedPercentage = *val;
3001 		break;
3002 
3003 	case HW_VAR_EFUSE_BYTES:
3004 		pHalData->EfuseUsedBytes = *((u16 *)val);
3005 		break;
3006 
3007 	case HW_VAR_EFUSE_BT_USAGE:
3008 #ifdef HAL_EFUSE_MEMORY
3009 		pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
3010 #endif
3011 		break;
3012 
3013 	case HW_VAR_EFUSE_BT_BYTES:
3014 #ifdef HAL_EFUSE_MEMORY
3015 		pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
3016 #else
3017 		BTEfuseUsedBytes = *((u16 *)val);
3018 #endif
3019 		break;
3020 
3021 	case HW_VAR_FIFO_CLEARN_UP:
3022 		{
3023 			#define RW_RELEASE_EN		BIT(18)
3024 			#define RXDMA_IDLE			BIT(17)
3025 
3026 			struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3027 			u8 trycnt = 100;
3028 
3029 			/*  pause tx */
3030 			rtw_write8(padapter, REG_TXPAUSE, 0xff);
3031 
3032 			/*  keep sn */
3033 			padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3034 
3035 			if (!pwrpriv->bkeepfwalive) {
3036 				/* RX DMA stop */
3037 				val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3038 				val32 |= RW_RELEASE_EN;
3039 				rtw_write32(padapter, REG_RXPKT_NUM, val32);
3040 				do {
3041 					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3042 					val32 &= RXDMA_IDLE;
3043 					if (val32)
3044 						break;
3045 				} while (--trycnt);
3046 
3047 				/*  RQPN Load 0 */
3048 				rtw_write16(padapter, REG_RQPN_NPQ, 0);
3049 				rtw_write32(padapter, REG_RQPN, 0x80000000);
3050 				mdelay(2);
3051 			}
3052 		}
3053 		break;
3054 
3055 	case HW_VAR_APFM_ON_MAC:
3056 		pHalData->bMacPwrCtrlOn = *val;
3057 		break;
3058 
3059 	case HW_VAR_NAV_UPPER:
3060 		{
3061 			u32 usNavUpper = *((u32 *)val);
3062 
3063 			if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3064 				break;
3065 
3066 			usNavUpper = DIV_ROUND_UP(usNavUpper,
3067 						  HAL_NAV_UPPER_UNIT_8723B);
3068 			rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3069 		}
3070 		break;
3071 
3072 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
3073 		{
3074 			u16 mstatus_rpt = (*(u16 *)val);
3075 			u8 mstatus, macId;
3076 
3077 			mstatus = (u8) (mstatus_rpt & 0xFF);
3078 			macId = (u8)(mstatus_rpt >> 8);
3079 			rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3080 		}
3081 		break;
3082 	case HW_VAR_BCN_VALID:
3083 		{
3084 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3085 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3086 			val8 |= BIT(0);
3087 			rtw_write8(padapter, REG_TDECTRL+2, val8);
3088 		}
3089 		break;
3090 
3091 	case HW_VAR_DL_BCN_SEL:
3092 		{
3093 			/*  SW_BCN_SEL - Port0 */
3094 			val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3095 			val8 &= ~BIT(4);
3096 			rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3097 		}
3098 		break;
3099 
3100 	case HW_VAR_DO_IQK:
3101 		pHalData->bNeedIQK = true;
3102 		break;
3103 
3104 	case HW_VAR_DL_RSVD_PAGE:
3105 		if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3106 			rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3107 		else
3108 			rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3109 		break;
3110 
3111 	case HW_VAR_MACID_SLEEP:
3112 		/*  Input is MACID */
3113 		val32 = *(u32 *)val;
3114 		if (val32 > 31)
3115 			break;
3116 
3117 		val8 = (u8)val32; /*  macid is between 0~31 */
3118 
3119 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3120 		if (val32 & BIT(val8))
3121 			break;
3122 		val32 |= BIT(val8);
3123 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3124 		break;
3125 
3126 	case HW_VAR_MACID_WAKEUP:
3127 		/*  Input is MACID */
3128 		val32 = *(u32 *)val;
3129 		if (val32 > 31)
3130 			break;
3131 
3132 		val8 = (u8)val32; /*  macid is between 0~31 */
3133 
3134 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3135 		if (!(val32 & BIT(val8)))
3136 			break;
3137 		val32 &= ~BIT(val8);
3138 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3139 		break;
3140 
3141 	default:
3142 		SetHwReg(padapter, variable, val);
3143 		break;
3144 	}
3145 }
3146 
GetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)3147 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3148 {
3149 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3150 	u8 val8;
3151 	u16 val16;
3152 
3153 	switch (variable) {
3154 	case HW_VAR_TXPAUSE:
3155 		*val = rtw_read8(padapter, REG_TXPAUSE);
3156 		break;
3157 
3158 	case HW_VAR_BCN_VALID:
3159 		{
3160 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3161 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3162 			*val = (BIT(0) & val8) ? true : false;
3163 		}
3164 		break;
3165 
3166 	case HW_VAR_FWLPS_RF_ON:
3167 		{
3168 			/*  When we halt NIC, we should check if FW LPS is leave. */
3169 			u32 valRCR;
3170 
3171 			if (
3172 				padapter->bSurpriseRemoved  ||
3173 				(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3174 			) {
3175 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3176 				/*  because Fw is unload. */
3177 				*val = true;
3178 			} else {
3179 				valRCR = rtw_read32(padapter, REG_RCR);
3180 				valRCR &= 0x00070000;
3181 				if (valRCR)
3182 					*val = false;
3183 				else
3184 					*val = true;
3185 			}
3186 		}
3187 		break;
3188 
3189 	case HW_VAR_EFUSE_USAGE:
3190 		*val = pHalData->EfuseUsedPercentage;
3191 		break;
3192 
3193 	case HW_VAR_EFUSE_BYTES:
3194 		*((u16 *)val) = pHalData->EfuseUsedBytes;
3195 		break;
3196 
3197 	case HW_VAR_EFUSE_BT_USAGE:
3198 #ifdef HAL_EFUSE_MEMORY
3199 		*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3200 #endif
3201 		break;
3202 
3203 	case HW_VAR_EFUSE_BT_BYTES:
3204 #ifdef HAL_EFUSE_MEMORY
3205 		*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3206 #else
3207 		*((u16 *)val) = BTEfuseUsedBytes;
3208 #endif
3209 		break;
3210 
3211 	case HW_VAR_APFM_ON_MAC:
3212 		*val = pHalData->bMacPwrCtrlOn;
3213 		break;
3214 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
3215 		val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3216 		*val = (val16 & BIT(10)) ? true:false;
3217 		break;
3218 	default:
3219 		GetHwReg(padapter, variable, val);
3220 		break;
3221 	}
3222 }
3223 
3224 /* Description:
3225  *	Change default setting of specified variable.
3226  */
SetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3227 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3228 {
3229 	u8 bResult;
3230 
3231 	bResult = _SUCCESS;
3232 
3233 	switch (variable) {
3234 	default:
3235 		bResult = SetHalDefVar(padapter, variable, pval);
3236 		break;
3237 	}
3238 
3239 	return bResult;
3240 }
3241 
3242 /* Description:
3243  *	Query setting of specified variable.
3244  */
GetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3245 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3246 {
3247 	u8 bResult;
3248 
3249 	bResult = _SUCCESS;
3250 
3251 	switch (variable) {
3252 	case HAL_DEF_MAX_RECVBUF_SZ:
3253 		*((u32 *)pval) = MAX_RECVBUF_SZ;
3254 		break;
3255 
3256 	case HAL_DEF_RX_PACKET_OFFSET:
3257 		*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3258 		break;
3259 
3260 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
3261 		/*  [email protected] suggests 16K can get stable performance */
3262 		/*  The experiment was done on SDIO interface */
3263 		/*  coding by Lucas@20130730 */
3264 		*(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3265 		break;
3266 	case HAL_DEF_TX_LDPC:
3267 	case HAL_DEF_RX_LDPC:
3268 		*((u8 *)pval) = false;
3269 		break;
3270 	case HAL_DEF_TX_STBC:
3271 		*((u8 *)pval) = 0;
3272 		break;
3273 	case HAL_DEF_RX_STBC:
3274 		*((u8 *)pval) = 1;
3275 		break;
3276 	case HAL_DEF_EXPLICIT_BEAMFORMER:
3277 	case HAL_DEF_EXPLICIT_BEAMFORMEE:
3278 		*((u8 *)pval) = false;
3279 		break;
3280 
3281 	case HW_DEF_RA_INFO_DUMP:
3282 		{
3283 			u8 mac_id = *(u8 *)pval;
3284 			u32 cmd;
3285 
3286 			cmd = 0x40000100 | mac_id;
3287 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3288 			msleep(10);
3289 			rtw_read32(padapter, 0x2F0);	// info 1
3290 
3291 			cmd = 0x40000400 | mac_id;
3292 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3293 			msleep(10);
3294 			rtw_read32(padapter, 0x2F0);	// info 1
3295 			rtw_read32(padapter, 0x2F4);	// info 2
3296 			rtw_read32(padapter, 0x2F8);	// rate mask 1
3297 			rtw_read32(padapter, 0x2FC);	// rate mask 2
3298 		}
3299 		break;
3300 
3301 	case HAL_DEF_TX_PAGE_BOUNDARY:
3302 		if (!padapter->registrypriv.wifi_spec) {
3303 			*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3304 		} else {
3305 			*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3306 		}
3307 		break;
3308 
3309 	case HAL_DEF_MACID_SLEEP:
3310 		*(u8 *)pval = true; /*  support macid sleep */
3311 		break;
3312 
3313 	default:
3314 		bResult = GetHalDefVar(padapter, variable, pval);
3315 		break;
3316 	}
3317 
3318 	return bResult;
3319 }
3320 
rtl8723b_start_thread(struct adapter * padapter)3321 void rtl8723b_start_thread(struct adapter *padapter)
3322 {
3323 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3324 
3325 	xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3326 }
3327 
rtl8723b_stop_thread(struct adapter * padapter)3328 void rtl8723b_stop_thread(struct adapter *padapter)
3329 {
3330 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3331 
3332 	/*  stop xmit_buf_thread */
3333 	if (xmitpriv->SdioXmitThread) {
3334 		complete(&xmitpriv->SdioXmitStart);
3335 		wait_for_completion(&xmitpriv->SdioXmitTerminate);
3336 		xmitpriv->SdioXmitThread = NULL;
3337 	}
3338 }
3339