1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/MemoryLocation.h"
25 #include "llvm/AsmParser/Parser.h"
26 #include "llvm/AsmParser/SlotMapping.h"
27 #include "llvm/CodeGen/MIRFormatter.h"
28 #include "llvm/CodeGen/MIRPrinter.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/RegisterBank.h"
38 #include "llvm/CodeGen/RegisterBankInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCDwarf.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <cassert>
72 #include <cctype>
73 #include <cstddef>
74 #include <cstdint>
75 #include <limits>
76 #include <string>
77 #include <utility>
78
79 using namespace llvm;
80
setTarget(const TargetSubtargetInfo & NewSubtarget)81 void PerTargetMIParsingState::setTarget(
82 const TargetSubtargetInfo &NewSubtarget) {
83
84 // If the subtarget changed, over conservatively assume everything is invalid.
85 if (&Subtarget == &NewSubtarget)
86 return;
87
88 Names2InstrOpCodes.clear();
89 Names2Regs.clear();
90 Names2RegMasks.clear();
91 Names2SubRegIndices.clear();
92 Names2TargetIndices.clear();
93 Names2DirectTargetFlags.clear();
94 Names2BitmaskTargetFlags.clear();
95 Names2MMOTargetFlags.clear();
96
97 initNames2RegClasses();
98 initNames2RegBanks();
99 }
100
initNames2Regs()101 void PerTargetMIParsingState::initNames2Regs() {
102 if (!Names2Regs.empty())
103 return;
104
105 // The '%noreg' register is the register 0.
106 Names2Regs.insert(std::make_pair("noreg", 0));
107 const auto *TRI = Subtarget.getRegisterInfo();
108 assert(TRI && "Expected target register info");
109
110 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
111 bool WasInserted =
112 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
113 .second;
114 (void)WasInserted;
115 assert(WasInserted && "Expected registers to be unique case-insensitively");
116 }
117 }
118
getRegisterByName(StringRef RegName,Register & Reg)119 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
120 Register &Reg) {
121 initNames2Regs();
122 auto RegInfo = Names2Regs.find(RegName);
123 if (RegInfo == Names2Regs.end())
124 return true;
125 Reg = RegInfo->getValue();
126 return false;
127 }
128
initNames2InstrOpCodes()129 void PerTargetMIParsingState::initNames2InstrOpCodes() {
130 if (!Names2InstrOpCodes.empty())
131 return;
132 const auto *TII = Subtarget.getInstrInfo();
133 assert(TII && "Expected target instruction info");
134 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
135 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
136 }
137
parseInstrName(StringRef InstrName,unsigned & OpCode)138 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
139 unsigned &OpCode) {
140 initNames2InstrOpCodes();
141 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
142 if (InstrInfo == Names2InstrOpCodes.end())
143 return true;
144 OpCode = InstrInfo->getValue();
145 return false;
146 }
147
initNames2RegMasks()148 void PerTargetMIParsingState::initNames2RegMasks() {
149 if (!Names2RegMasks.empty())
150 return;
151 const auto *TRI = Subtarget.getRegisterInfo();
152 assert(TRI && "Expected target register info");
153 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
154 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
155 assert(RegMasks.size() == RegMaskNames.size());
156 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
157 Names2RegMasks.insert(
158 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
159 }
160
getRegMask(StringRef Identifier)161 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
162 initNames2RegMasks();
163 auto RegMaskInfo = Names2RegMasks.find(Identifier);
164 if (RegMaskInfo == Names2RegMasks.end())
165 return nullptr;
166 return RegMaskInfo->getValue();
167 }
168
initNames2SubRegIndices()169 void PerTargetMIParsingState::initNames2SubRegIndices() {
170 if (!Names2SubRegIndices.empty())
171 return;
172 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
173 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
174 Names2SubRegIndices.insert(
175 std::make_pair(TRI->getSubRegIndexName(I), I));
176 }
177
getSubRegIndex(StringRef Name)178 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
179 initNames2SubRegIndices();
180 auto SubRegInfo = Names2SubRegIndices.find(Name);
181 if (SubRegInfo == Names2SubRegIndices.end())
182 return 0;
183 return SubRegInfo->getValue();
184 }
185
initNames2TargetIndices()186 void PerTargetMIParsingState::initNames2TargetIndices() {
187 if (!Names2TargetIndices.empty())
188 return;
189 const auto *TII = Subtarget.getInstrInfo();
190 assert(TII && "Expected target instruction info");
191 auto Indices = TII->getSerializableTargetIndices();
192 for (const auto &I : Indices)
193 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
194 }
195
getTargetIndex(StringRef Name,int & Index)196 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
197 initNames2TargetIndices();
198 auto IndexInfo = Names2TargetIndices.find(Name);
199 if (IndexInfo == Names2TargetIndices.end())
200 return true;
201 Index = IndexInfo->second;
202 return false;
203 }
204
initNames2DirectTargetFlags()205 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
206 if (!Names2DirectTargetFlags.empty())
207 return;
208
209 const auto *TII = Subtarget.getInstrInfo();
210 assert(TII && "Expected target instruction info");
211 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
212 for (const auto &I : Flags)
213 Names2DirectTargetFlags.insert(
214 std::make_pair(StringRef(I.second), I.first));
215 }
216
getDirectTargetFlag(StringRef Name,unsigned & Flag)217 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
218 unsigned &Flag) {
219 initNames2DirectTargetFlags();
220 auto FlagInfo = Names2DirectTargetFlags.find(Name);
221 if (FlagInfo == Names2DirectTargetFlags.end())
222 return true;
223 Flag = FlagInfo->second;
224 return false;
225 }
226
initNames2BitmaskTargetFlags()227 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
228 if (!Names2BitmaskTargetFlags.empty())
229 return;
230
231 const auto *TII = Subtarget.getInstrInfo();
232 assert(TII && "Expected target instruction info");
233 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
234 for (const auto &I : Flags)
235 Names2BitmaskTargetFlags.insert(
236 std::make_pair(StringRef(I.second), I.first));
237 }
238
getBitmaskTargetFlag(StringRef Name,unsigned & Flag)239 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
240 unsigned &Flag) {
241 initNames2BitmaskTargetFlags();
242 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
243 if (FlagInfo == Names2BitmaskTargetFlags.end())
244 return true;
245 Flag = FlagInfo->second;
246 return false;
247 }
248
initNames2MMOTargetFlags()249 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
250 if (!Names2MMOTargetFlags.empty())
251 return;
252
253 const auto *TII = Subtarget.getInstrInfo();
254 assert(TII && "Expected target instruction info");
255 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
256 for (const auto &I : Flags)
257 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
258 }
259
getMMOTargetFlag(StringRef Name,MachineMemOperand::Flags & Flag)260 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
261 MachineMemOperand::Flags &Flag) {
262 initNames2MMOTargetFlags();
263 auto FlagInfo = Names2MMOTargetFlags.find(Name);
264 if (FlagInfo == Names2MMOTargetFlags.end())
265 return true;
266 Flag = FlagInfo->second;
267 return false;
268 }
269
initNames2RegClasses()270 void PerTargetMIParsingState::initNames2RegClasses() {
271 if (!Names2RegClasses.empty())
272 return;
273
274 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
275 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
276 const auto *RC = TRI->getRegClass(I);
277 Names2RegClasses.insert(
278 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
279 }
280 }
281
initNames2RegBanks()282 void PerTargetMIParsingState::initNames2RegBanks() {
283 if (!Names2RegBanks.empty())
284 return;
285
286 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
287 // If the target does not support GlobalISel, we may not have a
288 // register bank info.
289 if (!RBI)
290 return;
291
292 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
293 const auto &RegBank = RBI->getRegBank(I);
294 Names2RegBanks.insert(
295 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
296 }
297 }
298
299 const TargetRegisterClass *
getRegClass(StringRef Name)300 PerTargetMIParsingState::getRegClass(StringRef Name) {
301 auto RegClassInfo = Names2RegClasses.find(Name);
302 if (RegClassInfo == Names2RegClasses.end())
303 return nullptr;
304 return RegClassInfo->getValue();
305 }
306
getRegBank(StringRef Name)307 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
308 auto RegBankInfo = Names2RegBanks.find(Name);
309 if (RegBankInfo == Names2RegBanks.end())
310 return nullptr;
311 return RegBankInfo->getValue();
312 }
313
PerFunctionMIParsingState(MachineFunction & MF,SourceMgr & SM,const SlotMapping & IRSlots,PerTargetMIParsingState & T)314 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
315 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
316 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
317 }
318
getVRegInfo(Register Num)319 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
320 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
321 if (I.second) {
322 MachineRegisterInfo &MRI = MF.getRegInfo();
323 VRegInfo *Info = new (Allocator) VRegInfo;
324 Info->VReg = MRI.createIncompleteVirtualRegister();
325 I.first->second = Info;
326 }
327 return *I.first->second;
328 }
329
getVRegInfoNamed(StringRef RegName)330 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
331 assert(RegName != "" && "Expected named reg.");
332
333 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
334 if (I.second) {
335 VRegInfo *Info = new (Allocator) VRegInfo;
336 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
337 I.first->second = Info;
338 }
339 return *I.first->second;
340 }
341
mapValueToSlot(const Value * V,ModuleSlotTracker & MST,DenseMap<unsigned,const Value * > & Slots2Values)342 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
343 DenseMap<unsigned, const Value *> &Slots2Values) {
344 int Slot = MST.getLocalSlot(V);
345 if (Slot == -1)
346 return;
347 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
348 }
349
350 /// Creates the mapping from slot numbers to function's unnamed IR values.
initSlots2Values(const Function & F,DenseMap<unsigned,const Value * > & Slots2Values)351 static void initSlots2Values(const Function &F,
352 DenseMap<unsigned, const Value *> &Slots2Values) {
353 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
354 MST.incorporateFunction(F);
355 for (const auto &Arg : F.args())
356 mapValueToSlot(&Arg, MST, Slots2Values);
357 for (const auto &BB : F) {
358 mapValueToSlot(&BB, MST, Slots2Values);
359 for (const auto &I : BB)
360 mapValueToSlot(&I, MST, Slots2Values);
361 }
362 }
363
getIRValue(unsigned Slot)364 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
365 if (Slots2Values.empty())
366 initSlots2Values(MF.getFunction(), Slots2Values);
367 return Slots2Values.lookup(Slot);
368 }
369
370 namespace {
371
372 /// A wrapper struct around the 'MachineOperand' struct that includes a source
373 /// range and other attributes.
374 struct ParsedMachineOperand {
375 MachineOperand Operand;
376 StringRef::iterator Begin;
377 StringRef::iterator End;
378 std::optional<unsigned> TiedDefIdx;
379
ParsedMachineOperand__anon91489e9b0111::ParsedMachineOperand380 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
381 StringRef::iterator End,
382 std::optional<unsigned> &TiedDefIdx)
383 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
384 if (TiedDefIdx)
385 assert(Operand.isReg() && Operand.isUse() &&
386 "Only used register operands can be tied");
387 }
388 };
389
390 class MIParser {
391 MachineFunction &MF;
392 SMDiagnostic &Error;
393 StringRef Source, CurrentSource;
394 SMRange SourceRange;
395 MIToken Token;
396 PerFunctionMIParsingState &PFS;
397 /// Maps from slot numbers to function's unnamed basic blocks.
398 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
399
400 public:
401 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
402 StringRef Source);
403 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
404 StringRef Source, SMRange SourceRange);
405
406 /// \p SkipChar gives the number of characters to skip before looking
407 /// for the next token.
408 void lex(unsigned SkipChar = 0);
409
410 /// Report an error at the current location with the given message.
411 ///
412 /// This function always return true.
413 bool error(const Twine &Msg);
414
415 /// Report an error at the given location with the given message.
416 ///
417 /// This function always return true.
418 bool error(StringRef::iterator Loc, const Twine &Msg);
419
420 bool
421 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
422 bool parseBasicBlocks();
423 bool parse(MachineInstr *&MI);
424 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
425 bool parseStandaloneNamedRegister(Register &Reg);
426 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
427 bool parseStandaloneRegister(Register &Reg);
428 bool parseStandaloneStackObject(int &FI);
429 bool parseStandaloneMDNode(MDNode *&Node);
430 bool parseMachineMetadata();
431 bool parseMDTuple(MDNode *&MD, bool IsDistinct);
432 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
433 bool parseMetadata(Metadata *&MD);
434
435 bool
436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437 bool parseBasicBlock(MachineBasicBlock &MBB,
438 MachineBasicBlock *&AddFalthroughFrom);
439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441
442 bool parseNamedRegister(Register &Reg);
443 bool parseVirtualRegister(VRegInfo *&Info);
444 bool parseNamedVirtualRegister(VRegInfo *&Info);
445 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
446 bool parseRegisterFlag(unsigned &Flags);
447 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448 bool parseSubRegisterIndex(unsigned &SubReg);
449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450 bool parseRegisterOperand(MachineOperand &Dest,
451 std::optional<unsigned> &TiedDefIdx,
452 bool IsDef = false);
453 bool parseImmediateOperand(MachineOperand &Dest);
454 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
455 const Constant *&C);
456 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
457 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
458 bool parseTypedImmediateOperand(MachineOperand &Dest);
459 bool parseFPImmediateOperand(MachineOperand &Dest);
460 bool parseMBBReference(MachineBasicBlock *&MBB);
461 bool parseMBBOperand(MachineOperand &Dest);
462 bool parseStackFrameIndex(int &FI);
463 bool parseStackObjectOperand(MachineOperand &Dest);
464 bool parseFixedStackFrameIndex(int &FI);
465 bool parseFixedStackObjectOperand(MachineOperand &Dest);
466 bool parseGlobalValue(GlobalValue *&GV);
467 bool parseGlobalAddressOperand(MachineOperand &Dest);
468 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
469 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
470 bool parseJumpTableIndexOperand(MachineOperand &Dest);
471 bool parseExternalSymbolOperand(MachineOperand &Dest);
472 bool parseMCSymbolOperand(MachineOperand &Dest);
473 bool parseMDNode(MDNode *&Node);
474 bool parseDIExpression(MDNode *&Expr);
475 bool parseDILocation(MDNode *&Expr);
476 bool parseMetadataOperand(MachineOperand &Dest);
477 bool parseCFIOffset(int &Offset);
478 bool parseCFIRegister(Register &Reg);
479 bool parseCFIAddressSpace(unsigned &AddressSpace);
480 bool parseCFIEscapeValues(std::string& Values);
481 bool parseCFIOperand(MachineOperand &Dest);
482 bool parseIRBlock(BasicBlock *&BB, const Function &F);
483 bool parseBlockAddressOperand(MachineOperand &Dest);
484 bool parseIntrinsicOperand(MachineOperand &Dest);
485 bool parsePredicateOperand(MachineOperand &Dest);
486 bool parseShuffleMaskOperand(MachineOperand &Dest);
487 bool parseTargetIndexOperand(MachineOperand &Dest);
488 bool parseDbgInstrRefOperand(MachineOperand &Dest);
489 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
490 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
491 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
492 MachineOperand &Dest,
493 std::optional<unsigned> &TiedDefIdx);
494 bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
495 const unsigned OpIdx,
496 MachineOperand &Dest,
497 std::optional<unsigned> &TiedDefIdx);
498 bool parseOffset(int64_t &Offset);
499 bool parseIRBlockAddressTaken(BasicBlock *&BB);
500 bool parseAlignment(uint64_t &Alignment);
501 bool parseAddrspace(unsigned &Addrspace);
502 bool parseSectionID(std::optional<MBBSectionID> &SID);
503 bool parseBBID(std::optional<unsigned> &BBID);
504 bool parseOperandsOffset(MachineOperand &Op);
505 bool parseIRValue(const Value *&V);
506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513 bool parseHeapAllocMarker(MDNode *&Node);
514 bool parsePCSections(MDNode *&Node);
515
516 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
517 MachineOperand &Dest, const MIRFormatter &MF);
518
519 private:
520 /// Convert the integer literal in the current token into an unsigned integer.
521 ///
522 /// Return true if an error occurred.
523 bool getUnsigned(unsigned &Result);
524
525 /// Convert the integer literal in the current token into an uint64.
526 ///
527 /// Return true if an error occurred.
528 bool getUint64(uint64_t &Result);
529
530 /// Convert the hexadecimal literal in the current token into an unsigned
531 /// APInt with a minimum bitwidth required to represent the value.
532 ///
533 /// Return true if the literal does not represent an integer value.
534 bool getHexUint(APInt &Result);
535
536 /// If the current token is of the given kind, consume it and return false.
537 /// Otherwise report an error and return true.
538 bool expectAndConsume(MIToken::TokenKind TokenKind);
539
540 /// If the current token is of the given kind, consume it and return true.
541 /// Otherwise return false.
542 bool consumeIfPresent(MIToken::TokenKind TokenKind);
543
544 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
545
546 bool assignRegisterTies(MachineInstr &MI,
547 ArrayRef<ParsedMachineOperand> Operands);
548
549 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
550 const MCInstrDesc &MCID);
551
552 const BasicBlock *getIRBlock(unsigned Slot);
553 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
554
555 /// Get or create an MCSymbol for a given name.
556 MCSymbol *getOrCreateMCSymbol(StringRef Name);
557
558 /// parseStringConstant
559 /// ::= StringConstant
560 bool parseStringConstant(std::string &Result);
561
562 /// Map the location in the MI string to the corresponding location specified
563 /// in `SourceRange`.
564 SMLoc mapSMLoc(StringRef::iterator Loc);
565 };
566
567 } // end anonymous namespace
568
MIParser(PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source)569 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
570 StringRef Source)
571 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
572 {}
573
MIParser(PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source,SMRange SourceRange)574 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
575 StringRef Source, SMRange SourceRange)
576 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
577 SourceRange(SourceRange), PFS(PFS) {}
578
lex(unsigned SkipChar)579 void MIParser::lex(unsigned SkipChar) {
580 CurrentSource = lexMIToken(
581 CurrentSource.slice(SkipChar, StringRef::npos), Token,
582 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
583 }
584
error(const Twine & Msg)585 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
586
error(StringRef::iterator Loc,const Twine & Msg)587 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
588 const SourceMgr &SM = *PFS.SM;
589 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
590 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
591 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
592 // Create an ordinary diagnostic when the source manager's buffer is the
593 // source string.
594 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
595 return true;
596 }
597 // Create a diagnostic for a YAML string literal.
598 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
599 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
600 Source, std::nullopt, std::nullopt);
601 return true;
602 }
603
mapSMLoc(StringRef::iterator Loc)604 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
605 assert(SourceRange.isValid() && "Invalid source range");
606 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
607 return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
608 (Loc - Source.data()));
609 }
610
611 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
612 ErrorCallbackType;
613
toString(MIToken::TokenKind TokenKind)614 static const char *toString(MIToken::TokenKind TokenKind) {
615 switch (TokenKind) {
616 case MIToken::comma:
617 return "','";
618 case MIToken::equal:
619 return "'='";
620 case MIToken::colon:
621 return "':'";
622 case MIToken::lparen:
623 return "'('";
624 case MIToken::rparen:
625 return "')'";
626 default:
627 return "<unknown token>";
628 }
629 }
630
expectAndConsume(MIToken::TokenKind TokenKind)631 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
632 if (Token.isNot(TokenKind))
633 return error(Twine("expected ") + toString(TokenKind));
634 lex();
635 return false;
636 }
637
consumeIfPresent(MIToken::TokenKind TokenKind)638 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
639 if (Token.isNot(TokenKind))
640 return false;
641 lex();
642 return true;
643 }
644
645 // Parse Machine Basic Block Section ID.
parseSectionID(std::optional<MBBSectionID> & SID)646 bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) {
647 assert(Token.is(MIToken::kw_bbsections));
648 lex();
649 if (Token.is(MIToken::IntegerLiteral)) {
650 unsigned Value = 0;
651 if (getUnsigned(Value))
652 return error("Unknown Section ID");
653 SID = MBBSectionID{Value};
654 } else {
655 const StringRef &S = Token.stringValue();
656 if (S == "Exception")
657 SID = MBBSectionID::ExceptionSectionID;
658 else if (S == "Cold")
659 SID = MBBSectionID::ColdSectionID;
660 else
661 return error("Unknown Section ID");
662 }
663 lex();
664 return false;
665 }
666
667 // Parse Machine Basic Block ID.
parseBBID(std::optional<unsigned> & BBID)668 bool MIParser::parseBBID(std::optional<unsigned> &BBID) {
669 assert(Token.is(MIToken::kw_bb_id));
670 lex();
671 unsigned Value = 0;
672 if (getUnsigned(Value))
673 return error("Unknown BB ID");
674 BBID = Value;
675 lex();
676 return false;
677 }
678
parseBasicBlockDefinition(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)679 bool MIParser::parseBasicBlockDefinition(
680 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
681 assert(Token.is(MIToken::MachineBasicBlockLabel));
682 unsigned ID = 0;
683 if (getUnsigned(ID))
684 return true;
685 auto Loc = Token.location();
686 auto Name = Token.stringValue();
687 lex();
688 bool MachineBlockAddressTaken = false;
689 BasicBlock *AddressTakenIRBlock = nullptr;
690 bool IsLandingPad = false;
691 bool IsInlineAsmBrIndirectTarget = false;
692 bool IsEHFuncletEntry = false;
693 std::optional<MBBSectionID> SectionID;
694 uint64_t Alignment = 0;
695 std::optional<unsigned> BBID;
696 BasicBlock *BB = nullptr;
697 if (consumeIfPresent(MIToken::lparen)) {
698 do {
699 // TODO: Report an error when multiple same attributes are specified.
700 switch (Token.kind()) {
701 case MIToken::kw_machine_block_address_taken:
702 MachineBlockAddressTaken = true;
703 lex();
704 break;
705 case MIToken::kw_ir_block_address_taken:
706 if (parseIRBlockAddressTaken(AddressTakenIRBlock))
707 return true;
708 break;
709 case MIToken::kw_landing_pad:
710 IsLandingPad = true;
711 lex();
712 break;
713 case MIToken::kw_inlineasm_br_indirect_target:
714 IsInlineAsmBrIndirectTarget = true;
715 lex();
716 break;
717 case MIToken::kw_ehfunclet_entry:
718 IsEHFuncletEntry = true;
719 lex();
720 break;
721 case MIToken::kw_align:
722 if (parseAlignment(Alignment))
723 return true;
724 break;
725 case MIToken::IRBlock:
726 case MIToken::NamedIRBlock:
727 // TODO: Report an error when both name and ir block are specified.
728 if (parseIRBlock(BB, MF.getFunction()))
729 return true;
730 lex();
731 break;
732 case MIToken::kw_bbsections:
733 if (parseSectionID(SectionID))
734 return true;
735 break;
736 case MIToken::kw_bb_id:
737 if (parseBBID(BBID))
738 return true;
739 break;
740 default:
741 break;
742 }
743 } while (consumeIfPresent(MIToken::comma));
744 if (expectAndConsume(MIToken::rparen))
745 return true;
746 }
747 if (expectAndConsume(MIToken::colon))
748 return true;
749
750 if (!Name.empty()) {
751 BB = dyn_cast_or_null<BasicBlock>(
752 MF.getFunction().getValueSymbolTable()->lookup(Name));
753 if (!BB)
754 return error(Loc, Twine("basic block '") + Name +
755 "' is not defined in the function '" +
756 MF.getName() + "'");
757 }
758 auto *MBB = MF.CreateMachineBasicBlock(BB);
759 MF.insert(MF.end(), MBB);
760 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
761 if (!WasInserted)
762 return error(Loc, Twine("redefinition of machine basic block with id #") +
763 Twine(ID));
764 if (Alignment)
765 MBB->setAlignment(Align(Alignment));
766 if (MachineBlockAddressTaken)
767 MBB->setMachineBlockAddressTaken();
768 if (AddressTakenIRBlock)
769 MBB->setAddressTakenIRBlock(AddressTakenIRBlock);
770 MBB->setIsEHPad(IsLandingPad);
771 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
772 MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
773 if (SectionID) {
774 MBB->setSectionID(*SectionID);
775 MF.setBBSectionsType(BasicBlockSection::List);
776 }
777 if (BBID.has_value()) {
778 // BBSectionsType is set to `List` if any basic blocks has `SectionID`.
779 // Here, we set it to `Labels` if it hasn't been set above.
780 if (!MF.hasBBSections())
781 MF.setBBSectionsType(BasicBlockSection::Labels);
782 MBB->setBBID(BBID.value());
783 }
784 return false;
785 }
786
parseBasicBlockDefinitions(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)787 bool MIParser::parseBasicBlockDefinitions(
788 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
789 lex();
790 // Skip until the first machine basic block.
791 while (Token.is(MIToken::Newline))
792 lex();
793 if (Token.isErrorOrEOF())
794 return Token.isError();
795 if (Token.isNot(MIToken::MachineBasicBlockLabel))
796 return error("expected a basic block definition before instructions");
797 unsigned BraceDepth = 0;
798 do {
799 if (parseBasicBlockDefinition(MBBSlots))
800 return true;
801 bool IsAfterNewline = false;
802 // Skip until the next machine basic block.
803 while (true) {
804 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
805 Token.isErrorOrEOF())
806 break;
807 else if (Token.is(MIToken::MachineBasicBlockLabel))
808 return error("basic block definition should be located at the start of "
809 "the line");
810 else if (consumeIfPresent(MIToken::Newline)) {
811 IsAfterNewline = true;
812 continue;
813 }
814 IsAfterNewline = false;
815 if (Token.is(MIToken::lbrace))
816 ++BraceDepth;
817 if (Token.is(MIToken::rbrace)) {
818 if (!BraceDepth)
819 return error("extraneous closing brace ('}')");
820 --BraceDepth;
821 }
822 lex();
823 }
824 // Verify that we closed all of the '{' at the end of a file or a block.
825 if (!Token.isError() && BraceDepth)
826 return error("expected '}'"); // FIXME: Report a note that shows '{'.
827 } while (!Token.isErrorOrEOF());
828 return Token.isError();
829 }
830
parseBasicBlockLiveins(MachineBasicBlock & MBB)831 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
832 assert(Token.is(MIToken::kw_liveins));
833 lex();
834 if (expectAndConsume(MIToken::colon))
835 return true;
836 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
837 return false;
838 do {
839 if (Token.isNot(MIToken::NamedRegister))
840 return error("expected a named register");
841 Register Reg;
842 if (parseNamedRegister(Reg))
843 return true;
844 lex();
845 LaneBitmask Mask = LaneBitmask::getAll();
846 if (consumeIfPresent(MIToken::colon)) {
847 // Parse lane mask.
848 if (Token.isNot(MIToken::IntegerLiteral) &&
849 Token.isNot(MIToken::HexLiteral))
850 return error("expected a lane mask");
851 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
852 "Use correct get-function for lane mask");
853 LaneBitmask::Type V;
854 if (getUint64(V))
855 return error("invalid lane mask value");
856 Mask = LaneBitmask(V);
857 lex();
858 }
859 MBB.addLiveIn(Reg, Mask);
860 } while (consumeIfPresent(MIToken::comma));
861 return false;
862 }
863
parseBasicBlockSuccessors(MachineBasicBlock & MBB)864 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
865 assert(Token.is(MIToken::kw_successors));
866 lex();
867 if (expectAndConsume(MIToken::colon))
868 return true;
869 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
870 return false;
871 do {
872 if (Token.isNot(MIToken::MachineBasicBlock))
873 return error("expected a machine basic block reference");
874 MachineBasicBlock *SuccMBB = nullptr;
875 if (parseMBBReference(SuccMBB))
876 return true;
877 lex();
878 unsigned Weight = 0;
879 if (consumeIfPresent(MIToken::lparen)) {
880 if (Token.isNot(MIToken::IntegerLiteral) &&
881 Token.isNot(MIToken::HexLiteral))
882 return error("expected an integer literal after '('");
883 if (getUnsigned(Weight))
884 return true;
885 lex();
886 if (expectAndConsume(MIToken::rparen))
887 return true;
888 }
889 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
890 } while (consumeIfPresent(MIToken::comma));
891 MBB.normalizeSuccProbs();
892 return false;
893 }
894
parseBasicBlock(MachineBasicBlock & MBB,MachineBasicBlock * & AddFalthroughFrom)895 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
896 MachineBasicBlock *&AddFalthroughFrom) {
897 // Skip the definition.
898 assert(Token.is(MIToken::MachineBasicBlockLabel));
899 lex();
900 if (consumeIfPresent(MIToken::lparen)) {
901 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
902 lex();
903 consumeIfPresent(MIToken::rparen);
904 }
905 consumeIfPresent(MIToken::colon);
906
907 // Parse the liveins and successors.
908 // N.B: Multiple lists of successors and liveins are allowed and they're
909 // merged into one.
910 // Example:
911 // liveins: $edi
912 // liveins: $esi
913 //
914 // is equivalent to
915 // liveins: $edi, $esi
916 bool ExplicitSuccessors = false;
917 while (true) {
918 if (Token.is(MIToken::kw_successors)) {
919 if (parseBasicBlockSuccessors(MBB))
920 return true;
921 ExplicitSuccessors = true;
922 } else if (Token.is(MIToken::kw_liveins)) {
923 if (parseBasicBlockLiveins(MBB))
924 return true;
925 } else if (consumeIfPresent(MIToken::Newline)) {
926 continue;
927 } else
928 break;
929 if (!Token.isNewlineOrEOF())
930 return error("expected line break at the end of a list");
931 lex();
932 }
933
934 // Parse the instructions.
935 bool IsInBundle = false;
936 MachineInstr *PrevMI = nullptr;
937 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
938 !Token.is(MIToken::Eof)) {
939 if (consumeIfPresent(MIToken::Newline))
940 continue;
941 if (consumeIfPresent(MIToken::rbrace)) {
942 // The first parsing pass should verify that all closing '}' have an
943 // opening '{'.
944 assert(IsInBundle);
945 IsInBundle = false;
946 continue;
947 }
948 MachineInstr *MI = nullptr;
949 if (parse(MI))
950 return true;
951 MBB.insert(MBB.end(), MI);
952 if (IsInBundle) {
953 PrevMI->setFlag(MachineInstr::BundledSucc);
954 MI->setFlag(MachineInstr::BundledPred);
955 }
956 PrevMI = MI;
957 if (Token.is(MIToken::lbrace)) {
958 if (IsInBundle)
959 return error("nested instruction bundles are not allowed");
960 lex();
961 // This instruction is the start of the bundle.
962 MI->setFlag(MachineInstr::BundledSucc);
963 IsInBundle = true;
964 if (!Token.is(MIToken::Newline))
965 // The next instruction can be on the same line.
966 continue;
967 }
968 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
969 lex();
970 }
971
972 // Construct successor list by searching for basic block machine operands.
973 if (!ExplicitSuccessors) {
974 SmallVector<MachineBasicBlock*,4> Successors;
975 bool IsFallthrough;
976 guessSuccessors(MBB, Successors, IsFallthrough);
977 for (MachineBasicBlock *Succ : Successors)
978 MBB.addSuccessor(Succ);
979
980 if (IsFallthrough) {
981 AddFalthroughFrom = &MBB;
982 } else {
983 MBB.normalizeSuccProbs();
984 }
985 }
986
987 return false;
988 }
989
parseBasicBlocks()990 bool MIParser::parseBasicBlocks() {
991 lex();
992 // Skip until the first machine basic block.
993 while (Token.is(MIToken::Newline))
994 lex();
995 if (Token.isErrorOrEOF())
996 return Token.isError();
997 // The first parsing pass should have verified that this token is a MBB label
998 // in the 'parseBasicBlockDefinitions' method.
999 assert(Token.is(MIToken::MachineBasicBlockLabel));
1000 MachineBasicBlock *AddFalthroughFrom = nullptr;
1001 do {
1002 MachineBasicBlock *MBB = nullptr;
1003 if (parseMBBReference(MBB))
1004 return true;
1005 if (AddFalthroughFrom) {
1006 if (!AddFalthroughFrom->isSuccessor(MBB))
1007 AddFalthroughFrom->addSuccessor(MBB);
1008 AddFalthroughFrom->normalizeSuccProbs();
1009 AddFalthroughFrom = nullptr;
1010 }
1011 if (parseBasicBlock(*MBB, AddFalthroughFrom))
1012 return true;
1013 // The method 'parseBasicBlock' should parse the whole block until the next
1014 // block or the end of file.
1015 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
1016 } while (Token.isNot(MIToken::Eof));
1017 return false;
1018 }
1019
parse(MachineInstr * & MI)1020 bool MIParser::parse(MachineInstr *&MI) {
1021 // Parse any register operands before '='
1022 MachineOperand MO = MachineOperand::CreateImm(0);
1023 SmallVector<ParsedMachineOperand, 8> Operands;
1024 while (Token.isRegister() || Token.isRegisterFlag()) {
1025 auto Loc = Token.location();
1026 std::optional<unsigned> TiedDefIdx;
1027 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
1028 return true;
1029 Operands.push_back(
1030 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1031 if (Token.isNot(MIToken::comma))
1032 break;
1033 lex();
1034 }
1035 if (!Operands.empty() && expectAndConsume(MIToken::equal))
1036 return true;
1037
1038 unsigned OpCode, Flags = 0;
1039 if (Token.isError() || parseInstruction(OpCode, Flags))
1040 return true;
1041
1042 // Parse the remaining machine operands.
1043 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1044 Token.isNot(MIToken::kw_post_instr_symbol) &&
1045 Token.isNot(MIToken::kw_heap_alloc_marker) &&
1046 Token.isNot(MIToken::kw_pcsections) &&
1047 Token.isNot(MIToken::kw_cfi_type) &&
1048 Token.isNot(MIToken::kw_debug_location) &&
1049 Token.isNot(MIToken::kw_debug_instr_number) &&
1050 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1051 auto Loc = Token.location();
1052 std::optional<unsigned> TiedDefIdx;
1053 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1054 return true;
1055 Operands.push_back(
1056 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1057 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1058 Token.is(MIToken::lbrace))
1059 break;
1060 if (Token.isNot(MIToken::comma))
1061 return error("expected ',' before the next machine operand");
1062 lex();
1063 }
1064
1065 MCSymbol *PreInstrSymbol = nullptr;
1066 if (Token.is(MIToken::kw_pre_instr_symbol))
1067 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1068 return true;
1069 MCSymbol *PostInstrSymbol = nullptr;
1070 if (Token.is(MIToken::kw_post_instr_symbol))
1071 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1072 return true;
1073 MDNode *HeapAllocMarker = nullptr;
1074 if (Token.is(MIToken::kw_heap_alloc_marker))
1075 if (parseHeapAllocMarker(HeapAllocMarker))
1076 return true;
1077 MDNode *PCSections = nullptr;
1078 if (Token.is(MIToken::kw_pcsections))
1079 if (parsePCSections(PCSections))
1080 return true;
1081
1082 unsigned CFIType = 0;
1083 if (Token.is(MIToken::kw_cfi_type)) {
1084 lex();
1085 if (Token.isNot(MIToken::IntegerLiteral))
1086 return error("expected an integer literal after 'cfi-type'");
1087 // getUnsigned is sufficient for 32-bit integers.
1088 if (getUnsigned(CFIType))
1089 return true;
1090 lex();
1091 // Lex past trailing comma if present.
1092 if (Token.is(MIToken::comma))
1093 lex();
1094 }
1095
1096 unsigned InstrNum = 0;
1097 if (Token.is(MIToken::kw_debug_instr_number)) {
1098 lex();
1099 if (Token.isNot(MIToken::IntegerLiteral))
1100 return error("expected an integer literal after 'debug-instr-number'");
1101 if (getUnsigned(InstrNum))
1102 return true;
1103 lex();
1104 // Lex past trailing comma if present.
1105 if (Token.is(MIToken::comma))
1106 lex();
1107 }
1108
1109 DebugLoc DebugLocation;
1110 if (Token.is(MIToken::kw_debug_location)) {
1111 lex();
1112 MDNode *Node = nullptr;
1113 if (Token.is(MIToken::exclaim)) {
1114 if (parseMDNode(Node))
1115 return true;
1116 } else if (Token.is(MIToken::md_dilocation)) {
1117 if (parseDILocation(Node))
1118 return true;
1119 } else
1120 return error("expected a metadata node after 'debug-location'");
1121 if (!isa<DILocation>(Node))
1122 return error("referenced metadata is not a DILocation");
1123 DebugLocation = DebugLoc(Node);
1124 }
1125
1126 // Parse the machine memory operands.
1127 SmallVector<MachineMemOperand *, 2> MemOperands;
1128 if (Token.is(MIToken::coloncolon)) {
1129 lex();
1130 while (!Token.isNewlineOrEOF()) {
1131 MachineMemOperand *MemOp = nullptr;
1132 if (parseMachineMemoryOperand(MemOp))
1133 return true;
1134 MemOperands.push_back(MemOp);
1135 if (Token.isNewlineOrEOF())
1136 break;
1137 if (Token.isNot(MIToken::comma))
1138 return error("expected ',' before the next machine memory operand");
1139 lex();
1140 }
1141 }
1142
1143 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1144 if (!MCID.isVariadic()) {
1145 // FIXME: Move the implicit operand verification to the machine verifier.
1146 if (verifyImplicitOperands(Operands, MCID))
1147 return true;
1148 }
1149
1150 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1151 MI->setFlags(Flags);
1152
1153 unsigned NumExplicitOps = 0;
1154 for (const auto &Operand : Operands) {
1155 bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit();
1156 if (!IsImplicitOp) {
1157 if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() &&
1158 !Operand.Operand.isValidExcessOperand())
1159 return error(Operand.Begin, "too many operands for instruction");
1160
1161 ++NumExplicitOps;
1162 }
1163
1164 MI->addOperand(MF, Operand.Operand);
1165 }
1166
1167 if (assignRegisterTies(*MI, Operands))
1168 return true;
1169 if (PreInstrSymbol)
1170 MI->setPreInstrSymbol(MF, PreInstrSymbol);
1171 if (PostInstrSymbol)
1172 MI->setPostInstrSymbol(MF, PostInstrSymbol);
1173 if (HeapAllocMarker)
1174 MI->setHeapAllocMarker(MF, HeapAllocMarker);
1175 if (PCSections)
1176 MI->setPCSections(MF, PCSections);
1177 if (CFIType)
1178 MI->setCFIType(MF, CFIType);
1179 if (!MemOperands.empty())
1180 MI->setMemRefs(MF, MemOperands);
1181 if (InstrNum)
1182 MI->setDebugInstrNum(InstrNum);
1183 return false;
1184 }
1185
parseStandaloneMBB(MachineBasicBlock * & MBB)1186 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1187 lex();
1188 if (Token.isNot(MIToken::MachineBasicBlock))
1189 return error("expected a machine basic block reference");
1190 if (parseMBBReference(MBB))
1191 return true;
1192 lex();
1193 if (Token.isNot(MIToken::Eof))
1194 return error(
1195 "expected end of string after the machine basic block reference");
1196 return false;
1197 }
1198
parseStandaloneNamedRegister(Register & Reg)1199 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1200 lex();
1201 if (Token.isNot(MIToken::NamedRegister))
1202 return error("expected a named register");
1203 if (parseNamedRegister(Reg))
1204 return true;
1205 lex();
1206 if (Token.isNot(MIToken::Eof))
1207 return error("expected end of string after the register reference");
1208 return false;
1209 }
1210
parseStandaloneVirtualRegister(VRegInfo * & Info)1211 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1212 lex();
1213 if (Token.isNot(MIToken::VirtualRegister))
1214 return error("expected a virtual register");
1215 if (parseVirtualRegister(Info))
1216 return true;
1217 lex();
1218 if (Token.isNot(MIToken::Eof))
1219 return error("expected end of string after the register reference");
1220 return false;
1221 }
1222
parseStandaloneRegister(Register & Reg)1223 bool MIParser::parseStandaloneRegister(Register &Reg) {
1224 lex();
1225 if (Token.isNot(MIToken::NamedRegister) &&
1226 Token.isNot(MIToken::VirtualRegister))
1227 return error("expected either a named or virtual register");
1228
1229 VRegInfo *Info;
1230 if (parseRegister(Reg, Info))
1231 return true;
1232
1233 lex();
1234 if (Token.isNot(MIToken::Eof))
1235 return error("expected end of string after the register reference");
1236 return false;
1237 }
1238
parseStandaloneStackObject(int & FI)1239 bool MIParser::parseStandaloneStackObject(int &FI) {
1240 lex();
1241 if (Token.isNot(MIToken::StackObject))
1242 return error("expected a stack object");
1243 if (parseStackFrameIndex(FI))
1244 return true;
1245 if (Token.isNot(MIToken::Eof))
1246 return error("expected end of string after the stack object reference");
1247 return false;
1248 }
1249
parseStandaloneMDNode(MDNode * & Node)1250 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1251 lex();
1252 if (Token.is(MIToken::exclaim)) {
1253 if (parseMDNode(Node))
1254 return true;
1255 } else if (Token.is(MIToken::md_diexpr)) {
1256 if (parseDIExpression(Node))
1257 return true;
1258 } else if (Token.is(MIToken::md_dilocation)) {
1259 if (parseDILocation(Node))
1260 return true;
1261 } else
1262 return error("expected a metadata node");
1263 if (Token.isNot(MIToken::Eof))
1264 return error("expected end of string after the metadata node");
1265 return false;
1266 }
1267
parseMachineMetadata()1268 bool MIParser::parseMachineMetadata() {
1269 lex();
1270 if (Token.isNot(MIToken::exclaim))
1271 return error("expected a metadata node");
1272
1273 lex();
1274 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1275 return error("expected metadata id after '!'");
1276 unsigned ID = 0;
1277 if (getUnsigned(ID))
1278 return true;
1279 lex();
1280 if (expectAndConsume(MIToken::equal))
1281 return true;
1282 bool IsDistinct = Token.is(MIToken::kw_distinct);
1283 if (IsDistinct)
1284 lex();
1285 if (Token.isNot(MIToken::exclaim))
1286 return error("expected a metadata node");
1287 lex();
1288
1289 MDNode *MD;
1290 if (parseMDTuple(MD, IsDistinct))
1291 return true;
1292
1293 auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1294 if (FI != PFS.MachineForwardRefMDNodes.end()) {
1295 FI->second.first->replaceAllUsesWith(MD);
1296 PFS.MachineForwardRefMDNodes.erase(FI);
1297
1298 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1299 } else {
1300 if (PFS.MachineMetadataNodes.count(ID))
1301 return error("Metadata id is already used");
1302 PFS.MachineMetadataNodes[ID].reset(MD);
1303 }
1304
1305 return false;
1306 }
1307
parseMDTuple(MDNode * & MD,bool IsDistinct)1308 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1309 SmallVector<Metadata *, 16> Elts;
1310 if (parseMDNodeVector(Elts))
1311 return true;
1312 MD = (IsDistinct ? MDTuple::getDistinct
1313 : MDTuple::get)(MF.getFunction().getContext(), Elts);
1314 return false;
1315 }
1316
parseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)1317 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1318 if (Token.isNot(MIToken::lbrace))
1319 return error("expected '{' here");
1320 lex();
1321
1322 if (Token.is(MIToken::rbrace)) {
1323 lex();
1324 return false;
1325 }
1326
1327 do {
1328 Metadata *MD;
1329 if (parseMetadata(MD))
1330 return true;
1331
1332 Elts.push_back(MD);
1333
1334 if (Token.isNot(MIToken::comma))
1335 break;
1336 lex();
1337 } while (true);
1338
1339 if (Token.isNot(MIToken::rbrace))
1340 return error("expected end of metadata node");
1341 lex();
1342
1343 return false;
1344 }
1345
1346 // ::= !42
1347 // ::= !"string"
parseMetadata(Metadata * & MD)1348 bool MIParser::parseMetadata(Metadata *&MD) {
1349 if (Token.isNot(MIToken::exclaim))
1350 return error("expected '!' here");
1351 lex();
1352
1353 if (Token.is(MIToken::StringConstant)) {
1354 std::string Str;
1355 if (parseStringConstant(Str))
1356 return true;
1357 MD = MDString::get(MF.getFunction().getContext(), Str);
1358 return false;
1359 }
1360
1361 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1362 return error("expected metadata id after '!'");
1363
1364 SMLoc Loc = mapSMLoc(Token.location());
1365
1366 unsigned ID = 0;
1367 if (getUnsigned(ID))
1368 return true;
1369 lex();
1370
1371 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1372 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1373 MD = NodeInfo->second.get();
1374 return false;
1375 }
1376 // Check machine metadata.
1377 NodeInfo = PFS.MachineMetadataNodes.find(ID);
1378 if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1379 MD = NodeInfo->second.get();
1380 return false;
1381 }
1382 // Forward reference.
1383 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1384 FwdRef = std::make_pair(
1385 MDTuple::getTemporary(MF.getFunction().getContext(), std::nullopt), Loc);
1386 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1387 MD = FwdRef.first.get();
1388
1389 return false;
1390 }
1391
printImplicitRegisterFlag(const MachineOperand & MO)1392 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1393 assert(MO.isImplicit());
1394 return MO.isDef() ? "implicit-def" : "implicit";
1395 }
1396
getRegisterName(const TargetRegisterInfo * TRI,Register Reg)1397 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1398 Register Reg) {
1399 assert(Reg.isPhysical() && "expected phys reg");
1400 return StringRef(TRI->getName(Reg)).lower();
1401 }
1402
1403 /// Return true if the parsed machine operands contain a given machine operand.
isImplicitOperandIn(const MachineOperand & ImplicitOperand,ArrayRef<ParsedMachineOperand> Operands)1404 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1405 ArrayRef<ParsedMachineOperand> Operands) {
1406 for (const auto &I : Operands) {
1407 if (ImplicitOperand.isIdenticalTo(I.Operand))
1408 return true;
1409 }
1410 return false;
1411 }
1412
verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,const MCInstrDesc & MCID)1413 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1414 const MCInstrDesc &MCID) {
1415 if (MCID.isCall())
1416 // We can't verify call instructions as they can contain arbitrary implicit
1417 // register and register mask operands.
1418 return false;
1419
1420 // Gather all the expected implicit operands.
1421 SmallVector<MachineOperand, 4> ImplicitOperands;
1422 for (MCPhysReg ImpDef : MCID.implicit_defs())
1423 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true));
1424 for (MCPhysReg ImpUse : MCID.implicit_uses())
1425 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true));
1426
1427 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1428 assert(TRI && "Expected target register info");
1429 for (const auto &I : ImplicitOperands) {
1430 if (isImplicitOperandIn(I, Operands))
1431 continue;
1432 return error(Operands.empty() ? Token.location() : Operands.back().End,
1433 Twine("missing implicit register operand '") +
1434 printImplicitRegisterFlag(I) + " $" +
1435 getRegisterName(TRI, I.getReg()) + "'");
1436 }
1437 return false;
1438 }
1439
parseInstruction(unsigned & OpCode,unsigned & Flags)1440 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1441 // Allow frame and fast math flags for OPCODE
1442 while (Token.is(MIToken::kw_frame_setup) ||
1443 Token.is(MIToken::kw_frame_destroy) ||
1444 Token.is(MIToken::kw_nnan) ||
1445 Token.is(MIToken::kw_ninf) ||
1446 Token.is(MIToken::kw_nsz) ||
1447 Token.is(MIToken::kw_arcp) ||
1448 Token.is(MIToken::kw_contract) ||
1449 Token.is(MIToken::kw_afn) ||
1450 Token.is(MIToken::kw_reassoc) ||
1451 Token.is(MIToken::kw_nuw) ||
1452 Token.is(MIToken::kw_nsw) ||
1453 Token.is(MIToken::kw_exact) ||
1454 Token.is(MIToken::kw_nofpexcept)) {
1455 // Mine frame and fast math flags
1456 if (Token.is(MIToken::kw_frame_setup))
1457 Flags |= MachineInstr::FrameSetup;
1458 if (Token.is(MIToken::kw_frame_destroy))
1459 Flags |= MachineInstr::FrameDestroy;
1460 if (Token.is(MIToken::kw_nnan))
1461 Flags |= MachineInstr::FmNoNans;
1462 if (Token.is(MIToken::kw_ninf))
1463 Flags |= MachineInstr::FmNoInfs;
1464 if (Token.is(MIToken::kw_nsz))
1465 Flags |= MachineInstr::FmNsz;
1466 if (Token.is(MIToken::kw_arcp))
1467 Flags |= MachineInstr::FmArcp;
1468 if (Token.is(MIToken::kw_contract))
1469 Flags |= MachineInstr::FmContract;
1470 if (Token.is(MIToken::kw_afn))
1471 Flags |= MachineInstr::FmAfn;
1472 if (Token.is(MIToken::kw_reassoc))
1473 Flags |= MachineInstr::FmReassoc;
1474 if (Token.is(MIToken::kw_nuw))
1475 Flags |= MachineInstr::NoUWrap;
1476 if (Token.is(MIToken::kw_nsw))
1477 Flags |= MachineInstr::NoSWrap;
1478 if (Token.is(MIToken::kw_exact))
1479 Flags |= MachineInstr::IsExact;
1480 if (Token.is(MIToken::kw_nofpexcept))
1481 Flags |= MachineInstr::NoFPExcept;
1482
1483 lex();
1484 }
1485 if (Token.isNot(MIToken::Identifier))
1486 return error("expected a machine instruction");
1487 StringRef InstrName = Token.stringValue();
1488 if (PFS.Target.parseInstrName(InstrName, OpCode))
1489 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1490 lex();
1491 return false;
1492 }
1493
parseNamedRegister(Register & Reg)1494 bool MIParser::parseNamedRegister(Register &Reg) {
1495 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1496 StringRef Name = Token.stringValue();
1497 if (PFS.Target.getRegisterByName(Name, Reg))
1498 return error(Twine("unknown register name '") + Name + "'");
1499 return false;
1500 }
1501
parseNamedVirtualRegister(VRegInfo * & Info)1502 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1503 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1504 StringRef Name = Token.stringValue();
1505 // TODO: Check that the VReg name is not the same as a physical register name.
1506 // If it is, then print a warning (when warnings are implemented).
1507 Info = &PFS.getVRegInfoNamed(Name);
1508 return false;
1509 }
1510
parseVirtualRegister(VRegInfo * & Info)1511 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1512 if (Token.is(MIToken::NamedVirtualRegister))
1513 return parseNamedVirtualRegister(Info);
1514 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1515 unsigned ID;
1516 if (getUnsigned(ID))
1517 return true;
1518 Info = &PFS.getVRegInfo(ID);
1519 return false;
1520 }
1521
parseRegister(Register & Reg,VRegInfo * & Info)1522 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1523 switch (Token.kind()) {
1524 case MIToken::underscore:
1525 Reg = 0;
1526 return false;
1527 case MIToken::NamedRegister:
1528 return parseNamedRegister(Reg);
1529 case MIToken::NamedVirtualRegister:
1530 case MIToken::VirtualRegister:
1531 if (parseVirtualRegister(Info))
1532 return true;
1533 Reg = Info->VReg;
1534 return false;
1535 // TODO: Parse other register kinds.
1536 default:
1537 llvm_unreachable("The current token should be a register");
1538 }
1539 }
1540
parseRegisterClassOrBank(VRegInfo & RegInfo)1541 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1542 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1543 return error("expected '_', register class, or register bank name");
1544 StringRef::iterator Loc = Token.location();
1545 StringRef Name = Token.stringValue();
1546
1547 // Was it a register class?
1548 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1549 if (RC) {
1550 lex();
1551
1552 switch (RegInfo.Kind) {
1553 case VRegInfo::UNKNOWN:
1554 case VRegInfo::NORMAL:
1555 RegInfo.Kind = VRegInfo::NORMAL;
1556 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1557 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1558 return error(Loc, Twine("conflicting register classes, previously: ") +
1559 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1560 }
1561 RegInfo.D.RC = RC;
1562 RegInfo.Explicit = true;
1563 return false;
1564
1565 case VRegInfo::GENERIC:
1566 case VRegInfo::REGBANK:
1567 return error(Loc, "register class specification on generic register");
1568 }
1569 llvm_unreachable("Unexpected register kind");
1570 }
1571
1572 // Should be a register bank or a generic register.
1573 const RegisterBank *RegBank = nullptr;
1574 if (Name != "_") {
1575 RegBank = PFS.Target.getRegBank(Name);
1576 if (!RegBank)
1577 return error(Loc, "expected '_', register class, or register bank name");
1578 }
1579
1580 lex();
1581
1582 switch (RegInfo.Kind) {
1583 case VRegInfo::UNKNOWN:
1584 case VRegInfo::GENERIC:
1585 case VRegInfo::REGBANK:
1586 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1587 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1588 return error(Loc, "conflicting generic register banks");
1589 RegInfo.D.RegBank = RegBank;
1590 RegInfo.Explicit = true;
1591 return false;
1592
1593 case VRegInfo::NORMAL:
1594 return error(Loc, "register bank specification on normal register");
1595 }
1596 llvm_unreachable("Unexpected register kind");
1597 }
1598
parseRegisterFlag(unsigned & Flags)1599 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1600 const unsigned OldFlags = Flags;
1601 switch (Token.kind()) {
1602 case MIToken::kw_implicit:
1603 Flags |= RegState::Implicit;
1604 break;
1605 case MIToken::kw_implicit_define:
1606 Flags |= RegState::ImplicitDefine;
1607 break;
1608 case MIToken::kw_def:
1609 Flags |= RegState::Define;
1610 break;
1611 case MIToken::kw_dead:
1612 Flags |= RegState::Dead;
1613 break;
1614 case MIToken::kw_killed:
1615 Flags |= RegState::Kill;
1616 break;
1617 case MIToken::kw_undef:
1618 Flags |= RegState::Undef;
1619 break;
1620 case MIToken::kw_internal:
1621 Flags |= RegState::InternalRead;
1622 break;
1623 case MIToken::kw_early_clobber:
1624 Flags |= RegState::EarlyClobber;
1625 break;
1626 case MIToken::kw_debug_use:
1627 Flags |= RegState::Debug;
1628 break;
1629 case MIToken::kw_renamable:
1630 Flags |= RegState::Renamable;
1631 break;
1632 default:
1633 llvm_unreachable("The current token should be a register flag");
1634 }
1635 if (OldFlags == Flags)
1636 // We know that the same flag is specified more than once when the flags
1637 // weren't modified.
1638 return error("duplicate '" + Token.stringValue() + "' register flag");
1639 lex();
1640 return false;
1641 }
1642
parseSubRegisterIndex(unsigned & SubReg)1643 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1644 assert(Token.is(MIToken::dot));
1645 lex();
1646 if (Token.isNot(MIToken::Identifier))
1647 return error("expected a subregister index after '.'");
1648 auto Name = Token.stringValue();
1649 SubReg = PFS.Target.getSubRegIndex(Name);
1650 if (!SubReg)
1651 return error(Twine("use of unknown subregister index '") + Name + "'");
1652 lex();
1653 return false;
1654 }
1655
parseRegisterTiedDefIndex(unsigned & TiedDefIdx)1656 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1657 if (!consumeIfPresent(MIToken::kw_tied_def))
1658 return true;
1659 if (Token.isNot(MIToken::IntegerLiteral))
1660 return error("expected an integer literal after 'tied-def'");
1661 if (getUnsigned(TiedDefIdx))
1662 return true;
1663 lex();
1664 if (expectAndConsume(MIToken::rparen))
1665 return true;
1666 return false;
1667 }
1668
assignRegisterTies(MachineInstr & MI,ArrayRef<ParsedMachineOperand> Operands)1669 bool MIParser::assignRegisterTies(MachineInstr &MI,
1670 ArrayRef<ParsedMachineOperand> Operands) {
1671 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1672 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1673 if (!Operands[I].TiedDefIdx)
1674 continue;
1675 // The parser ensures that this operand is a register use, so we just have
1676 // to check the tied-def operand.
1677 unsigned DefIdx = *Operands[I].TiedDefIdx;
1678 if (DefIdx >= E)
1679 return error(Operands[I].Begin,
1680 Twine("use of invalid tied-def operand index '" +
1681 Twine(DefIdx) + "'; instruction has only ") +
1682 Twine(E) + " operands");
1683 const auto &DefOperand = Operands[DefIdx].Operand;
1684 if (!DefOperand.isReg() || !DefOperand.isDef())
1685 // FIXME: add note with the def operand.
1686 return error(Operands[I].Begin,
1687 Twine("use of invalid tied-def operand index '") +
1688 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1689 " isn't a defined register");
1690 // Check that the tied-def operand wasn't tied elsewhere.
1691 for (const auto &TiedPair : TiedRegisterPairs) {
1692 if (TiedPair.first == DefIdx)
1693 return error(Operands[I].Begin,
1694 Twine("the tied-def operand #") + Twine(DefIdx) +
1695 " is already tied with another register operand");
1696 }
1697 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1698 }
1699 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1700 // indices must be less than tied max.
1701 for (const auto &TiedPair : TiedRegisterPairs)
1702 MI.tieOperands(TiedPair.first, TiedPair.second);
1703 return false;
1704 }
1705
parseRegisterOperand(MachineOperand & Dest,std::optional<unsigned> & TiedDefIdx,bool IsDef)1706 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1707 std::optional<unsigned> &TiedDefIdx,
1708 bool IsDef) {
1709 unsigned Flags = IsDef ? RegState::Define : 0;
1710 while (Token.isRegisterFlag()) {
1711 if (parseRegisterFlag(Flags))
1712 return true;
1713 }
1714 if (!Token.isRegister())
1715 return error("expected a register after register flags");
1716 Register Reg;
1717 VRegInfo *RegInfo;
1718 if (parseRegister(Reg, RegInfo))
1719 return true;
1720 lex();
1721 unsigned SubReg = 0;
1722 if (Token.is(MIToken::dot)) {
1723 if (parseSubRegisterIndex(SubReg))
1724 return true;
1725 if (!Reg.isVirtual())
1726 return error("subregister index expects a virtual register");
1727 }
1728 if (Token.is(MIToken::colon)) {
1729 if (!Reg.isVirtual())
1730 return error("register class specification expects a virtual register");
1731 lex();
1732 if (parseRegisterClassOrBank(*RegInfo))
1733 return true;
1734 }
1735 MachineRegisterInfo &MRI = MF.getRegInfo();
1736 if ((Flags & RegState::Define) == 0) {
1737 if (consumeIfPresent(MIToken::lparen)) {
1738 unsigned Idx;
1739 if (!parseRegisterTiedDefIndex(Idx))
1740 TiedDefIdx = Idx;
1741 else {
1742 // Try a redundant low-level type.
1743 LLT Ty;
1744 if (parseLowLevelType(Token.location(), Ty))
1745 return error("expected tied-def or low-level type after '('");
1746
1747 if (expectAndConsume(MIToken::rparen))
1748 return true;
1749
1750 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1751 return error("inconsistent type for generic virtual register");
1752
1753 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1754 MRI.setType(Reg, Ty);
1755 }
1756 }
1757 } else if (consumeIfPresent(MIToken::lparen)) {
1758 // Virtual registers may have a tpe with GlobalISel.
1759 if (!Reg.isVirtual())
1760 return error("unexpected type on physical register");
1761
1762 LLT Ty;
1763 if (parseLowLevelType(Token.location(), Ty))
1764 return true;
1765
1766 if (expectAndConsume(MIToken::rparen))
1767 return true;
1768
1769 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1770 return error("inconsistent type for generic virtual register");
1771
1772 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1773 MRI.setType(Reg, Ty);
1774 } else if (Reg.isVirtual()) {
1775 // Generic virtual registers must have a type.
1776 // If we end up here this means the type hasn't been specified and
1777 // this is bad!
1778 if (RegInfo->Kind == VRegInfo::GENERIC ||
1779 RegInfo->Kind == VRegInfo::REGBANK)
1780 return error("generic virtual registers must have a type");
1781 }
1782
1783 if (Flags & RegState::Define) {
1784 if (Flags & RegState::Kill)
1785 return error("cannot have a killed def operand");
1786 } else {
1787 if (Flags & RegState::Dead)
1788 return error("cannot have a dead use operand");
1789 }
1790
1791 Dest = MachineOperand::CreateReg(
1792 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1793 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1794 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1795 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1796
1797 return false;
1798 }
1799
parseImmediateOperand(MachineOperand & Dest)1800 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1801 assert(Token.is(MIToken::IntegerLiteral));
1802 const APSInt &Int = Token.integerValue();
1803 if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value())
1804 Dest = MachineOperand::CreateImm(*SImm);
1805 else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value())
1806 Dest = MachineOperand::CreateImm(*UImm);
1807 else
1808 return error("integer literal is too large to be an immediate operand");
1809 lex();
1810 return false;
1811 }
1812
parseTargetImmMnemonic(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,const MIRFormatter & MF)1813 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1814 const unsigned OpIdx,
1815 MachineOperand &Dest,
1816 const MIRFormatter &MF) {
1817 assert(Token.is(MIToken::dot));
1818 auto Loc = Token.location(); // record start position
1819 size_t Len = 1; // for "."
1820 lex();
1821
1822 // Handle the case that mnemonic starts with number.
1823 if (Token.is(MIToken::IntegerLiteral)) {
1824 Len += Token.range().size();
1825 lex();
1826 }
1827
1828 StringRef Src;
1829 if (Token.is(MIToken::comma))
1830 Src = StringRef(Loc, Len);
1831 else {
1832 assert(Token.is(MIToken::Identifier));
1833 Src = StringRef(Loc, Len + Token.stringValue().size());
1834 }
1835 int64_t Val;
1836 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1837 [this](StringRef::iterator Loc, const Twine &Msg)
1838 -> bool { return error(Loc, Msg); }))
1839 return true;
1840
1841 Dest = MachineOperand::CreateImm(Val);
1842 if (!Token.is(MIToken::comma))
1843 lex();
1844 return false;
1845 }
1846
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,PerFunctionMIParsingState & PFS,const Constant * & C,ErrorCallbackType ErrCB)1847 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1848 PerFunctionMIParsingState &PFS, const Constant *&C,
1849 ErrorCallbackType ErrCB) {
1850 auto Source = StringValue.str(); // The source has to be null terminated.
1851 SMDiagnostic Err;
1852 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1853 &PFS.IRSlots);
1854 if (!C)
1855 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1856 return false;
1857 }
1858
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,const Constant * & C)1859 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1860 const Constant *&C) {
1861 return ::parseIRConstant(
1862 Loc, StringValue, PFS, C,
1863 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1864 return error(Loc, Msg);
1865 });
1866 }
1867
parseIRConstant(StringRef::iterator Loc,const Constant * & C)1868 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1869 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1870 return true;
1871 lex();
1872 return false;
1873 }
1874
1875 // See LLT implementation for bit size limits.
verifyScalarSize(uint64_t Size)1876 static bool verifyScalarSize(uint64_t Size) {
1877 return Size != 0 && isUInt<16>(Size);
1878 }
1879
verifyVectorElementCount(uint64_t NumElts)1880 static bool verifyVectorElementCount(uint64_t NumElts) {
1881 return NumElts != 0 && isUInt<16>(NumElts);
1882 }
1883
verifyAddrSpace(uint64_t AddrSpace)1884 static bool verifyAddrSpace(uint64_t AddrSpace) {
1885 return isUInt<24>(AddrSpace);
1886 }
1887
parseLowLevelType(StringRef::iterator Loc,LLT & Ty)1888 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1889 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1890 StringRef SizeStr = Token.range().drop_front();
1891 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1892 return error("expected integers after 's'/'p' type character");
1893 }
1894
1895 if (Token.range().front() == 's') {
1896 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1897 if (!verifyScalarSize(ScalarSize))
1898 return error("invalid size for scalar type");
1899
1900 Ty = LLT::scalar(ScalarSize);
1901 lex();
1902 return false;
1903 } else if (Token.range().front() == 'p') {
1904 const DataLayout &DL = MF.getDataLayout();
1905 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1906 if (!verifyAddrSpace(AS))
1907 return error("invalid address space number");
1908
1909 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1910 lex();
1911 return false;
1912 }
1913
1914 // Now we're looking for a vector.
1915 if (Token.isNot(MIToken::less))
1916 return error(Loc,
1917 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1918 lex();
1919
1920 if (Token.isNot(MIToken::IntegerLiteral))
1921 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1922 uint64_t NumElements = Token.integerValue().getZExtValue();
1923 if (!verifyVectorElementCount(NumElements))
1924 return error("invalid number of vector elements");
1925
1926 lex();
1927
1928 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1929 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1930 lex();
1931
1932 if (Token.range().front() != 's' && Token.range().front() != 'p')
1933 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1934 StringRef SizeStr = Token.range().drop_front();
1935 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1936 return error("expected integers after 's'/'p' type character");
1937
1938 if (Token.range().front() == 's') {
1939 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1940 if (!verifyScalarSize(ScalarSize))
1941 return error("invalid size for scalar type");
1942 Ty = LLT::scalar(ScalarSize);
1943 } else if (Token.range().front() == 'p') {
1944 const DataLayout &DL = MF.getDataLayout();
1945 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1946 if (!verifyAddrSpace(AS))
1947 return error("invalid address space number");
1948
1949 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1950 } else
1951 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1952 lex();
1953
1954 if (Token.isNot(MIToken::greater))
1955 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1956 lex();
1957
1958 Ty = LLT::fixed_vector(NumElements, Ty);
1959 return false;
1960 }
1961
parseTypedImmediateOperand(MachineOperand & Dest)1962 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1963 assert(Token.is(MIToken::Identifier));
1964 StringRef TypeStr = Token.range();
1965 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1966 TypeStr.front() != 'p')
1967 return error(
1968 "a typed immediate operand should start with one of 'i', 's', or 'p'");
1969 StringRef SizeStr = Token.range().drop_front();
1970 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1971 return error("expected integers after 'i'/'s'/'p' type character");
1972
1973 auto Loc = Token.location();
1974 lex();
1975 if (Token.isNot(MIToken::IntegerLiteral)) {
1976 if (Token.isNot(MIToken::Identifier) ||
1977 !(Token.range() == "true" || Token.range() == "false"))
1978 return error("expected an integer literal");
1979 }
1980 const Constant *C = nullptr;
1981 if (parseIRConstant(Loc, C))
1982 return true;
1983 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1984 return false;
1985 }
1986
parseFPImmediateOperand(MachineOperand & Dest)1987 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1988 auto Loc = Token.location();
1989 lex();
1990 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1991 Token.isNot(MIToken::HexLiteral))
1992 return error("expected a floating point literal");
1993 const Constant *C = nullptr;
1994 if (parseIRConstant(Loc, C))
1995 return true;
1996 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1997 return false;
1998 }
1999
getHexUint(const MIToken & Token,APInt & Result)2000 static bool getHexUint(const MIToken &Token, APInt &Result) {
2001 assert(Token.is(MIToken::HexLiteral));
2002 StringRef S = Token.range();
2003 assert(S[0] == '0' && tolower(S[1]) == 'x');
2004 // This could be a floating point literal with a special prefix.
2005 if (!isxdigit(S[2]))
2006 return true;
2007 StringRef V = S.substr(2);
2008 APInt A(V.size()*4, V, 16);
2009
2010 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2011 // sure it isn't the case before constructing result.
2012 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2013 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2014 return false;
2015 }
2016
getUnsigned(const MIToken & Token,unsigned & Result,ErrorCallbackType ErrCB)2017 static bool getUnsigned(const MIToken &Token, unsigned &Result,
2018 ErrorCallbackType ErrCB) {
2019 if (Token.hasIntegerValue()) {
2020 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
2021 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
2022 if (Val64 == Limit)
2023 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2024 Result = Val64;
2025 return false;
2026 }
2027 if (Token.is(MIToken::HexLiteral)) {
2028 APInt A;
2029 if (getHexUint(Token, A))
2030 return true;
2031 if (A.getBitWidth() > 32)
2032 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2033 Result = A.getZExtValue();
2034 return false;
2035 }
2036 return true;
2037 }
2038
getUnsigned(unsigned & Result)2039 bool MIParser::getUnsigned(unsigned &Result) {
2040 return ::getUnsigned(
2041 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2042 return error(Loc, Msg);
2043 });
2044 }
2045
parseMBBReference(MachineBasicBlock * & MBB)2046 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
2047 assert(Token.is(MIToken::MachineBasicBlock) ||
2048 Token.is(MIToken::MachineBasicBlockLabel));
2049 unsigned Number;
2050 if (getUnsigned(Number))
2051 return true;
2052 auto MBBInfo = PFS.MBBSlots.find(Number);
2053 if (MBBInfo == PFS.MBBSlots.end())
2054 return error(Twine("use of undefined machine basic block #") +
2055 Twine(Number));
2056 MBB = MBBInfo->second;
2057 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
2058 // we drop the <irname> from the bb.<id>.<irname> format.
2059 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
2060 return error(Twine("the name of machine basic block #") + Twine(Number) +
2061 " isn't '" + Token.stringValue() + "'");
2062 return false;
2063 }
2064
parseMBBOperand(MachineOperand & Dest)2065 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2066 MachineBasicBlock *MBB;
2067 if (parseMBBReference(MBB))
2068 return true;
2069 Dest = MachineOperand::CreateMBB(MBB);
2070 lex();
2071 return false;
2072 }
2073
parseStackFrameIndex(int & FI)2074 bool MIParser::parseStackFrameIndex(int &FI) {
2075 assert(Token.is(MIToken::StackObject));
2076 unsigned ID;
2077 if (getUnsigned(ID))
2078 return true;
2079 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2080 if (ObjectInfo == PFS.StackObjectSlots.end())
2081 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2082 "'");
2083 StringRef Name;
2084 if (const auto *Alloca =
2085 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2086 Name = Alloca->getName();
2087 if (!Token.stringValue().empty() && Token.stringValue() != Name)
2088 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2089 "' isn't '" + Token.stringValue() + "'");
2090 lex();
2091 FI = ObjectInfo->second;
2092 return false;
2093 }
2094
parseStackObjectOperand(MachineOperand & Dest)2095 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2096 int FI;
2097 if (parseStackFrameIndex(FI))
2098 return true;
2099 Dest = MachineOperand::CreateFI(FI);
2100 return false;
2101 }
2102
parseFixedStackFrameIndex(int & FI)2103 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2104 assert(Token.is(MIToken::FixedStackObject));
2105 unsigned ID;
2106 if (getUnsigned(ID))
2107 return true;
2108 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2109 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2110 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2111 Twine(ID) + "'");
2112 lex();
2113 FI = ObjectInfo->second;
2114 return false;
2115 }
2116
parseFixedStackObjectOperand(MachineOperand & Dest)2117 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2118 int FI;
2119 if (parseFixedStackFrameIndex(FI))
2120 return true;
2121 Dest = MachineOperand::CreateFI(FI);
2122 return false;
2123 }
2124
parseGlobalValue(const MIToken & Token,PerFunctionMIParsingState & PFS,GlobalValue * & GV,ErrorCallbackType ErrCB)2125 static bool parseGlobalValue(const MIToken &Token,
2126 PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2127 ErrorCallbackType ErrCB) {
2128 switch (Token.kind()) {
2129 case MIToken::NamedGlobalValue: {
2130 const Module *M = PFS.MF.getFunction().getParent();
2131 GV = M->getNamedValue(Token.stringValue());
2132 if (!GV)
2133 return ErrCB(Token.location(), Twine("use of undefined global value '") +
2134 Token.range() + "'");
2135 break;
2136 }
2137 case MIToken::GlobalValue: {
2138 unsigned GVIdx;
2139 if (getUnsigned(Token, GVIdx, ErrCB))
2140 return true;
2141 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2142 return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2143 Twine(GVIdx) + "'");
2144 GV = PFS.IRSlots.GlobalValues[GVIdx];
2145 break;
2146 }
2147 default:
2148 llvm_unreachable("The current token should be a global value");
2149 }
2150 return false;
2151 }
2152
parseGlobalValue(GlobalValue * & GV)2153 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2154 return ::parseGlobalValue(
2155 Token, PFS, GV,
2156 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2157 return error(Loc, Msg);
2158 });
2159 }
2160
parseGlobalAddressOperand(MachineOperand & Dest)2161 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2162 GlobalValue *GV = nullptr;
2163 if (parseGlobalValue(GV))
2164 return true;
2165 lex();
2166 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2167 if (parseOperandsOffset(Dest))
2168 return true;
2169 return false;
2170 }
2171
parseConstantPoolIndexOperand(MachineOperand & Dest)2172 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2173 assert(Token.is(MIToken::ConstantPoolItem));
2174 unsigned ID;
2175 if (getUnsigned(ID))
2176 return true;
2177 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2178 if (ConstantInfo == PFS.ConstantPoolSlots.end())
2179 return error("use of undefined constant '%const." + Twine(ID) + "'");
2180 lex();
2181 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2182 if (parseOperandsOffset(Dest))
2183 return true;
2184 return false;
2185 }
2186
parseJumpTableIndexOperand(MachineOperand & Dest)2187 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2188 assert(Token.is(MIToken::JumpTableIndex));
2189 unsigned ID;
2190 if (getUnsigned(ID))
2191 return true;
2192 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2193 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2194 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2195 lex();
2196 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2197 return false;
2198 }
2199
parseExternalSymbolOperand(MachineOperand & Dest)2200 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2201 assert(Token.is(MIToken::ExternalSymbol));
2202 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2203 lex();
2204 Dest = MachineOperand::CreateES(Symbol);
2205 if (parseOperandsOffset(Dest))
2206 return true;
2207 return false;
2208 }
2209
parseMCSymbolOperand(MachineOperand & Dest)2210 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2211 assert(Token.is(MIToken::MCSymbol));
2212 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2213 lex();
2214 Dest = MachineOperand::CreateMCSymbol(Symbol);
2215 if (parseOperandsOffset(Dest))
2216 return true;
2217 return false;
2218 }
2219
parseSubRegisterIndexOperand(MachineOperand & Dest)2220 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2221 assert(Token.is(MIToken::SubRegisterIndex));
2222 StringRef Name = Token.stringValue();
2223 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2224 if (SubRegIndex == 0)
2225 return error(Twine("unknown subregister index '") + Name + "'");
2226 lex();
2227 Dest = MachineOperand::CreateImm(SubRegIndex);
2228 return false;
2229 }
2230
parseMDNode(MDNode * & Node)2231 bool MIParser::parseMDNode(MDNode *&Node) {
2232 assert(Token.is(MIToken::exclaim));
2233
2234 auto Loc = Token.location();
2235 lex();
2236 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2237 return error("expected metadata id after '!'");
2238 unsigned ID;
2239 if (getUnsigned(ID))
2240 return true;
2241 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2242 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2243 NodeInfo = PFS.MachineMetadataNodes.find(ID);
2244 if (NodeInfo == PFS.MachineMetadataNodes.end())
2245 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2246 }
2247 lex();
2248 Node = NodeInfo->second.get();
2249 return false;
2250 }
2251
parseDIExpression(MDNode * & Expr)2252 bool MIParser::parseDIExpression(MDNode *&Expr) {
2253 assert(Token.is(MIToken::md_diexpr));
2254 lex();
2255
2256 // FIXME: Share this parsing with the IL parser.
2257 SmallVector<uint64_t, 8> Elements;
2258
2259 if (expectAndConsume(MIToken::lparen))
2260 return true;
2261
2262 if (Token.isNot(MIToken::rparen)) {
2263 do {
2264 if (Token.is(MIToken::Identifier)) {
2265 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2266 lex();
2267 Elements.push_back(Op);
2268 continue;
2269 }
2270 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2271 lex();
2272 Elements.push_back(Enc);
2273 continue;
2274 }
2275 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2276 }
2277
2278 if (Token.isNot(MIToken::IntegerLiteral) ||
2279 Token.integerValue().isSigned())
2280 return error("expected unsigned integer");
2281
2282 auto &U = Token.integerValue();
2283 if (U.ugt(UINT64_MAX))
2284 return error("element too large, limit is " + Twine(UINT64_MAX));
2285 Elements.push_back(U.getZExtValue());
2286 lex();
2287
2288 } while (consumeIfPresent(MIToken::comma));
2289 }
2290
2291 if (expectAndConsume(MIToken::rparen))
2292 return true;
2293
2294 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2295 return false;
2296 }
2297
parseDILocation(MDNode * & Loc)2298 bool MIParser::parseDILocation(MDNode *&Loc) {
2299 assert(Token.is(MIToken::md_dilocation));
2300 lex();
2301
2302 bool HaveLine = false;
2303 unsigned Line = 0;
2304 unsigned Column = 0;
2305 MDNode *Scope = nullptr;
2306 MDNode *InlinedAt = nullptr;
2307 bool ImplicitCode = false;
2308
2309 if (expectAndConsume(MIToken::lparen))
2310 return true;
2311
2312 if (Token.isNot(MIToken::rparen)) {
2313 do {
2314 if (Token.is(MIToken::Identifier)) {
2315 if (Token.stringValue() == "line") {
2316 lex();
2317 if (expectAndConsume(MIToken::colon))
2318 return true;
2319 if (Token.isNot(MIToken::IntegerLiteral) ||
2320 Token.integerValue().isSigned())
2321 return error("expected unsigned integer");
2322 Line = Token.integerValue().getZExtValue();
2323 HaveLine = true;
2324 lex();
2325 continue;
2326 }
2327 if (Token.stringValue() == "column") {
2328 lex();
2329 if (expectAndConsume(MIToken::colon))
2330 return true;
2331 if (Token.isNot(MIToken::IntegerLiteral) ||
2332 Token.integerValue().isSigned())
2333 return error("expected unsigned integer");
2334 Column = Token.integerValue().getZExtValue();
2335 lex();
2336 continue;
2337 }
2338 if (Token.stringValue() == "scope") {
2339 lex();
2340 if (expectAndConsume(MIToken::colon))
2341 return true;
2342 if (parseMDNode(Scope))
2343 return error("expected metadata node");
2344 if (!isa<DIScope>(Scope))
2345 return error("expected DIScope node");
2346 continue;
2347 }
2348 if (Token.stringValue() == "inlinedAt") {
2349 lex();
2350 if (expectAndConsume(MIToken::colon))
2351 return true;
2352 if (Token.is(MIToken::exclaim)) {
2353 if (parseMDNode(InlinedAt))
2354 return true;
2355 } else if (Token.is(MIToken::md_dilocation)) {
2356 if (parseDILocation(InlinedAt))
2357 return true;
2358 } else
2359 return error("expected metadata node");
2360 if (!isa<DILocation>(InlinedAt))
2361 return error("expected DILocation node");
2362 continue;
2363 }
2364 if (Token.stringValue() == "isImplicitCode") {
2365 lex();
2366 if (expectAndConsume(MIToken::colon))
2367 return true;
2368 if (!Token.is(MIToken::Identifier))
2369 return error("expected true/false");
2370 // As far as I can see, we don't have any existing need for parsing
2371 // true/false in MIR yet. Do it ad-hoc until there's something else
2372 // that needs it.
2373 if (Token.stringValue() == "true")
2374 ImplicitCode = true;
2375 else if (Token.stringValue() == "false")
2376 ImplicitCode = false;
2377 else
2378 return error("expected true/false");
2379 lex();
2380 continue;
2381 }
2382 }
2383 return error(Twine("invalid DILocation argument '") +
2384 Token.stringValue() + "'");
2385 } while (consumeIfPresent(MIToken::comma));
2386 }
2387
2388 if (expectAndConsume(MIToken::rparen))
2389 return true;
2390
2391 if (!HaveLine)
2392 return error("DILocation requires line number");
2393 if (!Scope)
2394 return error("DILocation requires a scope");
2395
2396 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2397 InlinedAt, ImplicitCode);
2398 return false;
2399 }
2400
parseMetadataOperand(MachineOperand & Dest)2401 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2402 MDNode *Node = nullptr;
2403 if (Token.is(MIToken::exclaim)) {
2404 if (parseMDNode(Node))
2405 return true;
2406 } else if (Token.is(MIToken::md_diexpr)) {
2407 if (parseDIExpression(Node))
2408 return true;
2409 }
2410 Dest = MachineOperand::CreateMetadata(Node);
2411 return false;
2412 }
2413
parseCFIOffset(int & Offset)2414 bool MIParser::parseCFIOffset(int &Offset) {
2415 if (Token.isNot(MIToken::IntegerLiteral))
2416 return error("expected a cfi offset");
2417 if (Token.integerValue().getMinSignedBits() > 32)
2418 return error("expected a 32 bit integer (the cfi offset is too large)");
2419 Offset = (int)Token.integerValue().getExtValue();
2420 lex();
2421 return false;
2422 }
2423
parseCFIRegister(Register & Reg)2424 bool MIParser::parseCFIRegister(Register &Reg) {
2425 if (Token.isNot(MIToken::NamedRegister))
2426 return error("expected a cfi register");
2427 Register LLVMReg;
2428 if (parseNamedRegister(LLVMReg))
2429 return true;
2430 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2431 assert(TRI && "Expected target register info");
2432 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2433 if (DwarfReg < 0)
2434 return error("invalid DWARF register");
2435 Reg = (unsigned)DwarfReg;
2436 lex();
2437 return false;
2438 }
2439
parseCFIAddressSpace(unsigned & AddressSpace)2440 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2441 if (Token.isNot(MIToken::IntegerLiteral))
2442 return error("expected a cfi address space literal");
2443 if (Token.integerValue().isSigned())
2444 return error("expected an unsigned integer (cfi address space)");
2445 AddressSpace = Token.integerValue().getZExtValue();
2446 lex();
2447 return false;
2448 }
2449
parseCFIEscapeValues(std::string & Values)2450 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2451 do {
2452 if (Token.isNot(MIToken::HexLiteral))
2453 return error("expected a hexadecimal literal");
2454 unsigned Value;
2455 if (getUnsigned(Value))
2456 return true;
2457 if (Value > UINT8_MAX)
2458 return error("expected a 8-bit integer (too large)");
2459 Values.push_back(static_cast<uint8_t>(Value));
2460 lex();
2461 } while (consumeIfPresent(MIToken::comma));
2462 return false;
2463 }
2464
parseCFIOperand(MachineOperand & Dest)2465 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2466 auto Kind = Token.kind();
2467 lex();
2468 int Offset;
2469 Register Reg;
2470 unsigned AddressSpace;
2471 unsigned CFIIndex;
2472 switch (Kind) {
2473 case MIToken::kw_cfi_same_value:
2474 if (parseCFIRegister(Reg))
2475 return true;
2476 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2477 break;
2478 case MIToken::kw_cfi_offset:
2479 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2480 parseCFIOffset(Offset))
2481 return true;
2482 CFIIndex =
2483 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2484 break;
2485 case MIToken::kw_cfi_rel_offset:
2486 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2487 parseCFIOffset(Offset))
2488 return true;
2489 CFIIndex = MF.addFrameInst(
2490 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2491 break;
2492 case MIToken::kw_cfi_def_cfa_register:
2493 if (parseCFIRegister(Reg))
2494 return true;
2495 CFIIndex =
2496 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2497 break;
2498 case MIToken::kw_cfi_def_cfa_offset:
2499 if (parseCFIOffset(Offset))
2500 return true;
2501 CFIIndex =
2502 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2503 break;
2504 case MIToken::kw_cfi_adjust_cfa_offset:
2505 if (parseCFIOffset(Offset))
2506 return true;
2507 CFIIndex = MF.addFrameInst(
2508 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2509 break;
2510 case MIToken::kw_cfi_def_cfa:
2511 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2512 parseCFIOffset(Offset))
2513 return true;
2514 CFIIndex =
2515 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2516 break;
2517 case MIToken::kw_cfi_llvm_def_aspace_cfa:
2518 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2519 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2520 parseCFIAddressSpace(AddressSpace))
2521 return true;
2522 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2523 nullptr, Reg, Offset, AddressSpace));
2524 break;
2525 case MIToken::kw_cfi_remember_state:
2526 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2527 break;
2528 case MIToken::kw_cfi_restore:
2529 if (parseCFIRegister(Reg))
2530 return true;
2531 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2532 break;
2533 case MIToken::kw_cfi_restore_state:
2534 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2535 break;
2536 case MIToken::kw_cfi_undefined:
2537 if (parseCFIRegister(Reg))
2538 return true;
2539 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2540 break;
2541 case MIToken::kw_cfi_register: {
2542 Register Reg2;
2543 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2544 parseCFIRegister(Reg2))
2545 return true;
2546
2547 CFIIndex =
2548 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2549 break;
2550 }
2551 case MIToken::kw_cfi_window_save:
2552 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2553 break;
2554 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2555 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2556 break;
2557 case MIToken::kw_cfi_escape: {
2558 std::string Values;
2559 if (parseCFIEscapeValues(Values))
2560 return true;
2561 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2562 break;
2563 }
2564 default:
2565 // TODO: Parse the other CFI operands.
2566 llvm_unreachable("The current token should be a cfi operand");
2567 }
2568 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2569 return false;
2570 }
2571
parseIRBlock(BasicBlock * & BB,const Function & F)2572 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2573 switch (Token.kind()) {
2574 case MIToken::NamedIRBlock: {
2575 BB = dyn_cast_or_null<BasicBlock>(
2576 F.getValueSymbolTable()->lookup(Token.stringValue()));
2577 if (!BB)
2578 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2579 break;
2580 }
2581 case MIToken::IRBlock: {
2582 unsigned SlotNumber = 0;
2583 if (getUnsigned(SlotNumber))
2584 return true;
2585 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2586 if (!BB)
2587 return error(Twine("use of undefined IR block '%ir-block.") +
2588 Twine(SlotNumber) + "'");
2589 break;
2590 }
2591 default:
2592 llvm_unreachable("The current token should be an IR block reference");
2593 }
2594 return false;
2595 }
2596
parseBlockAddressOperand(MachineOperand & Dest)2597 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2598 assert(Token.is(MIToken::kw_blockaddress));
2599 lex();
2600 if (expectAndConsume(MIToken::lparen))
2601 return true;
2602 if (Token.isNot(MIToken::GlobalValue) &&
2603 Token.isNot(MIToken::NamedGlobalValue))
2604 return error("expected a global value");
2605 GlobalValue *GV = nullptr;
2606 if (parseGlobalValue(GV))
2607 return true;
2608 auto *F = dyn_cast<Function>(GV);
2609 if (!F)
2610 return error("expected an IR function reference");
2611 lex();
2612 if (expectAndConsume(MIToken::comma))
2613 return true;
2614 BasicBlock *BB = nullptr;
2615 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2616 return error("expected an IR block reference");
2617 if (parseIRBlock(BB, *F))
2618 return true;
2619 lex();
2620 if (expectAndConsume(MIToken::rparen))
2621 return true;
2622 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2623 if (parseOperandsOffset(Dest))
2624 return true;
2625 return false;
2626 }
2627
parseIntrinsicOperand(MachineOperand & Dest)2628 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2629 assert(Token.is(MIToken::kw_intrinsic));
2630 lex();
2631 if (expectAndConsume(MIToken::lparen))
2632 return error("expected syntax intrinsic(@llvm.whatever)");
2633
2634 if (Token.isNot(MIToken::NamedGlobalValue))
2635 return error("expected syntax intrinsic(@llvm.whatever)");
2636
2637 std::string Name = std::string(Token.stringValue());
2638 lex();
2639
2640 if (expectAndConsume(MIToken::rparen))
2641 return error("expected ')' to terminate intrinsic name");
2642
2643 // Find out what intrinsic we're dealing with, first try the global namespace
2644 // and then the target's private intrinsics if that fails.
2645 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2646 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2647 if (ID == Intrinsic::not_intrinsic && TII)
2648 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2649
2650 if (ID == Intrinsic::not_intrinsic)
2651 return error("unknown intrinsic name");
2652 Dest = MachineOperand::CreateIntrinsicID(ID);
2653
2654 return false;
2655 }
2656
parsePredicateOperand(MachineOperand & Dest)2657 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2658 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2659 bool IsFloat = Token.is(MIToken::kw_floatpred);
2660 lex();
2661
2662 if (expectAndConsume(MIToken::lparen))
2663 return error("expected syntax intpred(whatever) or floatpred(whatever");
2664
2665 if (Token.isNot(MIToken::Identifier))
2666 return error("whatever");
2667
2668 CmpInst::Predicate Pred;
2669 if (IsFloat) {
2670 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2671 .Case("false", CmpInst::FCMP_FALSE)
2672 .Case("oeq", CmpInst::FCMP_OEQ)
2673 .Case("ogt", CmpInst::FCMP_OGT)
2674 .Case("oge", CmpInst::FCMP_OGE)
2675 .Case("olt", CmpInst::FCMP_OLT)
2676 .Case("ole", CmpInst::FCMP_OLE)
2677 .Case("one", CmpInst::FCMP_ONE)
2678 .Case("ord", CmpInst::FCMP_ORD)
2679 .Case("uno", CmpInst::FCMP_UNO)
2680 .Case("ueq", CmpInst::FCMP_UEQ)
2681 .Case("ugt", CmpInst::FCMP_UGT)
2682 .Case("uge", CmpInst::FCMP_UGE)
2683 .Case("ult", CmpInst::FCMP_ULT)
2684 .Case("ule", CmpInst::FCMP_ULE)
2685 .Case("une", CmpInst::FCMP_UNE)
2686 .Case("true", CmpInst::FCMP_TRUE)
2687 .Default(CmpInst::BAD_FCMP_PREDICATE);
2688 if (!CmpInst::isFPPredicate(Pred))
2689 return error("invalid floating-point predicate");
2690 } else {
2691 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2692 .Case("eq", CmpInst::ICMP_EQ)
2693 .Case("ne", CmpInst::ICMP_NE)
2694 .Case("sgt", CmpInst::ICMP_SGT)
2695 .Case("sge", CmpInst::ICMP_SGE)
2696 .Case("slt", CmpInst::ICMP_SLT)
2697 .Case("sle", CmpInst::ICMP_SLE)
2698 .Case("ugt", CmpInst::ICMP_UGT)
2699 .Case("uge", CmpInst::ICMP_UGE)
2700 .Case("ult", CmpInst::ICMP_ULT)
2701 .Case("ule", CmpInst::ICMP_ULE)
2702 .Default(CmpInst::BAD_ICMP_PREDICATE);
2703 if (!CmpInst::isIntPredicate(Pred))
2704 return error("invalid integer predicate");
2705 }
2706
2707 lex();
2708 Dest = MachineOperand::CreatePredicate(Pred);
2709 if (expectAndConsume(MIToken::rparen))
2710 return error("predicate should be terminated by ')'.");
2711
2712 return false;
2713 }
2714
parseShuffleMaskOperand(MachineOperand & Dest)2715 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2716 assert(Token.is(MIToken::kw_shufflemask));
2717
2718 lex();
2719 if (expectAndConsume(MIToken::lparen))
2720 return error("expected syntax shufflemask(<integer or undef>, ...)");
2721
2722 SmallVector<int, 32> ShufMask;
2723 do {
2724 if (Token.is(MIToken::kw_undef)) {
2725 ShufMask.push_back(-1);
2726 } else if (Token.is(MIToken::IntegerLiteral)) {
2727 const APSInt &Int = Token.integerValue();
2728 ShufMask.push_back(Int.getExtValue());
2729 } else
2730 return error("expected integer constant");
2731
2732 lex();
2733 } while (consumeIfPresent(MIToken::comma));
2734
2735 if (expectAndConsume(MIToken::rparen))
2736 return error("shufflemask should be terminated by ')'.");
2737
2738 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2739 Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2740 return false;
2741 }
2742
parseDbgInstrRefOperand(MachineOperand & Dest)2743 bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) {
2744 assert(Token.is(MIToken::kw_dbg_instr_ref));
2745
2746 lex();
2747 if (expectAndConsume(MIToken::lparen))
2748 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2749
2750 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2751 return error("expected unsigned integer for instruction index");
2752 uint64_t InstrIdx = Token.integerValue().getZExtValue();
2753 assert(InstrIdx <= std::numeric_limits<unsigned>::max() &&
2754 "Instruction reference's instruction index is too large");
2755 lex();
2756
2757 if (expectAndConsume(MIToken::comma))
2758 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2759
2760 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2761 return error("expected unsigned integer for operand index");
2762 uint64_t OpIdx = Token.integerValue().getZExtValue();
2763 assert(OpIdx <= std::numeric_limits<unsigned>::max() &&
2764 "Instruction reference's operand index is too large");
2765 lex();
2766
2767 if (expectAndConsume(MIToken::rparen))
2768 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2769
2770 Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx);
2771 return false;
2772 }
2773
parseTargetIndexOperand(MachineOperand & Dest)2774 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2775 assert(Token.is(MIToken::kw_target_index));
2776 lex();
2777 if (expectAndConsume(MIToken::lparen))
2778 return true;
2779 if (Token.isNot(MIToken::Identifier))
2780 return error("expected the name of the target index");
2781 int Index = 0;
2782 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2783 return error("use of undefined target index '" + Token.stringValue() + "'");
2784 lex();
2785 if (expectAndConsume(MIToken::rparen))
2786 return true;
2787 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2788 if (parseOperandsOffset(Dest))
2789 return true;
2790 return false;
2791 }
2792
parseCustomRegisterMaskOperand(MachineOperand & Dest)2793 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2794 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2795 lex();
2796 if (expectAndConsume(MIToken::lparen))
2797 return true;
2798
2799 uint32_t *Mask = MF.allocateRegMask();
2800 do {
2801 if (Token.isNot(MIToken::rparen)) {
2802 if (Token.isNot(MIToken::NamedRegister))
2803 return error("expected a named register");
2804 Register Reg;
2805 if (parseNamedRegister(Reg))
2806 return true;
2807 lex();
2808 Mask[Reg / 32] |= 1U << (Reg % 32);
2809 }
2810
2811 // TODO: Report an error if the same register is used more than once.
2812 } while (consumeIfPresent(MIToken::comma));
2813
2814 if (expectAndConsume(MIToken::rparen))
2815 return true;
2816 Dest = MachineOperand::CreateRegMask(Mask);
2817 return false;
2818 }
2819
parseLiveoutRegisterMaskOperand(MachineOperand & Dest)2820 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2821 assert(Token.is(MIToken::kw_liveout));
2822 uint32_t *Mask = MF.allocateRegMask();
2823 lex();
2824 if (expectAndConsume(MIToken::lparen))
2825 return true;
2826 while (true) {
2827 if (Token.isNot(MIToken::NamedRegister))
2828 return error("expected a named register");
2829 Register Reg;
2830 if (parseNamedRegister(Reg))
2831 return true;
2832 lex();
2833 Mask[Reg / 32] |= 1U << (Reg % 32);
2834 // TODO: Report an error if the same register is used more than once.
2835 if (Token.isNot(MIToken::comma))
2836 break;
2837 lex();
2838 }
2839 if (expectAndConsume(MIToken::rparen))
2840 return true;
2841 Dest = MachineOperand::CreateRegLiveOut(Mask);
2842 return false;
2843 }
2844
parseMachineOperand(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,std::optional<unsigned> & TiedDefIdx)2845 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2846 MachineOperand &Dest,
2847 std::optional<unsigned> &TiedDefIdx) {
2848 switch (Token.kind()) {
2849 case MIToken::kw_implicit:
2850 case MIToken::kw_implicit_define:
2851 case MIToken::kw_def:
2852 case MIToken::kw_dead:
2853 case MIToken::kw_killed:
2854 case MIToken::kw_undef:
2855 case MIToken::kw_internal:
2856 case MIToken::kw_early_clobber:
2857 case MIToken::kw_debug_use:
2858 case MIToken::kw_renamable:
2859 case MIToken::underscore:
2860 case MIToken::NamedRegister:
2861 case MIToken::VirtualRegister:
2862 case MIToken::NamedVirtualRegister:
2863 return parseRegisterOperand(Dest, TiedDefIdx);
2864 case MIToken::IntegerLiteral:
2865 return parseImmediateOperand(Dest);
2866 case MIToken::kw_half:
2867 case MIToken::kw_float:
2868 case MIToken::kw_double:
2869 case MIToken::kw_x86_fp80:
2870 case MIToken::kw_fp128:
2871 case MIToken::kw_ppc_fp128:
2872 return parseFPImmediateOperand(Dest);
2873 case MIToken::MachineBasicBlock:
2874 return parseMBBOperand(Dest);
2875 case MIToken::StackObject:
2876 return parseStackObjectOperand(Dest);
2877 case MIToken::FixedStackObject:
2878 return parseFixedStackObjectOperand(Dest);
2879 case MIToken::GlobalValue:
2880 case MIToken::NamedGlobalValue:
2881 return parseGlobalAddressOperand(Dest);
2882 case MIToken::ConstantPoolItem:
2883 return parseConstantPoolIndexOperand(Dest);
2884 case MIToken::JumpTableIndex:
2885 return parseJumpTableIndexOperand(Dest);
2886 case MIToken::ExternalSymbol:
2887 return parseExternalSymbolOperand(Dest);
2888 case MIToken::MCSymbol:
2889 return parseMCSymbolOperand(Dest);
2890 case MIToken::SubRegisterIndex:
2891 return parseSubRegisterIndexOperand(Dest);
2892 case MIToken::md_diexpr:
2893 case MIToken::exclaim:
2894 return parseMetadataOperand(Dest);
2895 case MIToken::kw_cfi_same_value:
2896 case MIToken::kw_cfi_offset:
2897 case MIToken::kw_cfi_rel_offset:
2898 case MIToken::kw_cfi_def_cfa_register:
2899 case MIToken::kw_cfi_def_cfa_offset:
2900 case MIToken::kw_cfi_adjust_cfa_offset:
2901 case MIToken::kw_cfi_escape:
2902 case MIToken::kw_cfi_def_cfa:
2903 case MIToken::kw_cfi_llvm_def_aspace_cfa:
2904 case MIToken::kw_cfi_register:
2905 case MIToken::kw_cfi_remember_state:
2906 case MIToken::kw_cfi_restore:
2907 case MIToken::kw_cfi_restore_state:
2908 case MIToken::kw_cfi_undefined:
2909 case MIToken::kw_cfi_window_save:
2910 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2911 return parseCFIOperand(Dest);
2912 case MIToken::kw_blockaddress:
2913 return parseBlockAddressOperand(Dest);
2914 case MIToken::kw_intrinsic:
2915 return parseIntrinsicOperand(Dest);
2916 case MIToken::kw_target_index:
2917 return parseTargetIndexOperand(Dest);
2918 case MIToken::kw_liveout:
2919 return parseLiveoutRegisterMaskOperand(Dest);
2920 case MIToken::kw_floatpred:
2921 case MIToken::kw_intpred:
2922 return parsePredicateOperand(Dest);
2923 case MIToken::kw_shufflemask:
2924 return parseShuffleMaskOperand(Dest);
2925 case MIToken::kw_dbg_instr_ref:
2926 return parseDbgInstrRefOperand(Dest);
2927 case MIToken::Error:
2928 return true;
2929 case MIToken::Identifier:
2930 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2931 Dest = MachineOperand::CreateRegMask(RegMask);
2932 lex();
2933 break;
2934 } else if (Token.stringValue() == "CustomRegMask") {
2935 return parseCustomRegisterMaskOperand(Dest);
2936 } else
2937 return parseTypedImmediateOperand(Dest);
2938 case MIToken::dot: {
2939 const auto *TII = MF.getSubtarget().getInstrInfo();
2940 if (const auto *Formatter = TII->getMIRFormatter()) {
2941 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2942 }
2943 [[fallthrough]];
2944 }
2945 default:
2946 // FIXME: Parse the MCSymbol machine operand.
2947 return error("expected a machine operand");
2948 }
2949 return false;
2950 }
2951
parseMachineOperandAndTargetFlags(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,std::optional<unsigned> & TiedDefIdx)2952 bool MIParser::parseMachineOperandAndTargetFlags(
2953 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2954 std::optional<unsigned> &TiedDefIdx) {
2955 unsigned TF = 0;
2956 bool HasTargetFlags = false;
2957 if (Token.is(MIToken::kw_target_flags)) {
2958 HasTargetFlags = true;
2959 lex();
2960 if (expectAndConsume(MIToken::lparen))
2961 return true;
2962 if (Token.isNot(MIToken::Identifier))
2963 return error("expected the name of the target flag");
2964 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2965 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2966 return error("use of undefined target flag '" + Token.stringValue() +
2967 "'");
2968 }
2969 lex();
2970 while (Token.is(MIToken::comma)) {
2971 lex();
2972 if (Token.isNot(MIToken::Identifier))
2973 return error("expected the name of the target flag");
2974 unsigned BitFlag = 0;
2975 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2976 return error("use of undefined target flag '" + Token.stringValue() +
2977 "'");
2978 // TODO: Report an error when using a duplicate bit target flag.
2979 TF |= BitFlag;
2980 lex();
2981 }
2982 if (expectAndConsume(MIToken::rparen))
2983 return true;
2984 }
2985 auto Loc = Token.location();
2986 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2987 return true;
2988 if (!HasTargetFlags)
2989 return false;
2990 if (Dest.isReg())
2991 return error(Loc, "register operands can't have target flags");
2992 Dest.setTargetFlags(TF);
2993 return false;
2994 }
2995
parseOffset(int64_t & Offset)2996 bool MIParser::parseOffset(int64_t &Offset) {
2997 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2998 return false;
2999 StringRef Sign = Token.range();
3000 bool IsNegative = Token.is(MIToken::minus);
3001 lex();
3002 if (Token.isNot(MIToken::IntegerLiteral))
3003 return error("expected an integer literal after '" + Sign + "'");
3004 if (Token.integerValue().getMinSignedBits() > 64)
3005 return error("expected 64-bit integer (too large)");
3006 Offset = Token.integerValue().getExtValue();
3007 if (IsNegative)
3008 Offset = -Offset;
3009 lex();
3010 return false;
3011 }
3012
parseIRBlockAddressTaken(BasicBlock * & BB)3013 bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) {
3014 assert(Token.is(MIToken::kw_ir_block_address_taken));
3015 lex();
3016 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
3017 return error("expected basic block after 'ir_block_address_taken'");
3018
3019 if (parseIRBlock(BB, MF.getFunction()))
3020 return true;
3021
3022 lex();
3023 return false;
3024 }
3025
parseAlignment(uint64_t & Alignment)3026 bool MIParser::parseAlignment(uint64_t &Alignment) {
3027 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
3028 lex();
3029 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3030 return error("expected an integer literal after 'align'");
3031 if (getUint64(Alignment))
3032 return true;
3033 lex();
3034
3035 if (!isPowerOf2_64(Alignment))
3036 return error("expected a power-of-2 literal after 'align'");
3037
3038 return false;
3039 }
3040
parseAddrspace(unsigned & Addrspace)3041 bool MIParser::parseAddrspace(unsigned &Addrspace) {
3042 assert(Token.is(MIToken::kw_addrspace));
3043 lex();
3044 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3045 return error("expected an integer literal after 'addrspace'");
3046 if (getUnsigned(Addrspace))
3047 return true;
3048 lex();
3049 return false;
3050 }
3051
parseOperandsOffset(MachineOperand & Op)3052 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
3053 int64_t Offset = 0;
3054 if (parseOffset(Offset))
3055 return true;
3056 Op.setOffset(Offset);
3057 return false;
3058 }
3059
parseIRValue(const MIToken & Token,PerFunctionMIParsingState & PFS,const Value * & V,ErrorCallbackType ErrCB)3060 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
3061 const Value *&V, ErrorCallbackType ErrCB) {
3062 switch (Token.kind()) {
3063 case MIToken::NamedIRValue: {
3064 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
3065 break;
3066 }
3067 case MIToken::IRValue: {
3068 unsigned SlotNumber = 0;
3069 if (getUnsigned(Token, SlotNumber, ErrCB))
3070 return true;
3071 V = PFS.getIRValue(SlotNumber);
3072 break;
3073 }
3074 case MIToken::NamedGlobalValue:
3075 case MIToken::GlobalValue: {
3076 GlobalValue *GV = nullptr;
3077 if (parseGlobalValue(Token, PFS, GV, ErrCB))
3078 return true;
3079 V = GV;
3080 break;
3081 }
3082 case MIToken::QuotedIRValue: {
3083 const Constant *C = nullptr;
3084 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
3085 return true;
3086 V = C;
3087 break;
3088 }
3089 case MIToken::kw_unknown_address:
3090 V = nullptr;
3091 return false;
3092 default:
3093 llvm_unreachable("The current token should be an IR block reference");
3094 }
3095 if (!V)
3096 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
3097 return false;
3098 }
3099
parseIRValue(const Value * & V)3100 bool MIParser::parseIRValue(const Value *&V) {
3101 return ::parseIRValue(
3102 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3103 return error(Loc, Msg);
3104 });
3105 }
3106
getUint64(uint64_t & Result)3107 bool MIParser::getUint64(uint64_t &Result) {
3108 if (Token.hasIntegerValue()) {
3109 if (Token.integerValue().getActiveBits() > 64)
3110 return error("expected 64-bit integer (too large)");
3111 Result = Token.integerValue().getZExtValue();
3112 return false;
3113 }
3114 if (Token.is(MIToken::HexLiteral)) {
3115 APInt A;
3116 if (getHexUint(A))
3117 return true;
3118 if (A.getBitWidth() > 64)
3119 return error("expected 64-bit integer (too large)");
3120 Result = A.getZExtValue();
3121 return false;
3122 }
3123 return true;
3124 }
3125
getHexUint(APInt & Result)3126 bool MIParser::getHexUint(APInt &Result) {
3127 return ::getHexUint(Token, Result);
3128 }
3129
parseMemoryOperandFlag(MachineMemOperand::Flags & Flags)3130 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3131 const auto OldFlags = Flags;
3132 switch (Token.kind()) {
3133 case MIToken::kw_volatile:
3134 Flags |= MachineMemOperand::MOVolatile;
3135 break;
3136 case MIToken::kw_non_temporal:
3137 Flags |= MachineMemOperand::MONonTemporal;
3138 break;
3139 case MIToken::kw_dereferenceable:
3140 Flags |= MachineMemOperand::MODereferenceable;
3141 break;
3142 case MIToken::kw_invariant:
3143 Flags |= MachineMemOperand::MOInvariant;
3144 break;
3145 case MIToken::StringConstant: {
3146 MachineMemOperand::Flags TF;
3147 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3148 return error("use of undefined target MMO flag '" + Token.stringValue() +
3149 "'");
3150 Flags |= TF;
3151 break;
3152 }
3153 default:
3154 llvm_unreachable("The current token should be a memory operand flag");
3155 }
3156 if (OldFlags == Flags)
3157 // We know that the same flag is specified more than once when the flags
3158 // weren't modified.
3159 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3160 lex();
3161 return false;
3162 }
3163
parseMemoryPseudoSourceValue(const PseudoSourceValue * & PSV)3164 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3165 switch (Token.kind()) {
3166 case MIToken::kw_stack:
3167 PSV = MF.getPSVManager().getStack();
3168 break;
3169 case MIToken::kw_got:
3170 PSV = MF.getPSVManager().getGOT();
3171 break;
3172 case MIToken::kw_jump_table:
3173 PSV = MF.getPSVManager().getJumpTable();
3174 break;
3175 case MIToken::kw_constant_pool:
3176 PSV = MF.getPSVManager().getConstantPool();
3177 break;
3178 case MIToken::FixedStackObject: {
3179 int FI;
3180 if (parseFixedStackFrameIndex(FI))
3181 return true;
3182 PSV = MF.getPSVManager().getFixedStack(FI);
3183 // The token was already consumed, so use return here instead of break.
3184 return false;
3185 }
3186 case MIToken::StackObject: {
3187 int FI;
3188 if (parseStackFrameIndex(FI))
3189 return true;
3190 PSV = MF.getPSVManager().getFixedStack(FI);
3191 // The token was already consumed, so use return here instead of break.
3192 return false;
3193 }
3194 case MIToken::kw_call_entry:
3195 lex();
3196 switch (Token.kind()) {
3197 case MIToken::GlobalValue:
3198 case MIToken::NamedGlobalValue: {
3199 GlobalValue *GV = nullptr;
3200 if (parseGlobalValue(GV))
3201 return true;
3202 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3203 break;
3204 }
3205 case MIToken::ExternalSymbol:
3206 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3207 MF.createExternalSymbolName(Token.stringValue()));
3208 break;
3209 default:
3210 return error(
3211 "expected a global value or an external symbol after 'call-entry'");
3212 }
3213 break;
3214 case MIToken::kw_custom: {
3215 lex();
3216 const auto *TII = MF.getSubtarget().getInstrInfo();
3217 if (const auto *Formatter = TII->getMIRFormatter()) {
3218 if (Formatter->parseCustomPseudoSourceValue(
3219 Token.stringValue(), MF, PFS, PSV,
3220 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3221 return error(Loc, Msg);
3222 }))
3223 return true;
3224 } else
3225 return error("unable to parse target custom pseudo source value");
3226 break;
3227 }
3228 default:
3229 llvm_unreachable("The current token should be pseudo source value");
3230 }
3231 lex();
3232 return false;
3233 }
3234
parseMachinePointerInfo(MachinePointerInfo & Dest)3235 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3236 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3237 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3238 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3239 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3240 const PseudoSourceValue *PSV = nullptr;
3241 if (parseMemoryPseudoSourceValue(PSV))
3242 return true;
3243 int64_t Offset = 0;
3244 if (parseOffset(Offset))
3245 return true;
3246 Dest = MachinePointerInfo(PSV, Offset);
3247 return false;
3248 }
3249 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3250 Token.isNot(MIToken::GlobalValue) &&
3251 Token.isNot(MIToken::NamedGlobalValue) &&
3252 Token.isNot(MIToken::QuotedIRValue) &&
3253 Token.isNot(MIToken::kw_unknown_address))
3254 return error("expected an IR value reference");
3255 const Value *V = nullptr;
3256 if (parseIRValue(V))
3257 return true;
3258 if (V && !V->getType()->isPointerTy())
3259 return error("expected a pointer IR value");
3260 lex();
3261 int64_t Offset = 0;
3262 if (parseOffset(Offset))
3263 return true;
3264 Dest = MachinePointerInfo(V, Offset);
3265 return false;
3266 }
3267
parseOptionalScope(LLVMContext & Context,SyncScope::ID & SSID)3268 bool MIParser::parseOptionalScope(LLVMContext &Context,
3269 SyncScope::ID &SSID) {
3270 SSID = SyncScope::System;
3271 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3272 lex();
3273 if (expectAndConsume(MIToken::lparen))
3274 return error("expected '(' in syncscope");
3275
3276 std::string SSN;
3277 if (parseStringConstant(SSN))
3278 return true;
3279
3280 SSID = Context.getOrInsertSyncScopeID(SSN);
3281 if (expectAndConsume(MIToken::rparen))
3282 return error("expected ')' in syncscope");
3283 }
3284
3285 return false;
3286 }
3287
parseOptionalAtomicOrdering(AtomicOrdering & Order)3288 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3289 Order = AtomicOrdering::NotAtomic;
3290 if (Token.isNot(MIToken::Identifier))
3291 return false;
3292
3293 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3294 .Case("unordered", AtomicOrdering::Unordered)
3295 .Case("monotonic", AtomicOrdering::Monotonic)
3296 .Case("acquire", AtomicOrdering::Acquire)
3297 .Case("release", AtomicOrdering::Release)
3298 .Case("acq_rel", AtomicOrdering::AcquireRelease)
3299 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3300 .Default(AtomicOrdering::NotAtomic);
3301
3302 if (Order != AtomicOrdering::NotAtomic) {
3303 lex();
3304 return false;
3305 }
3306
3307 return error("expected an atomic scope, ordering or a size specification");
3308 }
3309
parseMachineMemoryOperand(MachineMemOperand * & Dest)3310 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3311 if (expectAndConsume(MIToken::lparen))
3312 return true;
3313 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3314 while (Token.isMemoryOperandFlag()) {
3315 if (parseMemoryOperandFlag(Flags))
3316 return true;
3317 }
3318 if (Token.isNot(MIToken::Identifier) ||
3319 (Token.stringValue() != "load" && Token.stringValue() != "store"))
3320 return error("expected 'load' or 'store' memory operation");
3321 if (Token.stringValue() == "load")
3322 Flags |= MachineMemOperand::MOLoad;
3323 else
3324 Flags |= MachineMemOperand::MOStore;
3325 lex();
3326
3327 // Optional 'store' for operands that both load and store.
3328 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3329 Flags |= MachineMemOperand::MOStore;
3330 lex();
3331 }
3332
3333 // Optional synchronization scope.
3334 SyncScope::ID SSID;
3335 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3336 return true;
3337
3338 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3339 AtomicOrdering Order, FailureOrder;
3340 if (parseOptionalAtomicOrdering(Order))
3341 return true;
3342
3343 if (parseOptionalAtomicOrdering(FailureOrder))
3344 return true;
3345
3346 LLT MemoryType;
3347 if (Token.isNot(MIToken::IntegerLiteral) &&
3348 Token.isNot(MIToken::kw_unknown_size) &&
3349 Token.isNot(MIToken::lparen))
3350 return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3351 "memory operation");
3352
3353 uint64_t Size = MemoryLocation::UnknownSize;
3354 if (Token.is(MIToken::IntegerLiteral)) {
3355 if (getUint64(Size))
3356 return true;
3357
3358 // Convert from bytes to bits for storage.
3359 MemoryType = LLT::scalar(8 * Size);
3360 lex();
3361 } else if (Token.is(MIToken::kw_unknown_size)) {
3362 Size = MemoryLocation::UnknownSize;
3363 lex();
3364 } else {
3365 if (expectAndConsume(MIToken::lparen))
3366 return true;
3367 if (parseLowLevelType(Token.location(), MemoryType))
3368 return true;
3369 if (expectAndConsume(MIToken::rparen))
3370 return true;
3371
3372 Size = MemoryType.getSizeInBytes();
3373 }
3374
3375 MachinePointerInfo Ptr = MachinePointerInfo();
3376 if (Token.is(MIToken::Identifier)) {
3377 const char *Word =
3378 ((Flags & MachineMemOperand::MOLoad) &&
3379 (Flags & MachineMemOperand::MOStore))
3380 ? "on"
3381 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3382 if (Token.stringValue() != Word)
3383 return error(Twine("expected '") + Word + "'");
3384 lex();
3385
3386 if (parseMachinePointerInfo(Ptr))
3387 return true;
3388 }
3389 uint64_t BaseAlignment =
3390 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3391 AAMDNodes AAInfo;
3392 MDNode *Range = nullptr;
3393 while (consumeIfPresent(MIToken::comma)) {
3394 switch (Token.kind()) {
3395 case MIToken::kw_align: {
3396 // align is printed if it is different than size.
3397 uint64_t Alignment;
3398 if (parseAlignment(Alignment))
3399 return true;
3400 if (Ptr.Offset & (Alignment - 1)) {
3401 // MachineMemOperand::getAlign never returns a value greater than the
3402 // alignment of offset, so this just guards against hand-written MIR
3403 // that specifies a large "align" value when it should probably use
3404 // "basealign" instead.
3405 return error("specified alignment is more aligned than offset");
3406 }
3407 BaseAlignment = Alignment;
3408 break;
3409 }
3410 case MIToken::kw_basealign:
3411 // basealign is printed if it is different than align.
3412 if (parseAlignment(BaseAlignment))
3413 return true;
3414 break;
3415 case MIToken::kw_addrspace:
3416 if (parseAddrspace(Ptr.AddrSpace))
3417 return true;
3418 break;
3419 case MIToken::md_tbaa:
3420 lex();
3421 if (parseMDNode(AAInfo.TBAA))
3422 return true;
3423 break;
3424 case MIToken::md_alias_scope:
3425 lex();
3426 if (parseMDNode(AAInfo.Scope))
3427 return true;
3428 break;
3429 case MIToken::md_noalias:
3430 lex();
3431 if (parseMDNode(AAInfo.NoAlias))
3432 return true;
3433 break;
3434 case MIToken::md_range:
3435 lex();
3436 if (parseMDNode(Range))
3437 return true;
3438 break;
3439 // TODO: Report an error on duplicate metadata nodes.
3440 default:
3441 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3442 "'!noalias' or '!range'");
3443 }
3444 }
3445 if (expectAndConsume(MIToken::rparen))
3446 return true;
3447 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3448 AAInfo, Range, SSID, Order, FailureOrder);
3449 return false;
3450 }
3451
parsePreOrPostInstrSymbol(MCSymbol * & Symbol)3452 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3453 assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3454 Token.is(MIToken::kw_post_instr_symbol)) &&
3455 "Invalid token for a pre- post-instruction symbol!");
3456 lex();
3457 if (Token.isNot(MIToken::MCSymbol))
3458 return error("expected a symbol after 'pre-instr-symbol'");
3459 Symbol = getOrCreateMCSymbol(Token.stringValue());
3460 lex();
3461 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3462 Token.is(MIToken::lbrace))
3463 return false;
3464 if (Token.isNot(MIToken::comma))
3465 return error("expected ',' before the next machine operand");
3466 lex();
3467 return false;
3468 }
3469
parseHeapAllocMarker(MDNode * & Node)3470 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3471 assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3472 "Invalid token for a heap alloc marker!");
3473 lex();
3474 parseMDNode(Node);
3475 if (!Node)
3476 return error("expected a MDNode after 'heap-alloc-marker'");
3477 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3478 Token.is(MIToken::lbrace))
3479 return false;
3480 if (Token.isNot(MIToken::comma))
3481 return error("expected ',' before the next machine operand");
3482 lex();
3483 return false;
3484 }
3485
parsePCSections(MDNode * & Node)3486 bool MIParser::parsePCSections(MDNode *&Node) {
3487 assert(Token.is(MIToken::kw_pcsections) &&
3488 "Invalid token for a PC sections!");
3489 lex();
3490 parseMDNode(Node);
3491 if (!Node)
3492 return error("expected a MDNode after 'pcsections'");
3493 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3494 Token.is(MIToken::lbrace))
3495 return false;
3496 if (Token.isNot(MIToken::comma))
3497 return error("expected ',' before the next machine operand");
3498 lex();
3499 return false;
3500 }
3501
initSlots2BasicBlocks(const Function & F,DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)3502 static void initSlots2BasicBlocks(
3503 const Function &F,
3504 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3505 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3506 MST.incorporateFunction(F);
3507 for (const auto &BB : F) {
3508 if (BB.hasName())
3509 continue;
3510 int Slot = MST.getLocalSlot(&BB);
3511 if (Slot == -1)
3512 continue;
3513 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3514 }
3515 }
3516
getIRBlockFromSlot(unsigned Slot,const DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)3517 static const BasicBlock *getIRBlockFromSlot(
3518 unsigned Slot,
3519 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3520 return Slots2BasicBlocks.lookup(Slot);
3521 }
3522
getIRBlock(unsigned Slot)3523 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3524 if (Slots2BasicBlocks.empty())
3525 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3526 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3527 }
3528
getIRBlock(unsigned Slot,const Function & F)3529 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3530 if (&F == &MF.getFunction())
3531 return getIRBlock(Slot);
3532 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3533 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3534 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3535 }
3536
getOrCreateMCSymbol(StringRef Name)3537 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3538 // FIXME: Currently we can't recognize temporary or local symbols and call all
3539 // of the appropriate forms to create them. However, this handles basic cases
3540 // well as most of the special aspects are recognized by a prefix on their
3541 // name, and the input names should already be unique. For test cases, keeping
3542 // the symbol name out of the symbol table isn't terribly important.
3543 return MF.getContext().getOrCreateSymbol(Name);
3544 }
3545
parseStringConstant(std::string & Result)3546 bool MIParser::parseStringConstant(std::string &Result) {
3547 if (Token.isNot(MIToken::StringConstant))
3548 return error("expected string constant");
3549 Result = std::string(Token.stringValue());
3550 lex();
3551 return false;
3552 }
3553
parseMachineBasicBlockDefinitions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)3554 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3555 StringRef Src,
3556 SMDiagnostic &Error) {
3557 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3558 }
3559
parseMachineInstructions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)3560 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3561 StringRef Src, SMDiagnostic &Error) {
3562 return MIParser(PFS, Error, Src).parseBasicBlocks();
3563 }
3564
parseMBBReference(PerFunctionMIParsingState & PFS,MachineBasicBlock * & MBB,StringRef Src,SMDiagnostic & Error)3565 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3566 MachineBasicBlock *&MBB, StringRef Src,
3567 SMDiagnostic &Error) {
3568 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3569 }
3570
parseRegisterReference(PerFunctionMIParsingState & PFS,Register & Reg,StringRef Src,SMDiagnostic & Error)3571 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3572 Register &Reg, StringRef Src,
3573 SMDiagnostic &Error) {
3574 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3575 }
3576
parseNamedRegisterReference(PerFunctionMIParsingState & PFS,Register & Reg,StringRef Src,SMDiagnostic & Error)3577 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3578 Register &Reg, StringRef Src,
3579 SMDiagnostic &Error) {
3580 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3581 }
3582
parseVirtualRegisterReference(PerFunctionMIParsingState & PFS,VRegInfo * & Info,StringRef Src,SMDiagnostic & Error)3583 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3584 VRegInfo *&Info, StringRef Src,
3585 SMDiagnostic &Error) {
3586 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3587 }
3588
parseStackObjectReference(PerFunctionMIParsingState & PFS,int & FI,StringRef Src,SMDiagnostic & Error)3589 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3590 int &FI, StringRef Src,
3591 SMDiagnostic &Error) {
3592 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3593 }
3594
parseMDNode(PerFunctionMIParsingState & PFS,MDNode * & Node,StringRef Src,SMDiagnostic & Error)3595 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3596 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3597 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3598 }
3599
parseMachineMetadata(PerFunctionMIParsingState & PFS,StringRef Src,SMRange SrcRange,SMDiagnostic & Error)3600 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3601 SMRange SrcRange, SMDiagnostic &Error) {
3602 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3603 }
3604
parseIRValue(StringRef Src,MachineFunction & MF,PerFunctionMIParsingState & PFS,const Value * & V,ErrorCallbackType ErrorCallback)3605 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3606 PerFunctionMIParsingState &PFS, const Value *&V,
3607 ErrorCallbackType ErrorCallback) {
3608 MIToken Token;
3609 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3610 ErrorCallback(Loc, Msg);
3611 });
3612 V = nullptr;
3613
3614 return ::parseIRValue(Token, PFS, V, ErrorCallback);
3615 }
3616