1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21
22 using namespace llvm;
23 using namespace PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
getNewICmpValue(unsigned Code,bool Sign,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32 InstCombiner::BuilderTy &Builder) {
33 ICmpInst::Predicate NewPred;
34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35 return TorF;
36 return Builder.CreateICmp(NewPred, LHS, RHS);
37 }
38
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
getFCmpValue(unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42 InstCombiner::BuilderTy &Builder) {
43 FCmpInst::Predicate NewPred;
44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45 return TorF;
46 return Builder.CreateFCmp(NewPred, LHS, RHS);
47 }
48
49 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
50 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
51 /// \param I Binary operator to transform.
52 /// \return Pointer to node that must replace the original binary operator, or
53 /// null pointer if no transformation was made.
SimplifyBSwap(BinaryOperator & I,InstCombiner::BuilderTy & Builder)54 static Value *SimplifyBSwap(BinaryOperator &I,
55 InstCombiner::BuilderTy &Builder) {
56 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
57
58 Value *OldLHS = I.getOperand(0);
59 Value *OldRHS = I.getOperand(1);
60
61 Value *NewLHS;
62 if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
63 return nullptr;
64
65 Value *NewRHS;
66 const APInt *C;
67
68 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
69 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
70 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
71 return nullptr;
72 // NewRHS initialized by the matcher.
73 } else if (match(OldRHS, m_APInt(C))) {
74 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
75 if (!OldLHS->hasOneUse())
76 return nullptr;
77 NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
78 } else
79 return nullptr;
80
81 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
82 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
83 I.getType());
84 return Builder.CreateCall(F, BinOp);
85 }
86
87 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
88 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
89 /// whether to treat V, Lo, and Hi as signed or not.
insertRangeTest(Value * V,const APInt & Lo,const APInt & Hi,bool isSigned,bool Inside)90 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
91 const APInt &Hi, bool isSigned,
92 bool Inside) {
93 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
94 "Lo is not < Hi in range emission code!");
95
96 Type *Ty = V->getType();
97
98 // V >= Min && V < Hi --> V < Hi
99 // V < Min || V >= Hi --> V >= Hi
100 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
101 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
102 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
103 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
104 }
105
106 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
107 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
108 Value *VMinusLo =
109 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
110 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
111 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
112 }
113
114 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
115 /// that can be simplified.
116 /// One of A and B is considered the mask. The other is the value. This is
117 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
118 /// only "Mask", then both A and B can be considered masks. If A is the mask,
119 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
120 /// If both A and C are constants, this proof is also easy.
121 /// For the following explanations, we assume that A is the mask.
122 ///
123 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
124 /// bits of A are set in B.
125 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
126 ///
127 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
128 /// bits of A are cleared in B.
129 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
130 ///
131 /// "Mixed" declares that (A & B) == C and C might or might not contain any
132 /// number of one bits and zero bits.
133 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
134 ///
135 /// "Not" means that in above descriptions "==" should be replaced by "!=".
136 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
137 ///
138 /// If the mask A contains a single bit, then the following is equivalent:
139 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
140 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
141 enum MaskedICmpType {
142 AMask_AllOnes = 1,
143 AMask_NotAllOnes = 2,
144 BMask_AllOnes = 4,
145 BMask_NotAllOnes = 8,
146 Mask_AllZeros = 16,
147 Mask_NotAllZeros = 32,
148 AMask_Mixed = 64,
149 AMask_NotMixed = 128,
150 BMask_Mixed = 256,
151 BMask_NotMixed = 512
152 };
153
154 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
155 /// satisfies.
getMaskedICmpType(Value * A,Value * B,Value * C,ICmpInst::Predicate Pred)156 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
157 ICmpInst::Predicate Pred) {
158 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
159 match(A, m_APInt(ConstA));
160 match(B, m_APInt(ConstB));
161 match(C, m_APInt(ConstC));
162 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
163 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
164 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
165 unsigned MaskVal = 0;
166 if (ConstC && ConstC->isZero()) {
167 // if C is zero, then both A and B qualify as mask
168 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
169 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
170 if (IsAPow2)
171 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
172 : (AMask_AllOnes | AMask_Mixed));
173 if (IsBPow2)
174 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
175 : (BMask_AllOnes | BMask_Mixed));
176 return MaskVal;
177 }
178
179 if (A == C) {
180 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
181 : (AMask_NotAllOnes | AMask_NotMixed));
182 if (IsAPow2)
183 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
184 : (Mask_AllZeros | AMask_Mixed));
185 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
186 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
187 }
188
189 if (B == C) {
190 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
191 : (BMask_NotAllOnes | BMask_NotMixed));
192 if (IsBPow2)
193 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
194 : (Mask_AllZeros | BMask_Mixed));
195 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
196 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
197 }
198
199 return MaskVal;
200 }
201
202 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
203 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
204 /// is adjacent to the corresponding normal flag (recording ==), this just
205 /// involves swapping those bits over.
conjugateICmpMask(unsigned Mask)206 static unsigned conjugateICmpMask(unsigned Mask) {
207 unsigned NewMask;
208 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
209 AMask_Mixed | BMask_Mixed))
210 << 1;
211
212 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
213 AMask_NotMixed | BMask_NotMixed))
214 >> 1;
215
216 return NewMask;
217 }
218
219 // Adapts the external decomposeBitTestICmp for local use.
decomposeBitTestICmp(Value * LHS,Value * RHS,CmpInst::Predicate & Pred,Value * & X,Value * & Y,Value * & Z)220 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
221 Value *&X, Value *&Y, Value *&Z) {
222 APInt Mask;
223 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
224 return false;
225
226 Y = ConstantInt::get(X->getType(), Mask);
227 Z = ConstantInt::get(X->getType(), 0);
228 return true;
229 }
230
231 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
232 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
233 /// the right hand side as a pair.
234 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
235 /// and PredR are their predicates, respectively.
getMaskedTypeForICmpPair(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate & PredL,ICmpInst::Predicate & PredR)236 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair(
237 Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS,
238 ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) {
239 // Don't allow pointers. Splat vectors are fine.
240 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
241 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
242 return std::nullopt;
243
244 // Here comes the tricky part:
245 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
246 // and L11 & L12 == L21 & L22. The same goes for RHS.
247 // Now we must find those components L** and R**, that are equal, so
248 // that we can extract the parameters A, B, C, D, and E for the canonical
249 // above.
250 Value *L1 = LHS->getOperand(0);
251 Value *L2 = LHS->getOperand(1);
252 Value *L11, *L12, *L21, *L22;
253 // Check whether the icmp can be decomposed into a bit test.
254 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
255 L21 = L22 = L1 = nullptr;
256 } else {
257 // Look for ANDs in the LHS icmp.
258 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
259 // Any icmp can be viewed as being trivially masked; if it allows us to
260 // remove one, it's worth it.
261 L11 = L1;
262 L12 = Constant::getAllOnesValue(L1->getType());
263 }
264
265 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
266 L21 = L2;
267 L22 = Constant::getAllOnesValue(L2->getType());
268 }
269 }
270
271 // Bail if LHS was a icmp that can't be decomposed into an equality.
272 if (!ICmpInst::isEquality(PredL))
273 return std::nullopt;
274
275 Value *R1 = RHS->getOperand(0);
276 Value *R2 = RHS->getOperand(1);
277 Value *R11, *R12;
278 bool Ok = false;
279 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
280 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
281 A = R11;
282 D = R12;
283 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
284 A = R12;
285 D = R11;
286 } else {
287 return std::nullopt;
288 }
289 E = R2;
290 R1 = nullptr;
291 Ok = true;
292 } else {
293 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
294 // As before, model no mask as a trivial mask if it'll let us do an
295 // optimization.
296 R11 = R1;
297 R12 = Constant::getAllOnesValue(R1->getType());
298 }
299
300 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
301 A = R11;
302 D = R12;
303 E = R2;
304 Ok = true;
305 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
306 A = R12;
307 D = R11;
308 E = R2;
309 Ok = true;
310 }
311 }
312
313 // Bail if RHS was a icmp that can't be decomposed into an equality.
314 if (!ICmpInst::isEquality(PredR))
315 return std::nullopt;
316
317 // Look for ANDs on the right side of the RHS icmp.
318 if (!Ok) {
319 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
320 R11 = R2;
321 R12 = Constant::getAllOnesValue(R2->getType());
322 }
323
324 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
325 A = R11;
326 D = R12;
327 E = R1;
328 Ok = true;
329 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
330 A = R12;
331 D = R11;
332 E = R1;
333 Ok = true;
334 } else {
335 return std::nullopt;
336 }
337
338 assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
339 }
340
341 if (L11 == A) {
342 B = L12;
343 C = L2;
344 } else if (L12 == A) {
345 B = L11;
346 C = L2;
347 } else if (L21 == A) {
348 B = L22;
349 C = L1;
350 } else if (L22 == A) {
351 B = L21;
352 C = L1;
353 }
354
355 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
356 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
357 return std::optional<std::pair<unsigned, unsigned>>(
358 std::make_pair(LeftType, RightType));
359 }
360
361 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
362 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
363 /// and the right hand side is of type BMask_Mixed. For example,
364 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
365 /// Also used for logical and/or, must be poison safe.
foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,InstCombiner::BuilderTy & Builder)366 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
367 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
368 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
369 InstCombiner::BuilderTy &Builder) {
370 // We are given the canonical form:
371 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
372 // where D & E == E.
373 //
374 // If IsAnd is false, we get it in negated form:
375 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
376 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
377 //
378 // We currently handle the case of B, C, D, E are constant.
379 //
380 const APInt *BCst, *CCst, *DCst, *OrigECst;
381 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
382 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
383 return nullptr;
384
385 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
386
387 // Update E to the canonical form when D is a power of two and RHS is
388 // canonicalized as,
389 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
390 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
391 APInt ECst = *OrigECst;
392 if (PredR != NewCC)
393 ECst ^= *DCst;
394
395 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
396 // other folding rules and this pattern won't apply any more.
397 if (*BCst == 0 || *DCst == 0)
398 return nullptr;
399
400 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
401 // deduce anything from it.
402 // For example,
403 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
404 if ((*BCst & *DCst) == 0)
405 return nullptr;
406
407 // If the following two conditions are met:
408 //
409 // 1. mask B covers only a single bit that's not covered by mask D, that is,
410 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
411 // B and D has only one bit set) and,
412 //
413 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
414 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
415 //
416 // then that single bit in B must be one and thus the whole expression can be
417 // folded to
418 // (A & (B | D)) == (B & (B ^ D)) | E.
419 //
420 // For example,
421 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
422 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
423 if ((((*BCst & *DCst) & ECst) == 0) &&
424 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
425 APInt BorD = *BCst | *DCst;
426 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
427 Value *NewMask = ConstantInt::get(A->getType(), BorD);
428 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
429 Value *NewAnd = Builder.CreateAnd(A, NewMask);
430 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
431 }
432
433 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
434 return (*C1 & *C2) == *C1;
435 };
436 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
437 return (*C1 & *C2) == *C2;
438 };
439
440 // In the following, we consider only the cases where B is a superset of D, B
441 // is a subset of D, or B == D because otherwise there's at least one bit
442 // covered by B but not D, in which case we can't deduce much from it, so
443 // no folding (aside from the single must-be-one bit case right above.)
444 // For example,
445 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
446 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
447 return nullptr;
448
449 // At this point, either B is a superset of D, B is a subset of D or B == D.
450
451 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
452 // and the whole expression becomes false (or true if negated), otherwise, no
453 // folding.
454 // For example,
455 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
456 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
457 if (ECst.isZero()) {
458 if (IsSubSetOrEqual(BCst, DCst))
459 return ConstantInt::get(LHS->getType(), !IsAnd);
460 return nullptr;
461 }
462
463 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
464 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
465 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
466 // RHS. For example,
467 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
468 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
469 if (IsSuperSetOrEqual(BCst, DCst))
470 return RHS;
471 // Otherwise, B is a subset of D. If B and E have a common bit set,
472 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
473 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
474 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
475 if ((*BCst & ECst) != 0)
476 return RHS;
477 // Otherwise, LHS and RHS contradict and the whole expression becomes false
478 // (or true if negated.) For example,
479 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
480 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
481 return ConstantInt::get(LHS->getType(), !IsAnd);
482 }
483
484 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
485 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
486 /// aren't of the common mask pattern type.
487 /// Also used for logical and/or, must be poison safe.
foldLogOpOfMaskedICmpsAsymmetric(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,unsigned LHSMask,unsigned RHSMask,InstCombiner::BuilderTy & Builder)488 static Value *foldLogOpOfMaskedICmpsAsymmetric(
489 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
490 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
491 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
492 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
493 "Expected equality predicates for masked type of icmps.");
494 // Handle Mask_NotAllZeros-BMask_Mixed cases.
495 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
496 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
497 // which gets swapped to
498 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
499 if (!IsAnd) {
500 LHSMask = conjugateICmpMask(LHSMask);
501 RHSMask = conjugateICmpMask(RHSMask);
502 }
503 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
504 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
505 LHS, RHS, IsAnd, A, B, C, D, E,
506 PredL, PredR, Builder)) {
507 return V;
508 }
509 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
510 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
511 RHS, LHS, IsAnd, A, D, E, B, C,
512 PredR, PredL, Builder)) {
513 return V;
514 }
515 }
516 return nullptr;
517 }
518
519 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
520 /// into a single (icmp(A & X) ==/!= Y).
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,bool IsLogical,InstCombiner::BuilderTy & Builder)521 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
522 bool IsLogical,
523 InstCombiner::BuilderTy &Builder) {
524 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
525 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
526 std::optional<std::pair<unsigned, unsigned>> MaskPair =
527 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
528 if (!MaskPair)
529 return nullptr;
530 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
531 "Expected equality predicates for masked type of icmps.");
532 unsigned LHSMask = MaskPair->first;
533 unsigned RHSMask = MaskPair->second;
534 unsigned Mask = LHSMask & RHSMask;
535 if (Mask == 0) {
536 // Even if the two sides don't share a common pattern, check if folding can
537 // still happen.
538 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
539 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
540 Builder))
541 return V;
542 return nullptr;
543 }
544
545 // In full generality:
546 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
547 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
548 //
549 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
550 // equivalent to (icmp (A & X) !Op Y).
551 //
552 // Therefore, we can pretend for the rest of this function that we're dealing
553 // with the conjunction, provided we flip the sense of any comparisons (both
554 // input and output).
555
556 // In most cases we're going to produce an EQ for the "&&" case.
557 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
558 if (!IsAnd) {
559 // Convert the masking analysis into its equivalent with negated
560 // comparisons.
561 Mask = conjugateICmpMask(Mask);
562 }
563
564 if (Mask & Mask_AllZeros) {
565 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
566 // -> (icmp eq (A & (B|D)), 0)
567 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
568 return nullptr; // TODO: Use freeze?
569 Value *NewOr = Builder.CreateOr(B, D);
570 Value *NewAnd = Builder.CreateAnd(A, NewOr);
571 // We can't use C as zero because we might actually handle
572 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
573 // with B and D, having a single bit set.
574 Value *Zero = Constant::getNullValue(A->getType());
575 return Builder.CreateICmp(NewCC, NewAnd, Zero);
576 }
577 if (Mask & BMask_AllOnes) {
578 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
579 // -> (icmp eq (A & (B|D)), (B|D))
580 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
581 return nullptr; // TODO: Use freeze?
582 Value *NewOr = Builder.CreateOr(B, D);
583 Value *NewAnd = Builder.CreateAnd(A, NewOr);
584 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
585 }
586 if (Mask & AMask_AllOnes) {
587 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
588 // -> (icmp eq (A & (B&D)), A)
589 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
590 return nullptr; // TODO: Use freeze?
591 Value *NewAnd1 = Builder.CreateAnd(B, D);
592 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
593 return Builder.CreateICmp(NewCC, NewAnd2, A);
594 }
595
596 // Remaining cases assume at least that B and D are constant, and depend on
597 // their actual values. This isn't strictly necessary, just a "handle the
598 // easy cases for now" decision.
599 const APInt *ConstB, *ConstD;
600 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
601 return nullptr;
602
603 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
604 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
605 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
606 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
607 // Only valid if one of the masks is a superset of the other (check "B&D" is
608 // the same as either B or D).
609 APInt NewMask = *ConstB & *ConstD;
610 if (NewMask == *ConstB)
611 return LHS;
612 else if (NewMask == *ConstD)
613 return RHS;
614 }
615
616 if (Mask & AMask_NotAllOnes) {
617 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
618 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
619 // Only valid if one of the masks is a superset of the other (check "B|D" is
620 // the same as either B or D).
621 APInt NewMask = *ConstB | *ConstD;
622 if (NewMask == *ConstB)
623 return LHS;
624 else if (NewMask == *ConstD)
625 return RHS;
626 }
627
628 if (Mask & BMask_Mixed) {
629 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
630 // We already know that B & C == C && D & E == E.
631 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
632 // C and E, which are shared by both the mask B and the mask D, don't
633 // contradict, then we can transform to
634 // -> (icmp eq (A & (B|D)), (C|E))
635 // Currently, we only handle the case of B, C, D, and E being constant.
636 // We can't simply use C and E because we might actually handle
637 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
638 // with B and D, having a single bit set.
639 const APInt *OldConstC, *OldConstE;
640 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
641 return nullptr;
642
643 const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
644 const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
645
646 // If there is a conflict, we should actually return a false for the
647 // whole construct.
648 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
649 return ConstantInt::get(LHS->getType(), !IsAnd);
650
651 Value *NewOr1 = Builder.CreateOr(B, D);
652 Value *NewAnd = Builder.CreateAnd(A, NewOr1);
653 Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
654 return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
655 }
656
657 return nullptr;
658 }
659
660 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
661 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
662 /// If \p Inverted is true then the check is for the inverted range, e.g.
663 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
simplifyRangeCheck(ICmpInst * Cmp0,ICmpInst * Cmp1,bool Inverted)664 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
665 bool Inverted) {
666 // Check the lower range comparison, e.g. x >= 0
667 // InstCombine already ensured that if there is a constant it's on the RHS.
668 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
669 if (!RangeStart)
670 return nullptr;
671
672 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
673 Cmp0->getPredicate());
674
675 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
676 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
677 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
678 return nullptr;
679
680 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
681 Cmp1->getPredicate());
682
683 Value *Input = Cmp0->getOperand(0);
684 Value *RangeEnd;
685 if (Cmp1->getOperand(0) == Input) {
686 // For the upper range compare we have: icmp x, n
687 RangeEnd = Cmp1->getOperand(1);
688 } else if (Cmp1->getOperand(1) == Input) {
689 // For the upper range compare we have: icmp n, x
690 RangeEnd = Cmp1->getOperand(0);
691 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
692 } else {
693 return nullptr;
694 }
695
696 // Check the upper range comparison, e.g. x < n
697 ICmpInst::Predicate NewPred;
698 switch (Pred1) {
699 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
700 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
701 default: return nullptr;
702 }
703
704 // This simplification is only valid if the upper range is not negative.
705 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
706 if (!Known.isNonNegative())
707 return nullptr;
708
709 if (Inverted)
710 NewPred = ICmpInst::getInversePredicate(NewPred);
711
712 return Builder.CreateICmp(NewPred, Input, RangeEnd);
713 }
714
715 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
716 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
foldAndOrOfICmpsOfAndWithPow2(ICmpInst * LHS,ICmpInst * RHS,Instruction * CxtI,bool IsAnd,bool IsLogical)717 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
718 ICmpInst *RHS,
719 Instruction *CxtI,
720 bool IsAnd,
721 bool IsLogical) {
722 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
723 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
724 return nullptr;
725
726 if (!match(LHS->getOperand(1), m_Zero()) ||
727 !match(RHS->getOperand(1), m_Zero()))
728 return nullptr;
729
730 Value *L1, *L2, *R1, *R2;
731 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
732 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
733 if (L1 == R2 || L2 == R2)
734 std::swap(R1, R2);
735 if (L2 == R1)
736 std::swap(L1, L2);
737
738 if (L1 == R1 &&
739 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
740 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
741 // If this is a logical and/or, then we must prevent propagation of a
742 // poison value from the RHS by inserting freeze.
743 if (IsLogical)
744 R2 = Builder.CreateFreeze(R2);
745 Value *Mask = Builder.CreateOr(L2, R2);
746 Value *Masked = Builder.CreateAnd(L1, Mask);
747 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
748 return Builder.CreateICmp(NewPred, Masked, Mask);
749 }
750 }
751
752 return nullptr;
753 }
754
755 /// General pattern:
756 /// X & Y
757 ///
758 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
759 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
760 /// Pattern can be one of:
761 /// %t = add i32 %arg, 128
762 /// %r = icmp ult i32 %t, 256
763 /// Or
764 /// %t0 = shl i32 %arg, 24
765 /// %t1 = ashr i32 %t0, 24
766 /// %r = icmp eq i32 %t1, %arg
767 /// Or
768 /// %t0 = trunc i32 %arg to i8
769 /// %t1 = sext i8 %t0 to i32
770 /// %r = icmp eq i32 %t1, %arg
771 /// This pattern is a signed truncation check.
772 ///
773 /// And X is checking that some bit in that same mask is zero.
774 /// I.e. can be one of:
775 /// %r = icmp sgt i32 %arg, -1
776 /// Or
777 /// %t = and i32 %arg, 2147483648
778 /// %r = icmp eq i32 %t, 0
779 ///
780 /// Since we are checking that all the bits in that mask are the same,
781 /// and a particular bit is zero, what we are really checking is that all the
782 /// masked bits are zero.
783 /// So this should be transformed to:
784 /// %r = icmp ult i32 %arg, 128
foldSignedTruncationCheck(ICmpInst * ICmp0,ICmpInst * ICmp1,Instruction & CxtI,InstCombiner::BuilderTy & Builder)785 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
786 Instruction &CxtI,
787 InstCombiner::BuilderTy &Builder) {
788 assert(CxtI.getOpcode() == Instruction::And);
789
790 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
791 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
792 APInt &SignBitMask) -> bool {
793 CmpInst::Predicate Pred;
794 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
795 if (!(match(ICmp,
796 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
797 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
798 return false;
799 // Which bit is the new sign bit as per the 'signed truncation' pattern?
800 SignBitMask = *I01;
801 return true;
802 };
803
804 // One icmp needs to be 'signed truncation check'.
805 // We need to match this first, else we will mismatch commutative cases.
806 Value *X1;
807 APInt HighestBit;
808 ICmpInst *OtherICmp;
809 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
810 OtherICmp = ICmp0;
811 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
812 OtherICmp = ICmp1;
813 else
814 return nullptr;
815
816 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
817
818 // Try to match/decompose into: icmp eq (X & Mask), 0
819 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
820 APInt &UnsetBitsMask) -> bool {
821 CmpInst::Predicate Pred = ICmp->getPredicate();
822 // Can it be decomposed into icmp eq (X & Mask), 0 ?
823 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
824 Pred, X, UnsetBitsMask,
825 /*LookThroughTrunc=*/false) &&
826 Pred == ICmpInst::ICMP_EQ)
827 return true;
828 // Is it icmp eq (X & Mask), 0 already?
829 const APInt *Mask;
830 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
831 Pred == ICmpInst::ICMP_EQ) {
832 UnsetBitsMask = *Mask;
833 return true;
834 }
835 return false;
836 };
837
838 // And the other icmp needs to be decomposable into a bit test.
839 Value *X0;
840 APInt UnsetBitsMask;
841 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
842 return nullptr;
843
844 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
845
846 // Are they working on the same value?
847 Value *X;
848 if (X1 == X0) {
849 // Ok as is.
850 X = X1;
851 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
852 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
853 X = X1;
854 } else
855 return nullptr;
856
857 // So which bits should be uniform as per the 'signed truncation check'?
858 // (all the bits starting with (i.e. including) HighestBit)
859 APInt SignBitsMask = ~(HighestBit - 1U);
860
861 // UnsetBitsMask must have some common bits with SignBitsMask,
862 if (!UnsetBitsMask.intersects(SignBitsMask))
863 return nullptr;
864
865 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
866 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
867 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
868 if (!OtherHighestBit.isPowerOf2())
869 return nullptr;
870 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
871 }
872 // Else, if it does not, then all is ok as-is.
873
874 // %r = icmp ult %X, SignBit
875 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
876 CxtI.getName() + ".simplified");
877 }
878
879 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
880 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
881 /// Also used for logical and/or, must be poison safe.
foldIsPowerOf2OrZero(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd,InstCombiner::BuilderTy & Builder)882 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
883 InstCombiner::BuilderTy &Builder) {
884 CmpInst::Predicate Pred0, Pred1;
885 Value *X;
886 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
887 m_SpecificInt(1))) ||
888 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
889 return nullptr;
890
891 Value *CtPop = Cmp0->getOperand(0);
892 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
893 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
894 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
895 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
896
897 return nullptr;
898 }
899
900 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
901 /// Also used for logical and/or, must be poison safe.
foldIsPowerOf2(ICmpInst * Cmp0,ICmpInst * Cmp1,bool JoinedByAnd,InstCombiner::BuilderTy & Builder)902 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
903 InstCombiner::BuilderTy &Builder) {
904 // Handle 'and' / 'or' commutation: make the equality check the first operand.
905 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
906 std::swap(Cmp0, Cmp1);
907 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
908 std::swap(Cmp0, Cmp1);
909
910 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
911 CmpInst::Predicate Pred0, Pred1;
912 Value *X;
913 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
914 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
915 m_SpecificInt(2))) &&
916 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
917 Value *CtPop = Cmp1->getOperand(0);
918 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
919 }
920 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
921 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
922 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
923 m_SpecificInt(1))) &&
924 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
925 Value *CtPop = Cmp1->getOperand(0);
926 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
927 }
928 return nullptr;
929 }
930
931 /// Commuted variants are assumed to be handled by calling this function again
932 /// with the parameters swapped.
foldUnsignedUnderflowCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)933 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
934 ICmpInst *UnsignedICmp, bool IsAnd,
935 const SimplifyQuery &Q,
936 InstCombiner::BuilderTy &Builder) {
937 Value *ZeroCmpOp;
938 ICmpInst::Predicate EqPred;
939 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
940 !ICmpInst::isEquality(EqPred))
941 return nullptr;
942
943 auto IsKnownNonZero = [&](Value *V) {
944 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
945 };
946
947 ICmpInst::Predicate UnsignedPred;
948
949 Value *A, *B;
950 if (match(UnsignedICmp,
951 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
952 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
953 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
954 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
955 if (!IsKnownNonZero(NonZero))
956 std::swap(NonZero, Other);
957 return IsKnownNonZero(NonZero);
958 };
959
960 // Given ZeroCmpOp = (A + B)
961 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
962 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
963 // with X being the value (A/B) that is known to be non-zero,
964 // and Y being remaining value.
965 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
966 IsAnd && GetKnownNonZeroAndOther(B, A))
967 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
968 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
969 !IsAnd && GetKnownNonZeroAndOther(B, A))
970 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
971 }
972
973 Value *Base, *Offset;
974 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
975 return nullptr;
976
977 if (!match(UnsignedICmp,
978 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
979 !ICmpInst::isUnsigned(UnsignedPred))
980 return nullptr;
981
982 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
983 // (no overflow and not null)
984 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
985 UnsignedPred == ICmpInst::ICMP_UGT) &&
986 EqPred == ICmpInst::ICMP_NE && IsAnd)
987 return Builder.CreateICmpUGT(Base, Offset);
988
989 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
990 // (overflow or null)
991 if ((UnsignedPred == ICmpInst::ICMP_ULE ||
992 UnsignedPred == ICmpInst::ICMP_ULT) &&
993 EqPred == ICmpInst::ICMP_EQ && !IsAnd)
994 return Builder.CreateICmpULE(Base, Offset);
995
996 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
997 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
998 IsAnd)
999 return Builder.CreateICmpULT(Base, Offset);
1000
1001 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
1002 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1003 !IsAnd)
1004 return Builder.CreateICmpUGE(Base, Offset);
1005
1006 return nullptr;
1007 }
1008
1009 struct IntPart {
1010 Value *From;
1011 unsigned StartBit;
1012 unsigned NumBits;
1013 };
1014
1015 /// Match an extraction of bits from an integer.
matchIntPart(Value * V)1016 static std::optional<IntPart> matchIntPart(Value *V) {
1017 Value *X;
1018 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1019 return std::nullopt;
1020
1021 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1022 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1023 Value *Y;
1024 const APInt *Shift;
1025 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1026 // from Y, not any shifted-in zeroes.
1027 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1028 Shift->ule(NumOriginalBits - NumExtractedBits))
1029 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1030 return {{X, 0, NumExtractedBits}};
1031 }
1032
1033 /// Materialize an extraction of bits from an integer in IR.
extractIntPart(const IntPart & P,IRBuilderBase & Builder)1034 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1035 Value *V = P.From;
1036 if (P.StartBit)
1037 V = Builder.CreateLShr(V, P.StartBit);
1038 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1039 if (TruncTy != V->getType())
1040 V = Builder.CreateTrunc(V, TruncTy);
1041 return V;
1042 }
1043
1044 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1045 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1046 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
foldEqOfParts(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1047 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1048 bool IsAnd) {
1049 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1050 return nullptr;
1051
1052 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1053 if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
1054 return nullptr;
1055
1056 std::optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
1057 std::optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
1058 std::optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
1059 std::optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
1060 if (!L0 || !R0 || !L1 || !R1)
1061 return nullptr;
1062
1063 // Make sure the LHS/RHS compare a part of the same value, possibly after
1064 // an operand swap.
1065 if (L0->From != L1->From || R0->From != R1->From) {
1066 if (L0->From != R1->From || R0->From != L1->From)
1067 return nullptr;
1068 std::swap(L1, R1);
1069 }
1070
1071 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1072 // the low part and L1/R1 being the high part.
1073 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1074 R0->StartBit + R0->NumBits != R1->StartBit) {
1075 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1076 R1->StartBit + R1->NumBits != R0->StartBit)
1077 return nullptr;
1078 std::swap(L0, L1);
1079 std::swap(R0, R1);
1080 }
1081
1082 // We can simplify to a comparison of these larger parts of the integers.
1083 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1084 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1085 Value *LValue = extractIntPart(L, Builder);
1086 Value *RValue = extractIntPart(R, Builder);
1087 return Builder.CreateICmp(Pred, LValue, RValue);
1088 }
1089
1090 /// Reduce logic-of-compares with equality to a constant by substituting a
1091 /// common operand with the constant. Callers are expected to call this with
1092 /// Cmp0/Cmp1 switched to handle logic op commutativity.
foldAndOrOfICmpsWithConstEq(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd,bool IsLogical,InstCombiner::BuilderTy & Builder,const SimplifyQuery & Q)1093 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1094 bool IsAnd, bool IsLogical,
1095 InstCombiner::BuilderTy &Builder,
1096 const SimplifyQuery &Q) {
1097 // Match an equality compare with a non-poison constant as Cmp0.
1098 // Also, give up if the compare can be constant-folded to avoid looping.
1099 ICmpInst::Predicate Pred0;
1100 Value *X;
1101 Constant *C;
1102 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1103 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1104 return nullptr;
1105 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1106 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1107 return nullptr;
1108
1109 // The other compare must include a common operand (X). Canonicalize the
1110 // common operand as operand 1 (Pred1 is swapped if the common operand was
1111 // operand 0).
1112 Value *Y;
1113 ICmpInst::Predicate Pred1;
1114 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1115 return nullptr;
1116
1117 // Replace variable with constant value equivalence to remove a variable use:
1118 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1119 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1120 // Can think of the 'or' substitution with the 'and' bool equivalent:
1121 // A || B --> A || (!A && B)
1122 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1123 if (!SubstituteCmp) {
1124 // If we need to create a new instruction, require that the old compare can
1125 // be removed.
1126 if (!Cmp1->hasOneUse())
1127 return nullptr;
1128 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1129 }
1130 if (IsLogical)
1131 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1132 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1133 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1134 SubstituteCmp);
1135 }
1136
1137 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1138 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1139 /// into a single comparison using range-based reasoning.
1140 /// NOTE: This is also used for logical and/or, must be poison-safe!
foldAndOrOfICmpsUsingRanges(ICmpInst * ICmp1,ICmpInst * ICmp2,bool IsAnd)1141 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1142 ICmpInst *ICmp2,
1143 bool IsAnd) {
1144 ICmpInst::Predicate Pred1, Pred2;
1145 Value *V1, *V2;
1146 const APInt *C1, *C2;
1147 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1148 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1149 return nullptr;
1150
1151 // Look through add of a constant offset on V1, V2, or both operands. This
1152 // allows us to interpret the V + C' < C'' range idiom into a proper range.
1153 const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1154 if (V1 != V2) {
1155 Value *X;
1156 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1157 V1 = X;
1158 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1159 V2 = X;
1160 }
1161
1162 if (V1 != V2)
1163 return nullptr;
1164
1165 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1166 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1167 if (Offset1)
1168 CR1 = CR1.subtract(*Offset1);
1169
1170 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1171 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1172 if (Offset2)
1173 CR2 = CR2.subtract(*Offset2);
1174
1175 Type *Ty = V1->getType();
1176 Value *NewV = V1;
1177 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1178 if (!CR) {
1179 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1180 CR2.isWrappedSet())
1181 return nullptr;
1182
1183 // Check whether we have equal-size ranges that only differ by one bit.
1184 // In that case we can apply a mask to map one range onto the other.
1185 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1186 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1187 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1188 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1189 CR1Size != CR2.getUpper() - CR2.getLower())
1190 return nullptr;
1191
1192 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1193 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1194 }
1195
1196 if (IsAnd)
1197 CR = CR->inverse();
1198
1199 CmpInst::Predicate NewPred;
1200 APInt NewC, Offset;
1201 CR->getEquivalentICmp(NewPred, NewC, Offset);
1202
1203 if (Offset != 0)
1204 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1205 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1206 }
1207
1208 /// Ignore all operations which only change the sign of a value, returning the
1209 /// underlying magnitude value.
stripSignOnlyFPOps(Value * Val)1210 static Value *stripSignOnlyFPOps(Value *Val) {
1211 match(Val, m_FNeg(m_Value(Val)));
1212 match(Val, m_FAbs(m_Value(Val)));
1213 match(Val, m_CopySign(m_Value(Val), m_Value()));
1214 return Val;
1215 }
1216
1217 /// Matches canonical form of isnan, fcmp ord x, 0
matchIsNotNaN(FCmpInst::Predicate P,Value * LHS,Value * RHS)1218 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
1219 return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
1220 }
1221
1222 /// Matches fcmp u__ x, +/-inf
matchUnorderedInfCompare(FCmpInst::Predicate P,Value * LHS,Value * RHS)1223 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
1224 Value *RHS) {
1225 return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
1226 }
1227
1228 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1229 ///
1230 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
matchIsFiniteTest(InstCombiner::BuilderTy & Builder,FCmpInst * LHS,FCmpInst * RHS)1231 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
1232 FCmpInst *RHS) {
1233 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1234 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1235 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1236
1237 if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1238 !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1239 return nullptr;
1240
1241 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1242 FastMathFlags FMF = LHS->getFastMathFlags();
1243 FMF &= RHS->getFastMathFlags();
1244 Builder.setFastMathFlags(FMF);
1245
1246 return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1);
1247 }
1248
foldLogicOfFCmps(FCmpInst * LHS,FCmpInst * RHS,bool IsAnd,bool IsLogicalSelect)1249 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1250 bool IsAnd, bool IsLogicalSelect) {
1251 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1252 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1253 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1254
1255 if (LHS0 == RHS1 && RHS0 == LHS1) {
1256 // Swap RHS operands to match LHS.
1257 PredR = FCmpInst::getSwappedPredicate(PredR);
1258 std::swap(RHS0, RHS1);
1259 }
1260
1261 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1262 // Suppose the relation between x and y is R, where R is one of
1263 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1264 // testing the desired relations.
1265 //
1266 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1267 // bool(R & CC0) && bool(R & CC1)
1268 // = bool((R & CC0) & (R & CC1))
1269 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1270 //
1271 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1272 // bool(R & CC0) || bool(R & CC1)
1273 // = bool((R & CC0) | (R & CC1))
1274 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1275 if (LHS0 == RHS0 && LHS1 == RHS1) {
1276 unsigned FCmpCodeL = getFCmpCode(PredL);
1277 unsigned FCmpCodeR = getFCmpCode(PredR);
1278 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1279
1280 // Intersect the fast math flags.
1281 // TODO: We can union the fast math flags unless this is a logical select.
1282 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1283 FastMathFlags FMF = LHS->getFastMathFlags();
1284 FMF &= RHS->getFastMathFlags();
1285 Builder.setFastMathFlags(FMF);
1286
1287 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1288 }
1289
1290 // This transform is not valid for a logical select.
1291 if (!IsLogicalSelect &&
1292 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1293 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1294 !IsAnd))) {
1295 if (LHS0->getType() != RHS0->getType())
1296 return nullptr;
1297
1298 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1299 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1300 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1301 // Ignore the constants because they are obviously not NANs:
1302 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1303 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1304 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1305 }
1306
1307 if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1308 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1309 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1310 if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
1311 return Left;
1312 if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
1313 return Right;
1314 }
1315
1316 return nullptr;
1317 }
1318
1319 /// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1320 /// -> is_fpclass x, (mask0 | mask1)
1321 /// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1322 /// -> is_fpclass x, (mask0 & mask1)
1323 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1324 /// -> is_fpclass x, (mask0 ^ mask1)
foldLogicOfIsFPClass(BinaryOperator & BO,Value * Op0,Value * Op1)1325 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1326 Value *Op0, Value *Op1) {
1327 Value *ClassVal;
1328 uint64_t ClassMask0, ClassMask1;
1329
1330 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1331 m_Value(ClassVal), m_ConstantInt(ClassMask0)))) &&
1332 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1333 m_Specific(ClassVal), m_ConstantInt(ClassMask1))))) {
1334 unsigned NewClassMask;
1335 switch (BO.getOpcode()) {
1336 case Instruction::And:
1337 NewClassMask = ClassMask0 & ClassMask1;
1338 break;
1339 case Instruction::Or:
1340 NewClassMask = ClassMask0 | ClassMask1;
1341 break;
1342 case Instruction::Xor:
1343 NewClassMask = ClassMask0 ^ ClassMask1;
1344 break;
1345 default:
1346 llvm_unreachable("not a binary logic operator");
1347 }
1348
1349 // TODO: Also check for special fcmps
1350 auto *II = cast<IntrinsicInst>(Op0);
1351 II->setArgOperand(
1352 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1353 return replaceInstUsesWith(BO, II);
1354 }
1355
1356 return nullptr;
1357 }
1358
1359 /// Look for the pattern that conditionally negates a value via math operations:
1360 /// cond.splat = sext i1 cond
1361 /// sub = add cond.splat, x
1362 /// xor = xor sub, cond.splat
1363 /// and rewrite it to do the same, but via logical operations:
1364 /// value.neg = sub 0, value
1365 /// cond = select i1 neg, value.neg, value
canonicalizeConditionalNegationViaMathToSelect(BinaryOperator & I)1366 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1367 BinaryOperator &I) {
1368 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1369 Value *Cond, *X;
1370 // As per complexity ordering, `xor` is not commutative here.
1371 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1372 !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1373 !Cond->getType()->isIntOrIntVectorTy(1) ||
1374 !match(I.getOperand(0), m_c_Add(m_SExt(m_Deferred(Cond)), m_Value(X))))
1375 return nullptr;
1376 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1377 X);
1378 }
1379
1380 /// This a limited reassociation for a special case (see above) where we are
1381 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1382 /// This could be handled more generally in '-reassociation', but it seems like
1383 /// an unlikely pattern for a large number of logic ops and fcmps.
reassociateFCmps(BinaryOperator & BO,InstCombiner::BuilderTy & Builder)1384 static Instruction *reassociateFCmps(BinaryOperator &BO,
1385 InstCombiner::BuilderTy &Builder) {
1386 Instruction::BinaryOps Opcode = BO.getOpcode();
1387 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1388 "Expecting and/or op for fcmp transform");
1389
1390 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1391 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1392 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1393 FCmpInst::Predicate Pred;
1394 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1395 std::swap(Op0, Op1);
1396
1397 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1398 Value *BO10, *BO11;
1399 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1400 : FCmpInst::FCMP_UNO;
1401 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1402 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1403 return nullptr;
1404
1405 // The inner logic op must have a matching fcmp operand.
1406 Value *Y;
1407 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1408 Pred != NanPred || X->getType() != Y->getType())
1409 std::swap(BO10, BO11);
1410
1411 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1412 Pred != NanPred || X->getType() != Y->getType())
1413 return nullptr;
1414
1415 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1416 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1417 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1418 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1419 // Intersect FMF from the 2 source fcmps.
1420 NewFCmpInst->copyIRFlags(Op0);
1421 NewFCmpInst->andIRFlags(BO10);
1422 }
1423 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1424 }
1425
1426 /// Match variations of De Morgan's Laws:
1427 /// (~A & ~B) == (~(A | B))
1428 /// (~A | ~B) == (~(A & B))
matchDeMorgansLaws(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1429 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1430 InstCombiner::BuilderTy &Builder) {
1431 const Instruction::BinaryOps Opcode = I.getOpcode();
1432 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1433 "Trying to match De Morgan's Laws with something other than and/or");
1434
1435 // Flip the logic operation.
1436 const Instruction::BinaryOps FlippedOpcode =
1437 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1438
1439 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1440 Value *A, *B;
1441 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1442 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1443 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1444 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1445 Value *AndOr =
1446 Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1447 return BinaryOperator::CreateNot(AndOr);
1448 }
1449
1450 // The 'not' ops may require reassociation.
1451 // (A & ~B) & ~C --> A & ~(B | C)
1452 // (~B & A) & ~C --> A & ~(B | C)
1453 // (A | ~B) | ~C --> A | ~(B & C)
1454 // (~B | A) | ~C --> A | ~(B & C)
1455 Value *C;
1456 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1457 match(Op1, m_Not(m_Value(C)))) {
1458 Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
1459 return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
1460 }
1461
1462 return nullptr;
1463 }
1464
shouldOptimizeCast(CastInst * CI)1465 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1466 Value *CastSrc = CI->getOperand(0);
1467
1468 // Noop casts and casts of constants should be eliminated trivially.
1469 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1470 return false;
1471
1472 // If this cast is paired with another cast that can be eliminated, we prefer
1473 // to have it eliminated.
1474 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1475 if (isEliminableCastPair(PrecedingCI, CI))
1476 return false;
1477
1478 return true;
1479 }
1480
1481 /// Fold {and,or,xor} (cast X), C.
foldLogicCastConstant(BinaryOperator & Logic,CastInst * Cast,InstCombiner::BuilderTy & Builder)1482 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1483 InstCombiner::BuilderTy &Builder) {
1484 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1485 if (!C)
1486 return nullptr;
1487
1488 auto LogicOpc = Logic.getOpcode();
1489 Type *DestTy = Logic.getType();
1490 Type *SrcTy = Cast->getSrcTy();
1491
1492 // Move the logic operation ahead of a zext or sext if the constant is
1493 // unchanged in the smaller source type. Performing the logic in a smaller
1494 // type may provide more information to later folds, and the smaller logic
1495 // instruction may be cheaper (particularly in the case of vectors).
1496 Value *X;
1497 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1498 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1499 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1500 if (ZextTruncC == C) {
1501 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1502 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1503 return new ZExtInst(NewOp, DestTy);
1504 }
1505 }
1506
1507 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1508 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1509 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1510 if (SextTruncC == C) {
1511 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1512 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1513 return new SExtInst(NewOp, DestTy);
1514 }
1515 }
1516
1517 return nullptr;
1518 }
1519
1520 /// Fold {and,or,xor} (cast X), Y.
foldCastedBitwiseLogic(BinaryOperator & I)1521 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1522 auto LogicOpc = I.getOpcode();
1523 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1524
1525 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1526 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1527 if (!Cast0)
1528 return nullptr;
1529
1530 // This must be a cast from an integer or integer vector source type to allow
1531 // transformation of the logic operation to the source type.
1532 Type *DestTy = I.getType();
1533 Type *SrcTy = Cast0->getSrcTy();
1534 if (!SrcTy->isIntOrIntVectorTy())
1535 return nullptr;
1536
1537 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1538 return Ret;
1539
1540 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1541 if (!Cast1)
1542 return nullptr;
1543
1544 // Both operands of the logic operation are casts. The casts must be the
1545 // same kind for reduction.
1546 Instruction::CastOps CastOpcode = Cast0->getOpcode();
1547 if (CastOpcode != Cast1->getOpcode())
1548 return nullptr;
1549
1550 // If the source types do not match, but the casts are matching extends, we
1551 // can still narrow the logic op.
1552 if (SrcTy != Cast1->getSrcTy()) {
1553 Value *X, *Y;
1554 if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
1555 match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
1556 // Cast the narrower source to the wider source type.
1557 unsigned XNumBits = X->getType()->getScalarSizeInBits();
1558 unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1559 if (XNumBits < YNumBits)
1560 X = Builder.CreateCast(CastOpcode, X, Y->getType());
1561 else
1562 Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1563 // Do the logic op in the intermediate width, then widen more.
1564 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
1565 return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1566 }
1567
1568 // Give up for other cast opcodes.
1569 return nullptr;
1570 }
1571
1572 Value *Cast0Src = Cast0->getOperand(0);
1573 Value *Cast1Src = Cast1->getOperand(0);
1574
1575 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1576 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1577 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1578 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1579 I.getName());
1580 return CastInst::Create(CastOpcode, NewOp, DestTy);
1581 }
1582
1583 // For now, only 'and'/'or' have optimizations after this.
1584 if (LogicOpc == Instruction::Xor)
1585 return nullptr;
1586
1587 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1588 // cast is otherwise not optimizable. This happens for vector sexts.
1589 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1590 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1591 if (ICmp0 && ICmp1) {
1592 if (Value *Res =
1593 foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And))
1594 return CastInst::Create(CastOpcode, Res, DestTy);
1595 return nullptr;
1596 }
1597
1598 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1599 // cast is otherwise not optimizable. This happens for vector sexts.
1600 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1601 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1602 if (FCmp0 && FCmp1)
1603 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1604 return CastInst::Create(CastOpcode, R, DestTy);
1605
1606 return nullptr;
1607 }
1608
foldAndToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1609 static Instruction *foldAndToXor(BinaryOperator &I,
1610 InstCombiner::BuilderTy &Builder) {
1611 assert(I.getOpcode() == Instruction::And);
1612 Value *Op0 = I.getOperand(0);
1613 Value *Op1 = I.getOperand(1);
1614 Value *A, *B;
1615
1616 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1617 // (A | B) & ~(A & B) --> A ^ B
1618 // (A | B) & ~(B & A) --> A ^ B
1619 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1620 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1621 return BinaryOperator::CreateXor(A, B);
1622
1623 // (A | ~B) & (~A | B) --> ~(A ^ B)
1624 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1625 // (~B | A) & (~A | B) --> ~(A ^ B)
1626 // (~B | A) & (B | ~A) --> ~(A ^ B)
1627 if (Op0->hasOneUse() || Op1->hasOneUse())
1628 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1629 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1630 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1631
1632 return nullptr;
1633 }
1634
foldOrToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1635 static Instruction *foldOrToXor(BinaryOperator &I,
1636 InstCombiner::BuilderTy &Builder) {
1637 assert(I.getOpcode() == Instruction::Or);
1638 Value *Op0 = I.getOperand(0);
1639 Value *Op1 = I.getOperand(1);
1640 Value *A, *B;
1641
1642 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1643 // (A & B) | ~(A | B) --> ~(A ^ B)
1644 // (A & B) | ~(B | A) --> ~(A ^ B)
1645 if (Op0->hasOneUse() || Op1->hasOneUse())
1646 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1647 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1648 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1649
1650 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1651 // (A ^ B) | ~(A | B) --> ~(A & B)
1652 // (A ^ B) | ~(B | A) --> ~(A & B)
1653 if (Op0->hasOneUse() || Op1->hasOneUse())
1654 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1655 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1656 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1657
1658 // (A & ~B) | (~A & B) --> A ^ B
1659 // (A & ~B) | (B & ~A) --> A ^ B
1660 // (~B & A) | (~A & B) --> A ^ B
1661 // (~B & A) | (B & ~A) --> A ^ B
1662 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1663 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1664 return BinaryOperator::CreateXor(A, B);
1665
1666 return nullptr;
1667 }
1668
1669 /// Return true if a constant shift amount is always less than the specified
1670 /// bit-width. If not, the shift could create poison in the narrower type.
canNarrowShiftAmt(Constant * C,unsigned BitWidth)1671 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1672 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1673 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1674 }
1675
1676 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1677 /// a common zext operand: and (binop (zext X), C), (zext X).
narrowMaskedBinOp(BinaryOperator & And)1678 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1679 // This transform could also apply to {or, and, xor}, but there are better
1680 // folds for those cases, so we don't expect those patterns here. AShr is not
1681 // handled because it should always be transformed to LShr in this sequence.
1682 // The subtract transform is different because it has a constant on the left.
1683 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1684 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1685 Constant *C;
1686 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1687 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1688 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1689 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1690 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1691 return nullptr;
1692
1693 Value *X;
1694 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1695 return nullptr;
1696
1697 Type *Ty = And.getType();
1698 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1699 return nullptr;
1700
1701 // If we're narrowing a shift, the shift amount must be safe (less than the
1702 // width) in the narrower type. If the shift amount is greater, instsimplify
1703 // usually handles that case, but we can't guarantee/assert it.
1704 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1705 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1706 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1707 return nullptr;
1708
1709 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1710 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1711 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1712 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1713 : Builder.CreateBinOp(Opc, X, NewC);
1714 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1715 }
1716
1717 /// Try folding relatively complex patterns for both And and Or operations
1718 /// with all And and Or swapped.
foldComplexAndOrPatterns(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1719 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1720 InstCombiner::BuilderTy &Builder) {
1721 const Instruction::BinaryOps Opcode = I.getOpcode();
1722 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1723
1724 // Flip the logic operation.
1725 const Instruction::BinaryOps FlippedOpcode =
1726 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1727
1728 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1729 Value *A, *B, *C, *X, *Y, *Dummy;
1730
1731 // Match following expressions:
1732 // (~(A | B) & C)
1733 // (~(A & B) | C)
1734 // Captures X = ~(A | B) or ~(A & B)
1735 const auto matchNotOrAnd =
1736 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1737 Value *&X, bool CountUses = false) -> bool {
1738 if (CountUses && !Op->hasOneUse())
1739 return false;
1740
1741 if (match(Op, m_c_BinOp(FlippedOpcode,
1742 m_CombineAnd(m_Value(X),
1743 m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1744 m_C)))
1745 return !CountUses || X->hasOneUse();
1746
1747 return false;
1748 };
1749
1750 // (~(A | B) & C) | ... --> ...
1751 // (~(A & B) | C) & ... --> ...
1752 // TODO: One use checks are conservative. We just need to check that a total
1753 // number of multiple used values does not exceed reduction
1754 // in operations.
1755 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1756 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1757 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1758 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1759 true)) {
1760 Value *Xor = Builder.CreateXor(B, C);
1761 return (Opcode == Instruction::Or)
1762 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1763 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1764 }
1765
1766 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1767 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1768 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
1769 true)) {
1770 Value *Xor = Builder.CreateXor(A, C);
1771 return (Opcode == Instruction::Or)
1772 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1773 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1774 }
1775
1776 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1777 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
1778 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1779 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1780 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1781 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
1782
1783 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
1784 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
1785 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1786 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
1787 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1788 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
1789
1790 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
1791 // Note, the pattern with swapped and/or is not handled because the
1792 // result is more undefined than a source:
1793 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
1794 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
1795 match(Op1, m_OneUse(m_Not(m_CombineAnd(
1796 m_Value(Y),
1797 m_c_BinOp(Opcode, m_Specific(C),
1798 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
1799 // X = ~(A | B)
1800 // Y = (C | (A ^ B)
1801 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
1802 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
1803 }
1804 }
1805
1806 // (~A & B & C) | ... --> ...
1807 // (~A | B | C) | ... --> ...
1808 // TODO: One use checks are conservative. We just need to check that a total
1809 // number of multiple used values does not exceed reduction
1810 // in operations.
1811 if (match(Op0,
1812 m_OneUse(m_c_BinOp(FlippedOpcode,
1813 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
1814 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
1815 match(Op0, m_OneUse(m_c_BinOp(
1816 FlippedOpcode,
1817 m_c_BinOp(FlippedOpcode, m_Value(C),
1818 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
1819 m_Value(B))))) {
1820 // X = ~A
1821 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
1822 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
1823 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
1824 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
1825 m_Specific(C))))) ||
1826 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1827 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
1828 m_Specific(A))))) ||
1829 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1830 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
1831 m_Specific(B)))))) {
1832 Value *Xor = Builder.CreateXor(B, C);
1833 return (Opcode == Instruction::Or)
1834 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
1835 : BinaryOperator::CreateOr(Xor, X);
1836 }
1837
1838 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
1839 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
1840 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1841 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
1842 return BinaryOperator::Create(
1843 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
1844 X);
1845
1846 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
1847 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
1848 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1849 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1850 return BinaryOperator::Create(
1851 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
1852 X);
1853 }
1854
1855 return nullptr;
1856 }
1857
1858 /// Try to reassociate a pair of binops so that values with one use only are
1859 /// part of the same instruction. This may enable folds that are limited with
1860 /// multi-use restrictions and makes it more likely to match other patterns that
1861 /// are looking for a common operand.
reassociateForUses(BinaryOperator & BO,InstCombinerImpl::BuilderTy & Builder)1862 static Instruction *reassociateForUses(BinaryOperator &BO,
1863 InstCombinerImpl::BuilderTy &Builder) {
1864 Instruction::BinaryOps Opcode = BO.getOpcode();
1865 Value *X, *Y, *Z;
1866 if (match(&BO,
1867 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
1868 m_OneUse(m_Value(Z))))) {
1869 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
1870 // (X op Y) op Z --> (Y op Z) op X
1871 if (!X->hasOneUse()) {
1872 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
1873 return BinaryOperator::Create(Opcode, YZ, X);
1874 }
1875 // (X op Y) op Z --> (X op Z) op Y
1876 if (!Y->hasOneUse()) {
1877 Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
1878 return BinaryOperator::Create(Opcode, XZ, Y);
1879 }
1880 }
1881 }
1882
1883 return nullptr;
1884 }
1885
1886 // Match
1887 // (X + C2) | C
1888 // (X + C2) ^ C
1889 // (X + C2) & C
1890 // and convert to do the bitwise logic first:
1891 // (X | C) + C2
1892 // (X ^ C) + C2
1893 // (X & C) + C2
1894 // iff bits affected by logic op are lower than last bit affected by math op
canonicalizeLogicFirst(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1895 static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
1896 InstCombiner::BuilderTy &Builder) {
1897 Type *Ty = I.getType();
1898 Instruction::BinaryOps OpC = I.getOpcode();
1899 Value *Op0 = I.getOperand(0);
1900 Value *Op1 = I.getOperand(1);
1901 Value *X;
1902 const APInt *C, *C2;
1903
1904 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
1905 match(Op1, m_APInt(C))))
1906 return nullptr;
1907
1908 unsigned Width = Ty->getScalarSizeInBits();
1909 unsigned LastOneMath = Width - C2->countTrailingZeros();
1910
1911 switch (OpC) {
1912 case Instruction::And:
1913 if (C->countLeadingOnes() < LastOneMath)
1914 return nullptr;
1915 break;
1916 case Instruction::Xor:
1917 case Instruction::Or:
1918 if (C->countLeadingZeros() < LastOneMath)
1919 return nullptr;
1920 break;
1921 default:
1922 llvm_unreachable("Unexpected BinaryOp!");
1923 }
1924
1925 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
1926 return BinaryOperator::CreateAdd(NewBinOp, ConstantInt::get(Ty, *C2));
1927 }
1928
1929 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1930 // here. We should standardize that construct where it is needed or choose some
1931 // other way to ensure that commutated variants of patterns are not missed.
visitAnd(BinaryOperator & I)1932 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1933 Type *Ty = I.getType();
1934
1935 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
1936 SQ.getWithInstruction(&I)))
1937 return replaceInstUsesWith(I, V);
1938
1939 if (SimplifyAssociativeOrCommutative(I))
1940 return &I;
1941
1942 if (Instruction *X = foldVectorBinop(I))
1943 return X;
1944
1945 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1946 return Phi;
1947
1948 // See if we can simplify any instructions used by the instruction whose sole
1949 // purpose is to compute bits we don't care about.
1950 if (SimplifyDemandedInstructionBits(I))
1951 return &I;
1952
1953 // Do this before using distributive laws to catch simple and/or/not patterns.
1954 if (Instruction *Xor = foldAndToXor(I, Builder))
1955 return Xor;
1956
1957 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
1958 return X;
1959
1960 // (A|B)&(A|C) -> A|(B&C) etc
1961 if (Value *V = foldUsingDistributiveLaws(I))
1962 return replaceInstUsesWith(I, V);
1963
1964 if (Value *V = SimplifyBSwap(I, Builder))
1965 return replaceInstUsesWith(I, V);
1966
1967 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1968
1969 Value *X, *Y;
1970 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1971 match(Op1, m_One())) {
1972 // (1 << X) & 1 --> zext(X == 0)
1973 // (1 >> X) & 1 --> zext(X == 0)
1974 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1975 return new ZExtInst(IsZero, Ty);
1976 }
1977
1978 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
1979 Value *Neg;
1980 if (match(&I,
1981 m_c_And(m_CombineAnd(m_Value(Neg),
1982 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
1983 m_Value(Y)))) {
1984 Value *Cmp = Builder.CreateIsNull(Neg);
1985 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
1986 }
1987
1988 const APInt *C;
1989 if (match(Op1, m_APInt(C))) {
1990 const APInt *XorC;
1991 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1992 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1993 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1994 Value *And = Builder.CreateAnd(X, Op1);
1995 And->takeName(Op0);
1996 return BinaryOperator::CreateXor(And, NewC);
1997 }
1998
1999 const APInt *OrC;
2000 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2001 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2002 // NOTE: This reduces the number of bits set in the & mask, which
2003 // can expose opportunities for store narrowing for scalars.
2004 // NOTE: SimplifyDemandedBits should have already removed bits from C1
2005 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2006 // above, but this feels safer.
2007 APInt Together = *C & *OrC;
2008 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2009 And->takeName(Op0);
2010 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2011 }
2012
2013 unsigned Width = Ty->getScalarSizeInBits();
2014 const APInt *ShiftC;
2015 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2016 ShiftC->ult(Width)) {
2017 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2018 // We are clearing high bits that were potentially set by sext+ashr:
2019 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2020 Value *Sext = Builder.CreateSExt(X, Ty);
2021 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2022 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2023 }
2024 }
2025
2026 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2027 // and (ashr X, ShiftC), C --> lshr X, ShiftC
2028 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2029 C->isMask(Width - ShiftC->getZExtValue()))
2030 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2031
2032 const APInt *AddC;
2033 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2034 // If we add zeros to every bit below a mask, the add has no effect:
2035 // (X + AddC) & LowMaskC --> X & LowMaskC
2036 unsigned Ctlz = C->countLeadingZeros();
2037 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
2038 if ((*AddC & LowMask).isZero())
2039 return BinaryOperator::CreateAnd(X, Op1);
2040
2041 // If we are masking the result of the add down to exactly one bit and
2042 // the constant we are adding has no bits set below that bit, then the
2043 // add is flipping a single bit. Example:
2044 // (X + 4) & 4 --> (X & 4) ^ 4
2045 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2046 assert((*C & *AddC) != 0 && "Expected common bit");
2047 Value *NewAnd = Builder.CreateAnd(X, Op1);
2048 return BinaryOperator::CreateXor(NewAnd, Op1);
2049 }
2050 }
2051
2052 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2053 // bitwidth of X and OP behaves well when given trunc(C1) and X.
2054 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2055 switch (B->getOpcode()) {
2056 case Instruction::Xor:
2057 case Instruction::Or:
2058 case Instruction::Mul:
2059 case Instruction::Add:
2060 case Instruction::Sub:
2061 return true;
2062 default:
2063 return false;
2064 }
2065 };
2066 BinaryOperator *BO;
2067 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2068 Instruction::BinaryOps BOpcode = BO->getOpcode();
2069 Value *X;
2070 const APInt *C1;
2071 // TODO: The one-use restrictions could be relaxed a little if the AND
2072 // is going to be removed.
2073 // Try to narrow the 'and' and a binop with constant operand:
2074 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2075 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2076 C->isIntN(X->getType()->getScalarSizeInBits())) {
2077 unsigned XWidth = X->getType()->getScalarSizeInBits();
2078 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2079 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2080 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2081 : Builder.CreateBinOp(BOpcode, TruncC1, X);
2082 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2083 Value *And = Builder.CreateAnd(BinOp, TruncC);
2084 return new ZExtInst(And, Ty);
2085 }
2086
2087 // Similar to above: if the mask matches the zext input width, then the
2088 // 'and' can be eliminated, so we can truncate the other variable op:
2089 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2090 if (isa<Instruction>(BO->getOperand(0)) &&
2091 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2092 C->isMask(X->getType()->getScalarSizeInBits())) {
2093 Y = BO->getOperand(1);
2094 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2095 Value *NewBO =
2096 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2097 return new ZExtInst(NewBO, Ty);
2098 }
2099 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2100 if (isa<Instruction>(BO->getOperand(1)) &&
2101 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2102 C->isMask(X->getType()->getScalarSizeInBits())) {
2103 Y = BO->getOperand(0);
2104 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2105 Value *NewBO =
2106 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2107 return new ZExtInst(NewBO, Ty);
2108 }
2109 }
2110
2111 // This is intentionally placed after the narrowing transforms for
2112 // efficiency (transform directly to the narrow logic op if possible).
2113 // If the mask is only needed on one incoming arm, push the 'and' op up.
2114 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2115 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2116 APInt NotAndMask(~(*C));
2117 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2118 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
2119 // Not masking anything out for the LHS, move mask to RHS.
2120 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2121 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2122 return BinaryOperator::Create(BinOp, X, NewRHS);
2123 }
2124 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
2125 // Not masking anything out for the RHS, move mask to LHS.
2126 // and ({x}or X, Y), C --> {x}or (and X, C), Y
2127 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2128 return BinaryOperator::Create(BinOp, NewLHS, Y);
2129 }
2130 }
2131
2132 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2133 // constant, test if the shift amount equals the offset bit index:
2134 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2135 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2136 if (C->isPowerOf2() &&
2137 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2138 int Log2ShiftC = ShiftC->exactLogBase2();
2139 int Log2C = C->exactLogBase2();
2140 bool IsShiftLeft =
2141 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2142 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2143 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2144 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2145 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2146 ConstantInt::getNullValue(Ty));
2147 }
2148
2149 Constant *C1, *C2;
2150 const APInt *C3 = C;
2151 Value *X;
2152 if (C3->isPowerOf2()) {
2153 Constant *Log2C3 = ConstantInt::get(Ty, C3->countTrailingZeros());
2154 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
2155 m_ImmConstant(C2)))) &&
2156 match(C1, m_Power2())) {
2157 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2158 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2159 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
2160 if (KnownLShrc.getMaxValue().ult(Width)) {
2161 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2162 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2163 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2164 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2165 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2166 ConstantInt::getNullValue(Ty));
2167 }
2168 }
2169
2170 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
2171 m_ImmConstant(C2)))) &&
2172 match(C1, m_Power2())) {
2173 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2174 Constant *Cmp =
2175 ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
2176 if (Cmp->isZeroValue()) {
2177 // iff C1,C3 is pow2 and Log2(C3) >= C2:
2178 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2179 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2180 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2181 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2182 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2183 ConstantInt::getNullValue(Ty));
2184 }
2185 }
2186 }
2187 }
2188
2189 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2190 m_SignMask())) &&
2191 match(Y, m_SpecificInt_ICMP(
2192 ICmpInst::Predicate::ICMP_EQ,
2193 APInt(Ty->getScalarSizeInBits(),
2194 Ty->getScalarSizeInBits() -
2195 X->getType()->getScalarSizeInBits())))) {
2196 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2197 auto *SanitizedSignMask = cast<Constant>(Op1);
2198 // We must be careful with the undef elements of the sign bit mask, however:
2199 // the mask elt can be undef iff the shift amount for that lane was undef,
2200 // otherwise we need to sanitize undef masks to zero.
2201 SanitizedSignMask = Constant::replaceUndefsWith(
2202 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
2203 SanitizedSignMask =
2204 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2205 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2206 }
2207
2208 if (Instruction *Z = narrowMaskedBinOp(I))
2209 return Z;
2210
2211 if (I.getType()->isIntOrIntVectorTy(1)) {
2212 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2213 if (auto *I =
2214 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2215 return I;
2216 }
2217 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2218 if (auto *I =
2219 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2220 return I;
2221 }
2222 }
2223
2224 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2225 return FoldedLogic;
2226
2227 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2228 return DeMorgan;
2229
2230 {
2231 Value *A, *B, *C;
2232 // A & (A ^ B) --> A & ~B
2233 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2234 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2235 // (A ^ B) & A --> A & ~B
2236 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2237 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2238
2239 // A & ~(A ^ B) --> A & B
2240 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2241 return BinaryOperator::CreateAnd(Op0, B);
2242 // ~(A ^ B) & A --> A & B
2243 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2244 return BinaryOperator::CreateAnd(Op1, B);
2245
2246 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2247 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2248 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2249 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2250 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
2251
2252 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2253 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2254 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2255 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2256 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2257
2258 // (A | B) & (~A ^ B) -> A & B
2259 // (A | B) & (B ^ ~A) -> A & B
2260 // (B | A) & (~A ^ B) -> A & B
2261 // (B | A) & (B ^ ~A) -> A & B
2262 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2263 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2264 return BinaryOperator::CreateAnd(A, B);
2265
2266 // (~A ^ B) & (A | B) -> A & B
2267 // (~A ^ B) & (B | A) -> A & B
2268 // (B ^ ~A) & (A | B) -> A & B
2269 // (B ^ ~A) & (B | A) -> A & B
2270 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2271 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2272 return BinaryOperator::CreateAnd(A, B);
2273
2274 // (~A | B) & (A ^ B) -> ~A & B
2275 // (~A | B) & (B ^ A) -> ~A & B
2276 // (B | ~A) & (A ^ B) -> ~A & B
2277 // (B | ~A) & (B ^ A) -> ~A & B
2278 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2279 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2280 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2281
2282 // (A ^ B) & (~A | B) -> ~A & B
2283 // (B ^ A) & (~A | B) -> ~A & B
2284 // (A ^ B) & (B | ~A) -> ~A & B
2285 // (B ^ A) & (B | ~A) -> ~A & B
2286 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2287 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2288 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2289 }
2290
2291 {
2292 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2293 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2294 if (LHS && RHS)
2295 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2296 return replaceInstUsesWith(I, Res);
2297
2298 // TODO: Make this recursive; it's a little tricky because an arbitrary
2299 // number of 'and' instructions might have to be created.
2300 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2301 bool IsLogical = isa<SelectInst>(Op1);
2302 // LHS & (X && Y) --> (LHS && X) && Y
2303 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2304 if (Value *Res =
2305 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2306 return replaceInstUsesWith(I, IsLogical
2307 ? Builder.CreateLogicalAnd(Res, Y)
2308 : Builder.CreateAnd(Res, Y));
2309 // LHS & (X && Y) --> X && (LHS & Y)
2310 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2311 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2312 /* IsLogical */ false))
2313 return replaceInstUsesWith(I, IsLogical
2314 ? Builder.CreateLogicalAnd(X, Res)
2315 : Builder.CreateAnd(X, Res));
2316 }
2317 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2318 bool IsLogical = isa<SelectInst>(Op0);
2319 // (X && Y) & RHS --> (X && RHS) && Y
2320 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2321 if (Value *Res =
2322 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2323 return replaceInstUsesWith(I, IsLogical
2324 ? Builder.CreateLogicalAnd(Res, Y)
2325 : Builder.CreateAnd(Res, Y));
2326 // (X && Y) & RHS --> X && (Y & RHS)
2327 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2328 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2329 /* IsLogical */ false))
2330 return replaceInstUsesWith(I, IsLogical
2331 ? Builder.CreateLogicalAnd(X, Res)
2332 : Builder.CreateAnd(X, Res));
2333 }
2334 }
2335
2336 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2337 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2338 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2339 return replaceInstUsesWith(I, Res);
2340
2341 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2342 return FoldedFCmps;
2343
2344 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2345 return CastedAnd;
2346
2347 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2348 return Sel;
2349
2350 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2351 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2352 // with binop identity constant. But creating a select with non-constant
2353 // arm may not be reversible due to poison semantics. Is that a good
2354 // canonicalization?
2355 Value *A;
2356 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2357 A->getType()->isIntOrIntVectorTy(1))
2358 return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
2359 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2360 A->getType()->isIntOrIntVectorTy(1))
2361 return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
2362
2363 // Similarly, a 'not' of the bool translates to a swap of the select arms:
2364 // ~sext(A) & Op1 --> A ? 0 : Op1
2365 // Op0 & ~sext(A) --> A ? 0 : Op0
2366 if (match(Op0, m_Not(m_SExt(m_Value(A)))) &&
2367 A->getType()->isIntOrIntVectorTy(1))
2368 return SelectInst::Create(A, Constant::getNullValue(Ty), Op1);
2369 if (match(Op1, m_Not(m_SExt(m_Value(A)))) &&
2370 A->getType()->isIntOrIntVectorTy(1))
2371 return SelectInst::Create(A, Constant::getNullValue(Ty), Op0);
2372
2373 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2374 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2375 m_AShr(m_Value(X), m_APIntAllowUndef(C)))),
2376 m_Value(Y))) &&
2377 *C == X->getType()->getScalarSizeInBits() - 1) {
2378 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2379 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2380 }
2381 // If there's a 'not' of the shifted value, swap the select operands:
2382 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2383 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2384 m_Not(m_AShr(m_Value(X), m_APIntAllowUndef(C))))),
2385 m_Value(Y))) &&
2386 *C == X->getType()->getScalarSizeInBits() - 1) {
2387 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2388 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2389 }
2390
2391 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2392 if (sinkNotIntoOtherHandOfLogicalOp(I))
2393 return &I;
2394
2395 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2396 PHINode *PN = nullptr;
2397 Value *Start = nullptr, *Step = nullptr;
2398 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2399 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2400
2401 if (Instruction *R = reassociateForUses(I, Builder))
2402 return R;
2403
2404 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2405 return Canonicalized;
2406
2407 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2408 return Folded;
2409
2410 return nullptr;
2411 }
2412
matchBSwapOrBitReverse(Instruction & I,bool MatchBSwaps,bool MatchBitReversals)2413 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2414 bool MatchBSwaps,
2415 bool MatchBitReversals) {
2416 SmallVector<Instruction *, 4> Insts;
2417 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2418 Insts))
2419 return nullptr;
2420 Instruction *LastInst = Insts.pop_back_val();
2421 LastInst->removeFromParent();
2422
2423 for (auto *Inst : Insts)
2424 Worklist.push(Inst);
2425 return LastInst;
2426 }
2427
2428 /// Match UB-safe variants of the funnel shift intrinsic.
matchFunnelShift(Instruction & Or,InstCombinerImpl & IC)2429 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2430 // TODO: Can we reduce the code duplication between this and the related
2431 // rotate matching code under visitSelect and visitTrunc?
2432 unsigned Width = Or.getType()->getScalarSizeInBits();
2433
2434 // First, find an or'd pair of opposite shifts:
2435 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2436 BinaryOperator *Or0, *Or1;
2437 if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2438 !match(Or.getOperand(1), m_BinOp(Or1)))
2439 return nullptr;
2440
2441 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2442 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2443 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2444 Or0->getOpcode() == Or1->getOpcode())
2445 return nullptr;
2446
2447 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2448 if (Or0->getOpcode() == BinaryOperator::LShr) {
2449 std::swap(Or0, Or1);
2450 std::swap(ShVal0, ShVal1);
2451 std::swap(ShAmt0, ShAmt1);
2452 }
2453 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2454 Or1->getOpcode() == BinaryOperator::LShr &&
2455 "Illegal or(shift,shift) pair");
2456
2457 // Match the shift amount operands for a funnel shift pattern. This always
2458 // matches a subtraction on the R operand.
2459 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2460 // Check for constant shift amounts that sum to the bitwidth.
2461 const APInt *LI, *RI;
2462 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2463 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2464 return ConstantInt::get(L->getType(), *LI);
2465
2466 Constant *LC, *RC;
2467 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2468 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2469 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2470 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2471 return ConstantExpr::mergeUndefsWith(LC, RC);
2472
2473 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2474 // We limit this to X < Width in case the backend re-expands the intrinsic,
2475 // and has to reintroduce a shift modulo operation (InstCombine might remove
2476 // it after this fold). This still doesn't guarantee that the final codegen
2477 // will match this original pattern.
2478 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2479 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2480 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2481 }
2482
2483 // For non-constant cases, the following patterns currently only work for
2484 // rotation patterns.
2485 // TODO: Add general funnel-shift compatible patterns.
2486 if (ShVal0 != ShVal1)
2487 return nullptr;
2488
2489 // For non-constant cases we don't support non-pow2 shift masks.
2490 // TODO: Is it worth matching urem as well?
2491 if (!isPowerOf2_32(Width))
2492 return nullptr;
2493
2494 // The shift amount may be masked with negation:
2495 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2496 Value *X;
2497 unsigned Mask = Width - 1;
2498 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2499 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2500 return X;
2501
2502 // Similar to above, but the shift amount may be extended after masking,
2503 // so return the extended value as the parameter for the intrinsic.
2504 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2505 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2506 m_SpecificInt(Mask))))
2507 return L;
2508
2509 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2510 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2511 return L;
2512
2513 return nullptr;
2514 };
2515
2516 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2517 bool IsFshl = true; // Sub on LSHR.
2518 if (!ShAmt) {
2519 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2520 IsFshl = false; // Sub on SHL.
2521 }
2522 if (!ShAmt)
2523 return nullptr;
2524
2525 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2526 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2527 return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
2528 }
2529
2530 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
matchOrConcat(Instruction & Or,InstCombiner::BuilderTy & Builder)2531 static Instruction *matchOrConcat(Instruction &Or,
2532 InstCombiner::BuilderTy &Builder) {
2533 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2534 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2535 Type *Ty = Or.getType();
2536
2537 unsigned Width = Ty->getScalarSizeInBits();
2538 if ((Width & 1) != 0)
2539 return nullptr;
2540 unsigned HalfWidth = Width / 2;
2541
2542 // Canonicalize zext (lower half) to LHS.
2543 if (!isa<ZExtInst>(Op0))
2544 std::swap(Op0, Op1);
2545
2546 // Find lower/upper half.
2547 Value *LowerSrc, *ShlVal, *UpperSrc;
2548 const APInt *C;
2549 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2550 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2551 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2552 return nullptr;
2553 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2554 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2555 return nullptr;
2556
2557 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2558 Value *NewLower = Builder.CreateZExt(Lo, Ty);
2559 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2560 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2561 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2562 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2563 return Builder.CreateCall(F, BinOp);
2564 };
2565
2566 // BSWAP: Push the concat down, swapping the lower/upper sources.
2567 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2568 Value *LowerBSwap, *UpperBSwap;
2569 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2570 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2571 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2572
2573 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2574 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2575 Value *LowerBRev, *UpperBRev;
2576 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2577 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2578 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2579
2580 return nullptr;
2581 }
2582
2583 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
areInverseVectorBitmasks(Constant * C1,Constant * C2)2584 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2585 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2586 for (unsigned i = 0; i != NumElts; ++i) {
2587 Constant *EltC1 = C1->getAggregateElement(i);
2588 Constant *EltC2 = C2->getAggregateElement(i);
2589 if (!EltC1 || !EltC2)
2590 return false;
2591
2592 // One element must be all ones, and the other must be all zeros.
2593 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2594 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2595 return false;
2596 }
2597 return true;
2598 }
2599
2600 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2601 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2602 /// B, it can be used as the condition operand of a select instruction.
2603 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
getSelectCondition(Value * A,Value * B,bool ABIsTheSame)2604 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
2605 bool ABIsTheSame) {
2606 // We may have peeked through bitcasts in the caller.
2607 // Exit immediately if we don't have (vector) integer types.
2608 Type *Ty = A->getType();
2609 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2610 return nullptr;
2611
2612 // If A is the 'not' operand of B and has enough signbits, we have our answer.
2613 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
2614 // If these are scalars or vectors of i1, A can be used directly.
2615 if (Ty->isIntOrIntVectorTy(1))
2616 return A;
2617
2618 // If we look through a vector bitcast, the caller will bitcast the operands
2619 // to match the condition's number of bits (N x i1).
2620 // To make this poison-safe, disallow bitcast from wide element to narrow
2621 // element. That could allow poison in lanes where it was not present in the
2622 // original code.
2623 A = peekThroughBitcast(A);
2624 if (A->getType()->isIntOrIntVectorTy()) {
2625 unsigned NumSignBits = ComputeNumSignBits(A);
2626 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
2627 NumSignBits <= Ty->getScalarSizeInBits())
2628 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
2629 }
2630 return nullptr;
2631 }
2632
2633 // TODO: add support for sext and constant case
2634 if (ABIsTheSame)
2635 return nullptr;
2636
2637 // If both operands are constants, see if the constants are inverse bitmasks.
2638 Constant *AConst, *BConst;
2639 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2640 if (AConst == ConstantExpr::getNot(BConst) &&
2641 ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
2642 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2643
2644 // Look for more complex patterns. The 'not' op may be hidden behind various
2645 // casts. Look through sexts and bitcasts to find the booleans.
2646 Value *Cond;
2647 Value *NotB;
2648 if (match(A, m_SExt(m_Value(Cond))) &&
2649 Cond->getType()->isIntOrIntVectorTy(1)) {
2650 // A = sext i1 Cond; B = sext (not (i1 Cond))
2651 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
2652 return Cond;
2653
2654 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
2655 // TODO: The one-use checks are unnecessary or misplaced. If the caller
2656 // checked for uses on logic ops/casts, that should be enough to
2657 // make this transform worthwhile.
2658 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2659 NotB = peekThroughBitcast(NotB, true);
2660 if (match(NotB, m_SExt(m_Specific(Cond))))
2661 return Cond;
2662 }
2663 }
2664
2665 // All scalar (and most vector) possibilities should be handled now.
2666 // Try more matches that only apply to non-splat constant vectors.
2667 if (!Ty->isVectorTy())
2668 return nullptr;
2669
2670 // If both operands are xor'd with constants using the same sexted boolean
2671 // operand, see if the constants are inverse bitmasks.
2672 // TODO: Use ConstantExpr::getNot()?
2673 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2674 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2675 Cond->getType()->isIntOrIntVectorTy(1) &&
2676 areInverseVectorBitmasks(AConst, BConst)) {
2677 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2678 return Builder.CreateXor(Cond, AConst);
2679 }
2680 return nullptr;
2681 }
2682
2683 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2684 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2685 /// When InvertFalseVal is set to true, we try to match the pattern
2686 /// where we have peeked through a 'not' op and A and B are the same:
2687 /// (A & C) | ~(A | D) --> (A & C) | (~A & ~D) --> A' ? C : ~D
matchSelectFromAndOr(Value * A,Value * C,Value * B,Value * D,bool InvertFalseVal)2688 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2689 Value *D, bool InvertFalseVal) {
2690 // The potential condition of the select may be bitcasted. In that case, look
2691 // through its bitcast and the corresponding bitcast of the 'not' condition.
2692 Type *OrigType = A->getType();
2693 A = peekThroughBitcast(A, true);
2694 B = peekThroughBitcast(B, true);
2695 if (Value *Cond = getSelectCondition(A, B, InvertFalseVal)) {
2696 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2697 // If this is a vector, we may need to cast to match the condition's length.
2698 // The bitcasts will either all exist or all not exist. The builder will
2699 // not create unnecessary casts if the types already match.
2700 Type *SelTy = A->getType();
2701 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
2702 // For a fixed or scalable vector get N from <{vscale x} N x iM>
2703 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
2704 // For a fixed or scalable vector, get the size in bits of N x iM; for a
2705 // scalar this is just M.
2706 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
2707 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
2708 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
2709 }
2710 Value *BitcastC = Builder.CreateBitCast(C, SelTy);
2711 if (InvertFalseVal)
2712 D = Builder.CreateNot(D);
2713 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
2714 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2715 return Builder.CreateBitCast(Select, OrigType);
2716 }
2717
2718 return nullptr;
2719 }
2720
2721 // (icmp eq X, 0) | (icmp ult Other, X) -> (icmp ule Other, X-1)
2722 // (icmp ne X, 0) & (icmp uge Other, X) -> (icmp ugt Other, X-1)
foldAndOrOfICmpEqZeroAndICmp(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,bool IsLogical,IRBuilderBase & Builder)2723 static Value *foldAndOrOfICmpEqZeroAndICmp(ICmpInst *LHS, ICmpInst *RHS,
2724 bool IsAnd, bool IsLogical,
2725 IRBuilderBase &Builder) {
2726 ICmpInst::Predicate LPred =
2727 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
2728 ICmpInst::Predicate RPred =
2729 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
2730 Value *LHS0 = LHS->getOperand(0);
2731 if (LPred != ICmpInst::ICMP_EQ || !match(LHS->getOperand(1), m_Zero()) ||
2732 !LHS0->getType()->isIntOrIntVectorTy() ||
2733 !(LHS->hasOneUse() || RHS->hasOneUse()))
2734 return nullptr;
2735
2736 Value *Other;
2737 if (RPred == ICmpInst::ICMP_ULT && RHS->getOperand(1) == LHS0)
2738 Other = RHS->getOperand(0);
2739 else if (RPred == ICmpInst::ICMP_UGT && RHS->getOperand(0) == LHS0)
2740 Other = RHS->getOperand(1);
2741 else
2742 return nullptr;
2743
2744 if (IsLogical)
2745 Other = Builder.CreateFreeze(Other);
2746 return Builder.CreateICmp(
2747 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
2748 Builder.CreateAdd(LHS0, Constant::getAllOnesValue(LHS0->getType())),
2749 Other);
2750 }
2751
2752 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
2753 /// If IsLogical is true, then the and/or is in select form and the transform
2754 /// must be poison-safe.
foldAndOrOfICmps(ICmpInst * LHS,ICmpInst * RHS,Instruction & I,bool IsAnd,bool IsLogical)2755 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2756 Instruction &I, bool IsAnd,
2757 bool IsLogical) {
2758 const SimplifyQuery Q = SQ.getWithInstruction(&I);
2759
2760 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
2761 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
2762 // if K1 and K2 are a one-bit mask.
2763 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
2764 return V;
2765
2766 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2767 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2768 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2769 const APInt *LHSC = nullptr, *RHSC = nullptr;
2770 match(LHS1, m_APInt(LHSC));
2771 match(RHS1, m_APInt(RHSC));
2772
2773 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2774 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2775 if (predicatesFoldable(PredL, PredR)) {
2776 if (LHS0 == RHS1 && LHS1 == RHS0) {
2777 PredL = ICmpInst::getSwappedPredicate(PredL);
2778 std::swap(LHS0, LHS1);
2779 }
2780 if (LHS0 == RHS0 && LHS1 == RHS1) {
2781 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
2782 : getICmpCode(PredL) | getICmpCode(PredR);
2783 bool IsSigned = LHS->isSigned() || RHS->isSigned();
2784 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2785 }
2786 }
2787
2788 // handle (roughly):
2789 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2790 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
2791 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
2792 return V;
2793
2794 if (Value *V =
2795 foldAndOrOfICmpEqZeroAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
2796 return V;
2797 // We can treat logical like bitwise here, because both operands are used on
2798 // the LHS, and as such poison from both will propagate.
2799 if (Value *V = foldAndOrOfICmpEqZeroAndICmp(RHS, LHS, IsAnd,
2800 /*IsLogical*/ false, Builder))
2801 return V;
2802
2803 if (Value *V =
2804 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
2805 return V;
2806 // We can convert this case to bitwise and, because both operands are used
2807 // on the LHS, and as such poison from both will propagate.
2808 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
2809 /*IsLogical*/ false, Builder, Q))
2810 return V;
2811
2812 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
2813 return V;
2814 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
2815 return V;
2816
2817 // TODO: One of these directions is fine with logical and/or, the other could
2818 // be supported by inserting freeze.
2819 if (!IsLogical) {
2820 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2821 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
2822 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
2823 return V;
2824
2825 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2826 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
2827 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
2828 return V;
2829 }
2830
2831 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
2832 if (IsAnd && !IsLogical)
2833 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
2834 return V;
2835
2836 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
2837 return V;
2838
2839 // TODO: Verify whether this is safe for logical and/or.
2840 if (!IsLogical) {
2841 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
2842 return X;
2843 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
2844 return X;
2845 }
2846
2847 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
2848 return X;
2849
2850 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2851 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
2852 // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
2853 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2854 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
2855 LHS0->getType() == RHS0->getType()) {
2856 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2857 return Builder.CreateICmp(PredL, NewOr,
2858 Constant::getNullValue(NewOr->getType()));
2859 }
2860
2861 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2862 if (!LHSC || !RHSC)
2863 return nullptr;
2864
2865 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
2866 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
2867 // where CMAX is the all ones value for the truncated type,
2868 // iff the lower bits of C2 and CA are zero.
2869 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2870 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
2871 Value *V;
2872 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
2873
2874 // (trunc x) == C1 & (and x, CA) == C2
2875 // (and x, CA) == C2 & (trunc x) == C1
2876 if (match(RHS0, m_Trunc(m_Value(V))) &&
2877 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2878 SmallC = RHSC;
2879 BigC = LHSC;
2880 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
2881 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2882 SmallC = LHSC;
2883 BigC = RHSC;
2884 }
2885
2886 if (SmallC && BigC) {
2887 unsigned BigBitSize = BigC->getBitWidth();
2888 unsigned SmallBitSize = SmallC->getBitWidth();
2889
2890 // Check that the low bits are zero.
2891 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
2892 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
2893 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
2894 APInt N = SmallC->zext(BigBitSize) | *BigC;
2895 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
2896 return Builder.CreateICmp(PredL, NewAnd, NewVal);
2897 }
2898 }
2899 }
2900
2901 // Match naive pattern (and its inverted form) for checking if two values
2902 // share same sign. An example of the pattern:
2903 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
2904 // Inverted form (example):
2905 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
2906 bool TrueIfSignedL, TrueIfSignedR;
2907 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
2908 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
2909 (RHS->hasOneUse() || LHS->hasOneUse())) {
2910 Value *X, *Y;
2911 if (IsAnd) {
2912 if ((TrueIfSignedL && !TrueIfSignedR &&
2913 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2914 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
2915 (!TrueIfSignedL && TrueIfSignedR &&
2916 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2917 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
2918 Value *NewXor = Builder.CreateXor(X, Y);
2919 return Builder.CreateIsNeg(NewXor);
2920 }
2921 } else {
2922 if ((TrueIfSignedL && !TrueIfSignedR &&
2923 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2924 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
2925 (!TrueIfSignedL && TrueIfSignedR &&
2926 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2927 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
2928 Value *NewXor = Builder.CreateXor(X, Y);
2929 return Builder.CreateIsNotNeg(NewXor);
2930 }
2931 }
2932 }
2933
2934 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
2935 }
2936
2937 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2938 // here. We should standardize that construct where it is needed or choose some
2939 // other way to ensure that commutated variants of patterns are not missed.
visitOr(BinaryOperator & I)2940 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2941 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
2942 SQ.getWithInstruction(&I)))
2943 return replaceInstUsesWith(I, V);
2944
2945 if (SimplifyAssociativeOrCommutative(I))
2946 return &I;
2947
2948 if (Instruction *X = foldVectorBinop(I))
2949 return X;
2950
2951 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2952 return Phi;
2953
2954 // See if we can simplify any instructions used by the instruction whose sole
2955 // purpose is to compute bits we don't care about.
2956 if (SimplifyDemandedInstructionBits(I))
2957 return &I;
2958
2959 // Do this before using distributive laws to catch simple and/or/not patterns.
2960 if (Instruction *Xor = foldOrToXor(I, Builder))
2961 return Xor;
2962
2963 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2964 return X;
2965
2966 // (A&B)|(A&C) -> A&(B|C) etc
2967 if (Value *V = foldUsingDistributiveLaws(I))
2968 return replaceInstUsesWith(I, V);
2969
2970 if (Value *V = SimplifyBSwap(I, Builder))
2971 return replaceInstUsesWith(I, V);
2972
2973 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2974 Type *Ty = I.getType();
2975 if (Ty->isIntOrIntVectorTy(1)) {
2976 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2977 if (auto *I =
2978 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
2979 return I;
2980 }
2981 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2982 if (auto *I =
2983 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
2984 return I;
2985 }
2986 }
2987
2988 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2989 return FoldedLogic;
2990
2991 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2992 /*MatchBitReversals*/ true))
2993 return BitOp;
2994
2995 if (Instruction *Funnel = matchFunnelShift(I, *this))
2996 return Funnel;
2997
2998 if (Instruction *Concat = matchOrConcat(I, Builder))
2999 return replaceInstUsesWith(I, Concat);
3000
3001 Value *X, *Y;
3002 const APInt *CV;
3003 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
3004 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
3005 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
3006 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
3007 Value *Or = Builder.CreateOr(X, Y);
3008 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
3009 }
3010
3011 // If the operands have no common bits set:
3012 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
3013 if (match(&I,
3014 m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
3015 haveNoCommonBitsSet(Op0, Op1, DL)) {
3016 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
3017 return BinaryOperator::CreateMul(X, IncrementY);
3018 }
3019
3020 // X | (X ^ Y) --> X | Y (4 commuted patterns)
3021 if (match(&I, m_c_Or(m_Value(X), m_c_Xor(m_Deferred(X), m_Value(Y)))))
3022 return BinaryOperator::CreateOr(X, Y);
3023
3024 // (A & C) | (B & D)
3025 Value *A, *B, *C, *D;
3026 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3027 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3028
3029 // (A & C0) | (B & C1)
3030 const APInt *C0, *C1;
3031 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
3032 Value *X;
3033 if (*C0 == ~*C1) {
3034 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
3035 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
3036 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
3037 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
3038 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
3039 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
3040
3041 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
3042 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
3043 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
3044 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
3045 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
3046 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
3047 }
3048
3049 if ((*C0 & *C1).isZero()) {
3050 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
3051 // iff (C0 & C1) == 0 and (X & ~C0) == 0
3052 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
3053 MaskedValueIsZero(X, ~*C0, 0, &I)) {
3054 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3055 return BinaryOperator::CreateAnd(A, C01);
3056 }
3057 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
3058 // iff (C0 & C1) == 0 and (X & ~C1) == 0
3059 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
3060 MaskedValueIsZero(X, ~*C1, 0, &I)) {
3061 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3062 return BinaryOperator::CreateAnd(B, C01);
3063 }
3064 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
3065 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
3066 const APInt *C2, *C3;
3067 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
3068 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
3069 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
3070 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
3071 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3072 return BinaryOperator::CreateAnd(Or, C01);
3073 }
3074 }
3075 }
3076
3077 // Don't try to form a select if it's unlikely that we'll get rid of at
3078 // least one of the operands. A select is generally more expensive than the
3079 // 'or' that it is replacing.
3080 if (Op0->hasOneUse() || Op1->hasOneUse()) {
3081 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
3082 if (Value *V = matchSelectFromAndOr(A, C, B, D))
3083 return replaceInstUsesWith(I, V);
3084 if (Value *V = matchSelectFromAndOr(A, C, D, B))
3085 return replaceInstUsesWith(I, V);
3086 if (Value *V = matchSelectFromAndOr(C, A, B, D))
3087 return replaceInstUsesWith(I, V);
3088 if (Value *V = matchSelectFromAndOr(C, A, D, B))
3089 return replaceInstUsesWith(I, V);
3090 if (Value *V = matchSelectFromAndOr(B, D, A, C))
3091 return replaceInstUsesWith(I, V);
3092 if (Value *V = matchSelectFromAndOr(B, D, C, A))
3093 return replaceInstUsesWith(I, V);
3094 if (Value *V = matchSelectFromAndOr(D, B, A, C))
3095 return replaceInstUsesWith(I, V);
3096 if (Value *V = matchSelectFromAndOr(D, B, C, A))
3097 return replaceInstUsesWith(I, V);
3098 }
3099 }
3100
3101 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3102 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
3103 (Op0->hasOneUse() || Op1->hasOneUse())) {
3104 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
3105 if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
3106 return replaceInstUsesWith(I, V);
3107 if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
3108 return replaceInstUsesWith(I, V);
3109 if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
3110 return replaceInstUsesWith(I, V);
3111 if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
3112 return replaceInstUsesWith(I, V);
3113 }
3114
3115 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
3116 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
3117 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
3118 return BinaryOperator::CreateOr(Op0, C);
3119
3120 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
3121 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
3122 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
3123 return BinaryOperator::CreateOr(Op1, C);
3124
3125 // ((A & B) ^ C) | B -> C | B
3126 if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
3127 return BinaryOperator::CreateOr(C, Op1);
3128
3129 // B | ((A & B) ^ C) -> B | C
3130 if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
3131 return BinaryOperator::CreateOr(Op0, C);
3132
3133 // ((B | C) & A) | B -> B | (A & C)
3134 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
3135 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
3136
3137 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
3138 return DeMorgan;
3139
3140 // Canonicalize xor to the RHS.
3141 bool SwappedForXor = false;
3142 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
3143 std::swap(Op0, Op1);
3144 SwappedForXor = true;
3145 }
3146
3147 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3148 // (A | ?) | (A ^ B) --> (A | ?) | B
3149 // (B | ?) | (A ^ B) --> (B | ?) | A
3150 if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
3151 return BinaryOperator::CreateOr(Op0, B);
3152 if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
3153 return BinaryOperator::CreateOr(Op0, A);
3154
3155 // (A & B) | (A ^ B) --> A | B
3156 // (B & A) | (A ^ B) --> A | B
3157 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
3158 match(Op0, m_And(m_Specific(B), m_Specific(A))))
3159 return BinaryOperator::CreateOr(A, B);
3160
3161 // ~A | (A ^ B) --> ~(A & B)
3162 // ~B | (A ^ B) --> ~(A & B)
3163 // The swap above should always make Op0 the 'not'.
3164 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3165 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
3166 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3167
3168 // Same as above, but peek through an 'and' to the common operand:
3169 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
3170 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
3171 Instruction *And;
3172 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3173 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3174 m_c_And(m_Specific(A), m_Value())))))
3175 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
3176 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3177 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3178 m_c_And(m_Specific(B), m_Value())))))
3179 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
3180
3181 // (~A | C) | (A ^ B) --> ~(A & B) | C
3182 // (~B | C) | (A ^ B) --> ~(A & B) | C
3183 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3184 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
3185 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
3186 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
3187 return BinaryOperator::CreateOr(Nand, C);
3188 }
3189
3190 // A | (~A ^ B) --> ~B | A
3191 // B | (A ^ ~B) --> ~A | B
3192 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
3193 Value *NotB = Builder.CreateNot(B, B->getName() + ".not");
3194 return BinaryOperator::CreateOr(NotB, Op0);
3195 }
3196 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
3197 Value *NotA = Builder.CreateNot(A, A->getName() + ".not");
3198 return BinaryOperator::CreateOr(NotA, Op0);
3199 }
3200 }
3201
3202 // A | ~(A | B) -> A | ~B
3203 // A | ~(A ^ B) -> A | ~B
3204 if (match(Op1, m_Not(m_Value(A))))
3205 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
3206 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
3207 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
3208 B->getOpcode() == Instruction::Xor)) {
3209 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
3210 B->getOperand(0);
3211 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
3212 return BinaryOperator::CreateOr(Not, Op0);
3213 }
3214
3215 if (SwappedForXor)
3216 std::swap(Op0, Op1);
3217
3218 {
3219 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
3220 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
3221 if (LHS && RHS)
3222 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
3223 return replaceInstUsesWith(I, Res);
3224
3225 // TODO: Make this recursive; it's a little tricky because an arbitrary
3226 // number of 'or' instructions might have to be created.
3227 Value *X, *Y;
3228 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3229 bool IsLogical = isa<SelectInst>(Op1);
3230 // LHS | (X || Y) --> (LHS || X) || Y
3231 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3232 if (Value *Res =
3233 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
3234 return replaceInstUsesWith(I, IsLogical
3235 ? Builder.CreateLogicalOr(Res, Y)
3236 : Builder.CreateOr(Res, Y));
3237 // LHS | (X || Y) --> X || (LHS | Y)
3238 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3239 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
3240 /* IsLogical */ false))
3241 return replaceInstUsesWith(I, IsLogical
3242 ? Builder.CreateLogicalOr(X, Res)
3243 : Builder.CreateOr(X, Res));
3244 }
3245 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3246 bool IsLogical = isa<SelectInst>(Op0);
3247 // (X || Y) | RHS --> (X || RHS) || Y
3248 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3249 if (Value *Res =
3250 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
3251 return replaceInstUsesWith(I, IsLogical
3252 ? Builder.CreateLogicalOr(Res, Y)
3253 : Builder.CreateOr(Res, Y));
3254 // (X || Y) | RHS --> X || (Y | RHS)
3255 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3256 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
3257 /* IsLogical */ false))
3258 return replaceInstUsesWith(I, IsLogical
3259 ? Builder.CreateLogicalOr(X, Res)
3260 : Builder.CreateOr(X, Res));
3261 }
3262 }
3263
3264 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
3265 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
3266 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
3267 return replaceInstUsesWith(I, Res);
3268
3269 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
3270 return FoldedFCmps;
3271
3272 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
3273 return CastedOr;
3274
3275 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
3276 return Sel;
3277
3278 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
3279 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
3280 // with binop identity constant. But creating a select with non-constant
3281 // arm may not be reversible due to poison semantics. Is that a good
3282 // canonicalization?
3283 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
3284 A->getType()->isIntOrIntVectorTy(1))
3285 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
3286 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
3287 A->getType()->isIntOrIntVectorTy(1))
3288 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
3289
3290 // Note: If we've gotten to the point of visiting the outer OR, then the
3291 // inner one couldn't be simplified. If it was a constant, then it won't
3292 // be simplified by a later pass either, so we try swapping the inner/outer
3293 // ORs in the hopes that we'll be able to simplify it this way.
3294 // (X|C) | V --> (X|V) | C
3295 ConstantInt *CI;
3296 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3297 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3298 Value *Inner = Builder.CreateOr(A, Op1);
3299 Inner->takeName(Op0);
3300 return BinaryOperator::CreateOr(Inner, CI);
3301 }
3302
3303 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3304 // Since this OR statement hasn't been optimized further yet, we hope
3305 // that this transformation will allow the new ORs to be optimized.
3306 {
3307 Value *X = nullptr, *Y = nullptr;
3308 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3309 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3310 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3311 Value *orTrue = Builder.CreateOr(A, C);
3312 Value *orFalse = Builder.CreateOr(B, D);
3313 return SelectInst::Create(X, orTrue, orFalse);
3314 }
3315 }
3316
3317 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
3318 {
3319 Value *X, *Y;
3320 if (match(&I, m_c_Or(m_OneUse(m_AShr(
3321 m_NSWSub(m_Value(Y), m_Value(X)),
3322 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3323 m_Deferred(X)))) {
3324 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3325 Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3326 return SelectInst::Create(NewICmpInst, AllOnes, X);
3327 }
3328 }
3329
3330 if (Instruction *V =
3331 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3332 return V;
3333
3334 CmpInst::Predicate Pred;
3335 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3336 // Check if the OR weakens the overflow condition for umul.with.overflow by
3337 // treating any non-zero result as overflow. In that case, we overflow if both
3338 // umul.with.overflow operands are != 0, as in that case the result can only
3339 // be 0, iff the multiplication overflows.
3340 if (match(&I,
3341 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3342 m_Value(Ov)),
3343 m_CombineAnd(m_ICmp(Pred,
3344 m_CombineAnd(m_ExtractValue<0>(
3345 m_Deferred(UMulWithOv)),
3346 m_Value(Mul)),
3347 m_ZeroInt()),
3348 m_Value(MulIsNotZero)))) &&
3349 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3350 Pred == CmpInst::ICMP_NE) {
3351 Value *A, *B;
3352 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3353 m_Value(A), m_Value(B)))) {
3354 Value *NotNullA = Builder.CreateIsNotNull(A);
3355 Value *NotNullB = Builder.CreateIsNotNull(B);
3356 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3357 }
3358 }
3359
3360 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
3361 if (sinkNotIntoOtherHandOfLogicalOp(I))
3362 return &I;
3363
3364 // Improve "get low bit mask up to and including bit X" pattern:
3365 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
3366 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3367 m_Shl(m_One(), m_Deferred(X)))) &&
3368 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3369 Value *Sub = Builder.CreateSub(
3370 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3371 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3372 }
3373
3374 // An or recurrence w/loop invariant step is equivelent to (or start, step)
3375 PHINode *PN = nullptr;
3376 Value *Start = nullptr, *Step = nullptr;
3377 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3378 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3379
3380 // (A & B) | (C | D) or (C | D) | (A & B)
3381 // Can be combined if C or D is of type (A/B & X)
3382 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3383 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3384 // (A & B) | (C | ?) -> C | (? | (A & B))
3385 // (A & B) | (C | ?) -> C | (? | (A & B))
3386 // (A & B) | (C | ?) -> C | (? | (A & B))
3387 // (A & B) | (C | ?) -> C | (? | (A & B))
3388 // (C | ?) | (A & B) -> C | (? | (A & B))
3389 // (C | ?) | (A & B) -> C | (? | (A & B))
3390 // (C | ?) | (A & B) -> C | (? | (A & B))
3391 // (C | ?) | (A & B) -> C | (? | (A & B))
3392 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3393 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3394 return BinaryOperator::CreateOr(
3395 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3396 // (A & B) | (? | D) -> (? | (A & B)) | D
3397 // (A & B) | (? | D) -> (? | (A & B)) | D
3398 // (A & B) | (? | D) -> (? | (A & B)) | D
3399 // (A & B) | (? | D) -> (? | (A & B)) | D
3400 // (? | D) | (A & B) -> (? | (A & B)) | D
3401 // (? | D) | (A & B) -> (? | (A & B)) | D
3402 // (? | D) | (A & B) -> (? | (A & B)) | D
3403 // (? | D) | (A & B) -> (? | (A & B)) | D
3404 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3405 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3406 return BinaryOperator::CreateOr(
3407 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3408 }
3409
3410 if (Instruction *R = reassociateForUses(I, Builder))
3411 return R;
3412
3413 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
3414 return Canonicalized;
3415
3416 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
3417 return Folded;
3418
3419 return nullptr;
3420 }
3421
3422 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3423 /// can fold these early and efficiently by morphing an existing instruction.
foldXorToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3424 static Instruction *foldXorToXor(BinaryOperator &I,
3425 InstCombiner::BuilderTy &Builder) {
3426 assert(I.getOpcode() == Instruction::Xor);
3427 Value *Op0 = I.getOperand(0);
3428 Value *Op1 = I.getOperand(1);
3429 Value *A, *B;
3430
3431 // There are 4 commuted variants for each of the basic patterns.
3432
3433 // (A & B) ^ (A | B) -> A ^ B
3434 // (A & B) ^ (B | A) -> A ^ B
3435 // (A | B) ^ (A & B) -> A ^ B
3436 // (A | B) ^ (B & A) -> A ^ B
3437 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3438 m_c_Or(m_Deferred(A), m_Deferred(B)))))
3439 return BinaryOperator::CreateXor(A, B);
3440
3441 // (A | ~B) ^ (~A | B) -> A ^ B
3442 // (~B | A) ^ (~A | B) -> A ^ B
3443 // (~A | B) ^ (A | ~B) -> A ^ B
3444 // (B | ~A) ^ (A | ~B) -> A ^ B
3445 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3446 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3447 return BinaryOperator::CreateXor(A, B);
3448
3449 // (A & ~B) ^ (~A & B) -> A ^ B
3450 // (~B & A) ^ (~A & B) -> A ^ B
3451 // (~A & B) ^ (A & ~B) -> A ^ B
3452 // (B & ~A) ^ (A & ~B) -> A ^ B
3453 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3454 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3455 return BinaryOperator::CreateXor(A, B);
3456
3457 // For the remaining cases we need to get rid of one of the operands.
3458 if (!Op0->hasOneUse() && !Op1->hasOneUse())
3459 return nullptr;
3460
3461 // (A | B) ^ ~(A & B) -> ~(A ^ B)
3462 // (A | B) ^ ~(B & A) -> ~(A ^ B)
3463 // (A & B) ^ ~(A | B) -> ~(A ^ B)
3464 // (A & B) ^ ~(B | A) -> ~(A ^ B)
3465 // Complexity sorting ensures the not will be on the right side.
3466 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3467 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3468 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3469 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3470 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3471
3472 return nullptr;
3473 }
3474
foldXorOfICmps(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & I)3475 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3476 BinaryOperator &I) {
3477 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3478 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3479
3480 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3481 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3482 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3483
3484 if (predicatesFoldable(PredL, PredR)) {
3485 if (LHS0 == RHS1 && LHS1 == RHS0) {
3486 std::swap(LHS0, LHS1);
3487 PredL = ICmpInst::getSwappedPredicate(PredL);
3488 }
3489 if (LHS0 == RHS0 && LHS1 == RHS1) {
3490 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3491 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
3492 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3493 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3494 }
3495 }
3496
3497 // TODO: This can be generalized to compares of non-signbits using
3498 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3499 // foldLogOpOfMaskedICmps().
3500 const APInt *LC, *RC;
3501 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
3502 LHS0->getType() == RHS0->getType() &&
3503 LHS0->getType()->isIntOrIntVectorTy() &&
3504 (LHS->hasOneUse() || RHS->hasOneUse())) {
3505 // Convert xor of signbit tests to signbit test of xor'd values:
3506 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
3507 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
3508 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
3509 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
3510 bool TrueIfSignedL, TrueIfSignedR;
3511 if (isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
3512 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
3513 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
3514 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
3515 Builder.CreateIsNotNeg(XorLR);
3516 }
3517
3518 // (X > C) ^ (X < C + 2) --> X != C + 1
3519 // (X < C + 2) ^ (X > C) --> X != C + 1
3520 // Considering the correctness of this pattern, we should avoid that C is
3521 // non-negative and C + 2 is negative, although it will be matched by other
3522 // patterns.
3523 const APInt *C1, *C2;
3524 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) &&
3525 PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) ||
3526 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) &&
3527 PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1))))
3528 if (LHS0 == RHS0 && *C1 + 2 == *C2 &&
3529 (C1->isNegative() || C2->isNonNegative()))
3530 return Builder.CreateICmpNE(LHS0,
3531 ConstantInt::get(LHS0->getType(), *C1 + 1));
3532 }
3533
3534 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
3535 // into those logic ops. That is, try to turn this into an and-of-icmps
3536 // because we have many folds for that pattern.
3537 //
3538 // This is based on a truth table definition of xor:
3539 // X ^ Y --> (X | Y) & !(X & Y)
3540 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
3541 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
3542 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
3543 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
3544 // TODO: Independently handle cases where the 'and' side is a constant.
3545 ICmpInst *X = nullptr, *Y = nullptr;
3546 if (OrICmp == LHS && AndICmp == RHS) {
3547 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
3548 X = LHS;
3549 Y = RHS;
3550 }
3551 if (OrICmp == RHS && AndICmp == LHS) {
3552 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
3553 X = RHS;
3554 Y = LHS;
3555 }
3556 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3557 // Invert the predicate of 'Y', thus inverting its output.
3558 Y->setPredicate(Y->getInversePredicate());
3559 // So, are there other uses of Y?
3560 if (!Y->hasOneUse()) {
3561 // We need to adapt other uses of Y though. Get a value that matches
3562 // the original value of Y before inversion. While this increases
3563 // immediate instruction count, we have just ensured that all the
3564 // users are freely-invertible, so that 'not' *will* get folded away.
3565 BuilderTy::InsertPointGuard Guard(Builder);
3566 // Set insertion point to right after the Y.
3567 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3568 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3569 // Replace all uses of Y (excluding the one in NotY!) with NotY.
3570 Worklist.pushUsersToWorkList(*Y);
3571 Y->replaceUsesWithIf(NotY,
3572 [NotY](Use &U) { return U.getUser() != NotY; });
3573 }
3574 // All done.
3575 return Builder.CreateAnd(LHS, RHS);
3576 }
3577 }
3578 }
3579
3580 return nullptr;
3581 }
3582
3583 /// If we have a masked merge, in the canonical form of:
3584 /// (assuming that A only has one use.)
3585 /// | A | |B|
3586 /// ((x ^ y) & M) ^ y
3587 /// | D |
3588 /// * If M is inverted:
3589 /// | D |
3590 /// ((x ^ y) & ~M) ^ y
3591 /// We can canonicalize by swapping the final xor operand
3592 /// to eliminate the 'not' of the mask.
3593 /// ((x ^ y) & M) ^ x
3594 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3595 /// because that shortens the dependency chain and improves analysis:
3596 /// (x & M) | (y & ~M)
visitMaskedMerge(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3597 static Instruction *visitMaskedMerge(BinaryOperator &I,
3598 InstCombiner::BuilderTy &Builder) {
3599 Value *B, *X, *D;
3600 Value *M;
3601 if (!match(&I, m_c_Xor(m_Value(B),
3602 m_OneUse(m_c_And(
3603 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3604 m_Value(D)),
3605 m_Value(M))))))
3606 return nullptr;
3607
3608 Value *NotM;
3609 if (match(M, m_Not(m_Value(NotM)))) {
3610 // De-invert the mask and swap the value in B part.
3611 Value *NewA = Builder.CreateAnd(D, NotM);
3612 return BinaryOperator::CreateXor(NewA, X);
3613 }
3614
3615 Constant *C;
3616 if (D->hasOneUse() && match(M, m_Constant(C))) {
3617 // Propagating undef is unsafe. Clamp undef elements to -1.
3618 Type *EltTy = C->getType()->getScalarType();
3619 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3620 // Unfold.
3621 Value *LHS = Builder.CreateAnd(X, C);
3622 Value *NotC = Builder.CreateNot(C);
3623 Value *RHS = Builder.CreateAnd(B, NotC);
3624 return BinaryOperator::CreateOr(LHS, RHS);
3625 }
3626
3627 return nullptr;
3628 }
3629
3630 // Transform
3631 // ~(x ^ y)
3632 // into:
3633 // (~x) ^ y
3634 // or into
3635 // x ^ (~y)
sinkNotIntoXor(BinaryOperator & I,Value * X,Value * Y,InstCombiner::BuilderTy & Builder)3636 static Instruction *sinkNotIntoXor(BinaryOperator &I, Value *X, Value *Y,
3637 InstCombiner::BuilderTy &Builder) {
3638 // We only want to do the transform if it is free to do.
3639 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3640 // Ok, good.
3641 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3642 std::swap(X, Y);
3643 } else
3644 return nullptr;
3645
3646 Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3647 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3648 }
3649
foldNotXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3650 static Instruction *foldNotXor(BinaryOperator &I,
3651 InstCombiner::BuilderTy &Builder) {
3652 Value *X, *Y;
3653 // FIXME: one-use check is not needed in general, but currently we are unable
3654 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3655 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3656 return nullptr;
3657
3658 if (Instruction *NewXor = sinkNotIntoXor(I, X, Y, Builder))
3659 return NewXor;
3660
3661 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
3662 return A == C || A == D || B == C || B == D;
3663 };
3664
3665 Value *A, *B, *C, *D;
3666 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
3667 // 4 commuted variants
3668 if (match(X, m_And(m_Value(A), m_Value(B))) &&
3669 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
3670 Value *NotY = Builder.CreateNot(Y);
3671 return BinaryOperator::CreateOr(X, NotY);
3672 };
3673
3674 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
3675 // 4 commuted variants
3676 if (match(Y, m_And(m_Value(A), m_Value(B))) &&
3677 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
3678 Value *NotX = Builder.CreateNot(X);
3679 return BinaryOperator::CreateOr(Y, NotX);
3680 };
3681
3682 return nullptr;
3683 }
3684
3685 /// Canonicalize a shifty way to code absolute value to the more common pattern
3686 /// that uses negation and select.
canonicalizeAbs(BinaryOperator & Xor,InstCombiner::BuilderTy & Builder)3687 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
3688 InstCombiner::BuilderTy &Builder) {
3689 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
3690
3691 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3692 // We're relying on the fact that we only do this transform when the shift has
3693 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3694 // instructions).
3695 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
3696 if (Op0->hasNUses(2))
3697 std::swap(Op0, Op1);
3698
3699 Type *Ty = Xor.getType();
3700 Value *A;
3701 const APInt *ShAmt;
3702 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3703 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3704 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3705 // Op1 = ashr i32 A, 31 ; smear the sign bit
3706 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
3707 // --> (A < 0) ? -A : A
3708 Value *IsNeg = Builder.CreateIsNeg(A);
3709 // Copy the nuw/nsw flags from the add to the negate.
3710 auto *Add = cast<BinaryOperator>(Op0);
3711 Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3712 Add->hasNoSignedWrap());
3713 return SelectInst::Create(IsNeg, NegA, A);
3714 }
3715 return nullptr;
3716 }
3717
3718 // Transform
3719 // z = ~(x &/| y)
3720 // into:
3721 // z = ((~x) |/& (~y))
3722 // iff both x and y are free to invert and all uses of z can be freely updated.
sinkNotIntoLogicalOp(Instruction & I)3723 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
3724 Value *Op0, *Op1;
3725 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
3726 return false;
3727
3728 // If this logic op has not been simplified yet, just bail out and let that
3729 // happen first. Otherwise, the code below may wrongly invert.
3730 if (Op0 == Op1)
3731 return false;
3732
3733 Instruction::BinaryOps NewOpc =
3734 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
3735 bool IsBinaryOp = isa<BinaryOperator>(I);
3736
3737 // Can our users be adapted?
3738 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3739 return false;
3740
3741 // And can the operands be adapted?
3742 for (Value *Op : {Op0, Op1})
3743 if (!(InstCombiner::isFreeToInvert(Op, /*WillInvertAllUses=*/true) &&
3744 (match(Op, m_ImmConstant()) ||
3745 (isa<Instruction>(Op) &&
3746 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op),
3747 /*IgnoredUser=*/&I)))))
3748 return false;
3749
3750 for (Value **Op : {&Op0, &Op1}) {
3751 Value *NotOp;
3752 if (auto *C = dyn_cast<Constant>(*Op)) {
3753 NotOp = ConstantExpr::getNot(C);
3754 } else {
3755 Builder.SetInsertPoint(
3756 &*cast<Instruction>(*Op)->getInsertionPointAfterDef());
3757 NotOp = Builder.CreateNot(*Op, (*Op)->getName() + ".not");
3758 (*Op)->replaceUsesWithIf(
3759 NotOp, [NotOp](Use &U) { return U.getUser() != NotOp; });
3760 freelyInvertAllUsersOf(NotOp, /*IgnoredUser=*/&I);
3761 }
3762 *Op = NotOp;
3763 }
3764
3765 Builder.SetInsertPoint(I.getInsertionPointAfterDef());
3766 Value *NewLogicOp;
3767 if (IsBinaryOp)
3768 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
3769 else
3770 NewLogicOp =
3771 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
3772
3773 replaceInstUsesWith(I, NewLogicOp);
3774 // We can not just create an outer `not`, it will most likely be immediately
3775 // folded back, reconstructing our initial pattern, and causing an
3776 // infinite combine loop, so immediately manually fold it away.
3777 freelyInvertAllUsersOf(NewLogicOp);
3778 return true;
3779 }
3780
3781 // Transform
3782 // z = (~x) &/| y
3783 // into:
3784 // z = ~(x |/& (~y))
3785 // iff y is free to invert and all uses of z can be freely updated.
sinkNotIntoOtherHandOfLogicalOp(Instruction & I)3786 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
3787 Value *Op0, *Op1;
3788 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
3789 return false;
3790 Instruction::BinaryOps NewOpc =
3791 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
3792 bool IsBinaryOp = isa<BinaryOperator>(I);
3793
3794 Value *NotOp0 = nullptr;
3795 Value *NotOp1 = nullptr;
3796 Value **OpToInvert = nullptr;
3797 if (match(Op0, m_Not(m_Value(NotOp0))) &&
3798 InstCombiner::isFreeToInvert(Op1, /*WillInvertAllUses=*/true) &&
3799 (match(Op1, m_ImmConstant()) ||
3800 (isa<Instruction>(Op1) &&
3801 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op1),
3802 /*IgnoredUser=*/&I)))) {
3803 Op0 = NotOp0;
3804 OpToInvert = &Op1;
3805 } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
3806 InstCombiner::isFreeToInvert(Op0, /*WillInvertAllUses=*/true) &&
3807 (match(Op0, m_ImmConstant()) ||
3808 (isa<Instruction>(Op0) &&
3809 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op0),
3810 /*IgnoredUser=*/&I)))) {
3811 Op1 = NotOp1;
3812 OpToInvert = &Op0;
3813 } else
3814 return false;
3815
3816 // And can our users be adapted?
3817 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3818 return false;
3819
3820 if (auto *C = dyn_cast<Constant>(*OpToInvert)) {
3821 *OpToInvert = ConstantExpr::getNot(C);
3822 } else {
3823 Builder.SetInsertPoint(
3824 &*cast<Instruction>(*OpToInvert)->getInsertionPointAfterDef());
3825 Value *NotOpToInvert =
3826 Builder.CreateNot(*OpToInvert, (*OpToInvert)->getName() + ".not");
3827 (*OpToInvert)->replaceUsesWithIf(NotOpToInvert, [NotOpToInvert](Use &U) {
3828 return U.getUser() != NotOpToInvert;
3829 });
3830 freelyInvertAllUsersOf(NotOpToInvert, /*IgnoredUser=*/&I);
3831 *OpToInvert = NotOpToInvert;
3832 }
3833
3834 Builder.SetInsertPoint(&*I.getInsertionPointAfterDef());
3835 Value *NewBinOp;
3836 if (IsBinaryOp)
3837 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
3838 else
3839 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
3840 replaceInstUsesWith(I, NewBinOp);
3841 // We can not just create an outer `not`, it will most likely be immediately
3842 // folded back, reconstructing our initial pattern, and causing an
3843 // infinite combine loop, so immediately manually fold it away.
3844 freelyInvertAllUsersOf(NewBinOp);
3845 return true;
3846 }
3847
foldNot(BinaryOperator & I)3848 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
3849 Value *NotOp;
3850 if (!match(&I, m_Not(m_Value(NotOp))))
3851 return nullptr;
3852
3853 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3854 // We must eliminate the and/or (one-use) for these transforms to not increase
3855 // the instruction count.
3856 //
3857 // ~(~X & Y) --> (X | ~Y)
3858 // ~(Y & ~X) --> (X | ~Y)
3859 //
3860 // Note: The logical matches do not check for the commuted patterns because
3861 // those are handled via SimplifySelectsFeedingBinaryOp().
3862 Type *Ty = I.getType();
3863 Value *X, *Y;
3864 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
3865 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3866 return BinaryOperator::CreateOr(X, NotY);
3867 }
3868 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
3869 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3870 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
3871 }
3872
3873 // ~(~X | Y) --> (X & ~Y)
3874 // ~(Y | ~X) --> (X & ~Y)
3875 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
3876 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3877 return BinaryOperator::CreateAnd(X, NotY);
3878 }
3879 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
3880 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3881 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
3882 }
3883
3884 // Is this a 'not' (~) fed by a binary operator?
3885 BinaryOperator *NotVal;
3886 if (match(NotOp, m_BinOp(NotVal))) {
3887 // ~((-X) | Y) --> (X - 1) & (~Y)
3888 if (match(NotVal,
3889 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
3890 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
3891 Value *NotY = Builder.CreateNot(Y);
3892 return BinaryOperator::CreateAnd(DecX, NotY);
3893 }
3894
3895 // ~(~X >>s Y) --> (X >>s Y)
3896 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3897 return BinaryOperator::CreateAShr(X, Y);
3898
3899 // Bit-hack form of a signbit test:
3900 // iN ~X >>s (N-1) --> sext i1 (X > -1) to iN
3901 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
3902 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
3903 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
3904 return new SExtInst(IsNotNeg, Ty);
3905 }
3906
3907 // If we are inverting a right-shifted constant, we may be able to eliminate
3908 // the 'not' by inverting the constant and using the opposite shift type.
3909 // Canonicalization rules ensure that only a negative constant uses 'ashr',
3910 // but we must check that in case that transform has not fired yet.
3911
3912 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3913 Constant *C;
3914 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3915 match(C, m_Negative())) {
3916 // We matched a negative constant, so propagating undef is unsafe.
3917 // Clamp undef elements to -1.
3918 Type *EltTy = Ty->getScalarType();
3919 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3920 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3921 }
3922
3923 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3924 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3925 match(C, m_NonNegative())) {
3926 // We matched a non-negative constant, so propagating undef is unsafe.
3927 // Clamp undef elements to 0.
3928 Type *EltTy = Ty->getScalarType();
3929 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3930 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3931 }
3932
3933 // ~(X + C) --> ~C - X
3934 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
3935 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
3936
3937 // ~(X - Y) --> ~X + Y
3938 // FIXME: is it really beneficial to sink the `not` here?
3939 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3940 if (isa<Constant>(X) || NotVal->hasOneUse())
3941 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3942
3943 // ~(~X + Y) --> X - Y
3944 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3945 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3946 NotVal);
3947 }
3948
3949 // not (cmp A, B) = !cmp A, B
3950 CmpInst::Predicate Pred;
3951 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
3952 (NotOp->hasOneUse() ||
3953 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
3954 /*IgnoredUser=*/nullptr))) {
3955 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
3956 freelyInvertAllUsersOf(NotOp);
3957 return &I;
3958 }
3959
3960 // Move a 'not' ahead of casts of a bool to enable logic reduction:
3961 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
3962 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
3963 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
3964 Value *NotX = Builder.CreateNot(X);
3965 Value *Sext = Builder.CreateSExt(NotX, SextTy);
3966 return CastInst::CreateBitOrPointerCast(Sext, Ty);
3967 }
3968
3969 if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
3970 if (sinkNotIntoLogicalOp(*NotOpI))
3971 return &I;
3972
3973 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3974 // ~min(~X, ~Y) --> max(X, Y)
3975 // ~max(~X, Y) --> min(X, ~Y)
3976 auto *II = dyn_cast<IntrinsicInst>(NotOp);
3977 if (II && II->hasOneUse()) {
3978 if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
3979 isFreeToInvert(X, X->hasOneUse()) &&
3980 isFreeToInvert(Y, Y->hasOneUse())) {
3981 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3982 Value *NotX = Builder.CreateNot(X);
3983 Value *NotY = Builder.CreateNot(Y);
3984 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
3985 return replaceInstUsesWith(I, InvMaxMin);
3986 }
3987 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
3988 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3989 Value *NotY = Builder.CreateNot(Y);
3990 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
3991 return replaceInstUsesWith(I, InvMaxMin);
3992 }
3993
3994 if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
3995 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
3996 II->setArgOperand(
3997 1, ConstantInt::get(ClassMask->getType(),
3998 ~ClassMask->getZExtValue() & fcAllFlags));
3999 return replaceInstUsesWith(I, II);
4000 }
4001 }
4002
4003 if (NotOp->hasOneUse()) {
4004 // Pull 'not' into operands of select if both operands are one-use compares
4005 // or one is one-use compare and the other one is a constant.
4006 // Inverting the predicates eliminates the 'not' operation.
4007 // Example:
4008 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
4009 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
4010 // not (select ?, (cmp TPred, ?, ?), true -->
4011 // select ?, (cmp InvTPred, ?, ?), false
4012 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
4013 Value *TV = Sel->getTrueValue();
4014 Value *FV = Sel->getFalseValue();
4015 auto *CmpT = dyn_cast<CmpInst>(TV);
4016 auto *CmpF = dyn_cast<CmpInst>(FV);
4017 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
4018 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
4019 if (InvertibleT && InvertibleF) {
4020 if (CmpT)
4021 CmpT->setPredicate(CmpT->getInversePredicate());
4022 else
4023 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
4024 if (CmpF)
4025 CmpF->setPredicate(CmpF->getInversePredicate());
4026 else
4027 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
4028 return replaceInstUsesWith(I, Sel);
4029 }
4030 }
4031 }
4032
4033 if (Instruction *NewXor = foldNotXor(I, Builder))
4034 return NewXor;
4035
4036 return nullptr;
4037 }
4038
4039 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4040 // here. We should standardize that construct where it is needed or choose some
4041 // other way to ensure that commutated variants of patterns are not missed.
visitXor(BinaryOperator & I)4042 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
4043 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
4044 SQ.getWithInstruction(&I)))
4045 return replaceInstUsesWith(I, V);
4046
4047 if (SimplifyAssociativeOrCommutative(I))
4048 return &I;
4049
4050 if (Instruction *X = foldVectorBinop(I))
4051 return X;
4052
4053 if (Instruction *Phi = foldBinopWithPhiOperands(I))
4054 return Phi;
4055
4056 if (Instruction *NewXor = foldXorToXor(I, Builder))
4057 return NewXor;
4058
4059 // (A&B)^(A&C) -> A&(B^C) etc
4060 if (Value *V = foldUsingDistributiveLaws(I))
4061 return replaceInstUsesWith(I, V);
4062
4063 // See if we can simplify any instructions used by the instruction whose sole
4064 // purpose is to compute bits we don't care about.
4065 if (SimplifyDemandedInstructionBits(I))
4066 return &I;
4067
4068 if (Value *V = SimplifyBSwap(I, Builder))
4069 return replaceInstUsesWith(I, V);
4070
4071 if (Instruction *R = foldNot(I))
4072 return R;
4073
4074 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
4075 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
4076 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
4077 // have already taken care of those cases.
4078 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4079 Value *M;
4080 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
4081 m_c_And(m_Deferred(M), m_Value()))))
4082 return BinaryOperator::CreateOr(Op0, Op1);
4083
4084 if (Instruction *Xor = visitMaskedMerge(I, Builder))
4085 return Xor;
4086
4087 Value *X, *Y;
4088 Constant *C1;
4089 if (match(Op1, m_Constant(C1))) {
4090 Constant *C2;
4091
4092 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
4093 match(C1, m_ImmConstant())) {
4094 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
4095 C2 = Constant::replaceUndefsWith(
4096 C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
4097 Value *And = Builder.CreateAnd(
4098 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
4099 return BinaryOperator::CreateXor(
4100 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
4101 }
4102
4103 // Use DeMorgan and reassociation to eliminate a 'not' op.
4104 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
4105 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
4106 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
4107 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
4108 }
4109 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
4110 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
4111 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
4112 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
4113 }
4114
4115 // Convert xor ([trunc] (ashr X, BW-1)), C =>
4116 // select(X >s -1, C, ~C)
4117 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
4118 // constant depending on whether this input is less than 0.
4119 const APInt *CA;
4120 if (match(Op0, m_OneUse(m_TruncOrSelf(
4121 m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
4122 *CA == X->getType()->getScalarSizeInBits() - 1 &&
4123 !match(C1, m_AllOnes())) {
4124 assert(!C1->isZeroValue() && "Unexpected xor with 0");
4125 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
4126 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
4127 }
4128 }
4129
4130 Type *Ty = I.getType();
4131 {
4132 const APInt *RHSC;
4133 if (match(Op1, m_APInt(RHSC))) {
4134 Value *X;
4135 const APInt *C;
4136 // (C - X) ^ signmaskC --> (C + signmaskC) - X
4137 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
4138 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
4139
4140 // (X + C) ^ signmaskC --> X + (C + signmaskC)
4141 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
4142 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
4143
4144 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
4145 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
4146 MaskedValueIsZero(X, *C, 0, &I))
4147 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
4148
4149 // When X is a power-of-two or zero and zero input is poison:
4150 // ctlz(i32 X) ^ 31 --> cttz(X)
4151 // cttz(i32 X) ^ 31 --> ctlz(X)
4152 auto *II = dyn_cast<IntrinsicInst>(Op0);
4153 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
4154 Intrinsic::ID IID = II->getIntrinsicID();
4155 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
4156 match(II->getArgOperand(1), m_One()) &&
4157 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
4158 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
4159 Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty);
4160 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
4161 }
4162 }
4163
4164 // If RHSC is inverting the remaining bits of shifted X,
4165 // canonicalize to a 'not' before the shift to help SCEV and codegen:
4166 // (X << C) ^ RHSC --> ~X << C
4167 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
4168 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
4169 Value *NotX = Builder.CreateNot(X);
4170 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
4171 }
4172 // (X >>u C) ^ RHSC --> ~X >>u C
4173 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
4174 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
4175 Value *NotX = Builder.CreateNot(X);
4176 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
4177 }
4178 // TODO: We could handle 'ashr' here as well. That would be matching
4179 // a 'not' op and moving it before the shift. Doing that requires
4180 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
4181 }
4182 }
4183
4184 // FIXME: This should not be limited to scalar (pull into APInt match above).
4185 {
4186 Value *X;
4187 ConstantInt *C1, *C2, *C3;
4188 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
4189 if (match(Op1, m_ConstantInt(C3)) &&
4190 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
4191 m_ConstantInt(C2))) &&
4192 Op0->hasOneUse()) {
4193 // fold (C1 >> C2) ^ C3
4194 APInt FoldConst = C1->getValue().lshr(C2->getValue());
4195 FoldConst ^= C3->getValue();
4196 // Prepare the two operands.
4197 auto *Opnd0 = Builder.CreateLShr(X, C2);
4198 Opnd0->takeName(Op0);
4199 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
4200 }
4201 }
4202
4203 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4204 return FoldedLogic;
4205
4206 // Y ^ (X | Y) --> X & ~Y
4207 // Y ^ (Y | X) --> X & ~Y
4208 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
4209 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
4210 // (X | Y) ^ Y --> X & ~Y
4211 // (Y | X) ^ Y --> X & ~Y
4212 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
4213 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
4214
4215 // Y ^ (X & Y) --> ~X & Y
4216 // Y ^ (Y & X) --> ~X & Y
4217 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
4218 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
4219 // (X & Y) ^ Y --> ~X & Y
4220 // (Y & X) ^ Y --> ~X & Y
4221 // Canonical form is (X & C) ^ C; don't touch that.
4222 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
4223 // be fixed to prefer that (otherwise we get infinite looping).
4224 if (!match(Op1, m_Constant()) &&
4225 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
4226 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
4227
4228 Value *A, *B, *C;
4229 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
4230 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4231 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
4232 return BinaryOperator::CreateXor(
4233 Builder.CreateAnd(Builder.CreateNot(A), C), B);
4234
4235 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
4236 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4237 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
4238 return BinaryOperator::CreateXor(
4239 Builder.CreateAnd(Builder.CreateNot(B), C), A);
4240
4241 // (A & B) ^ (A ^ B) -> (A | B)
4242 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4243 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
4244 return BinaryOperator::CreateOr(A, B);
4245 // (A ^ B) ^ (A & B) -> (A | B)
4246 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
4247 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
4248 return BinaryOperator::CreateOr(A, B);
4249
4250 // (A & ~B) ^ ~A -> ~(A & B)
4251 // (~B & A) ^ ~A -> ~(A & B)
4252 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
4253 match(Op1, m_Not(m_Specific(A))))
4254 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4255
4256 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
4257 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
4258 return BinaryOperator::CreateOr(A, B);
4259
4260 // (~A | B) ^ A --> ~(A & B)
4261 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
4262 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
4263
4264 // A ^ (~A | B) --> ~(A & B)
4265 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
4266 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
4267
4268 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
4269 // TODO: Loosen one-use restriction if common operand is a constant.
4270 Value *D;
4271 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
4272 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
4273 if (B == C || B == D)
4274 std::swap(A, B);
4275 if (A == C)
4276 std::swap(C, D);
4277 if (A == D) {
4278 Value *NotA = Builder.CreateNot(A);
4279 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
4280 }
4281 }
4282
4283 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4284 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4285 if (Value *V = foldXorOfICmps(LHS, RHS, I))
4286 return replaceInstUsesWith(I, V);
4287
4288 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
4289 return CastedXor;
4290
4291 if (Instruction *Abs = canonicalizeAbs(I, Builder))
4292 return Abs;
4293
4294 // Otherwise, if all else failed, try to hoist the xor-by-constant:
4295 // (X ^ C) ^ Y --> (X ^ Y) ^ C
4296 // Just like we do in other places, we completely avoid the fold
4297 // for constantexprs, at least to avoid endless combine loop.
4298 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
4299 m_Unless(m_ConstantExpr())),
4300 m_ImmConstant(C1))),
4301 m_Value(Y))))
4302 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
4303
4304 if (Instruction *R = reassociateForUses(I, Builder))
4305 return R;
4306
4307 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4308 return Canonicalized;
4309
4310 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4311 return Folded;
4312
4313 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
4314 return Folded;
4315
4316 return nullptr;
4317 }
4318