xref: /aosp_15_r20/external/skia/src/gpu/ganesh/GrFragmentProcessor.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/ganesh/GrFragmentProcessor.h"
9 
10 #include "include/core/SkBlendMode.h"
11 #include "include/core/SkM44.h"
12 #include "include/core/SkRect.h"
13 #include "include/core/SkScalar.h"
14 #include "include/core/SkTypes.h"
15 #include "include/effects/SkRuntimeEffect.h"
16 #include "include/private/base/SkPoint_impl.h"
17 #include "src/core/SkRuntimeEffectPriv.h"
18 #include "src/core/SkSLTypeShared.h"
19 #include "src/gpu/KeyBuilder.h"
20 #include "src/gpu/Swizzle.h"
21 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
22 #include "src/gpu/ganesh/GrSamplerState.h"
23 #include "src/gpu/ganesh/GrShaderCaps.h"
24 #include "src/gpu/ganesh/GrShaderVar.h"
25 #include "src/gpu/ganesh/GrSurfaceProxyView.h"
26 #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
27 #include "src/gpu/ganesh/effects/GrSkSLFP.h"
28 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
29 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
30 #include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h"
31 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
32 
33 #include <algorithm>
34 #include <string>
35 
isEqual(const GrFragmentProcessor & that) const36 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
37     if (this->classID() != that.classID()) {
38         return false;
39     }
40     if (this->sampleUsage() != that.sampleUsage()) {
41         return false;
42     }
43     if (!this->onIsEqual(that)) {
44         return false;
45     }
46     if (this->numChildProcessors() != that.numChildProcessors()) {
47         return false;
48     }
49     for (int i = 0; i < this->numChildProcessors(); ++i) {
50         auto thisChild = this->childProcessor(i),
51              thatChild = that .childProcessor(i);
52         if (SkToBool(thisChild) != SkToBool(thatChild)) {
53             return false;
54         }
55         if (thisChild && !thisChild->isEqual(*thatChild)) {
56             return false;
57         }
58     }
59     return true;
60 }
61 
visitProxies(const GrVisitProxyFunc & func) const62 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
63     this->visitTextureEffects([&func](const GrTextureEffect& te) {
64         func(te.view().proxy(), te.samplerState().mipmapped());
65     });
66 }
67 
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const68 void GrFragmentProcessor::visitTextureEffects(
69         const std::function<void(const GrTextureEffect&)>& func) const {
70     if (auto* te = this->asTextureEffect()) {
71         func(*te);
72     }
73     for (auto& child : fChildProcessors) {
74         if (child) {
75             child->visitTextureEffects(func);
76         }
77     }
78 }
79 
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const80 void GrFragmentProcessor::visitWithImpls(
81         const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
82         ProgramImpl& impl) const {
83     f(*this, impl);
84     SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
85     for (int i = 0; i < this->numChildProcessors(); ++i) {
86         if (const auto* child = this->childProcessor(i)) {
87             child->visitWithImpls(f, *impl.childProcessor(i));
88         }
89     }
90 }
91 
asTextureEffect()92 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
93     if (this->classID() == kGrTextureEffect_ClassID) {
94         return static_cast<GrTextureEffect*>(this);
95     }
96     return nullptr;
97 }
98 
asTextureEffect() const99 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
100     if (this->classID() == kGrTextureEffect_ClassID) {
101         return static_cast<const GrTextureEffect*>(this);
102     }
103     return nullptr;
104 }
105 
106 #if defined(GPU_TEST_UTILS)
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)107 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
108                                      SkString indent,
109                                      SkString* text) {
110     for (int index = 0; index < fp.numChildProcessors(); ++index) {
111         text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
112         if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
113             text->append(childFP->dumpInfo());
114             indent.append("\t");
115             recursive_dump_tree_info(*childFP, indent, text);
116         } else {
117             text->append("null");
118         }
119     }
120 }
121 
dumpTreeInfo() const122 SkString GrFragmentProcessor::dumpTreeInfo() const {
123     SkString text = this->dumpInfo();
124     recursive_dump_tree_info(*this, SkString("\t"), &text);
125     text.append("\n");
126     return text;
127 }
128 #endif
129 
makeProgramImpl() const130 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
131     std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
132     impl->fChildProcessors.push_back_n(fChildProcessors.size());
133     for (int i = 0; i < fChildProcessors.size(); ++i) {
134         impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
135                                                         : nullptr;
136     }
137     return impl;
138 }
139 
numNonNullChildProcessors() const140 int GrFragmentProcessor::numNonNullChildProcessors() const {
141     return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
142                          [](const auto& c) { return c != nullptr; });
143 }
144 
145 #ifdef SK_DEBUG
isInstantiated() const146 bool GrFragmentProcessor::isInstantiated() const {
147     bool result = true;
148     this->visitTextureEffects([&result](const GrTextureEffect& te) {
149         if (!te.texture()) {
150             result = false;
151         }
152     });
153     return result;
154 }
155 #endif
156 
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)157 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
158                                         SkSL::SampleUsage sampleUsage) {
159     SkASSERT(sampleUsage.isSampled());
160 
161     if (!child) {
162         fChildProcessors.push_back(nullptr);
163         return;
164     }
165 
166     // The child should not have been attached to another FP already and not had any sampling
167     // strategy set on it.
168     SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
169 
170     // Configure child's sampling state first
171     child->fUsage = sampleUsage;
172 
173     // Propagate the "will read dest-color" flag up to parent FPs.
174     if (child->willReadDstColor()) {
175         this->setWillReadDstColor();
176     }
177 
178     // If this child receives passthrough or matrix transformed coords from its parent then note
179     // that the parent's coords are used indirectly to ensure that they aren't omitted.
180     if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
181         child->usesSampleCoords()) {
182         fFlags |= kUsesSampleCoordsIndirectly_Flag;
183     }
184 
185     // Record that the child is attached to us; this FP is the source of any uniform data needed
186     // to evaluate the child sample matrix.
187     child->fParent = this;
188     fChildProcessors.push_back(std::move(child));
189 
190     // Validate: our sample strategy comes from a parent we shouldn't have yet.
191     SkASSERT(!fUsage.isSampled() && !fParent);
192 }
193 
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)194 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
195     for (int i = 0; i < src.numChildProcessors(); ++i) {
196         if (auto fp = src.childProcessor(i)) {
197             this->registerChild(fp->clone(), fp->sampleUsage());
198         } else {
199             this->registerChild(nullptr);
200         }
201     }
202 }
203 
MakeColor(SkPMColor4f color)204 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
205     // Use ColorFilter signature/factory to get the constant output for constant input optimization
206     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
207         "uniform half4 color;"
208         "half4 main(half4 inColor) { return color; }"
209     );
210     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
211     return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
212                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
213                                            : GrSkSLFP::OptFlags::kNone,
214                           "color", color);
215 }
216 
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)217 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
218         std::unique_ptr<GrFragmentProcessor> fp) {
219     if (!fp) {
220         return nullptr;
221     }
222     return GrBlendFragmentProcessor::Make<SkBlendMode::kSrcIn>(/*src=*/nullptr, std::move(fp));
223 }
224 
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)225 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
226         std::unique_ptr<GrFragmentProcessor> child) {
227     SkASSERT(child);
228     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
229         "uniform colorFilter fp;"
230         "half4 main(half4 inColor) {"
231             "return fp.eval(inColor.rgb1) * inColor.a;"
232         "}"
233     );
234     return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
235                           GrSkSLFP::OptFlags::kPreservesOpaqueInput |
236                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
237                           "fp", std::move(child));
238 }
239 
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)240 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
241         std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
242     auto colorFP = MakeColor(color);
243     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(colorFP),
244                                                                   std::move(inputFP));
245 }
246 
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)247 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
248         std::unique_ptr<GrFragmentProcessor> fp) {
249     SkASSERT(fp);
250     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
251         "half4 main(half4 inColor) {"
252             "return saturate(inColor);"
253         "}"
254     );
255     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
256     return GrSkSLFP::Make(effect, "Clamp", std::move(fp),
257                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
258 }
259 
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const skgpu::Swizzle & swizzle)260 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
261         std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) {
262     class SwizzleFragmentProcessor : public GrFragmentProcessor {
263     public:
264         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
265                                                          const skgpu::Swizzle& swizzle) {
266             return std::unique_ptr<GrFragmentProcessor>(
267                     new SwizzleFragmentProcessor(std::move(fp), swizzle));
268         }
269 
270         const char* name() const override { return "Swizzle"; }
271 
272         std::unique_ptr<GrFragmentProcessor> clone() const override {
273             return Make(this->childProcessor(0)->clone(), fSwizzle);
274         }
275 
276     private:
277         SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp,
278                                  const skgpu::Swizzle& swizzle)
279                 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
280                 , fSwizzle(swizzle) {
281             this->registerChild(std::move(fp));
282         }
283 
284         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
285             class Impl : public ProgramImpl {
286             public:
287                 void emitCode(EmitArgs& args) override {
288                     SkString childColor = this->invokeChild(0, args);
289 
290                     const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
291                     const skgpu::Swizzle& swizzle = sfp.fSwizzle;
292                     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
293 
294                     fragBuilder->codeAppendf("return %s.%s;",
295                                              childColor.c_str(), swizzle.asString().c_str());
296                 }
297             };
298             return std::make_unique<Impl>();
299         }
300 
301         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
302             b->add32(fSwizzle.asKey());
303         }
304 
305         bool onIsEqual(const GrFragmentProcessor& other) const override {
306             const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
307             return fSwizzle == sfp.fSwizzle;
308         }
309 
310         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
311             return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
312         }
313 
314         skgpu::Swizzle fSwizzle;
315 
316         using INHERITED = GrFragmentProcessor;
317     };
318 
319     if (!fp) {
320         return nullptr;
321     }
322     if (skgpu::Swizzle::RGBA() == swizzle) {
323         return fp;
324     }
325     return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
326 }
327 
328 //////////////////////////////////////////////////////////////////////////////
329 
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)330 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
331         std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
332     if (!fp) {
333         return nullptr;
334     }
335     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
336         "uniform colorFilter fp;"  // Declared as colorFilter so we can pass a color
337         "uniform half4 color;"
338         "half4 main(half4 inColor) {"
339             "return fp.eval(color);"
340         "}"
341     );
342     return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
343                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
344                                            : GrSkSLFP::OptFlags::kNone,
345                           "fp", std::move(fp),
346                           "color", color);
347 }
348 
349 //////////////////////////////////////////////////////////////////////////////
350 
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)351 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
352         std::unique_ptr<GrFragmentProcessor> fp) {
353     if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
354         return fp;
355     }
356     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
357         "half4 main(half4 inColor) { return inColor; }"
358     );
359     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
360     return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
361                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
362 }
363 
364 //////////////////////////////////////////////////////////////////////////////
365 
DestColor()366 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() {
367     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender,
368         "half4 main(half4 src, half4 dst) {"
369             "return dst;"
370         "}"
371     );
372     return GrSkSLFP::Make(effect, "DestColor", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone);
373 }
374 
375 //////////////////////////////////////////////////////////////////////////////
376 
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)377 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
378         std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
379     class ComposeProcessor : public GrFragmentProcessor {
380     public:
381         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
382                                                          std::unique_ptr<GrFragmentProcessor> g) {
383             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
384                                                                              std::move(g)));
385         }
386 
387         const char* name() const override { return "Compose"; }
388 
389         std::unique_ptr<GrFragmentProcessor> clone() const override {
390             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
391         }
392 
393     private:
394         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
395             class Impl : public ProgramImpl {
396             public:
397                 void emitCode(EmitArgs& args) override {
398                     SkString result = this->invokeChild(1, args);         // g(x)
399                     result = this->invokeChild(0, result.c_str(), args);  // f(g(x))
400                     args.fFragBuilder->codeAppendf("return %s;", result.c_str());
401                 }
402             };
403             return std::make_unique<Impl>();
404         }
405 
406         ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
407                          std::unique_ptr<GrFragmentProcessor> g)
408                 : INHERITED(kSeriesFragmentProcessor_ClassID,
409                             f->optimizationFlags() & g->optimizationFlags()) {
410             this->registerChild(std::move(f));
411             this->registerChild(std::move(g));
412         }
413 
414         ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
415 
416         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
417 
418         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
419 
420         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
421             SkPMColor4f color = inColor;
422             color = ConstantOutputForConstantInput(this->childProcessor(1), color);
423             color = ConstantOutputForConstantInput(this->childProcessor(0), color);
424             return color;
425         }
426 
427         using INHERITED = GrFragmentProcessor;
428     };
429 
430     // Allow either of the composed functions to be null.
431     if (f == nullptr) {
432         return g;
433     }
434     if (g == nullptr) {
435         return f;
436     }
437 
438     // Run an optimization pass on this composition.
439     GrProcessorAnalysisColor inputColor;
440     inputColor.setToUnknown();
441 
442     std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
443     GrColorFragmentProcessorAnalysis info(inputColor, series, std::size(series));
444 
445     SkPMColor4f knownColor;
446     int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
447     switch (leadingFPsToEliminate) {
448         default:
449             // We shouldn't eliminate more than we started with.
450             SkASSERT(leadingFPsToEliminate <= 2);
451             [[fallthrough]];
452         case 0:
453             // Compose the two processors as requested.
454             return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
455         case 1:
456             // Replace the first processor with a constant color.
457             return ComposeProcessor::Make(/*f=*/std::move(series[1]),
458                                           /*g=*/MakeColor(knownColor));
459         case 2:
460             // Replace the entire composition with a constant color.
461             return MakeColor(knownColor);
462     }
463 }
464 
465 //////////////////////////////////////////////////////////////////////////////
466 
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)467 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
468         std::unique_ptr<GrFragmentProcessor> child,
469         const float matrix[20],
470         bool unpremulInput,
471         bool clampRGBOutput,
472         bool premulOutput) {
473     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
474         "uniform half4x4 m;"
475         "uniform half4 v;"
476         "uniform int unpremulInput;"   // always specialized
477         "uniform int clampRGBOutput;"  // always specialized
478         "uniform int premulOutput;"    // always specialized
479         "half4 main(half4 color) {"
480             "if (bool(unpremulInput)) {"
481                 "color = unpremul(color);"
482             "}"
483             "color = m * color + v;"
484             "if (bool(clampRGBOutput)) {"
485                 "color = saturate(color);"
486             "} else {"
487                 "color.a = saturate(color.a);"
488             "}"
489             "if (bool(premulOutput)) {"
490                 "color.rgb *= color.a;"
491             "}"
492             "return color;"
493         "}"
494     );
495     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
496 
497     SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
498               matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
499               matrix[10], matrix[11], matrix[12], matrix[13],
500               matrix[15], matrix[16], matrix[17], matrix[18]);
501     SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
502     return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
503                           "m", m44,
504                           "v", v4,
505                           "unpremulInput",  GrSkSLFP::Specialize(unpremulInput  ? 1 : 0),
506                           "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
507                           "premulOutput",   GrSkSLFP::Specialize(premulOutput   ? 1 : 0));
508 }
509 
510 //////////////////////////////////////////////////////////////////////////////
511 
SurfaceColor()512 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
513     class SurfaceColorProcessor : public GrFragmentProcessor {
514     public:
515         static std::unique_ptr<GrFragmentProcessor> Make() {
516             return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
517         }
518 
519         std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
520 
521         const char* name() const override { return "SurfaceColor"; }
522 
523     private:
524         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
525             class Impl : public ProgramImpl {
526             public:
527                 void emitCode(EmitArgs& args) override {
528                     const char* dstColor = args.fFragBuilder->dstColor();
529                     args.fFragBuilder->codeAppendf("return %s;", dstColor);
530                 }
531             };
532             return std::make_unique<Impl>();
533         }
534 
535         SurfaceColorProcessor()
536                 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
537             this->setWillReadDstColor();
538         }
539 
540         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
541 
542         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
543 
544         using INHERITED = GrFragmentProcessor;
545     };
546 
547     return SurfaceColorProcessor::Make();
548 }
549 
550 //////////////////////////////////////////////////////////////////////////////
551 
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)552 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
553         std::unique_ptr<GrFragmentProcessor> fp) {
554     if (!fp) {
555         return nullptr;
556     }
557 
558     class DeviceSpace : GrFragmentProcessor {
559     public:
560         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
561             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
562         }
563 
564     private:
565         DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
566                 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
567             // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
568             this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
569         }
570 
571         std::unique_ptr<GrFragmentProcessor> clone() const override {
572             auto child = this->childProcessor(0)->clone();
573             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
574         }
575 
576         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
577             return this->childProcessor(0)->constantOutputForConstantInput(f);
578         }
579 
580         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
581             class Impl : public ProgramImpl {
582             public:
583                 Impl() = default;
584                 void emitCode(ProgramImpl::EmitArgs& args) override {
585                     auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
586                     args.fFragBuilder->codeAppendf("return %s;", child.c_str());
587                 }
588             };
589             return std::make_unique<Impl>();
590         }
591 
592         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
593 
594         bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
595 
596         const char* name() const override { return "DeviceSpace"; }
597     };
598 
599     return DeviceSpace::Make(std::move(fp));
600 }
601 
602 //////////////////////////////////////////////////////////////////////////////
603 
604 #define CLIP_EDGE_SKSL              \
605     "const int kFillBW = 0;"        \
606     "const int kFillAA = 1;"        \
607     "const int kInverseFillBW = 2;" \
608     "const int kInverseFillAA = 3;"
609 
610 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
611 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
612 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
613 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
614 
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)615 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
616         std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
617     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
618     CLIP_EDGE_SKSL
619         "uniform int edgeType;"  // GrClipEdgeType, specialized
620         "uniform float4 rectUniform;"
621 
622         "half4 main(float2 xy) {"
623             "half coverage;"
624             "if (edgeType == kFillBW || edgeType == kInverseFillBW) {"
625                 // non-AA
626                 "coverage = half(all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),"
627                                                 "float4(rectUniform.xy, sk_FragCoord.xy))));"
628             "} else {"
629                 // compute coverage relative to left and right edges, add, then subtract 1 to
630                 // account for double counting. And similar for top/bottom.
631                 "half4 dists4 = saturate(half4(1, 1, -1, -1) *"
632                                         "half4(sk_FragCoord.xyxy - rectUniform));"
633                 "half2 dists2 = dists4.xy + dists4.zw - 1;"
634                 "coverage = dists2.x * dists2.y;"
635             "}"
636 
637             "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
638                 "coverage = 1.0 - coverage;"
639             "}"
640 
641             "return half4(coverage);"
642         "}"
643     );
644 
645     SkASSERT(rect.isSorted());
646     // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
647     // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
648     SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
649 
650     auto rectFP = GrSkSLFP::Make(effect, "Rect", /*inputFP=*/nullptr,
651                                  GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
652                                 "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
653                                 "rectUniform", rectUniform);
654     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rectFP),
655                                                                   std::move(inputFP));
656 }
657 
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)658 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
659                                        GrClipEdgeType edgeType,
660                                        SkPoint center,
661                                        float radius) {
662     // A radius below half causes the implicit insetting done by this processor to become
663     // inverted. We could handle this case by making the processor code more complicated.
664     if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
665         return GrFPFailure(std::move(inputFP));
666     }
667 
668     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
669     CLIP_EDGE_SKSL
670         "uniform int edgeType;"  // GrClipEdgeType, specialized
671         // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
672         // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
673         "uniform float4 circle;"
674 
675         "half4 main(float2 xy) {"
676             // TODO: Right now the distance to circle calculation is performed in a space normalized
677             // to the radius and then denormalized. This is to mitigate overflow on devices that
678             // don't have full float.
679             "half d;"
680             "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
681                 "d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);"
682             "} else {"
683                 "d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z);"
684             "}"
685             "return half4((edgeType == kFillAA || edgeType == kInverseFillAA)"
686                               "? saturate(d)"
687                               ": (d > 0.5 ? 1 : 0));"
688         "}"
689     );
690 
691     SkScalar effectiveRadius = radius;
692     if (GrClipEdgeTypeIsInverseFill(edgeType)) {
693         effectiveRadius -= 0.5f;
694         // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
695         effectiveRadius = std::max(0.001f, effectiveRadius);
696     } else {
697         effectiveRadius += 0.5f;
698     }
699     SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
700 
701     auto circleFP = GrSkSLFP::Make(effect, "Circle", /*inputFP=*/nullptr,
702                                    GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
703                                    "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
704                                    "circle", circle);
705     return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(inputFP),
706                                                                               std::move(circleFP)));
707 }
708 
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)709 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
710                                         GrClipEdgeType edgeType,
711                                         SkPoint center,
712                                         SkPoint radii,
713                                         const GrShaderCaps& caps) {
714     const bool medPrecision = !caps.fFloatIs32Bits;
715 
716     // Small radii produce bad results on devices without full float.
717     if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
718         return GrFPFailure(std::move(inputFP));
719     }
720     // Very narrow ellipses produce bad results on devices without full float
721     if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
722         return GrFPFailure(std::move(inputFP));
723     }
724     // Very large ellipses produce bad results on devices without full float
725     if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
726         return GrFPFailure(std::move(inputFP));
727     }
728 
729     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
730     CLIP_EDGE_SKSL
731         "uniform int edgeType;"      // GrClipEdgeType, specialized
732         "uniform int medPrecision;"  // !sk_Caps.floatIs32Bits, specialized
733 
734         "uniform float4 ellipse;"
735         "uniform float2 scale;"    // only for medPrecision
736 
737         "half4 main(float2 xy) {"
738             // d is the offset to the ellipse center
739             "float2 d = sk_FragCoord.xy - ellipse.xy;"
740             // If we're on a device with a "real" mediump then we'll do the distance computation in
741             // a space that is normalized by the larger radius or 128, whichever is smaller. The
742             // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
743             // already in this normalized space. The center is not.
744             "if (bool(medPrecision)) {"
745                 "d *= scale.y;"
746             "}"
747             "float2 Z = d * ellipse.zw;"
748             // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
749             "float implicit = dot(Z, d) - 1;"
750             // grad_dot is the squared length of the gradient of the implicit.
751             "float grad_dot = 4 * dot(Z, Z);"
752             // Avoid calling inversesqrt on zero.
753             "if (bool(medPrecision)) {"
754                 "grad_dot = max(grad_dot, 6.1036e-5);"
755             "} else {"
756                 "grad_dot = max(grad_dot, 1.1755e-38);"
757             "}"
758             "float approx_dist = implicit * inversesqrt(grad_dot);"
759             "if (bool(medPrecision)) {"
760                 "approx_dist *= scale.x;"
761             "}"
762 
763             "half alpha;"
764             "if (edgeType == kFillBW) {"
765                 "alpha = approx_dist > 0.0 ? 0.0 : 1.0;"
766             "} else if (edgeType == kFillAA) {"
767                 "alpha = saturate(0.5 - half(approx_dist));"
768             "} else if (edgeType == kInverseFillBW) {"
769                 "alpha = approx_dist > 0.0 ? 1.0 : 0.0;"
770             "} else {"  // edgeType == kInverseFillAA
771                 "alpha = saturate(0.5 + half(approx_dist));"
772             "}"
773             "return half4(alpha);"
774         "}"
775     );
776 
777     float invRXSqd;
778     float invRYSqd;
779     SkV2 scale = {1, 1};
780     // If we're using a scale factor to work around precision issues, choose the larger radius as
781     // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
782     if (medPrecision) {
783         if (radii.fX > radii.fY) {
784             invRXSqd = 1.f;
785             invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
786             scale = {radii.fX, 1.f / radii.fX};
787         } else {
788             invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
789             invRYSqd = 1.f;
790             scale = {radii.fY, 1.f / radii.fY};
791         }
792     } else {
793         invRXSqd = 1.f / (radii.fX * radii.fX);
794         invRYSqd = 1.f / (radii.fY * radii.fY);
795     }
796     SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
797 
798     auto ellipseFP = GrSkSLFP::Make(effect, "Ellipse", /*inputFP=*/nullptr,
799                                     GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
800                                     "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
801                                     "medPrecision",  GrSkSLFP::Specialize<int>(medPrecision),
802                                     "ellipse", ellipse,
803                                     "scale", scale);
804     return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(ellipseFP),
805                                                                               std::move(inputFP)));
806 }
807 
808 //////////////////////////////////////////////////////////////////////////////
809 
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)810 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
811         std::unique_ptr<GrFragmentProcessor> fp) {
812     class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
813     public:
814         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
815             return std::unique_ptr<GrFragmentProcessor>(
816                     new HighPrecisionFragmentProcessor(std::move(fp)));
817         }
818 
819         const char* name() const override { return "HighPrecision"; }
820 
821         std::unique_ptr<GrFragmentProcessor> clone() const override {
822             return Make(this->childProcessor(0)->clone());
823         }
824 
825     private:
826         HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
827                 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
828                             ProcessorOptimizationFlags(fp.get())) {
829             this->registerChild(std::move(fp));
830         }
831 
832         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
833             class Impl : public ProgramImpl {
834             public:
835                 void emitCode(EmitArgs& args) override {
836                     SkString childColor = this->invokeChild(0, args);
837 
838                     args.fFragBuilder->forceHighPrecision();
839                     args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
840                 }
841             };
842             return std::make_unique<Impl>();
843         }
844 
845         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
846         bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
847 
848         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
849             return ConstantOutputForConstantInput(this->childProcessor(0), input);
850         }
851 
852         using INHERITED = GrFragmentProcessor;
853     };
854 
855     return HighPrecisionFragmentProcessor::Make(std::move(fp));
856 }
857 
858 //////////////////////////////////////////////////////////////////////////////
859 
860 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
861 
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)862 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
863                           const GrFragmentProcessor& processor) {
864     this->onSetData(pdman, processor);
865 }
866 
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,std::string_view skslCoords)867 SkString ProgramImpl::invokeChild(int childIndex,
868                                   const char* inputColor,
869                                   const char* destColor,
870                                   EmitArgs& args,
871                                   std::string_view skslCoords) {
872     SkASSERT(childIndex >= 0);
873 
874     if (!inputColor) {
875         inputColor = args.fInputColor;
876     }
877 
878     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
879     if (!childProc) {
880         // If no child processor is provided, return the input color as-is.
881         return SkString(inputColor);
882     }
883 
884     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
885                                      inputColor);
886 
887     if (childProc->isBlendFunction()) {
888         if (!destColor) {
889             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
890         }
891         invocation.appendf(", %s", destColor);
892     }
893 
894     // Assert that the child has no sample matrix. A uniform matrix sample call would go through
895     // invokeChildWithMatrix, not here.
896     SkASSERT(!childProc->sampleUsage().isUniformMatrix());
897 
898     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
899         SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
900         // The child's function takes a half4 color and a float2 coordinate
901         if (!skslCoords.empty()) {
902             invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data());
903         } else {
904             invocation.appendf(", %s", args.fSampleCoord);
905         }
906     }
907 
908     invocation.append(")");
909     return invocation;
910 }
911 
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)912 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
913                                             const char* inputColor,
914                                             const char* destColor,
915                                             EmitArgs& args) {
916     SkASSERT(childIndex >= 0);
917 
918     if (!inputColor) {
919         inputColor = args.fInputColor;
920     }
921 
922     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
923     if (!childProc) {
924         // If no child processor is provided, return the input color as-is.
925         return SkString(inputColor);
926     }
927 
928     SkASSERT(childProc->sampleUsage().isUniformMatrix());
929 
930     // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
931     GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
932             args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
933     SkASSERT(uniform.getType() == SkSLType::kFloat3x3);
934     const SkString& matrixName(uniform.getName());
935 
936     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
937                                      inputColor);
938 
939     if (childProc->isBlendFunction()) {
940         if (!destColor) {
941             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
942         }
943         invocation.appendf(", %s", destColor);
944     }
945 
946     // Produce a string containing the call to the helper function. We have a uniform variable
947     // containing our transform (matrixName). If the parent coords were produced by uniform
948     // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
949     // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
950     // function signature will not take in coords.
951     //
952     // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
953     // the function.
954     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
955         // Only check perspective for this specific matrix transform, not the aggregate FP property.
956         // Any parent perspective will have already been applied when evaluated in the FS.
957         if (childProc->sampleUsage().hasPerspective()) {
958             invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
959         } else if (args.fShaderCaps->fNonsquareMatrixSupport) {
960             invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
961         } else {
962             invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
963         }
964     }
965 
966     invocation.append(")");
967     return invocation;
968 }
969