xref: /aosp_15_r20/external/skia/src/core/SkExecutor.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkExecutor.h"
9 #include "include/private/base/SkMutex.h"
10 #include "include/private/base/SkSemaphore.h"
11 #include "include/private/base/SkTArray.h"
12 #include "src/base/SkNoDestructor.h"
13 
14 #include <deque>
15 #include <thread>
16 #include <utility>
17 
18 using namespace skia_private;
19 
20 #if defined(SK_BUILD_FOR_WIN)
21     #include "src/base/SkLeanWindows.h"
num_cores()22     static int num_cores() {
23         SYSTEM_INFO sysinfo;
24         GetNativeSystemInfo(&sysinfo);
25         return (int)sysinfo.dwNumberOfProcessors;
26     }
27 #else
28     #include <unistd.h>
num_cores()29     static int num_cores() {
30         return (int)sysconf(_SC_NPROCESSORS_ONLN);
31     }
32 #endif
33 
~SkExecutor()34 SkExecutor::~SkExecutor() {}
35 
36 // The default default SkExecutor is an SkTrivialExecutor, which just runs the work right away.
37 class SkTrivialExecutor final : public SkExecutor {
add(std::function<void (void)> work)38     void add(std::function<void(void)> work) override {
39         work();
40     }
41 };
42 
trivial_executor()43 static SkExecutor& trivial_executor() {
44     static SkNoDestructor<SkTrivialExecutor> executor;
45     return *executor;
46 }
47 
48 static SkExecutor* gDefaultExecutor = nullptr;
49 
GetDefault()50 SkExecutor& SkExecutor::GetDefault() {
51     if (gDefaultExecutor) {
52         return *gDefaultExecutor;
53     }
54     return trivial_executor();
55 }
56 
SetDefault(SkExecutor * executor)57 void SkExecutor::SetDefault(SkExecutor* executor) {
58     gDefaultExecutor = executor;
59 }
60 
61 // We'll always push_back() new work, but pop from the front of deques or the back of SkTArray.
pop(std::deque<std::function<void (void)>> * list)62 static inline std::function<void(void)> pop(std::deque<std::function<void(void)>>* list) {
63     std::function<void(void)> fn = std::move(list->front());
64     list->pop_front();
65     return fn;
66 }
pop(TArray<std::function<void (void)>> * list)67 static inline std::function<void(void)> pop(TArray<std::function<void(void)>>* list) {
68     std::function<void(void)> fn = std::move(list->back());
69     list->pop_back();
70     return fn;
71 }
72 
73 // An SkThreadPool is an executor that runs work on a fixed pool of OS threads.
74 template <typename WorkList>
75 class SkThreadPool final : public SkExecutor {
76 public:
SkThreadPool(int threads,bool allowBorrowing)77     explicit SkThreadPool(int threads, bool allowBorrowing) : fAllowBorrowing(allowBorrowing) {
78         for (int i = 0; i < threads; i++) {
79             fThreads.emplace_back(&Loop, this);
80         }
81     }
82 
~SkThreadPool()83     ~SkThreadPool() override {
84         // Signal each thread that it's time to shut down.
85         for (int i = 0; i < fThreads.size(); i++) {
86             this->add(nullptr);
87         }
88         // Wait for each thread to shut down.
89         for (int i = 0; i < fThreads.size(); i++) {
90             fThreads[i].join();
91         }
92     }
93 
add(std::function<void (void)> work)94     void add(std::function<void(void)> work) override {
95         // Add some work to our pile of work to do.
96         {
97             SkAutoMutexExclusive lock(fWorkLock);
98             fWork.emplace_back(std::move(work));
99         }
100         // Tell the Loop() threads to pick it up.
101         fWorkAvailable.signal(1);
102     }
103 
borrow()104     void borrow() override {
105         // If there is work waiting and we're allowed to borrow work, do it.
106         if (fAllowBorrowing && fWorkAvailable.try_wait()) {
107             SkAssertResult(this->do_work());
108         }
109     }
110 
111 private:
112     // This method should be called only when fWorkAvailable indicates there's work to do.
do_work()113     bool do_work() {
114         std::function<void(void)> work;
115         {
116             SkAutoMutexExclusive lock(fWorkLock);
117             SkASSERT(!fWork.empty());        // TODO: if (fWork.empty()) { return true; } ?
118             work = pop(&fWork);
119         }
120 
121         if (!work) {
122             return false;  // This is Loop()'s signal to shut down.
123         }
124 
125         work();
126         return true;
127     }
128 
Loop(void * ctx)129     static void Loop(void* ctx) {
130         auto pool = (SkThreadPool*)ctx;
131         do {
132             pool->fWorkAvailable.wait();
133         } while (pool->do_work());
134     }
135 
136     // Both SkMutex and SkSpinlock can work here.
137     using Lock = SkMutex;
138 
139     TArray<std::thread> fThreads;
140     WorkList              fWork;
141     Lock                  fWorkLock;
142     SkSemaphore           fWorkAvailable;
143     bool                  fAllowBorrowing;
144 };
145 
MakeFIFOThreadPool(int threads,bool allowBorrowing)146 std::unique_ptr<SkExecutor> SkExecutor::MakeFIFOThreadPool(int threads, bool allowBorrowing) {
147     using WorkList = std::deque<std::function<void(void)>>;
148     return std::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores(),
149                                                     allowBorrowing);
150 }
MakeLIFOThreadPool(int threads,bool allowBorrowing)151 std::unique_ptr<SkExecutor> SkExecutor::MakeLIFOThreadPool(int threads, bool allowBorrowing) {
152     using WorkList = TArray<std::function<void(void)>>;
153     return std::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores(),
154                                                     allowBorrowing);
155 }
156