xref: /aosp_15_r20/external/armnn/src/backends/neon/workloads/NeonNormalizationFloatWorkload.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonNormalizationFloatWorkload.hpp"
7 
8 #include "NeonWorkloadUtils.hpp"
9 #include <aclCommon/ArmComputeUtils.hpp>
10 #include <aclCommon/ArmComputeTensorUtils.hpp>
11 #include <armnn/utility/PolymorphicDowncast.hpp>
12 
13 #include <arm_compute/runtime/NEON/functions/NENormalizationLayer.h>
14 
15 using namespace armnn::armcomputetensorutils;
16 
17 namespace armnn
18 {
19 
20 namespace
21 {
22 using ACLMemManagerOnDemand = std::shared_ptr<arm_compute::MemoryManagerOnDemand>;
23 
IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor & parameters,Optional<std::string &> reasonIfUnsupported)24 bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters,
25                                             Optional<std::string&> reasonIfUnsupported)
26 {
27     if (parameters.m_NormMethodType != NormalizationAlgorithmMethod::LocalBrightness)
28     {
29         if (reasonIfUnsupported)
30         {
31             reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported";
32         }
33         return false;
34     }
35     if (parameters.m_NormSize % 2 == 0)
36     {
37         if (reasonIfUnsupported)
38         {
39             reasonIfUnsupported.value() = "Normalization size must be an odd number.";
40         }
41         return false;
42     }
43 
44     return true;
45 }
46 
47 } // anonymous namespace
48 
NeonNormalizationWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const NormalizationDescriptor & descriptor)49 arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input,
50                                                       const TensorInfo& output,
51                                                       const NormalizationDescriptor& descriptor)
52 {
53     const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
54     const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
55 
56     arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor);
57 
58     return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo);
59 }
60 
NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor & descriptor,const WorkloadInfo & info,ACLMemManagerOnDemand & memoryManager)61 NeonNormalizationFloatWorkload::NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor& descriptor,
62                                                                const WorkloadInfo& info,
63                                                                ACLMemManagerOnDemand& memoryManager)
64     : FloatWorkload<NormalizationQueueDescriptor>(descriptor, info)
65 {
66     // Report Profiling Details
67     ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonNormalizationWorkload_Construct",
68                                          descriptor.m_Parameters,
69                                          info,
70                                          this->GetGuid());
71 
72     m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1);
73     std::string reasonIfUnsupported;
74     if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional<std::string&>(reasonIfUnsupported)))
75     {
76         throw UnimplementedException(reasonIfUnsupported);
77     }
78 
79     // Input and output tensors have to have the same dimensionality.
80     if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1]
81         || info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0]
82         || info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3]
83         || info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2])
84     {
85         throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality.");
86     }
87 
88     arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
89     arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
90     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
91     input.info()->set_data_layout(aclDataLayout);
92     output.info()->set_data_layout(aclDataLayout);
93 
94     const arm_compute::NormType normType =
95         ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType);
96     arm_compute::NormalizationLayerInfo normalizationInfo(normType,
97                                                           m_Data.m_Parameters.m_NormSize,
98                                                           m_Data.m_Parameters.m_Alpha,
99                                                           m_Data.m_Parameters.m_Beta,
100                                                           m_Data.m_Parameters.m_K,
101                                                           false);
102     auto layer = std::make_unique<arm_compute::NENormalizationLayer>(memoryManager);
103     layer->configure(&input, &output, normalizationInfo);
104     m_NormalizationLayer.reset(layer.release());
105 }
106 
Execute() const107 void NeonNormalizationFloatWorkload::Execute() const
108 {
109     ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonNormalizationFloatWorkload_Execute", this->GetGuid());
110     m_NormalizationLayer->run();
111 }
112 
ReplaceInputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)113 void NeonNormalizationFloatWorkload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
114 {
115     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
116     this->m_Data.m_Inputs[slot] = tensorHandle;
117     try
118     {
119         Reconfigure();
120     }
121     catch(armnn::UnimplementedException& e)
122     {
123         // Cannot reconfigure, revert the slot back and throw the exception.
124         this->m_Data.m_Inputs[slot] = backupHandle;
125         throw e;
126     }
127 }
128 
129 // Replace output tensor handle with the given TensorHandle
ReplaceOutputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)130 void NeonNormalizationFloatWorkload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
131 {
132     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
133     this->m_Data.m_Inputs[slot] = tensorHandle;
134     try
135     {
136         Reconfigure();
137     }
138     catch(armnn::UnimplementedException& e)
139     {
140         // Cannot reconfigure, revert the slot back and throw the exception.
141         this->m_Data.m_Inputs[slot] = backupHandle;
142         throw e;
143     }
144 }
145 
Reconfigure()146 void NeonNormalizationFloatWorkload::Reconfigure()
147 {
148     throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
149 }
150 
151 } //namespace armnn
152