xref: /aosp_15_r20/external/webrtc/common_audio/resampler/sinc_resampler.cc (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Modified from the Chromium original:
12 // src/media/base/sinc_resampler.cc
13 
14 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
15 // and r4_ will move after the first load):
16 //
17 // |----------------|-----------------------------------------|----------------|
18 //
19 //                                        request_frames_
20 //                   <--------------------------------------------------------->
21 //                                    r0_ (during first load)
22 //
23 //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2
24 // <---------------> <--------------->       <---------------> <--------------->
25 //        r1_               r2_                     r3_               r4_
26 //
27 //                             block_size_ == r4_ - r2_
28 //                   <--------------------------------------->
29 //
30 //                                                  request_frames_
31 //                                    <------------------ ... ----------------->
32 //                                               r0_ (during second load)
33 //
34 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
35 // and block_size_ are reinitialized via step (3) in the algorithm below.
36 //
37 // These new regions remain constant until a Flush() occurs.  While complicated,
38 // this allows us to reduce jitter by always requesting the same amount from the
39 // provided callback.
40 //
41 // The algorithm:
42 //
43 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
44 //    there's enough room to read request_frames_ from the callback into region
45 //    r0_ (which will move between the first and subsequent passes).
46 //
47 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
48 //
49 //        r0_ = input_buffer_ + kKernelSize / 2
50 //        r1_ = input_buffer_
51 //        r2_ = r0_
52 //
53 //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in
54 //    size.  r1_ must be zero initialized to avoid convolution with garbage (see
55 //    step (5) for why).
56 //
57 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
58 //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
59 //
60 //        r3_ = r0_ + request_frames_ - kKernelSize
61 //        r4_ = r0_ + request_frames_ - kKernelSize / 2
62 //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
63 //
64 // 4) Consume request_frames_ frames into r0_.
65 //
66 // 5) Position kernel centered at start of r2_ and generate output frames until
67 //    the kernel is centered at the start of r4_ or we've finished generating
68 //    all the output frames.
69 //
70 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
71 //
72 // 7) If we're on the second load, in order to avoid overwriting the frames we
73 //    just wrapped from r4_ we need to slide r0_ to the right by the size of
74 //    r4_, which is kKernelSize / 2:
75 //
76 //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
77 //
78 //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
79 //
80 // 8) Else, if we're not on the second load, goto (4).
81 //
82 // Note: we're glossing over how the sub-sample handling works with
83 // `virtual_source_idx_`, etc.
84 
85 // MSVC++ requires this to be set before any other includes to get M_PI.
86 #define _USE_MATH_DEFINES
87 
88 #include "common_audio/resampler/sinc_resampler.h"
89 
90 #include <math.h>
91 #include <stdint.h>
92 #include <string.h>
93 
94 #include <limits>
95 
96 #include "rtc_base/checks.h"
97 #include "rtc_base/system/arch.h"
98 #include "system_wrappers/include/cpu_features_wrapper.h"  // kSSE2, WebRtc_G...
99 
100 namespace webrtc {
101 
102 namespace {
103 
SincScaleFactor(double io_ratio)104 double SincScaleFactor(double io_ratio) {
105   // `sinc_scale_factor` is basically the normalized cutoff frequency of the
106   // low-pass filter.
107   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
108 
109   // The sinc function is an idealized brick-wall filter, but since we're
110   // windowing it the transition from pass to stop does not happen right away.
111   // So we should adjust the low pass filter cutoff slightly downward to avoid
112   // some aliasing at the very high-end.
113   // TODO(crogers): this value is empirical and to be more exact should vary
114   // depending on kKernelSize.
115   sinc_scale_factor *= 0.9;
116 
117   return sinc_scale_factor;
118 }
119 
120 }  // namespace
121 
122 const size_t SincResampler::kKernelSize;
123 
124 // If we know the minimum architecture at compile time, avoid CPU detection.
InitializeCPUSpecificFeatures()125 void SincResampler::InitializeCPUSpecificFeatures() {
126 #if defined(WEBRTC_HAS_NEON)
127   convolve_proc_ = Convolve_NEON;
128 #elif defined(WEBRTC_ARCH_X86_FAMILY)
129   // Using AVX2 instead of SSE2 when AVX2 supported.
130   if (GetCPUInfo(kAVX2))
131     convolve_proc_ = Convolve_AVX2;
132   else if (GetCPUInfo(kSSE2))
133     convolve_proc_ = Convolve_SSE;
134   else
135     convolve_proc_ = Convolve_C;
136 #else
137   // Unknown architecture.
138   convolve_proc_ = Convolve_C;
139 #endif
140 }
141 
SincResampler(double io_sample_rate_ratio,size_t request_frames,SincResamplerCallback * read_cb)142 SincResampler::SincResampler(double io_sample_rate_ratio,
143                              size_t request_frames,
144                              SincResamplerCallback* read_cb)
145     : io_sample_rate_ratio_(io_sample_rate_ratio),
146       read_cb_(read_cb),
147       request_frames_(request_frames),
148       input_buffer_size_(request_frames_ + kKernelSize),
149       // Create input buffers with a 32-byte alignment for SIMD optimizations.
150       kernel_storage_(static_cast<float*>(
151           AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
152       kernel_pre_sinc_storage_(static_cast<float*>(
153           AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
154       kernel_window_storage_(static_cast<float*>(
155           AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
156       input_buffer_(static_cast<float*>(
157           AlignedMalloc(sizeof(float) * input_buffer_size_, 32))),
158       convolve_proc_(nullptr),
159       r1_(input_buffer_.get()),
160       r2_(input_buffer_.get() + kKernelSize / 2) {
161   InitializeCPUSpecificFeatures();
162   RTC_DCHECK(convolve_proc_);
163   RTC_DCHECK_GT(request_frames_, 0);
164   Flush();
165   RTC_DCHECK_GT(block_size_, kKernelSize);
166 
167   memset(kernel_storage_.get(), 0,
168          sizeof(*kernel_storage_.get()) * kKernelStorageSize);
169   memset(kernel_pre_sinc_storage_.get(), 0,
170          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
171   memset(kernel_window_storage_.get(), 0,
172          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
173 
174   InitializeKernel();
175 }
176 
~SincResampler()177 SincResampler::~SincResampler() {}
178 
UpdateRegions(bool second_load)179 void SincResampler::UpdateRegions(bool second_load) {
180   // Setup various region pointers in the buffer (see diagram above).  If we're
181   // on the second load we need to slide r0_ to the right by kKernelSize / 2.
182   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
183   r3_ = r0_ + request_frames_ - kKernelSize;
184   r4_ = r0_ + request_frames_ - kKernelSize / 2;
185   block_size_ = r4_ - r2_;
186 
187   // r1_ at the beginning of the buffer.
188   RTC_DCHECK_EQ(r1_, input_buffer_.get());
189   // r1_ left of r2_, r4_ left of r3_ and size correct.
190   RTC_DCHECK_EQ(r2_ - r1_, r4_ - r3_);
191   // r2_ left of r3.
192   RTC_DCHECK_LT(r2_, r3_);
193 }
194 
InitializeKernel()195 void SincResampler::InitializeKernel() {
196   // Blackman window parameters.
197   static const double kAlpha = 0.16;
198   static const double kA0 = 0.5 * (1.0 - kAlpha);
199   static const double kA1 = 0.5;
200   static const double kA2 = 0.5 * kAlpha;
201 
202   // Generates a set of windowed sinc() kernels.
203   // We generate a range of sub-sample offsets from 0.0 to 1.0.
204   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
205   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
206     const float subsample_offset =
207         static_cast<float>(offset_idx) / kKernelOffsetCount;
208 
209     for (size_t i = 0; i < kKernelSize; ++i) {
210       const size_t idx = i + offset_idx * kKernelSize;
211       const float pre_sinc = static_cast<float>(
212           M_PI * (static_cast<int>(i) - static_cast<int>(kKernelSize / 2) -
213                   subsample_offset));
214       kernel_pre_sinc_storage_[idx] = pre_sinc;
215 
216       // Compute Blackman window, matching the offset of the sinc().
217       const float x = (i - subsample_offset) / kKernelSize;
218       const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) +
219                                               kA2 * cos(4.0 * M_PI * x));
220       kernel_window_storage_[idx] = window;
221 
222       // Compute the sinc with offset, then window the sinc() function and store
223       // at the correct offset.
224       kernel_storage_[idx] = static_cast<float>(
225           window * ((pre_sinc == 0)
226                         ? sinc_scale_factor
227                         : (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
228     }
229   }
230 }
231 
SetRatio(double io_sample_rate_ratio)232 void SincResampler::SetRatio(double io_sample_rate_ratio) {
233   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
234       std::numeric_limits<double>::epsilon()) {
235     return;
236   }
237 
238   io_sample_rate_ratio_ = io_sample_rate_ratio;
239 
240   // Optimize reinitialization by reusing values which are independent of
241   // `sinc_scale_factor`.  Provides a 3x speedup.
242   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
243   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
244     for (size_t i = 0; i < kKernelSize; ++i) {
245       const size_t idx = i + offset_idx * kKernelSize;
246       const float window = kernel_window_storage_[idx];
247       const float pre_sinc = kernel_pre_sinc_storage_[idx];
248 
249       kernel_storage_[idx] = static_cast<float>(
250           window * ((pre_sinc == 0)
251                         ? sinc_scale_factor
252                         : (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
253     }
254   }
255 }
256 
Resample(size_t frames,float * destination)257 void SincResampler::Resample(size_t frames, float* destination) {
258   size_t remaining_frames = frames;
259 
260   // Step (1) -- Prime the input buffer at the start of the input stream.
261   if (!buffer_primed_ && remaining_frames) {
262     read_cb_->Run(request_frames_, r0_);
263     buffer_primed_ = true;
264   }
265 
266   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It
267   // actually has an impact on ARM performance.  See inner loop comment below.
268   const double current_io_ratio = io_sample_rate_ratio_;
269   const float* const kernel_ptr = kernel_storage_.get();
270   while (remaining_frames) {
271     // `i` may be negative if the last Resample() call ended on an iteration
272     // that put `virtual_source_idx_` over the limit.
273     //
274     // Note: The loop construct here can severely impact performance on ARM
275     // or when built with clang.  See https://codereview.chromium.org/18566009/
276     for (int i = static_cast<int>(
277              ceil((block_size_ - virtual_source_idx_) / current_io_ratio));
278          i > 0; --i) {
279       RTC_DCHECK_LT(virtual_source_idx_, block_size_);
280 
281       // `virtual_source_idx_` lies in between two kernel offsets so figure out
282       // what they are.
283       const int source_idx = static_cast<int>(virtual_source_idx_);
284       const double subsample_remainder = virtual_source_idx_ - source_idx;
285 
286       const double virtual_offset_idx =
287           subsample_remainder * kKernelOffsetCount;
288       const int offset_idx = static_cast<int>(virtual_offset_idx);
289 
290       // We'll compute "convolutions" for the two kernels which straddle
291       // `virtual_source_idx_`.
292       const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
293       const float* const k2 = k1 + kKernelSize;
294 
295       // Ensure `k1`, `k2` are 32-byte aligned for SIMD usage.  Should always be
296       // true so long as kKernelSize is a multiple of 32.
297       RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k1) % 32);
298       RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k2) % 32);
299 
300       // Initialize input pointer based on quantized `virtual_source_idx_`.
301       const float* const input_ptr = r1_ + source_idx;
302 
303       // Figure out how much to weight each kernel's "convolution".
304       const double kernel_interpolation_factor =
305           virtual_offset_idx - offset_idx;
306       *destination++ =
307           convolve_proc_(input_ptr, k1, k2, kernel_interpolation_factor);
308 
309       // Advance the virtual index.
310       virtual_source_idx_ += current_io_ratio;
311 
312       if (!--remaining_frames)
313         return;
314     }
315 
316     // Wrap back around to the start.
317     virtual_source_idx_ -= block_size_;
318 
319     // Step (3) -- Copy r3_, r4_ to r1_, r2_.
320     // This wraps the last input frames back to the start of the buffer.
321     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
322 
323     // Step (4) -- Reinitialize regions if necessary.
324     if (r0_ == r2_)
325       UpdateRegions(true);
326 
327     // Step (5) -- Refresh the buffer with more input.
328     read_cb_->Run(request_frames_, r0_);
329   }
330 }
331 
332 #undef CONVOLVE_FUNC
333 
ChunkSize() const334 size_t SincResampler::ChunkSize() const {
335   return static_cast<size_t>(block_size_ / io_sample_rate_ratio_);
336 }
337 
Flush()338 void SincResampler::Flush() {
339   virtual_source_idx_ = 0;
340   buffer_primed_ = false;
341   memset(input_buffer_.get(), 0,
342          sizeof(*input_buffer_.get()) * input_buffer_size_);
343   UpdateRegions(false);
344 }
345 
Convolve_C(const float * input_ptr,const float * k1,const float * k2,double kernel_interpolation_factor)346 float SincResampler::Convolve_C(const float* input_ptr,
347                                 const float* k1,
348                                 const float* k2,
349                                 double kernel_interpolation_factor) {
350   float sum1 = 0;
351   float sum2 = 0;
352 
353   // Generate a single output sample.  Unrolling this loop hurt performance in
354   // local testing.
355   size_t n = kKernelSize;
356   while (n--) {
357     sum1 += *input_ptr * *k1++;
358     sum2 += *input_ptr++ * *k2++;
359   }
360 
361   // Linearly interpolate the two "convolutions".
362   return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
363                             kernel_interpolation_factor * sum2);
364 }
365 
366 }  // namespace webrtc
367