1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/cfl.h"
13 #include "av1/common/reconintra.h"
14 #include "av1/encoder/block.h"
15 #include "av1/encoder/hybrid_fwd_txfm.h"
16 #include "av1/common/idct.h"
17 #include "av1/encoder/model_rd.h"
18 #include "av1/encoder/random.h"
19 #include "av1/encoder/rdopt_utils.h"
20 #include "av1/encoder/sorting_network.h"
21 #include "av1/encoder/tx_prune_model_weights.h"
22 #include "av1/encoder/tx_search.h"
23 #include "av1/encoder/txb_rdopt.h"
24
25 #define PROB_THRESH_OFFSET_TX_TYPE 100
26
27 struct rdcost_block_args {
28 const AV1_COMP *cpi;
29 MACROBLOCK *x;
30 ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
31 ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
32 RD_STATS rd_stats;
33 int64_t current_rd;
34 int64_t best_rd;
35 int exit_early;
36 int incomplete_exit;
37 FAST_TX_SEARCH_MODE ftxs_mode;
38 int skip_trellis;
39 };
40
41 typedef struct {
42 int64_t rd;
43 int txb_entropy_ctx;
44 TX_TYPE tx_type;
45 } TxCandidateInfo;
46
47 // origin_threshold * 128 / 100
48 static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
49 {
50 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
51 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
52 },
53 {
54 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
55 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
56 },
57 {
58 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
59 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
60 },
61 };
62
63 // lookup table for predict_skip_txfm
64 // int max_tx_size = max_txsize_rect_lookup[bsize];
65 // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
66 // max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
67 static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
68 TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8,
69 TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
70 TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4,
71 TX_8X8, TX_8X8, TX_16X16, TX_16X16,
72 };
73
74 // look-up table for sqrt of number of pixels in a transform block
75 // rounded up to the nearest integer.
76 static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4, 8, 16, 32, 32, 6, 6,
77 12, 12, 23, 23, 32, 32, 8,
78 8, 16, 16, 23, 23 };
79
get_block_residue_hash(MACROBLOCK * x,BLOCK_SIZE bsize)80 static inline uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
81 const int rows = block_size_high[bsize];
82 const int cols = block_size_wide[bsize];
83 const int16_t *diff = x->plane[0].src_diff;
84 const uint32_t hash =
85 av1_get_crc32c_value(&x->txfm_search_info.mb_rd_record->crc_calculator,
86 (uint8_t *)diff, 2 * rows * cols);
87 return (hash << 5) + bsize;
88 }
89
find_mb_rd_info(const MB_RD_RECORD * const mb_rd_record,const int64_t ref_best_rd,const uint32_t hash)90 static inline int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record,
91 const int64_t ref_best_rd,
92 const uint32_t hash) {
93 int32_t match_index = -1;
94 if (ref_best_rd != INT64_MAX) {
95 for (int i = 0; i < mb_rd_record->num; ++i) {
96 const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
97 // If there is a match in the mb_rd_record, fetch the RD decision and
98 // terminate early.
99 if (mb_rd_record->mb_rd_info[index].hash_value == hash) {
100 match_index = index;
101 break;
102 }
103 }
104 }
105 return match_index;
106 }
107
fetch_mb_rd_info(int n4,const MB_RD_INFO * const mb_rd_info,RD_STATS * const rd_stats,MACROBLOCK * const x)108 static inline void fetch_mb_rd_info(int n4, const MB_RD_INFO *const mb_rd_info,
109 RD_STATS *const rd_stats,
110 MACROBLOCK *const x) {
111 MACROBLOCKD *const xd = &x->e_mbd;
112 MB_MODE_INFO *const mbmi = xd->mi[0];
113 mbmi->tx_size = mb_rd_info->tx_size;
114 memcpy(x->txfm_search_info.blk_skip, mb_rd_info->blk_skip,
115 sizeof(mb_rd_info->blk_skip[0]) * n4);
116 av1_copy(mbmi->inter_tx_size, mb_rd_info->inter_tx_size);
117 av1_copy_array(xd->tx_type_map, mb_rd_info->tx_type_map, n4);
118 *rd_stats = mb_rd_info->rd_stats;
119 }
120
av1_pixel_diff_dist(const MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8)121 int64_t av1_pixel_diff_dist(const MACROBLOCK *x, int plane, int blk_row,
122 int blk_col, const BLOCK_SIZE plane_bsize,
123 const BLOCK_SIZE tx_bsize,
124 unsigned int *block_mse_q8) {
125 int visible_rows, visible_cols;
126 const MACROBLOCKD *xd = &x->e_mbd;
127 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
128 NULL, &visible_cols, &visible_rows);
129 const int diff_stride = block_size_wide[plane_bsize];
130 const int16_t *diff = x->plane[plane].src_diff;
131
132 diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
133 uint64_t sse =
134 aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
135 if (block_mse_q8 != NULL) {
136 if (visible_cols > 0 && visible_rows > 0)
137 *block_mse_q8 =
138 (unsigned int)((256 * sse) / (visible_cols * visible_rows));
139 else
140 *block_mse_q8 = UINT_MAX;
141 }
142 return sse;
143 }
144
145 // Computes the residual block's SSE and mean on all visible 4x4s in the
146 // transform block
pixel_diff_stats(MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8,int64_t * per_px_mean,uint64_t * block_var)147 static inline int64_t pixel_diff_stats(
148 MACROBLOCK *x, int plane, int blk_row, int blk_col,
149 const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize,
150 unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) {
151 int visible_rows, visible_cols;
152 const MACROBLOCKD *xd = &x->e_mbd;
153 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
154 NULL, &visible_cols, &visible_rows);
155 const int diff_stride = block_size_wide[plane_bsize];
156 const int16_t *diff = x->plane[plane].src_diff;
157
158 diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
159 uint64_t sse = 0;
160 int sum = 0;
161 sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum);
162 if (visible_cols > 0 && visible_rows > 0) {
163 double norm_factor = 1.0 / (visible_cols * visible_rows);
164 int sign_sum = sum > 0 ? 1 : -1;
165 // Conversion to transform domain
166 *per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7;
167 *per_px_mean = sign_sum * (*per_px_mean);
168 *block_mse_q8 = (unsigned int)(norm_factor * (256 * sse));
169 *block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum));
170 } else {
171 *block_mse_q8 = UINT_MAX;
172 }
173 return sse;
174 }
175
176 // Uses simple features on top of DCT coefficients to quickly predict
177 // whether optimal RD decision is to skip encoding the residual.
178 // The sse value is stored in dist.
predict_skip_txfm(MACROBLOCK * x,BLOCK_SIZE bsize,int64_t * dist,int reduced_tx_set)179 static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
180 int reduced_tx_set) {
181 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
182 const int bw = block_size_wide[bsize];
183 const int bh = block_size_high[bsize];
184 const MACROBLOCKD *xd = &x->e_mbd;
185 const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);
186
187 *dist = av1_pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL);
188
189 const int64_t mse = *dist / bw / bh;
190 // Normalized quantizer takes the transform upscaling factor (8 for tx size
191 // smaller than 32) into account.
192 const int16_t normalized_dc_q = dc_q >> 3;
193 const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
194 // For faster early skip decision, use dist to compare against threshold so
195 // that quality risk is less for the skip=1 decision. Otherwise, use mse
196 // since the fwd_txfm coeff checks will take care of quality
197 // TODO(any): Use dist to return 0 when skip_txfm_level is 1
198 int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse;
199 // Predict not to skip when error is larger than threshold.
200 if (pred_err > mse_thresh) return 0;
201 // Return as skip otherwise for aggressive early skip
202 else if (txfm_params->skip_txfm_level >= 2)
203 return 1;
204
205 const int max_tx_size = max_predict_sf_tx_size[bsize];
206 const int tx_h = tx_size_high[max_tx_size];
207 const int tx_w = tx_size_wide[max_tx_size];
208 DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
209 TxfmParam param;
210 param.tx_type = DCT_DCT;
211 param.tx_size = max_tx_size;
212 param.bd = xd->bd;
213 param.is_hbd = is_cur_buf_hbd(xd);
214 param.lossless = 0;
215 param.tx_set_type = av1_get_ext_tx_set_type(
216 param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
217 const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
218 const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
219 const int16_t *src_diff = x->plane[0].src_diff;
220 const int n_coeff = tx_w * tx_h;
221 const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
222 const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
223 const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
224 for (int row = 0; row < bh; row += tx_h) {
225 for (int col = 0; col < bw; col += tx_w) {
226 av1_fwd_txfm(src_diff + col, coefs, bw, ¶m);
227 // Operating on TX domain, not pixels; we want the QTX quantizers
228 const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
229 if (dc_coef >= dc_thresh) return 0;
230 for (int i = 1; i < n_coeff; ++i) {
231 const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
232 if (ac_coef >= ac_thresh) return 0;
233 }
234 }
235 src_diff += tx_h * bw;
236 }
237 return 1;
238 }
239
240 // Used to set proper context for early termination with skip = 1.
set_skip_txfm(MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t dist)241 static inline void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats,
242 BLOCK_SIZE bsize, int64_t dist) {
243 MACROBLOCKD *const xd = &x->e_mbd;
244 MB_MODE_INFO *const mbmi = xd->mi[0];
245 const int n4 = bsize_to_num_blk(bsize);
246 const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
247 memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4);
248 memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
249 mbmi->tx_size = tx_size;
250 for (int i = 0; i < n4; ++i)
251 set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1);
252 rd_stats->skip_txfm = 1;
253 if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
254 rd_stats->dist = rd_stats->sse = (dist << 4);
255 // Though decision is to make the block as skip based on luma stats,
256 // it is possible that block becomes non skip after chroma rd. In addition
257 // intermediate non skip costs calculated by caller function will be
258 // incorrect, if rate is set as zero (i.e., if zero_blk_rate is not
259 // accounted). Hence intermediate rate is populated to code the luma tx blks
260 // as skip, the caller function based on final rd decision (i.e., skip vs
261 // non-skip) sets the final rate accordingly. Here the rate populated
262 // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx
263 // size possible) in the current block. Eg: For 128*128 block, rate would be
264 // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx
265 // block as 'all zeros'
266 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
267 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
268 av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl);
269 ENTROPY_CONTEXT *ta = ctxa;
270 ENTROPY_CONTEXT *tl = ctxl;
271 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
272 TXB_CTX txb_ctx;
273 get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx);
274 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
275 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
276 rd_stats->rate = zero_blk_rate *
277 (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) *
278 (block_size_high[bsize] >> tx_size_high_log2[tx_size]);
279 }
280
save_mb_rd_info(int n4,uint32_t hash,const MACROBLOCK * const x,const RD_STATS * const rd_stats,MB_RD_RECORD * mb_rd_record)281 static inline void save_mb_rd_info(int n4, uint32_t hash,
282 const MACROBLOCK *const x,
283 const RD_STATS *const rd_stats,
284 MB_RD_RECORD *mb_rd_record) {
285 int index;
286 if (mb_rd_record->num < RD_RECORD_BUFFER_LEN) {
287 index =
288 (mb_rd_record->index_start + mb_rd_record->num) % RD_RECORD_BUFFER_LEN;
289 ++mb_rd_record->num;
290 } else {
291 index = mb_rd_record->index_start;
292 mb_rd_record->index_start =
293 (mb_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
294 }
295 MB_RD_INFO *const mb_rd_info = &mb_rd_record->mb_rd_info[index];
296 const MACROBLOCKD *const xd = &x->e_mbd;
297 const MB_MODE_INFO *const mbmi = xd->mi[0];
298 mb_rd_info->hash_value = hash;
299 mb_rd_info->tx_size = mbmi->tx_size;
300 memcpy(mb_rd_info->blk_skip, x->txfm_search_info.blk_skip,
301 sizeof(mb_rd_info->blk_skip[0]) * n4);
302 av1_copy(mb_rd_info->inter_tx_size, mbmi->inter_tx_size);
303 av1_copy_array(mb_rd_info->tx_type_map, xd->tx_type_map, n4);
304 mb_rd_info->rd_stats = *rd_stats;
305 }
306
get_search_init_depth(int mi_width,int mi_height,int is_inter,const SPEED_FEATURES * sf,int tx_size_search_method)307 static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
308 const SPEED_FEATURES *sf,
309 int tx_size_search_method) {
310 if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;
311
312 if (sf->tx_sf.tx_size_search_lgr_block) {
313 if (mi_width > mi_size_wide[BLOCK_64X64] ||
314 mi_height > mi_size_high[BLOCK_64X64])
315 return MAX_VARTX_DEPTH;
316 }
317
318 if (is_inter) {
319 return (mi_height != mi_width)
320 ? sf->tx_sf.inter_tx_size_search_init_depth_rect
321 : sf->tx_sf.inter_tx_size_search_init_depth_sqr;
322 } else {
323 return (mi_height != mi_width)
324 ? sf->tx_sf.intra_tx_size_search_init_depth_rect
325 : sf->tx_sf.intra_tx_size_search_init_depth_sqr;
326 }
327 }
328
329 static inline void select_tx_block(
330 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
331 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
332 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
333 RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
334 int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode);
335
336 // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
337 // 0: Do not collect any RD stats
338 // 1: Collect RD stats for transform units
339 // 2: Collect RD stats for partition units
340 #if CONFIG_COLLECT_RD_STATS
341
get_energy_distribution_fine(const AV1_COMP * cpi,BLOCK_SIZE bsize,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int need_4th,double * hordist,double * verdist)342 static inline void get_energy_distribution_fine(
343 const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride,
344 const uint8_t *dst, int dst_stride, int need_4th, double *hordist,
345 double *verdist) {
346 const int bw = block_size_wide[bsize];
347 const int bh = block_size_high[bsize];
348 unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
349
350 if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
351 // Special cases: calculate 'esq' values manually, as we don't have 'vf'
352 // functions for the 16 (very small) sub-blocks of this block.
353 const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
354 const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
355 assert(bw <= 32);
356 assert(bh <= 32);
357 assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
358 if (cpi->common.seq_params->use_highbitdepth) {
359 const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
360 const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
361 for (int i = 0; i < bh; ++i)
362 for (int j = 0; j < bw; ++j) {
363 const int index = (j >> w_shift) + ((i >> h_shift) << 2);
364 esq[index] +=
365 (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
366 (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
367 }
368 } else {
369 for (int i = 0; i < bh; ++i)
370 for (int j = 0; j < bw; ++j) {
371 const int index = (j >> w_shift) + ((i >> h_shift) << 2);
372 esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
373 (src[j + i * src_stride] - dst[j + i * dst_stride]);
374 }
375 }
376 } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
377 const int f_index =
378 (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
379 assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
380 const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
381 assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
382 assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
383 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
384 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
385 dst_stride, &esq[1]);
386 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
387 dst_stride, &esq[2]);
388 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
389 dst_stride, &esq[3]);
390 src += bh / 4 * src_stride;
391 dst += bh / 4 * dst_stride;
392
393 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
394 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
395 dst_stride, &esq[5]);
396 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
397 dst_stride, &esq[6]);
398 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
399 dst_stride, &esq[7]);
400 src += bh / 4 * src_stride;
401 dst += bh / 4 * dst_stride;
402
403 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
404 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
405 dst_stride, &esq[9]);
406 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
407 dst_stride, &esq[10]);
408 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
409 dst_stride, &esq[11]);
410 src += bh / 4 * src_stride;
411 dst += bh / 4 * dst_stride;
412
413 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
414 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
415 dst_stride, &esq[13]);
416 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
417 dst_stride, &esq[14]);
418 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
419 dst_stride, &esq[15]);
420 }
421
422 double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
423 esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
424 esq[12] + esq[13] + esq[14] + esq[15];
425 if (total > 0) {
426 const double e_recip = 1.0 / total;
427 hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
428 hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
429 hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
430 if (need_4th) {
431 hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
432 }
433 verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
434 verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
435 verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
436 if (need_4th) {
437 verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
438 }
439 } else {
440 hordist[0] = verdist[0] = 0.25;
441 hordist[1] = verdist[1] = 0.25;
442 hordist[2] = verdist[2] = 0.25;
443 if (need_4th) {
444 hordist[3] = verdist[3] = 0.25;
445 }
446 }
447 }
448
get_sse_norm(const int16_t * diff,int stride,int w,int h)449 static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
450 double sum = 0.0;
451 for (int j = 0; j < h; ++j) {
452 for (int i = 0; i < w; ++i) {
453 const int err = diff[j * stride + i];
454 sum += err * err;
455 }
456 }
457 assert(w > 0 && h > 0);
458 return sum / (w * h);
459 }
460
get_sad_norm(const int16_t * diff,int stride,int w,int h)461 static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
462 double sum = 0.0;
463 for (int j = 0; j < h; ++j) {
464 for (int i = 0; i < w; ++i) {
465 sum += abs(diff[j * stride + i]);
466 }
467 }
468 assert(w > 0 && h > 0);
469 return sum / (w * h);
470 }
471
get_2x2_normalized_sses_and_sads(const AV1_COMP * const cpi,BLOCK_SIZE tx_bsize,const uint8_t * const src,int src_stride,const uint8_t * const dst,int dst_stride,const int16_t * const src_diff,int diff_stride,double * const sse_norm_arr,double * const sad_norm_arr)472 static inline void get_2x2_normalized_sses_and_sads(
473 const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
474 int src_stride, const uint8_t *const dst, int dst_stride,
475 const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
476 double *const sad_norm_arr) {
477 const BLOCK_SIZE tx_bsize_half =
478 get_partition_subsize(tx_bsize, PARTITION_SPLIT);
479 if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats
480 const int half_width = block_size_wide[tx_bsize] / 2;
481 const int half_height = block_size_high[tx_bsize] / 2;
482 for (int row = 0; row < 2; ++row) {
483 for (int col = 0; col < 2; ++col) {
484 const int16_t *const this_src_diff =
485 src_diff + row * half_height * diff_stride + col * half_width;
486 if (sse_norm_arr) {
487 sse_norm_arr[row * 2 + col] =
488 get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
489 }
490 if (sad_norm_arr) {
491 sad_norm_arr[row * 2 + col] =
492 get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
493 }
494 }
495 }
496 } else { // use function pointers to calculate stats
497 const int half_width = block_size_wide[tx_bsize_half];
498 const int half_height = block_size_high[tx_bsize_half];
499 const int num_samples_half = half_width * half_height;
500 for (int row = 0; row < 2; ++row) {
501 for (int col = 0; col < 2; ++col) {
502 const uint8_t *const this_src =
503 src + row * half_height * src_stride + col * half_width;
504 const uint8_t *const this_dst =
505 dst + row * half_height * dst_stride + col * half_width;
506
507 if (sse_norm_arr) {
508 unsigned int this_sse;
509 cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
510 dst_stride, &this_sse);
511 sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
512 }
513
514 if (sad_norm_arr) {
515 const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf(
516 this_src, src_stride, this_dst, dst_stride);
517 sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
518 }
519 }
520 }
521 }
522 }
523
524 #if CONFIG_COLLECT_RD_STATS == 1
get_mean(const int16_t * diff,int stride,int w,int h)525 static double get_mean(const int16_t *diff, int stride, int w, int h) {
526 double sum = 0.0;
527 for (int j = 0; j < h; ++j) {
528 for (int i = 0; i < w; ++i) {
529 sum += diff[j * stride + i];
530 }
531 }
532 assert(w > 0 && h > 0);
533 return sum / (w * h);
534 }
PrintTransformUnitStats(const AV1_COMP * const cpi,MACROBLOCK * x,const RD_STATS * const rd_stats,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,TX_TYPE tx_type,int64_t rd)535 static inline void PrintTransformUnitStats(
536 const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats,
537 int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
538 TX_TYPE tx_type, int64_t rd) {
539 if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
540
541 // Generate small sample to restrict output size.
542 static unsigned int seed = 21743;
543 if (lcg_rand16(&seed) % 256 > 0) return;
544
545 const char output_file[] = "tu_stats.txt";
546 FILE *fout = fopen(output_file, "a");
547 if (!fout) return;
548
549 const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
550 const MACROBLOCKD *const xd = &x->e_mbd;
551 const int plane = 0;
552 struct macroblock_plane *const p = &x->plane[plane];
553 const struct macroblockd_plane *const pd = &xd->plane[plane];
554 const int txw = tx_size_wide[tx_size];
555 const int txh = tx_size_high[tx_size];
556 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
557 const int q_step = p->dequant_QTX[1] >> dequant_shift;
558 const int num_samples = txw * txh;
559
560 const double rate_norm = (double)rd_stats->rate / num_samples;
561 const double dist_norm = (double)rd_stats->dist / num_samples;
562
563 fprintf(fout, "%g %g", rate_norm, dist_norm);
564
565 const int src_stride = p->src.stride;
566 const uint8_t *const src =
567 &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
568 const int dst_stride = pd->dst.stride;
569 const uint8_t *const dst =
570 &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
571 unsigned int sse;
572 cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
573 const double sse_norm = (double)sse / num_samples;
574
575 const unsigned int sad =
576 cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
577 const double sad_norm = (double)sad / num_samples;
578
579 fprintf(fout, " %g %g", sse_norm, sad_norm);
580
581 const int diff_stride = block_size_wide[plane_bsize];
582 const int16_t *const src_diff =
583 &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
584
585 double sse_norm_arr[4], sad_norm_arr[4];
586 get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
587 dst_stride, src_diff, diff_stride,
588 sse_norm_arr, sad_norm_arr);
589 for (int i = 0; i < 4; ++i) {
590 fprintf(fout, " %g", sse_norm_arr[i]);
591 }
592 for (int i = 0; i < 4; ++i) {
593 fprintf(fout, " %g", sad_norm_arr[i]);
594 }
595
596 const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
597 const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
598
599 fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
600 tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);
601
602 int model_rate;
603 int64_t model_dist;
604 model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples,
605 &model_rate, &model_dist);
606 const double model_rate_norm = (double)model_rate / num_samples;
607 const double model_dist_norm = (double)model_dist / num_samples;
608 fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);
609
610 const double mean = get_mean(src_diff, diff_stride, txw, txh);
611 float hor_corr, vert_corr;
612 av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr,
613 &vert_corr);
614 fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
615
616 double hdist[4] = { 0 }, vdist[4] = { 0 };
617 get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
618 1, hdist, vdist);
619 fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
620 hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
621
622 fprintf(fout, " %d %" PRId64, x->rdmult, rd);
623
624 fprintf(fout, "\n");
625 fclose(fout);
626 }
627 #endif // CONFIG_COLLECT_RD_STATS == 1
628
629 #if CONFIG_COLLECT_RD_STATS >= 2
get_sse(const AV1_COMP * cpi,const MACROBLOCK * x)630 static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
631 const AV1_COMMON *cm = &cpi->common;
632 const int num_planes = av1_num_planes(cm);
633 const MACROBLOCKD *xd = &x->e_mbd;
634 const MB_MODE_INFO *mbmi = xd->mi[0];
635 int64_t total_sse = 0;
636 for (int plane = 0; plane < num_planes; ++plane) {
637 const struct macroblock_plane *const p = &x->plane[plane];
638 const struct macroblockd_plane *const pd = &xd->plane[plane];
639 const BLOCK_SIZE bs =
640 get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
641 unsigned int sse;
642
643 if (plane) continue;
644
645 cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
646 pd->dst.stride, &sse);
647 total_sse += sse;
648 }
649 total_sse <<= 4;
650 return total_sse;
651 }
652
get_est_rate_dist(const TileDataEnc * tile_data,BLOCK_SIZE bsize,int64_t sse,int * est_residue_cost,int64_t * est_dist)653 static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
654 int64_t sse, int *est_residue_cost,
655 int64_t *est_dist) {
656 const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
657 if (md->ready) {
658 if (sse < md->dist_mean) {
659 *est_residue_cost = 0;
660 *est_dist = sse;
661 } else {
662 *est_dist = (int64_t)round(md->dist_mean);
663 const double est_ld = md->a * sse + md->b;
664 // Clamp estimated rate cost by INT_MAX / 2.
665 // TODO([email protected]): find better solution than clamping.
666 if (fabs(est_ld) < 1e-2) {
667 *est_residue_cost = INT_MAX / 2;
668 } else {
669 double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
670 if (est_residue_cost_dbl < 0) {
671 *est_residue_cost = 0;
672 } else {
673 *est_residue_cost =
674 (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
675 }
676 }
677 if (*est_residue_cost <= 0) {
678 *est_residue_cost = 0;
679 *est_dist = sse;
680 }
681 }
682 return 1;
683 }
684 return 0;
685 }
686
get_highbd_diff_mean(const uint8_t * src8,int src_stride,const uint8_t * dst8,int dst_stride,int w,int h)687 static double get_highbd_diff_mean(const uint8_t *src8, int src_stride,
688 const uint8_t *dst8, int dst_stride, int w,
689 int h) {
690 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
691 const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
692 double sum = 0.0;
693 for (int j = 0; j < h; ++j) {
694 for (int i = 0; i < w; ++i) {
695 const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
696 sum += diff;
697 }
698 }
699 assert(w > 0 && h > 0);
700 return sum / (w * h);
701 }
702
get_diff_mean(const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int w,int h)703 static double get_diff_mean(const uint8_t *src, int src_stride,
704 const uint8_t *dst, int dst_stride, int w, int h) {
705 double sum = 0.0;
706 for (int j = 0; j < h; ++j) {
707 for (int i = 0; i < w; ++i) {
708 const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
709 sum += diff;
710 }
711 }
712 assert(w > 0 && h > 0);
713 return sum / (w * h);
714 }
715
PrintPredictionUnitStats(const AV1_COMP * const cpi,const TileDataEnc * tile_data,MACROBLOCK * x,const RD_STATS * const rd_stats,BLOCK_SIZE plane_bsize)716 static inline void PrintPredictionUnitStats(const AV1_COMP *const cpi,
717 const TileDataEnc *tile_data,
718 MACROBLOCK *x,
719 const RD_STATS *const rd_stats,
720 BLOCK_SIZE plane_bsize) {
721 if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
722
723 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
724 (tile_data == NULL ||
725 !tile_data->inter_mode_rd_models[plane_bsize].ready))
726 return;
727 (void)tile_data;
728 // Generate small sample to restrict output size.
729 static unsigned int seed = 95014;
730
731 if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) !=
732 1)
733 return;
734
735 const char output_file[] = "pu_stats.txt";
736 FILE *fout = fopen(output_file, "a");
737 if (!fout) return;
738
739 MACROBLOCKD *const xd = &x->e_mbd;
740 const int plane = 0;
741 struct macroblock_plane *const p = &x->plane[plane];
742 struct macroblockd_plane *pd = &xd->plane[plane];
743 const int diff_stride = block_size_wide[plane_bsize];
744 int bw, bh;
745 get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
746 &bh);
747 const int num_samples = bw * bh;
748 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
749 const int q_step = p->dequant_QTX[1] >> dequant_shift;
750 const int shift = (xd->bd - 8);
751
752 const double rate_norm = (double)rd_stats->rate / num_samples;
753 const double dist_norm = (double)rd_stats->dist / num_samples;
754 const double rdcost_norm =
755 (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples;
756
757 fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm);
758
759 const int src_stride = p->src.stride;
760 const uint8_t *const src = p->src.buf;
761 const int dst_stride = pd->dst.stride;
762 const uint8_t *const dst = pd->dst.buf;
763 const int16_t *const src_diff = p->src_diff;
764
765 int64_t sse = calculate_sse(xd, p, pd, bw, bh);
766 const double sse_norm = (double)sse / num_samples;
767
768 const unsigned int sad =
769 cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
770 const double sad_norm =
771 (double)sad / (1 << num_pels_log2_lookup[plane_bsize]);
772
773 fprintf(fout, " %g %g", sse_norm, sad_norm);
774
775 double sse_norm_arr[4], sad_norm_arr[4];
776 get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
777 dst_stride, src_diff, diff_stride,
778 sse_norm_arr, sad_norm_arr);
779 if (shift) {
780 for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
781 for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
782 }
783 for (int i = 0; i < 4; ++i) {
784 fprintf(fout, " %g", sse_norm_arr[i]);
785 }
786 for (int i = 0; i < 4; ++i) {
787 fprintf(fout, " %g", sad_norm_arr[i]);
788 }
789
790 fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh);
791
792 int model_rate;
793 int64_t model_dist;
794 model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples,
795 &model_rate, &model_dist);
796 const double model_rdcost_norm =
797 (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples;
798 const double model_rate_norm = (double)model_rate / num_samples;
799 const double model_dist_norm = (double)model_dist / num_samples;
800 fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm,
801 model_rdcost_norm);
802
803 double mean;
804 if (is_cur_buf_hbd(xd)) {
805 mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf,
806 pd->dst.stride, bw, bh);
807 } else {
808 mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
809 bw, bh);
810 }
811 mean /= (1 << shift);
812 float hor_corr, vert_corr;
813 av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr,
814 &vert_corr);
815 fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
816
817 double hdist[4] = { 0 }, vdist[4] = { 0 };
818 get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
819 dst_stride, 1, hdist, vdist);
820 fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
821 hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
822
823 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
824 assert(tile_data->inter_mode_rd_models[plane_bsize].ready);
825 const int64_t overall_sse = get_sse(cpi, x);
826 int est_residue_cost = 0;
827 int64_t est_dist = 0;
828 get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost,
829 &est_dist);
830 const double est_residue_cost_norm = (double)est_residue_cost / num_samples;
831 const double est_dist_norm = (double)est_dist / num_samples;
832 const double est_rdcost_norm =
833 (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples;
834 fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm,
835 est_rdcost_norm);
836 }
837
838 fprintf(fout, "\n");
839 fclose(fout);
840 }
841 #endif // CONFIG_COLLECT_RD_STATS >= 2
842 #endif // CONFIG_COLLECT_RD_STATS
843
inverse_transform_block_facade(MACROBLOCK * const x,int plane,int block,int blk_row,int blk_col,int eob,int reduced_tx_set)844 static inline void inverse_transform_block_facade(MACROBLOCK *const x,
845 int plane, int block,
846 int blk_row, int blk_col,
847 int eob, int reduced_tx_set) {
848 if (!eob) return;
849 struct macroblock_plane *const p = &x->plane[plane];
850 MACROBLOCKD *const xd = &x->e_mbd;
851 tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
852 const PLANE_TYPE plane_type = get_plane_type(plane);
853 const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
854 const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
855 tx_size, reduced_tx_set);
856
857 struct macroblockd_plane *const pd = &xd->plane[plane];
858 const int dst_stride = pd->dst.stride;
859 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
860 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
861 dst_stride, eob, reduced_tx_set);
862 }
863
recon_intra(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,int skip_trellis,TX_TYPE best_tx_type,int do_quant,int * rate_cost,uint16_t best_eob)864 static inline void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
865 int block, int blk_row, int blk_col,
866 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
867 const TXB_CTX *const txb_ctx, int skip_trellis,
868 TX_TYPE best_tx_type, int do_quant,
869 int *rate_cost, uint16_t best_eob) {
870 const AV1_COMMON *cm = &cpi->common;
871 MACROBLOCKD *xd = &x->e_mbd;
872 MB_MODE_INFO *mbmi = xd->mi[0];
873 const int is_inter = is_inter_block(mbmi);
874 if (!is_inter && best_eob &&
875 (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
876 blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
877 // if the quantized coefficients are stored in the dqcoeff buffer, we don't
878 // need to do transform and quantization again.
879 if (do_quant) {
880 TxfmParam txfm_param_intra;
881 QUANT_PARAM quant_param_intra;
882 av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra);
883 av1_setup_quant(tx_size, !skip_trellis,
884 skip_trellis
885 ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
886 : AV1_XFORM_QUANT_FP)
887 : AV1_XFORM_QUANT_FP,
888 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra);
889 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type,
890 &quant_param_intra);
891 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
892 &txfm_param_intra, &quant_param_intra);
893 if (quant_param_intra.use_optimize_b) {
894 av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx,
895 rate_cost);
896 }
897 }
898
899 inverse_transform_block_facade(x, plane, block, blk_row, blk_col,
900 x->plane[plane].eobs[block],
901 cm->features.reduced_tx_set_used);
902
903 // This may happen because of hash collision. The eob stored in the hash
904 // table is non-zero, but the real eob is zero. We need to make sure tx_type
905 // is DCT_DCT in this case.
906 if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
907 best_tx_type != DCT_DCT) {
908 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
909 }
910 }
911 }
912
pixel_dist_visible_only(const AV1_COMP * const cpi,const MACROBLOCK * x,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,const BLOCK_SIZE tx_bsize,int txb_rows,int txb_cols,int visible_rows,int visible_cols)913 static unsigned pixel_dist_visible_only(
914 const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
915 const int src_stride, const uint8_t *dst, const int dst_stride,
916 const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
917 int visible_cols) {
918 unsigned sse;
919
920 if (txb_rows == visible_rows && txb_cols == visible_cols) {
921 cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
922 return sse;
923 }
924
925 #if CONFIG_AV1_HIGHBITDEPTH
926 const MACROBLOCKD *xd = &x->e_mbd;
927 if (is_cur_buf_hbd(xd)) {
928 uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
929 visible_cols, visible_rows);
930 return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
931 }
932 #else
933 (void)x;
934 #endif
935 sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
936 visible_rows);
937 return sse;
938 }
939
940 // Compute the pixel domain distortion from src and dst on all visible 4x4s in
941 // the
942 // transform block.
pixel_dist(const AV1_COMP * const cpi,const MACROBLOCK * x,int plane,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize)943 static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
944 int plane, const uint8_t *src, const int src_stride,
945 const uint8_t *dst, const int dst_stride,
946 int blk_row, int blk_col,
947 const BLOCK_SIZE plane_bsize,
948 const BLOCK_SIZE tx_bsize) {
949 int txb_rows, txb_cols, visible_rows, visible_cols;
950 const MACROBLOCKD *xd = &x->e_mbd;
951
952 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
953 &txb_cols, &txb_rows, &visible_cols, &visible_rows);
954 assert(visible_rows > 0);
955 assert(visible_cols > 0);
956
957 unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
958 dst_stride, tx_bsize, txb_rows,
959 txb_cols, visible_rows, visible_cols);
960
961 return sse;
962 }
963
dist_block_px_domain(const AV1_COMP * cpi,MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int block,int blk_row,int blk_col,TX_SIZE tx_size)964 static inline int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
965 int plane, BLOCK_SIZE plane_bsize,
966 int block, int blk_row, int blk_col,
967 TX_SIZE tx_size) {
968 MACROBLOCKD *const xd = &x->e_mbd;
969 const struct macroblock_plane *const p = &x->plane[plane];
970 const uint16_t eob = p->eobs[block];
971 const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
972 const int bsw = block_size_wide[tx_bsize];
973 const int bsh = block_size_high[tx_bsize];
974 const int src_stride = x->plane[plane].src.stride;
975 const int dst_stride = xd->plane[plane].dst.stride;
976 // Scale the transform block index to pixel unit.
977 const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2;
978 const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2;
979 const uint8_t *src = &x->plane[plane].src.buf[src_idx];
980 const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
981 const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
982
983 assert(cpi != NULL);
984 assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
985
986 uint8_t *recon;
987 DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
988
989 #if CONFIG_AV1_HIGHBITDEPTH
990 if (is_cur_buf_hbd(xd)) {
991 recon = CONVERT_TO_BYTEPTR(recon16);
992 aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride,
993 CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh);
994 } else {
995 recon = (uint8_t *)recon16;
996 aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
997 }
998 #else
999 recon = (uint8_t *)recon16;
1000 aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
1001 #endif
1002
1003 const PLANE_TYPE plane_type = get_plane_type(plane);
1004 TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
1005 cpi->common.features.reduced_tx_set_used);
1006 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
1007 MAX_TX_SIZE, eob,
1008 cpi->common.features.reduced_tx_set_used);
1009
1010 return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
1011 blk_row, blk_col, plane_bsize, tx_bsize);
1012 }
1013
1014 // pruning thresholds for prune_txk_type and prune_txk_type_separ
1015 static const int prune_factors[5] = { 200, 200, 120, 80, 40 }; // scale 1000
1016 static const int mul_factors[5] = { 80, 80, 70, 50, 30 }; // scale 100
1017
1018 // R-D costs are sorted in ascending order.
sort_rd(int64_t rds[],int txk[],int len)1019 static inline void sort_rd(int64_t rds[], int txk[], int len) {
1020 int i, j, k;
1021
1022 for (i = 1; i <= len - 1; ++i) {
1023 for (j = 0; j < i; ++j) {
1024 if (rds[j] > rds[i]) {
1025 int64_t temprd;
1026 int tempi;
1027
1028 temprd = rds[i];
1029 tempi = txk[i];
1030
1031 for (k = i; k > j; k--) {
1032 rds[k] = rds[k - 1];
1033 txk[k] = txk[k - 1];
1034 }
1035
1036 rds[j] = temprd;
1037 txk[j] = tempi;
1038 break;
1039 }
1040 }
1041 }
1042 }
1043
av1_block_error_qm(const tran_low_t * coeff,const tran_low_t * dqcoeff,intptr_t block_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * ssz)1044 static inline int64_t av1_block_error_qm(const tran_low_t *coeff,
1045 const tran_low_t *dqcoeff,
1046 intptr_t block_size,
1047 const qm_val_t *qmatrix,
1048 const int16_t *scan, int64_t *ssz) {
1049 int i;
1050 int64_t error = 0, sqcoeff = 0;
1051
1052 for (i = 0; i < block_size; i++) {
1053 int64_t weight = qmatrix[scan[i]];
1054 int64_t dd = coeff[i] - dqcoeff[i];
1055 dd *= weight;
1056 int64_t cc = coeff[i];
1057 cc *= weight;
1058 // The ranges of coeff and dqcoeff are
1059 // bd8 : 18 bits (including sign)
1060 // bd10: 20 bits (including sign)
1061 // bd12: 22 bits (including sign)
1062 // As AOM_QM_BITS is 5, the intermediate quantities in the calculation
1063 // below should fit in 54 bits, thus no overflow should happen.
1064 error += (dd * dd + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1065 sqcoeff += (cc * cc + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1066 }
1067
1068 *ssz = sqcoeff;
1069 return error;
1070 }
1071
dist_block_tx_domain(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * out_dist,int64_t * out_sse)1072 static inline void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
1073 TX_SIZE tx_size,
1074 const qm_val_t *qmatrix,
1075 const int16_t *scan, int64_t *out_dist,
1076 int64_t *out_sse) {
1077 const struct macroblock_plane *const p = &x->plane[plane];
1078 // Transform domain distortion computation is more efficient as it does
1079 // not involve an inverse transform, but it is less accurate.
1080 const int buffer_length = av1_get_max_eob(tx_size);
1081 int64_t this_sse;
1082 // TX-domain results need to shift down to Q2/D10 to match pixel
1083 // domain distortion values which are in Q2^2
1084 int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
1085 const int block_offset = BLOCK_OFFSET(block);
1086 tran_low_t *const coeff = p->coeff + block_offset;
1087 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
1088 #if CONFIG_AV1_HIGHBITDEPTH
1089 MACROBLOCKD *const xd = &x->e_mbd;
1090 if (is_cur_buf_hbd(xd)) {
1091 // TODO(veluca): handle use_qm_dist_metric for HBD too.
1092 *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse,
1093 xd->bd);
1094 } else {
1095 #endif
1096 if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) {
1097 *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);
1098 } else {
1099 *out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix,
1100 scan, &this_sse);
1101 }
1102 #if CONFIG_AV1_HIGHBITDEPTH
1103 }
1104 #endif
1105
1106 *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
1107 *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
1108 }
1109
prune_txk_type_separ(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,int16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used,int64_t ref_best_rd,int num_sel)1110 static uint16_t prune_txk_type_separ(
1111 const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
1112 int blk_row, int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
1113 int16_t allowed_tx_mask, int prune_factor, const TXB_CTX *const txb_ctx,
1114 int reduced_tx_set_used, int64_t ref_best_rd, int num_sel) {
1115 const AV1_COMMON *cm = &cpi->common;
1116 MACROBLOCKD *xd = &x->e_mbd;
1117
1118 int idx;
1119
1120 int64_t rds_v[4];
1121 int64_t rds_h[4];
1122 int idx_v[4] = { 0, 1, 2, 3 };
1123 int idx_h[4] = { 0, 1, 2, 3 };
1124 int skip_v[4] = { 0 };
1125 int skip_h[4] = { 0 };
1126 const int idx_map[16] = {
1127 DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
1128 ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
1129 FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1130 H_DCT, H_ADST, H_FLIPADST, IDTX
1131 };
1132
1133 const int sel_pattern_v[16] = {
1134 0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3
1135 };
1136 const int sel_pattern_h[16] = {
1137 0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3
1138 };
1139
1140 QUANT_PARAM quant_param;
1141 TxfmParam txfm_param;
1142 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1143 av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1144 &quant_param);
1145 int tx_type;
1146 // to ensure we can try ones even outside of ext_tx_set of current block
1147 // this function should only be called for size < 16
1148 assert(txsize_sqr_up_map[tx_size] <= TX_16X16);
1149 txfm_param.tx_set_type = EXT_TX_SET_ALL16;
1150
1151 int rate_cost = 0;
1152 int64_t dist = 0, sse = 0;
1153 // evaluate horizontal with vertical DCT
1154 for (idx = 0; idx < 4; ++idx) {
1155 tx_type = idx_map[idx];
1156 txfm_param.tx_type = tx_type;
1157
1158 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1159 &quant_param);
1160
1161 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1162 &quant_param);
1163
1164 const SCAN_ORDER *const scan_order =
1165 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1166 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1167 scan_order->scan, &dist, &sse);
1168
1169 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1170 txb_ctx, reduced_tx_set_used, 0);
1171
1172 rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist);
1173
1174 if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) {
1175 skip_h[idx] = 1;
1176 }
1177 }
1178 sort_rd(rds_h, idx_h, 4);
1179 for (idx = 1; idx < 4; idx++) {
1180 if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1;
1181 }
1182
1183 if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF;
1184
1185 // evaluate vertical with the best horizontal chosen
1186 rds_v[0] = rds_h[0];
1187 int start_v = 1, end_v = 4;
1188 const int *idx_map_v = idx_map + idx_h[0];
1189
1190 for (idx = start_v; idx < end_v; ++idx) {
1191 tx_type = idx_map_v[idx_v[idx] * 4];
1192 txfm_param.tx_type = tx_type;
1193
1194 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1195 &quant_param);
1196
1197 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1198 &quant_param);
1199
1200 const SCAN_ORDER *const scan_order =
1201 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1202 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1203 scan_order->scan, &dist, &sse);
1204
1205 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1206 txb_ctx, reduced_tx_set_used, 0);
1207
1208 rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist);
1209
1210 if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) {
1211 skip_v[idx] = 1;
1212 }
1213 }
1214 sort_rd(rds_v, idx_v, 4);
1215 for (idx = 1; idx < 4; idx++) {
1216 if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1;
1217 }
1218
1219 // combine rd_h and rd_v to prune tx candidates
1220 int i_v, i_h;
1221 int64_t rds[16];
1222 int num_cand = 0, last = TX_TYPES - 1;
1223
1224 for (int i = 0; i < 16; i++) {
1225 i_v = sel_pattern_v[i];
1226 i_h = sel_pattern_h[i];
1227 tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]];
1228 if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] ||
1229 skip_v[idx_v[i_v]]) {
1230 txk_map[last] = tx_type;
1231 last--;
1232 } else {
1233 txk_map[num_cand] = tx_type;
1234 rds[num_cand] = rds_v[i_v] + rds_h[i_h];
1235 if (rds[num_cand] == 0) rds[num_cand] = 1;
1236 num_cand++;
1237 }
1238 }
1239 sort_rd(rds, txk_map, num_cand);
1240
1241 uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1242 num_sel = AOMMIN(num_sel, num_cand);
1243
1244 for (int i = 1; i < num_sel; i++) {
1245 int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]);
1246 if (factor < (int64_t)prune_factor)
1247 prune &= ~(1 << txk_map[i]);
1248 else
1249 break;
1250 }
1251 return prune;
1252 }
1253
prune_txk_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,uint16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1254 static uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
1255 int block, TX_SIZE tx_size, int blk_row,
1256 int blk_col, BLOCK_SIZE plane_bsize,
1257 int *txk_map, uint16_t allowed_tx_mask,
1258 int prune_factor, const TXB_CTX *const txb_ctx,
1259 int reduced_tx_set_used) {
1260 const AV1_COMMON *cm = &cpi->common;
1261 MACROBLOCKD *xd = &x->e_mbd;
1262 int tx_type;
1263
1264 int64_t rds[TX_TYPES];
1265
1266 int num_cand = 0;
1267 int last = TX_TYPES - 1;
1268
1269 TxfmParam txfm_param;
1270 QUANT_PARAM quant_param;
1271 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1272 av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1273 &quant_param);
1274
1275 for (int idx = 0; idx < TX_TYPES; idx++) {
1276 tx_type = idx;
1277 int rate_cost = 0;
1278 int64_t dist = 0, sse = 0;
1279 if (!(allowed_tx_mask & (1 << tx_type))) {
1280 txk_map[last] = tx_type;
1281 last--;
1282 continue;
1283 }
1284 txfm_param.tx_type = tx_type;
1285
1286 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1287 &quant_param);
1288
1289 // do txfm and quantization
1290 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1291 &quant_param);
1292 // estimate rate cost
1293 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1294 txb_ctx, reduced_tx_set_used, 0);
1295 // tx domain dist
1296 const SCAN_ORDER *const scan_order =
1297 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1298 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1299 scan_order->scan, &dist, &sse);
1300
1301 txk_map[num_cand] = tx_type;
1302 rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist);
1303 if (rds[num_cand] == 0) rds[num_cand] = 1;
1304 num_cand++;
1305 }
1306
1307 if (num_cand == 0) return (uint16_t)0xFFFF;
1308
1309 sort_rd(rds, txk_map, num_cand);
1310 uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1311
1312 // 0 < prune_factor <= 1000 controls aggressiveness
1313 int64_t factor = 0;
1314 for (int idx = 1; idx < num_cand; idx++) {
1315 factor = 1000 * (rds[idx] - rds[0]) / rds[0];
1316 if (factor < (int64_t)prune_factor)
1317 prune &= ~(1 << txk_map[idx]);
1318 else
1319 break;
1320 }
1321 return prune;
1322 }
1323
1324 // These thresholds were calibrated to provide a certain number of TX types
1325 // pruned by the model on average, i.e. selecting a threshold with index i
1326 // will lead to pruning i+1 TX types on average
1327 static const float *prune_2D_adaptive_thresholds[] = {
1328 // TX_4X4
1329 (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f,
1330 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f,
1331 0.09778f, 0.11780f },
1332 // TX_8X8
1333 (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f,
1334 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f,
1335 0.10803f, 0.14124f },
1336 // TX_16X16
1337 (float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
1338 0.06897f, 0.07629f, 0.08875f, 0.11169f },
1339 // TX_32X32
1340 NULL,
1341 // TX_64X64
1342 NULL,
1343 // TX_4X8
1344 (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f,
1345 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f,
1346 0.10168f, 0.12585f },
1347 // TX_8X4
1348 (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f,
1349 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f,
1350 0.10583f, 0.13123f },
1351 // TX_8X16
1352 (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f,
1353 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f,
1354 0.10730f, 0.14221f },
1355 // TX_16X8
1356 (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f,
1357 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f,
1358 0.10339f, 0.13464f },
1359 // TX_16X32
1360 NULL,
1361 // TX_32X16
1362 NULL,
1363 // TX_32X64
1364 NULL,
1365 // TX_64X32
1366 NULL,
1367 // TX_4X16
1368 (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f,
1369 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f,
1370 0.10242f, 0.12878f },
1371 // TX_16X4
1372 (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f,
1373 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f,
1374 0.10217f, 0.12610f },
1375 // TX_8X32
1376 NULL,
1377 // TX_32X8
1378 NULL,
1379 // TX_16X64
1380 NULL,
1381 // TX_64X16
1382 NULL,
1383 };
1384
get_adaptive_thresholds(TX_SIZE tx_size,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode)1385 static inline float get_adaptive_thresholds(
1386 TX_SIZE tx_size, TxSetType tx_set_type,
1387 TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) {
1388 const int prune_aggr_table[5][2] = {
1389 { 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 }
1390 };
1391 int pruning_aggressiveness = 0;
1392 if (tx_set_type == EXT_TX_SET_ALL16)
1393 pruning_aggressiveness =
1394 prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0];
1395 else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1396 pruning_aggressiveness =
1397 prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1];
1398
1399 return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness];
1400 }
1401
get_energy_distribution_finer(const int16_t * diff,int stride,int bw,int bh,float * hordist,float * verdist)1402 static inline void get_energy_distribution_finer(const int16_t *diff,
1403 int stride, int bw, int bh,
1404 float *hordist,
1405 float *verdist) {
1406 // First compute downscaled block energy values (esq); downscale factors
1407 // are defined by w_shift and h_shift.
1408 unsigned int esq[256];
1409 const int w_shift = bw <= 8 ? 0 : 1;
1410 const int h_shift = bh <= 8 ? 0 : 1;
1411 const int esq_w = bw >> w_shift;
1412 const int esq_h = bh >> h_shift;
1413 const int esq_sz = esq_w * esq_h;
1414 int i, j;
1415 memset(esq, 0, esq_sz * sizeof(esq[0]));
1416 if (w_shift) {
1417 for (i = 0; i < bh; i++) {
1418 unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1419 const int16_t *cur_diff_row = diff + i * stride;
1420 for (j = 0; j < bw; j += 2) {
1421 cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
1422 cur_diff_row[j + 1] * cur_diff_row[j + 1]);
1423 }
1424 }
1425 } else {
1426 for (i = 0; i < bh; i++) {
1427 unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1428 const int16_t *cur_diff_row = diff + i * stride;
1429 for (j = 0; j < bw; j++) {
1430 cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
1431 }
1432 }
1433 }
1434
1435 uint64_t total = 0;
1436 for (i = 0; i < esq_sz; i++) total += esq[i];
1437
1438 // Output hordist and verdist arrays are normalized 1D projections of esq
1439 if (total == 0) {
1440 float hor_val = 1.0f / esq_w;
1441 for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
1442 float ver_val = 1.0f / esq_h;
1443 for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
1444 return;
1445 }
1446
1447 const float e_recip = 1.0f / (float)total;
1448 memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
1449 memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
1450 const unsigned int *cur_esq_row;
1451 for (i = 0; i < esq_h - 1; i++) {
1452 cur_esq_row = esq + i * esq_w;
1453 for (j = 0; j < esq_w - 1; j++) {
1454 hordist[j] += (float)cur_esq_row[j];
1455 verdist[i] += (float)cur_esq_row[j];
1456 }
1457 verdist[i] += (float)cur_esq_row[j];
1458 }
1459 cur_esq_row = esq + i * esq_w;
1460 for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];
1461
1462 for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
1463 for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
1464 }
1465
check_bit_mask(uint16_t mask,int val)1466 static inline bool check_bit_mask(uint16_t mask, int val) {
1467 return mask & (1 << val);
1468 }
1469
set_bit_mask(uint16_t * mask,int val)1470 static inline void set_bit_mask(uint16_t *mask, int val) {
1471 *mask |= (1 << val);
1472 }
1473
unset_bit_mask(uint16_t * mask,int val)1474 static inline void unset_bit_mask(uint16_t *mask, int val) {
1475 *mask &= ~(1 << val);
1476 }
1477
prune_tx_2D(MACROBLOCK * x,BLOCK_SIZE bsize,TX_SIZE tx_size,int blk_row,int blk_col,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode,int * txk_map,uint16_t * allowed_tx_mask)1478 static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
1479 int blk_row, int blk_col, TxSetType tx_set_type,
1480 TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map,
1481 uint16_t *allowed_tx_mask) {
1482 // This table is used because the search order is different from the enum
1483 // order.
1484 static const int tx_type_table_2D[16] = {
1485 DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
1486 ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
1487 FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1488 H_DCT, H_ADST, H_FLIPADST, IDTX
1489 };
1490 if (tx_set_type != EXT_TX_SET_ALL16 &&
1491 tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
1492 return;
1493 #if CONFIG_NN_V2
1494 NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1495 NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1496 #else
1497 const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1498 const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1499 #endif
1500 if (!nn_config_hor || !nn_config_ver) return; // Model not established yet.
1501
1502 float hfeatures[16], vfeatures[16];
1503 float hscores[4], vscores[4];
1504 float scores_2D_raw[16];
1505 const int bw = tx_size_wide[tx_size];
1506 const int bh = tx_size_high[tx_size];
1507 const int hfeatures_num = bw <= 8 ? bw : bw / 2;
1508 const int vfeatures_num = bh <= 8 ? bh : bh / 2;
1509 assert(hfeatures_num <= 16);
1510 assert(vfeatures_num <= 16);
1511
1512 const struct macroblock_plane *const p = &x->plane[0];
1513 const int diff_stride = block_size_wide[bsize];
1514 const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1515 get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
1516 vfeatures);
1517
1518 av1_get_horver_correlation_full(diff, diff_stride, bw, bh,
1519 &hfeatures[hfeatures_num - 1],
1520 &vfeatures[vfeatures_num - 1]);
1521
1522 #if CONFIG_NN_V2
1523 av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores);
1524 av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores);
1525 #else
1526 av1_nn_predict(hfeatures, nn_config_hor, 1, hscores);
1527 av1_nn_predict(vfeatures, nn_config_ver, 1, vscores);
1528 #endif
1529
1530 for (int i = 0; i < 4; i++) {
1531 float *cur_scores_2D = scores_2D_raw + i * 4;
1532 cur_scores_2D[0] = vscores[i] * hscores[0];
1533 cur_scores_2D[1] = vscores[i] * hscores[1];
1534 cur_scores_2D[2] = vscores[i] * hscores[2];
1535 cur_scores_2D[3] = vscores[i] * hscores[3];
1536 }
1537
1538 assert(TX_TYPES == 16);
1539 // This version of the function only works when there are at most 16 classes.
1540 // So we will need to change the optimization or use av1_nn_softmax instead if
1541 // this ever gets changed.
1542 av1_nn_fast_softmax_16(scores_2D_raw, scores_2D_raw);
1543
1544 const float score_thresh =
1545 get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode);
1546
1547 // Always keep the TX type with the highest score, prune all others with
1548 // score below score_thresh.
1549 int max_score_i = 0;
1550 float max_score = 0.0f;
1551 uint16_t allow_bitmask = 0;
1552 float sum_score = 0.0;
1553 // Calculate sum of allowed tx type score and Populate allow bit mask based
1554 // on score_thresh and allowed_tx_mask
1555 int allow_count = 0;
1556 int tx_type_allowed[16] = { TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1557 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1558 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1559 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1560 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1561 TX_TYPE_INVALID };
1562 float scores_2D[16] = {
1563 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1564 };
1565 for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) {
1566 const int allow_tx_type =
1567 check_bit_mask(*allowed_tx_mask, tx_type_table_2D[tx_idx]);
1568 if (!allow_tx_type) {
1569 continue;
1570 }
1571 if (scores_2D_raw[tx_idx] > max_score) {
1572 max_score = scores_2D_raw[tx_idx];
1573 max_score_i = tx_idx;
1574 }
1575 if (scores_2D_raw[tx_idx] >= score_thresh) {
1576 // Set allow mask based on score_thresh
1577 set_bit_mask(&allow_bitmask, tx_type_table_2D[tx_idx]);
1578
1579 // Accumulate score of allowed tx type
1580 sum_score += scores_2D_raw[tx_idx];
1581
1582 scores_2D[allow_count] = scores_2D_raw[tx_idx];
1583 tx_type_allowed[allow_count] = tx_type_table_2D[tx_idx];
1584 allow_count += 1;
1585 }
1586 }
1587 if (!check_bit_mask(allow_bitmask, tx_type_table_2D[max_score_i])) {
1588 // If even the tx_type with max score is pruned, this means that no other
1589 // tx_type is feasible. When this happens, we force enable max_score_i and
1590 // end the search.
1591 set_bit_mask(&allow_bitmask, tx_type_table_2D[max_score_i]);
1592 memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D));
1593 *allowed_tx_mask = allow_bitmask;
1594 return;
1595 }
1596
1597 // Sort tx type probability of all types
1598 if (allow_count <= 8) {
1599 av1_sort_fi32_8(scores_2D, tx_type_allowed);
1600 } else {
1601 av1_sort_fi32_16(scores_2D, tx_type_allowed);
1602 }
1603
1604 // Enable more pruning based on tx type probability and number of allowed tx
1605 // types
1606 if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) {
1607 float temp_score = 0.0;
1608 float score_ratio = 0.0;
1609 int tx_idx, tx_count = 0;
1610 const float inv_sum_score = 100 / sum_score;
1611 // Get allowed tx types based on sorted probability score and tx count
1612 for (tx_idx = 0; tx_idx < allow_count; tx_idx++) {
1613 // Skip the tx type which has more than 30% of cumulative
1614 // probability and allowed tx type count is more than 2
1615 if (score_ratio > 30.0 && tx_count >= 2) break;
1616
1617 assert(check_bit_mask(allow_bitmask, tx_type_allowed[tx_idx]));
1618 // Calculate cumulative probability
1619 temp_score += scores_2D[tx_idx];
1620
1621 // Calculate percentage of cumulative probability of allowed tx type
1622 score_ratio = temp_score * inv_sum_score;
1623 tx_count++;
1624 }
1625 // Set remaining tx types as pruned
1626 for (; tx_idx < allow_count; tx_idx++)
1627 unset_bit_mask(&allow_bitmask, tx_type_allowed[tx_idx]);
1628 }
1629
1630 memcpy(txk_map, tx_type_allowed, sizeof(tx_type_table_2D));
1631 *allowed_tx_mask = allow_bitmask;
1632 }
1633
get_dev(float mean,double x2_sum,int num)1634 static float get_dev(float mean, double x2_sum, int num) {
1635 const float e_x2 = (float)(x2_sum / num);
1636 const float diff = e_x2 - mean * mean;
1637 const float dev = (diff > 0) ? sqrtf(diff) : 0;
1638 return dev;
1639 }
1640
1641 // Writes the features required by the ML model to predict tx split based on
1642 // mean and standard deviation values of the block and sub-blocks.
1643 // Returns the number of elements written to the output array which is at most
1644 // 12 currently. Hence 'features' buffer should be able to accommodate at least
1645 // 12 elements.
get_mean_dev_features(const int16_t * data,int stride,int bw,int bh,float * features)1646 static inline int get_mean_dev_features(const int16_t *data, int stride, int bw,
1647 int bh, float *features) {
1648 const int16_t *const data_ptr = &data[0];
1649 const int subh = (bh >= bw) ? (bh >> 1) : bh;
1650 const int subw = (bw >= bh) ? (bw >> 1) : bw;
1651 const int num = bw * bh;
1652 const int sub_num = subw * subh;
1653 int feature_idx = 2;
1654 int total_x_sum = 0;
1655 int64_t total_x2_sum = 0;
1656 int num_sub_blks = 0;
1657 double mean2_sum = 0.0f;
1658 float dev_sum = 0.0f;
1659
1660 for (int row = 0; row < bh; row += subh) {
1661 for (int col = 0; col < bw; col += subw) {
1662 int x_sum;
1663 int64_t x2_sum;
1664 // TODO(any): Write a SIMD version. Clear registers.
1665 aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
1666 &x_sum, &x2_sum);
1667 total_x_sum += x_sum;
1668 total_x2_sum += x2_sum;
1669
1670 const float mean = (float)x_sum / sub_num;
1671 const float dev = get_dev(mean, (double)x2_sum, sub_num);
1672 features[feature_idx++] = mean;
1673 features[feature_idx++] = dev;
1674 mean2_sum += (double)(mean * mean);
1675 dev_sum += dev;
1676 num_sub_blks++;
1677 }
1678 }
1679
1680 const float lvl0_mean = (float)total_x_sum / num;
1681 features[0] = lvl0_mean;
1682 features[1] = get_dev(lvl0_mean, (double)total_x2_sum, num);
1683
1684 // Deviation of means.
1685 features[feature_idx++] = get_dev(lvl0_mean, mean2_sum, num_sub_blks);
1686 // Mean of deviations.
1687 features[feature_idx++] = dev_sum / num_sub_blks;
1688
1689 return feature_idx;
1690 }
1691
ml_predict_tx_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size)1692 static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
1693 int blk_col, TX_SIZE tx_size) {
1694 const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
1695 if (!nn_config) return -1;
1696
1697 const int diff_stride = block_size_wide[bsize];
1698 const int16_t *diff =
1699 x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1700 const int bw = tx_size_wide[tx_size];
1701 const int bh = tx_size_high[tx_size];
1702
1703 float features[64] = { 0.0f };
1704 get_mean_dev_features(diff, diff_stride, bw, bh, features);
1705
1706 float score = 0.0f;
1707 av1_nn_predict(features, nn_config, 1, &score);
1708
1709 int int_score = (int)(score * 10000);
1710 return clamp(int_score, -80000, 80000);
1711 }
1712
get_tx_mask(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_best_rd,TX_TYPE * allowed_txk_types,int * txk_map)1713 static inline uint16_t get_tx_mask(
1714 const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, int blk_row,
1715 int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1716 const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode,
1717 int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) {
1718 const AV1_COMMON *cm = &cpi->common;
1719 MACROBLOCKD *xd = &x->e_mbd;
1720 MB_MODE_INFO *mbmi = xd->mi[0];
1721 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1722 const int is_inter = is_inter_block(mbmi);
1723 const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
1724 // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed <
1725 // TX_TYPES, only that specific tx type is allowed.
1726 TX_TYPE txk_allowed = TX_TYPES;
1727
1728 const FRAME_UPDATE_TYPE update_type =
1729 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
1730 int use_actual_frame_probs = 1;
1731 const int *tx_type_probs;
1732 #if CONFIG_FPMT_TEST
1733 use_actual_frame_probs =
1734 (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
1735 if (!use_actual_frame_probs) {
1736 tx_type_probs =
1737 (int *)cpi->ppi->temp_frame_probs.tx_type_probs[update_type][tx_size];
1738 }
1739 #endif
1740 if (use_actual_frame_probs) {
1741 tx_type_probs = cpi->ppi->frame_probs.tx_type_probs[update_type][tx_size];
1742 }
1743
1744 if ((!is_inter && txfm_params->use_default_intra_tx_type) ||
1745 (is_inter && txfm_params->default_inter_tx_type_prob_thresh == 0)) {
1746 txk_allowed =
1747 get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools);
1748 } else if (is_inter &&
1749 txfm_params->default_inter_tx_type_prob_thresh != INT_MAX) {
1750 if (tx_type_probs[DEFAULT_INTER_TX_TYPE] >
1751 txfm_params->default_inter_tx_type_prob_thresh) {
1752 txk_allowed = DEFAULT_INTER_TX_TYPE;
1753 } else {
1754 int force_tx_type = 0;
1755 int max_prob = 0;
1756 const int tx_type_prob_threshold =
1757 txfm_params->default_inter_tx_type_prob_thresh +
1758 PROB_THRESH_OFFSET_TX_TYPE;
1759 for (int i = 1; i < TX_TYPES; i++) { // find maximum probability.
1760 if (tx_type_probs[i] > max_prob) {
1761 max_prob = tx_type_probs[i];
1762 force_tx_type = i;
1763 }
1764 }
1765 if (max_prob > tx_type_prob_threshold) // force tx type with max prob.
1766 txk_allowed = force_tx_type;
1767 else if (x->rd_model == LOW_TXFM_RD) {
1768 if (plane == 0) txk_allowed = DCT_DCT;
1769 }
1770 }
1771 } else if (x->rd_model == LOW_TXFM_RD) {
1772 if (plane == 0) txk_allowed = DCT_DCT;
1773 }
1774
1775 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
1776 tx_size, is_inter, cm->features.reduced_tx_set_used);
1777
1778 TX_TYPE uv_tx_type = DCT_DCT;
1779 if (plane) {
1780 // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
1781 uv_tx_type = txk_allowed =
1782 av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size,
1783 cm->features.reduced_tx_set_used);
1784 }
1785 PREDICTION_MODE intra_dir =
1786 mbmi->filter_intra_mode_info.use_filter_intra
1787 ? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]
1788 : mbmi->mode;
1789 uint16_t ext_tx_used_flag =
1790 cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 &&
1791 tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT
1792 ? av1_reduced_intra_tx_used_flag[intra_dir]
1793 : av1_ext_tx_used_flag[tx_set_type];
1794
1795 if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2)
1796 ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir];
1797
1798 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
1799 ext_tx_used_flag == 0x0001 ||
1800 (is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) ||
1801 (!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) {
1802 txk_allowed = DCT_DCT;
1803 }
1804
1805 if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0)
1806 ext_tx_used_flag &= DCT_ADST_TX_MASK;
1807
1808 uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip.
1809 if (txk_allowed < TX_TYPES) {
1810 allowed_tx_mask = 1 << txk_allowed;
1811 allowed_tx_mask &= ext_tx_used_flag;
1812 } else if (fast_tx_search) {
1813 allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT
1814 allowed_tx_mask &= ext_tx_used_flag;
1815 } else {
1816 assert(plane == 0);
1817 allowed_tx_mask = ext_tx_used_flag;
1818 int num_allowed = 0;
1819 int i;
1820
1821 if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) {
1822 static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 },
1823 { 10, 17, 17, 10, 17, 17, 17 } };
1824 const int thresh =
1825 thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1]
1826 [update_type];
1827 uint16_t prune = 0;
1828 int max_prob = -1;
1829 int max_idx = 0;
1830 for (i = 0; i < TX_TYPES; i++) {
1831 if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) {
1832 max_prob = tx_type_probs[i];
1833 max_idx = i;
1834 }
1835 if (tx_type_probs[i] < thresh) prune |= (1 << i);
1836 }
1837 if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx);
1838 allowed_tx_mask &= (~prune);
1839 }
1840 for (i = 0; i < TX_TYPES; i++) {
1841 if (allowed_tx_mask & (1 << i)) num_allowed++;
1842 }
1843 assert(num_allowed > 0);
1844
1845 if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) {
1846 int pf = prune_factors[txfm_params->prune_2d_txfm_mode];
1847 int mf = mul_factors[txfm_params->prune_2d_txfm_mode];
1848 if (num_allowed <= 7) {
1849 const uint16_t prune =
1850 prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col,
1851 plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx,
1852 cm->features.reduced_tx_set_used);
1853 allowed_tx_mask &= (~prune);
1854 } else {
1855 const int num_sel = (num_allowed * mf + 50) / 100;
1856 const uint16_t prune = prune_txk_type_separ(
1857 cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize,
1858 txk_map, allowed_tx_mask, pf, txb_ctx,
1859 cm->features.reduced_tx_set_used, ref_best_rd, num_sel);
1860
1861 allowed_tx_mask &= (~prune);
1862 }
1863 } else {
1864 assert(num_allowed > 0);
1865 int allowed_tx_count =
1866 (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5;
1867 // !fast_tx_search && txk_end != txk_start && plane == 0
1868 if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter &&
1869 num_allowed > allowed_tx_count) {
1870 prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
1871 txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask);
1872 }
1873 }
1874 }
1875
1876 // Need to have at least one transform type allowed.
1877 if (allowed_tx_mask == 0) {
1878 txk_allowed = (plane ? uv_tx_type : DCT_DCT);
1879 allowed_tx_mask = (1 << txk_allowed);
1880 }
1881
1882 assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed));
1883 *allowed_txk_types = txk_allowed;
1884 return allowed_tx_mask;
1885 }
1886
1887 #if CONFIG_RD_DEBUG
update_txb_coeff_cost(RD_STATS * rd_stats,int plane,int txb_coeff_cost)1888 static inline void update_txb_coeff_cost(RD_STATS *rd_stats, int plane,
1889 int txb_coeff_cost) {
1890 rd_stats->txb_coeff_cost[plane] += txb_coeff_cost;
1891 }
1892 #endif
1893
cost_coeffs(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1894 static inline int cost_coeffs(MACROBLOCK *x, int plane, int block,
1895 TX_SIZE tx_size, const TX_TYPE tx_type,
1896 const TXB_CTX *const txb_ctx,
1897 int reduced_tx_set_used) {
1898 #if TXCOEFF_COST_TIMER
1899 struct aom_usec_timer timer;
1900 aom_usec_timer_start(&timer);
1901 #endif
1902 const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type,
1903 txb_ctx, reduced_tx_set_used);
1904 #if TXCOEFF_COST_TIMER
1905 AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common;
1906 aom_usec_timer_mark(&timer);
1907 const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
1908 tmp_cm->txcoeff_cost_timer += elapsed_time;
1909 ++tmp_cm->txcoeff_cost_count;
1910 #endif
1911 return cost;
1912 }
1913
skip_trellis_opt_based_on_satd(MACROBLOCK * x,QUANT_PARAM * quant_param,int plane,int block,TX_SIZE tx_size,int quant_b_adapt,int qstep,unsigned int coeff_opt_satd_threshold,int skip_trellis,int dc_only_blk)1914 static int skip_trellis_opt_based_on_satd(MACROBLOCK *x,
1915 QUANT_PARAM *quant_param, int plane,
1916 int block, TX_SIZE tx_size,
1917 int quant_b_adapt, int qstep,
1918 unsigned int coeff_opt_satd_threshold,
1919 int skip_trellis, int dc_only_blk) {
1920 if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX))
1921 return skip_trellis;
1922
1923 const struct macroblock_plane *const p = &x->plane[plane];
1924 const int block_offset = BLOCK_OFFSET(block);
1925 tran_low_t *const coeff_ptr = p->coeff + block_offset;
1926 const int n_coeffs = av1_get_max_eob(tx_size);
1927 const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size));
1928 int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs);
1929 satd = RIGHT_SIGNED_SHIFT(satd, shift);
1930 satd >>= (x->e_mbd.bd - 8);
1931
1932 const int skip_block_trellis =
1933 ((uint64_t)satd >
1934 (uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]);
1935
1936 av1_setup_quant(
1937 tx_size, !skip_block_trellis,
1938 skip_block_trellis
1939 ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP)
1940 : AV1_XFORM_QUANT_FP,
1941 quant_b_adapt, quant_param);
1942
1943 return skip_block_trellis;
1944 }
1945
1946 // Predict DC only blocks if the residual variance is below a qstep based
1947 // threshold.For such blocks, transform type search is bypassed.
predict_dc_only_block(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,int block,int blk_row,int blk_col,RD_STATS * best_rd_stats,int64_t * block_sse,unsigned int * block_mse_q8,int64_t * per_px_mean,int * dc_only_blk)1948 static inline void predict_dc_only_block(
1949 MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1950 int block, int blk_row, int blk_col, RD_STATS *best_rd_stats,
1951 int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean,
1952 int *dc_only_blk) {
1953 MACROBLOCKD *xd = &x->e_mbd;
1954 MB_MODE_INFO *mbmi = xd->mi[0];
1955 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
1956 const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
1957 uint64_t block_var = UINT64_MAX;
1958 const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3;
1959 *block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize,
1960 txsize_to_bsize[tx_size], block_mse_q8,
1961 per_px_mean, &block_var);
1962 assert((*block_mse_q8) != UINT_MAX);
1963 uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep);
1964 if (is_cur_buf_hbd(xd))
1965 block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2);
1966
1967 if (block_var >= var_threshold) return;
1968 const unsigned int predict_dc_level = x->txfm_search_params.predict_dc_level;
1969 assert(predict_dc_level != 0);
1970
1971 // Prediction of skip block if residual mean and variance are less
1972 // than qstep based threshold
1973 if ((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) {
1974 // If the normalized mean of residual block is less than the dc qstep and
1975 // the normalized block variance is less than ac qstep, then the block is
1976 // assumed to be a skip block and its rdcost is updated accordingly.
1977 best_rd_stats->skip_txfm = 1;
1978
1979 x->plane[plane].eobs[block] = 0;
1980
1981 if (is_cur_buf_hbd(xd))
1982 *block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2);
1983
1984 best_rd_stats->dist = (*block_sse) << 4;
1985 best_rd_stats->sse = best_rd_stats->dist;
1986
1987 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
1988 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
1989 av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl);
1990 ENTROPY_CONTEXT *ta = ctxa;
1991 ENTROPY_CONTEXT *tl = ctxl;
1992 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
1993 TXB_CTX txb_ctx_tmp;
1994 const PLANE_TYPE plane_type = get_plane_type(plane);
1995 get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp);
1996 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type]
1997 .txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1];
1998 best_rd_stats->rate = zero_blk_rate;
1999
2000 best_rd_stats->rdcost =
2001 RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse);
2002
2003 x->plane[plane].txb_entropy_ctx[block] = 0;
2004 } else if (predict_dc_level > 1) {
2005 // Predict DC only blocks based on residual variance.
2006 // For chroma plane, this prediction is disabled for intra blocks.
2007 if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1;
2008 }
2009 }
2010
2011 // Search for the best transform type for a given transform block.
2012 // This function can be used for both inter and intra, both luma and chroma.
search_tx_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis,int64_t ref_best_rd,RD_STATS * best_rd_stats)2013 static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
2014 int block, int blk_row, int blk_col,
2015 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
2016 const TXB_CTX *const txb_ctx,
2017 FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis,
2018 int64_t ref_best_rd, RD_STATS *best_rd_stats) {
2019 const AV1_COMMON *cm = &cpi->common;
2020 MACROBLOCKD *xd = &x->e_mbd;
2021 MB_MODE_INFO *mbmi = xd->mi[0];
2022 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2023 int64_t best_rd = INT64_MAX;
2024 uint16_t best_eob = 0;
2025 TX_TYPE best_tx_type = DCT_DCT;
2026 int rate_cost = 0;
2027 struct macroblock_plane *const p = &x->plane[plane];
2028 tran_low_t *orig_dqcoeff = p->dqcoeff;
2029 tran_low_t *best_dqcoeff = x->dqcoeff_buf;
2030 const int tx_type_map_idx =
2031 plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col;
2032 av1_invalid_rd_stats(best_rd_stats);
2033
2034 skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id],
2035 DRY_RUN_NORMAL);
2036
2037 uint8_t best_txb_ctx = 0;
2038 // txk_allowed = TX_TYPES: >1 tx types are allowed
2039 // txk_allowed < TX_TYPES: only that specific tx type is allowed.
2040 TX_TYPE txk_allowed = TX_TYPES;
2041 int txk_map[TX_TYPES] = {
2042 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
2043 };
2044 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
2045 const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
2046
2047 const uint8_t txw = tx_size_wide[tx_size];
2048 const uint8_t txh = tx_size_high[tx_size];
2049 int64_t block_sse;
2050 unsigned int block_mse_q8;
2051 int dc_only_blk = 0;
2052 const bool predict_dc_block =
2053 txfm_params->predict_dc_level >= 1 && txw != 64 && txh != 64;
2054 int64_t per_px_mean = INT64_MAX;
2055 if (predict_dc_block) {
2056 predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row,
2057 blk_col, best_rd_stats, &block_sse, &block_mse_q8,
2058 &per_px_mean, &dc_only_blk);
2059 if (best_rd_stats->skip_txfm == 1) {
2060 const TX_TYPE tx_type = DCT_DCT;
2061 if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2062 return;
2063 }
2064 } else {
2065 block_sse = av1_pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize,
2066 txsize_to_bsize[tx_size], &block_mse_q8);
2067 assert(block_mse_q8 != UINT_MAX);
2068 }
2069
2070 // Bit mask to indicate which transform types are allowed in the RD search.
2071 uint16_t tx_mask;
2072
2073 // Use DCT_DCT transform for DC only block.
2074 if (dc_only_blk || cpi->sf.rt_sf.dct_only_palette_nonrd == 1)
2075 tx_mask = 1 << DCT_DCT;
2076 else
2077 tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize,
2078 tx_size, txb_ctx, ftxs_mode, ref_best_rd,
2079 &txk_allowed, txk_map);
2080 const uint16_t allowed_tx_mask = tx_mask;
2081
2082 if (is_cur_buf_hbd(xd)) {
2083 block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
2084 block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2);
2085 }
2086 block_sse *= 16;
2087 // Use mse / qstep^2 based threshold logic to take decision of R-D
2088 // optimization of coeffs. For smaller residuals, coeff optimization
2089 // would be helpful. For larger residuals, R-D optimization may not be
2090 // effective.
2091 // TODO(any): Experiment with variance and mean based thresholds
2092 const int perform_block_coeff_opt =
2093 ((uint64_t)block_mse_q8 <=
2094 (uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep);
2095 skip_trellis |= !perform_block_coeff_opt;
2096
2097 // Flag to indicate if distortion should be calculated in transform domain or
2098 // not during iterating through transform type candidates.
2099 // Transform domain distortion is accurate for higher residuals.
2100 // TODO(any): Experiment with variance and mean based thresholds
2101 int use_transform_domain_distortion =
2102 (txfm_params->use_transform_domain_distortion > 0) &&
2103 (block_mse_q8 >= txfm_params->tx_domain_dist_threshold) &&
2104 // Any 64-pt transforms only preserves half the coefficients.
2105 // Therefore transform domain distortion is not valid for these
2106 // transform sizes.
2107 (txsize_sqr_up_map[tx_size] != TX_64X64) &&
2108 // Use pixel domain distortion for DC only blocks
2109 !dc_only_blk;
2110 // Flag to indicate if an extra calculation of distortion in the pixel domain
2111 // should be performed at the end, after the best transform type has been
2112 // decided.
2113 int calc_pixel_domain_distortion_final =
2114 txfm_params->use_transform_domain_distortion == 1 &&
2115 use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD;
2116 if (calc_pixel_domain_distortion_final &&
2117 (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001))
2118 calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;
2119
2120 const uint16_t *eobs_ptr = x->plane[plane].eobs;
2121
2122 TxfmParam txfm_param;
2123 QUANT_PARAM quant_param;
2124 int skip_trellis_based_on_satd[TX_TYPES] = { 0 };
2125 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
2126 av1_setup_quant(tx_size, !skip_trellis,
2127 skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
2128 : AV1_XFORM_QUANT_FP)
2129 : AV1_XFORM_QUANT_FP,
2130 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
2131
2132 // Iterate through all transform type candidates.
2133 for (int idx = 0; idx < TX_TYPES; ++idx) {
2134 const TX_TYPE tx_type = (TX_TYPE)txk_map[idx];
2135 if (tx_type == TX_TYPE_INVALID || !check_bit_mask(allowed_tx_mask, tx_type))
2136 continue;
2137 txfm_param.tx_type = tx_type;
2138 if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) {
2139 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
2140 &quant_param);
2141 }
2142 if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2143 RD_STATS this_rd_stats;
2144 av1_invalid_rd_stats(&this_rd_stats);
2145
2146 if (!dc_only_blk)
2147 av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param);
2148 else
2149 av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean);
2150
2151 skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd(
2152 x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt,
2153 qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk);
2154
2155 av1_quant(x, plane, block, &txfm_param, &quant_param);
2156
2157 // Calculate rate cost of quantized coefficients.
2158 if (quant_param.use_optimize_b) {
2159 // TODO(aomedia:3209): update Trellis quantization to take into account
2160 // quantization matrices.
2161 av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
2162 &rate_cost);
2163 } else {
2164 rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx,
2165 cm->features.reduced_tx_set_used);
2166 }
2167
2168 // If rd cost based on coeff rate alone is already more than best_rd,
2169 // terminate early.
2170 if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue;
2171
2172 // Calculate distortion.
2173 if (eobs_ptr[block] == 0) {
2174 // When eob is 0, pixel domain distortion is more efficient and accurate.
2175 this_rd_stats.dist = this_rd_stats.sse = block_sse;
2176 } else if (dc_only_blk) {
2177 this_rd_stats.sse = block_sse;
2178 this_rd_stats.dist = dist_block_px_domain(
2179 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2180 } else if (use_transform_domain_distortion) {
2181 const SCAN_ORDER *const scan_order =
2182 get_scan(txfm_param.tx_size, txfm_param.tx_type);
2183 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2184 scan_order->scan, &this_rd_stats.dist,
2185 &this_rd_stats.sse);
2186 } else {
2187 int64_t sse_diff = INT64_MAX;
2188 // high_energy threshold assumes that every pixel within a txfm block
2189 // has a residue energy of at least 25% of the maximum, i.e. 128 * 128
2190 // for 8 bit.
2191 const int64_t high_energy_thresh =
2192 ((int64_t)128 * 128 * tx_size_2d[tx_size]);
2193 const int is_high_energy = (block_sse >= high_energy_thresh);
2194 if (tx_size == TX_64X64 || is_high_energy) {
2195 // Because 3 out 4 quadrants of transform coefficients are forced to
2196 // zero, the inverse transform has a tendency to overflow. sse_diff
2197 // is effectively the energy of those 3 quadrants, here we use it
2198 // to decide if we should do pixel domain distortion. If the energy
2199 // is mostly in first quadrant, then it is unlikely that we have
2200 // overflow issue in inverse transform.
2201 const SCAN_ORDER *const scan_order =
2202 get_scan(txfm_param.tx_size, txfm_param.tx_type);
2203 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2204 scan_order->scan, &this_rd_stats.dist,
2205 &this_rd_stats.sse);
2206 sse_diff = block_sse - this_rd_stats.sse;
2207 }
2208 if (tx_size != TX_64X64 || !is_high_energy ||
2209 (sse_diff * 2) < this_rd_stats.sse) {
2210 const int64_t tx_domain_dist = this_rd_stats.dist;
2211 this_rd_stats.dist = dist_block_px_domain(
2212 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2213 // For high energy blocks, occasionally, the pixel domain distortion
2214 // can be artificially low due to clamping at reconstruction stage
2215 // even when inverse transform output is hugely different from the
2216 // actual residue.
2217 if (is_high_energy && this_rd_stats.dist < tx_domain_dist)
2218 this_rd_stats.dist = tx_domain_dist;
2219 } else {
2220 assert(sse_diff < INT64_MAX);
2221 this_rd_stats.dist += sse_diff;
2222 }
2223 this_rd_stats.sse = block_sse;
2224 }
2225
2226 this_rd_stats.rate = rate_cost;
2227
2228 const int64_t rd =
2229 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
2230
2231 if (rd < best_rd) {
2232 best_rd = rd;
2233 *best_rd_stats = this_rd_stats;
2234 best_tx_type = tx_type;
2235 best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
2236 best_eob = x->plane[plane].eobs[block];
2237 // Swap dqcoeff buffers
2238 tran_low_t *const tmp_dqcoeff = best_dqcoeff;
2239 best_dqcoeff = p->dqcoeff;
2240 p->dqcoeff = tmp_dqcoeff;
2241 }
2242
2243 #if CONFIG_COLLECT_RD_STATS == 1
2244 if (plane == 0) {
2245 PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
2246 plane_bsize, tx_size, tx_type, rd);
2247 }
2248 #endif // CONFIG_COLLECT_RD_STATS == 1
2249
2250 #if COLLECT_TX_SIZE_DATA
2251 // Generate small sample to restrict output size.
2252 static unsigned int seed = 21743;
2253 if (lcg_rand16(&seed) % 200 == 0) {
2254 FILE *fp = NULL;
2255
2256 if (within_border) {
2257 fp = fopen(av1_tx_size_data_output_file, "a");
2258 }
2259
2260 if (fp) {
2261 // Transform info and RD
2262 const int txb_w = tx_size_wide[tx_size];
2263 const int txb_h = tx_size_high[tx_size];
2264
2265 // Residue signal.
2266 const int diff_stride = block_size_wide[plane_bsize];
2267 struct macroblock_plane *const p = &x->plane[plane];
2268 const int16_t *src_diff =
2269 &p->src_diff[(blk_row * diff_stride + blk_col) * 4];
2270
2271 for (int r = 0; r < txb_h; ++r) {
2272 for (int c = 0; c < txb_w; ++c) {
2273 fprintf(fp, "%d,", src_diff[c]);
2274 }
2275 src_diff += diff_stride;
2276 }
2277
2278 fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd);
2279 fprintf(fp, "\n");
2280 fclose(fp);
2281 }
2282 }
2283 #endif // COLLECT_TX_SIZE_DATA
2284
2285 // If the current best RD cost is much worse than the reference RD cost,
2286 // terminate early.
2287 if (cpi->sf.tx_sf.adaptive_txb_search_level) {
2288 if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) >
2289 ref_best_rd) {
2290 break;
2291 }
2292 }
2293
2294 // Terminate transform type search if the block has been quantized to
2295 // all zero.
2296 if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break;
2297 }
2298
2299 assert(best_rd != INT64_MAX);
2300
2301 best_rd_stats->skip_txfm = best_eob == 0;
2302 if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type);
2303 x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
2304 x->plane[plane].eobs[block] = best_eob;
2305 skip_trellis = skip_trellis_based_on_satd[best_tx_type];
2306
2307 // Point dqcoeff to the quantized coefficients corresponding to the best
2308 // transform type, then we can skip transform and quantization, e.g. in the
2309 // final pixel domain distortion calculation and recon_intra().
2310 p->dqcoeff = best_dqcoeff;
2311
2312 if (calc_pixel_domain_distortion_final && best_eob) {
2313 best_rd_stats->dist = dist_block_px_domain(
2314 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2315 best_rd_stats->sse = block_sse;
2316 }
2317
2318 // Intra mode needs decoded pixels such that the next transform block
2319 // can use them for prediction.
2320 recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
2321 txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob);
2322 p->dqcoeff = orig_dqcoeff;
2323 }
2324
2325 // Pick transform type for a luma transform block of tx_size. Note this function
2326 // is used only for inter-predicted blocks.
tx_type_rd(const AV1_COMP * cpi,MACROBLOCK * x,TX_SIZE tx_size,int blk_row,int blk_col,int block,int plane_bsize,TXB_CTX * txb_ctx,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_rdcost)2327 static inline void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x,
2328 TX_SIZE tx_size, int blk_row, int blk_col,
2329 int block, int plane_bsize, TXB_CTX *txb_ctx,
2330 RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode,
2331 int64_t ref_rdcost) {
2332 assert(is_inter_block(x->e_mbd.mi[0]));
2333 RD_STATS this_rd_stats;
2334 const int skip_trellis = 0;
2335 search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size,
2336 txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats);
2337
2338 av1_merge_rd_stats(rd_stats, &this_rd_stats);
2339 }
2340
try_tx_block_no_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,const ENTROPY_CONTEXT * ta,const ENTROPY_CONTEXT * tl,int txfm_partition_ctx,RD_STATS * rd_stats,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,TxCandidateInfo * no_split)2341 static inline void try_tx_block_no_split(
2342 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2343 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
2344 const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
2345 int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
2346 FAST_TX_SEARCH_MODE ftxs_mode, TxCandidateInfo *no_split) {
2347 MACROBLOCKD *const xd = &x->e_mbd;
2348 MB_MODE_INFO *const mbmi = xd->mi[0];
2349 struct macroblock_plane *const p = &x->plane[0];
2350 const int bw = mi_size_wide[plane_bsize];
2351 const ENTROPY_CONTEXT *const pta = ta + blk_col;
2352 const ENTROPY_CONTEXT *const ptl = tl + blk_row;
2353 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
2354 TXB_CTX txb_ctx;
2355 get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
2356 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
2357 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
2358 rd_stats->zero_rate = zero_blk_rate;
2359 const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
2360 mbmi->inter_tx_size[index] = tx_size;
2361 tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
2362 rd_stats, ftxs_mode, ref_best_rd);
2363 assert(rd_stats->rate < INT_MAX);
2364
2365 const int pick_skip_txfm =
2366 !xd->lossless[mbmi->segment_id] &&
2367 (rd_stats->skip_txfm == 1 ||
2368 RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
2369 RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse));
2370 if (pick_skip_txfm) {
2371 #if CONFIG_RD_DEBUG
2372 update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate);
2373 #endif // CONFIG_RD_DEBUG
2374 rd_stats->rate = zero_blk_rate;
2375 rd_stats->dist = rd_stats->sse;
2376 p->eobs[block] = 0;
2377 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
2378 }
2379 rd_stats->skip_txfm = pick_skip_txfm;
2380 set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2381 pick_skip_txfm);
2382
2383 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
2384 rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0];
2385
2386 no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
2387 no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
2388 no_split->tx_type =
2389 xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
2390 }
2391
try_tx_block_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int txfm_partition_ctx,int64_t no_split_rd,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,RD_STATS * split_rd_stats)2392 static inline void try_tx_block_split(
2393 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2394 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2395 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2396 int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
2397 FAST_TX_SEARCH_MODE ftxs_mode, RD_STATS *split_rd_stats) {
2398 assert(tx_size < TX_SIZES_ALL);
2399 MACROBLOCKD *const xd = &x->e_mbd;
2400 const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
2401 const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
2402 const int txb_width = tx_size_wide_unit[tx_size];
2403 const int txb_height = tx_size_high_unit[tx_size];
2404 // Transform size after splitting current block.
2405 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
2406 const int sub_txb_width = tx_size_wide_unit[sub_txs];
2407 const int sub_txb_height = tx_size_high_unit[sub_txs];
2408 const int sub_step = sub_txb_width * sub_txb_height;
2409 const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width);
2410 assert(nblks > 0);
2411 av1_init_rd_stats(split_rd_stats);
2412 split_rd_stats->rate =
2413 x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1];
2414
2415 for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) {
2416 const int offsetr = blk_row + r;
2417 if (offsetr >= max_blocks_high) break;
2418 for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) {
2419 assert(blk_idx < 4);
2420 const int offsetc = blk_col + c;
2421 if (offsetc >= max_blocks_wide) continue;
2422
2423 RD_STATS this_rd_stats;
2424 int this_cost_valid = 1;
2425 select_tx_block(cpi, x, offsetr, offsetc, block, sub_txs, depth + 1,
2426 plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats,
2427 no_split_rd / nblks, ref_best_rd - split_rd_stats->rdcost,
2428 &this_cost_valid, ftxs_mode);
2429 if (!this_cost_valid) {
2430 split_rd_stats->rdcost = INT64_MAX;
2431 return;
2432 }
2433 av1_merge_rd_stats(split_rd_stats, &this_rd_stats);
2434 split_rd_stats->rdcost =
2435 RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
2436 if (split_rd_stats->rdcost > ref_best_rd) {
2437 split_rd_stats->rdcost = INT64_MAX;
2438 return;
2439 }
2440 block += sub_step;
2441 }
2442 }
2443 }
2444
get_var(float mean,double x2_sum,int num)2445 static float get_var(float mean, double x2_sum, int num) {
2446 const float e_x2 = (float)(x2_sum / num);
2447 const float diff = e_x2 - mean * mean;
2448 return diff;
2449 }
2450
get_blk_var_dev(const int16_t * data,int stride,int bw,int bh,float * dev_of_mean,float * var_of_vars)2451 static inline void get_blk_var_dev(const int16_t *data, int stride, int bw,
2452 int bh, float *dev_of_mean,
2453 float *var_of_vars) {
2454 const int16_t *const data_ptr = &data[0];
2455 const int subh = (bh >= bw) ? (bh >> 1) : bh;
2456 const int subw = (bw >= bh) ? (bw >> 1) : bw;
2457 const int num = bw * bh;
2458 const int sub_num = subw * subh;
2459 int total_x_sum = 0;
2460 int64_t total_x2_sum = 0;
2461 int blk_idx = 0;
2462 float var_sum = 0.0f;
2463 float mean_sum = 0.0f;
2464 double var2_sum = 0.0f;
2465 double mean2_sum = 0.0f;
2466
2467 for (int row = 0; row < bh; row += subh) {
2468 for (int col = 0; col < bw; col += subw) {
2469 int x_sum;
2470 int64_t x2_sum;
2471 aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
2472 &x_sum, &x2_sum);
2473 total_x_sum += x_sum;
2474 total_x2_sum += x2_sum;
2475
2476 const float mean = (float)x_sum / sub_num;
2477 const float var = get_var(mean, (double)x2_sum, sub_num);
2478 mean_sum += mean;
2479 mean2_sum += (double)(mean * mean);
2480 var_sum += var;
2481 var2_sum += var * var;
2482 blk_idx++;
2483 }
2484 }
2485
2486 const float lvl0_mean = (float)total_x_sum / num;
2487 const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num);
2488 mean_sum += lvl0_mean;
2489 mean2_sum += (double)(lvl0_mean * lvl0_mean);
2490 var_sum += block_var;
2491 var2_sum += block_var * block_var;
2492 const float av_mean = mean_sum / 5;
2493
2494 if (blk_idx > 1) {
2495 // Deviation of means.
2496 *dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1));
2497 // Variance of variances.
2498 const float mean_var = var_sum / (blk_idx + 1);
2499 *var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1));
2500 }
2501 }
2502
prune_tx_split_no_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size,int * try_no_split,int * try_split,int pruning_level)2503 static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize,
2504 int blk_row, int blk_col, TX_SIZE tx_size,
2505 int *try_no_split, int *try_split,
2506 int pruning_level) {
2507 const int diff_stride = block_size_wide[bsize];
2508 const int16_t *diff =
2509 x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
2510 const int bw = tx_size_wide[tx_size];
2511 const int bh = tx_size_high[tx_size];
2512 float dev_of_means = 0.0f;
2513 float var_of_vars = 0.0f;
2514
2515 // This function calculates the deviation of means, and the variance of pixel
2516 // variances of the block as well as it's sub-blocks.
2517 get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars);
2518 const int dc_q = x->plane[0].dequant_QTX[0] >> 3;
2519 const int ac_q = x->plane[0].dequant_QTX[1] >> 3;
2520 const int no_split_thresh_scales[4] = { 0, 24, 8, 8 };
2521 const int no_split_thresh_scale = no_split_thresh_scales[pruning_level];
2522 const int split_thresh_scales[4] = { 0, 24, 10, 8 };
2523 const int split_thresh_scale = split_thresh_scales[pruning_level];
2524
2525 if ((dev_of_means <= dc_q) &&
2526 (split_thresh_scale * var_of_vars <= ac_q * ac_q)) {
2527 *try_split = 0;
2528 }
2529 if ((dev_of_means > no_split_thresh_scale * dc_q) &&
2530 (var_of_vars > no_split_thresh_scale * ac_q * ac_q)) {
2531 *try_no_split = 0;
2532 }
2533 }
2534
2535 // Search for the best transform partition(recursive)/type for a given
2536 // inter-predicted luma block. The obtained transform selection will be saved
2537 // in xd->mi[0], the corresponding RD stats will be saved in rd_stats.
select_tx_block(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,RD_STATS * rd_stats,int64_t prev_level_rd,int64_t ref_best_rd,int * is_cost_valid,FAST_TX_SEARCH_MODE ftxs_mode)2538 static inline void select_tx_block(
2539 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2540 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2541 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2542 RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
2543 int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode) {
2544 assert(tx_size < TX_SIZES_ALL);
2545 av1_init_rd_stats(rd_stats);
2546 if (ref_best_rd < 0) {
2547 *is_cost_valid = 0;
2548 return;
2549 }
2550
2551 MACROBLOCKD *const xd = &x->e_mbd;
2552 assert(blk_row < max_block_high(xd, plane_bsize, 0) &&
2553 blk_col < max_block_wide(xd, plane_bsize, 0));
2554 MB_MODE_INFO *const mbmi = xd->mi[0];
2555 const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
2556 mbmi->bsize, tx_size);
2557 struct macroblock_plane *const p = &x->plane[0];
2558
2559 int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 ||
2560 txsize_sqr_up_map[tx_size] != TX_64X64) &&
2561 (cpi->oxcf.txfm_cfg.enable_rect_tx ||
2562 tx_size_wide[tx_size] == tx_size_high[tx_size]);
2563 int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;
2564 TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };
2565
2566 // Prune tx_split and no-split based on sub-block properties.
2567 if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 &&
2568 cpi->sf.tx_sf.prune_tx_size_level > 0) {
2569 prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size,
2570 &try_no_split, &try_split,
2571 cpi->sf.tx_sf.prune_tx_size_level);
2572 }
2573
2574 if (cpi->sf.rt_sf.skip_tx_no_split_var_based_partition) {
2575 if (x->try_merge_partition && try_split && p->eobs[block]) try_no_split = 0;
2576 }
2577
2578 // Try using current block as a single transform block without split.
2579 if (try_no_split) {
2580 try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2581 plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
2582 ftxs_mode, &no_split);
2583
2584 // Speed features for early termination.
2585 const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level;
2586 if (search_level) {
2587 if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) {
2588 *is_cost_valid = 0;
2589 return;
2590 }
2591 if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) {
2592 try_split = 0;
2593 }
2594 }
2595 if (cpi->sf.tx_sf.txb_split_cap) {
2596 if (p->eobs[block] == 0) try_split = 0;
2597 }
2598 }
2599
2600 // ML based speed feature to skip searching for split transform blocks.
2601 if (x->e_mbd.bd == 8 && try_split &&
2602 !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) {
2603 const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh;
2604 if (threshold >= 0) {
2605 const int split_score =
2606 ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
2607 if (split_score < -threshold) try_split = 0;
2608 }
2609 }
2610
2611 RD_STATS split_rd_stats;
2612 split_rd_stats.rdcost = INT64_MAX;
2613 // Try splitting current block into smaller transform blocks.
2614 if (try_split) {
2615 try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2616 plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
2617 AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
2618 &split_rd_stats);
2619 }
2620
2621 if (no_split.rd < split_rd_stats.rdcost) {
2622 ENTROPY_CONTEXT *pta = ta + blk_col;
2623 ENTROPY_CONTEXT *ptl = tl + blk_row;
2624 p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
2625 av1_set_txb_context(x, 0, block, tx_size, pta, ptl);
2626 txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
2627 tx_size);
2628 for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
2629 for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
2630 const int index =
2631 av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
2632 mbmi->inter_tx_size[index] = tx_size;
2633 }
2634 }
2635 mbmi->tx_size = tx_size;
2636 update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type);
2637 const int bw = mi_size_wide[plane_bsize];
2638 set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2639 rd_stats->skip_txfm);
2640 } else {
2641 *rd_stats = split_rd_stats;
2642 if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0;
2643 }
2644 }
2645
choose_largest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2646 static inline void choose_largest_tx_size(const AV1_COMP *const cpi,
2647 MACROBLOCK *x, RD_STATS *rd_stats,
2648 int64_t ref_best_rd, BLOCK_SIZE bs) {
2649 MACROBLOCKD *const xd = &x->e_mbd;
2650 MB_MODE_INFO *const mbmi = xd->mi[0];
2651 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2652 mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2653
2654 // If tx64 is not enabled, we need to go down to the next available size
2655 if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) {
2656 static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = {
2657 TX_4X4, // 4x4 transform
2658 TX_8X8, // 8x8 transform
2659 TX_16X16, // 16x16 transform
2660 TX_32X32, // 32x32 transform
2661 TX_32X32, // 64x64 transform
2662 TX_4X8, // 4x8 transform
2663 TX_8X4, // 8x4 transform
2664 TX_8X16, // 8x16 transform
2665 TX_16X8, // 16x8 transform
2666 TX_16X32, // 16x32 transform
2667 TX_32X16, // 32x16 transform
2668 TX_32X32, // 32x64 transform
2669 TX_32X32, // 64x32 transform
2670 TX_4X16, // 4x16 transform
2671 TX_16X4, // 16x4 transform
2672 TX_8X32, // 8x32 transform
2673 TX_32X8, // 32x8 transform
2674 TX_16X32, // 16x64 transform
2675 TX_32X16, // 64x16 transform
2676 };
2677 mbmi->tx_size = tx_size_max_32[mbmi->tx_size];
2678 } else if (cpi->oxcf.txfm_cfg.enable_tx64 &&
2679 !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2680 static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = {
2681 TX_4X4, // 4x4 transform
2682 TX_8X8, // 8x8 transform
2683 TX_16X16, // 16x16 transform
2684 TX_32X32, // 32x32 transform
2685 TX_64X64, // 64x64 transform
2686 TX_4X4, // 4x8 transform
2687 TX_4X4, // 8x4 transform
2688 TX_8X8, // 8x16 transform
2689 TX_8X8, // 16x8 transform
2690 TX_16X16, // 16x32 transform
2691 TX_16X16, // 32x16 transform
2692 TX_32X32, // 32x64 transform
2693 TX_32X32, // 64x32 transform
2694 TX_4X4, // 4x16 transform
2695 TX_4X4, // 16x4 transform
2696 TX_8X8, // 8x32 transform
2697 TX_8X8, // 32x8 transform
2698 TX_16X16, // 16x64 transform
2699 TX_16X16, // 64x16 transform
2700 };
2701 mbmi->tx_size = tx_size_max_square[mbmi->tx_size];
2702 } else if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
2703 !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2704 static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = {
2705 TX_4X4, // 4x4 transform
2706 TX_8X8, // 8x8 transform
2707 TX_16X16, // 16x16 transform
2708 TX_32X32, // 32x32 transform
2709 TX_32X32, // 64x64 transform
2710 TX_4X4, // 4x8 transform
2711 TX_4X4, // 8x4 transform
2712 TX_8X8, // 8x16 transform
2713 TX_8X8, // 16x8 transform
2714 TX_16X16, // 16x32 transform
2715 TX_16X16, // 32x16 transform
2716 TX_32X32, // 32x64 transform
2717 TX_32X32, // 64x32 transform
2718 TX_4X4, // 4x16 transform
2719 TX_4X4, // 16x4 transform
2720 TX_8X8, // 8x32 transform
2721 TX_8X8, // 32x8 transform
2722 TX_16X16, // 16x64 transform
2723 TX_16X16, // 64x16 transform
2724 };
2725
2726 mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size];
2727 }
2728
2729 const int skip_ctx = av1_get_skip_txfm_context(xd);
2730 const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
2731 const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
2732 // Skip RDcost is used only for Inter blocks
2733 const int64_t skip_txfm_rd =
2734 is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
2735 const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0);
2736 const int skip_trellis = 0;
2737 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
2738 AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
2739 mbmi->tx_size, FTXS_NONE, skip_trellis);
2740 }
2741
choose_smallest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2742 static inline void choose_smallest_tx_size(const AV1_COMP *const cpi,
2743 MACROBLOCK *x, RD_STATS *rd_stats,
2744 int64_t ref_best_rd, BLOCK_SIZE bs) {
2745 MACROBLOCKD *const xd = &x->e_mbd;
2746 MB_MODE_INFO *const mbmi = xd->mi[0];
2747
2748 mbmi->tx_size = TX_4X4;
2749 // TODO(any) : Pass this_rd based on skip/non-skip cost
2750 const int skip_trellis = 0;
2751 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size,
2752 FTXS_NONE, skip_trellis);
2753 }
2754
2755 #if !CONFIG_REALTIME_ONLY
ml_predict_intra_tx_depth_prune(MACROBLOCK * x,int blk_row,int blk_col,BLOCK_SIZE bsize,TX_SIZE tx_size)2756 static void ml_predict_intra_tx_depth_prune(MACROBLOCK *x, int blk_row,
2757 int blk_col, BLOCK_SIZE bsize,
2758 TX_SIZE tx_size) {
2759 const MACROBLOCKD *const xd = &x->e_mbd;
2760 const MB_MODE_INFO *const mbmi = xd->mi[0];
2761
2762 // Disable the pruning logic using NN model for the following cases:
2763 // 1) Lossless coding as only 4x4 transform is evaluated in this case
2764 // 2) When transform and current block sizes do not match as the features are
2765 // obtained over the current block
2766 // 3) When operating bit-depth is not 8-bit as the input features are not
2767 // scaled according to bit-depth.
2768 if (xd->lossless[mbmi->segment_id] || txsize_to_bsize[tx_size] != bsize ||
2769 xd->bd != 8)
2770 return;
2771
2772 // Currently NN model based pruning is supported only when largest transform
2773 // size is 8x8
2774 if (tx_size != TX_8X8) return;
2775
2776 // Neural network model is a sequential neural net and was trained using SGD
2777 // optimizer. The model can be further improved in terms of speed/quality by
2778 // considering the following experiments:
2779 // 1) Generate ML model by training with balanced data for different learning
2780 // rates and optimizers.
2781 // 2) Experiment with ML model by adding features related to the statistics of
2782 // top and left pixels to capture the accuracy of reconstructed neighbouring
2783 // pixels for 4x4 blocks numbered 1, 2, 3 in 8x8 block, source variance of 4x4
2784 // sub-blocks, etc.
2785 // 3) Generate ML models for transform blocks other than 8x8.
2786 const NN_CONFIG *const nn_config = &av1_intra_tx_split_nnconfig_8x8;
2787 const float *const intra_tx_prune_thresh = av1_intra_tx_prune_nn_thresh_8x8;
2788
2789 float features[NUM_INTRA_TX_SPLIT_FEATURES] = { 0.0f };
2790 const int diff_stride = block_size_wide[bsize];
2791
2792 const int16_t *diff = x->plane[0].src_diff + MI_SIZE * blk_row * diff_stride +
2793 MI_SIZE * blk_col;
2794 const int bw = tx_size_wide[tx_size];
2795 const int bh = tx_size_high[tx_size];
2796
2797 int feature_idx = get_mean_dev_features(diff, diff_stride, bw, bh, features);
2798
2799 features[feature_idx++] = log1pf((float)x->source_variance);
2800
2801 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
2802 const float log_dc_q_square = log1pf((float)(dc_q * dc_q) / 256.0f);
2803 features[feature_idx++] = log_dc_q_square;
2804 assert(feature_idx == NUM_INTRA_TX_SPLIT_FEATURES);
2805 for (int i = 0; i < NUM_INTRA_TX_SPLIT_FEATURES; i++) {
2806 features[i] = (features[i] - av1_intra_tx_split_8x8_mean[i]) /
2807 av1_intra_tx_split_8x8_std[i];
2808 }
2809
2810 float score;
2811 av1_nn_predict(features, nn_config, 1, &score);
2812
2813 TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2814 if (score <= intra_tx_prune_thresh[0])
2815 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_SPLIT;
2816 else if (score > intra_tx_prune_thresh[1])
2817 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_LARGEST;
2818 }
2819 #endif // !CONFIG_REALTIME_ONLY
2820
2821 /*!\brief Transform type search for luma macroblock with fixed transform size.
2822 *
2823 * \ingroup transform_search
2824 * Search for the best transform type and return the transform coefficients RD
2825 * cost of current luma macroblock with the given uniform transform size.
2826 *
2827 * \param[in] x Pointer to structure holding the data for the
2828 current encoding macroblock
2829 * \param[in] cpi Top-level encoder structure
2830 * \param[in] rd_stats Pointer to struct to keep track of the RD stats
2831 * \param[in] ref_best_rd Best RD cost seen for this block so far
2832 * \param[in] bs Size of the current macroblock
2833 * \param[in] tx_size The given transform size
2834 * \param[in] ftxs_mode Transform search mode specifying desired speed
2835 and quality tradeoff
2836 * \param[in] skip_trellis Binary flag indicating if trellis optimization
2837 should be skipped
2838 * \return An int64_t value that is the best RD cost found.
2839 */
uniform_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)2840 static int64_t uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
2841 RD_STATS *rd_stats, int64_t ref_best_rd,
2842 BLOCK_SIZE bs, TX_SIZE tx_size,
2843 FAST_TX_SEARCH_MODE ftxs_mode,
2844 int skip_trellis) {
2845 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
2846 MACROBLOCKD *const xd = &x->e_mbd;
2847 MB_MODE_INFO *const mbmi = xd->mi[0];
2848 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2849 const ModeCosts *mode_costs = &x->mode_costs;
2850 const int is_inter = is_inter_block(mbmi);
2851 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
2852 block_signals_txsize(mbmi->bsize);
2853 int tx_size_rate = 0;
2854 if (tx_select) {
2855 const int ctx = txfm_partition_context(
2856 xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
2857 tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0]
2858 : tx_size_cost(x, bs, tx_size);
2859 }
2860 const int skip_ctx = av1_get_skip_txfm_context(xd);
2861 const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
2862 const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
2863 const int64_t skip_txfm_rd =
2864 is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
2865 const int64_t no_this_rd =
2866 RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
2867
2868 mbmi->tx_size = tx_size;
2869 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
2870 AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
2871 tx_size, ftxs_mode, skip_trellis);
2872 if (rd_stats->rate == INT_MAX) return INT64_MAX;
2873
2874 int64_t rd;
2875 // rdstats->rate should include all the rate except skip/non-skip cost as the
2876 // same is accounted in the caller functions after rd evaluation of all
2877 // planes. However the decisions should be done after considering the
2878 // skip/non-skip header cost
2879 if (rd_stats->skip_txfm && is_inter) {
2880 rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
2881 } else {
2882 // Intra blocks are always signalled as non-skip
2883 rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
2884 rd_stats->dist);
2885 rd_stats->rate += tx_size_rate;
2886 }
2887 // Check if forcing the block to skip transform leads to smaller RD cost.
2888 if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
2889 int64_t temp_skip_txfm_rd =
2890 RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
2891 if (temp_skip_txfm_rd <= rd) {
2892 rd = temp_skip_txfm_rd;
2893 rd_stats->rate = 0;
2894 rd_stats->dist = rd_stats->sse;
2895 rd_stats->skip_txfm = 1;
2896 }
2897 }
2898
2899 return rd;
2900 }
2901
2902 // Search for the best uniform transform size and type for current coding block.
choose_tx_size_type_from_rd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2903 static inline void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
2904 MACROBLOCK *x,
2905 RD_STATS *rd_stats,
2906 int64_t ref_best_rd,
2907 BLOCK_SIZE bs) {
2908 av1_invalid_rd_stats(rd_stats);
2909
2910 MACROBLOCKD *const xd = &x->e_mbd;
2911 MB_MODE_INFO *const mbmi = xd->mi[0];
2912 TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2913 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
2914 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT;
2915 int start_tx;
2916 // The split depth can be at most MAX_TX_DEPTH, so the init_depth controls
2917 // how many times of splitting is allowed during the RD search.
2918 int init_depth;
2919
2920 if (tx_select) {
2921 start_tx = max_rect_tx_size;
2922 init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
2923 is_inter_block(mbmi), &cpi->sf,
2924 txfm_params->tx_size_search_method);
2925 if (init_depth == MAX_TX_DEPTH && !cpi->oxcf.txfm_cfg.enable_tx64 &&
2926 txsize_sqr_up_map[start_tx] == TX_64X64) {
2927 start_tx = sub_tx_size_map[start_tx];
2928 }
2929 } else {
2930 const TX_SIZE chosen_tx_size =
2931 tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2932 start_tx = chosen_tx_size;
2933 init_depth = MAX_TX_DEPTH;
2934 }
2935
2936 const int skip_trellis = 0;
2937 uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
2938 uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
2939 TX_SIZE best_tx_size = max_rect_tx_size;
2940 int64_t best_rd = INT64_MAX;
2941 const int num_blks = bsize_to_num_blk(bs);
2942 x->rd_model = FULL_TXFM_RD;
2943 int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX };
2944 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2945 for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH;
2946 depth++, tx_size = sub_tx_size_map[tx_size]) {
2947 if ((!cpi->oxcf.txfm_cfg.enable_tx64 &&
2948 txsize_sqr_up_map[tx_size] == TX_64X64) ||
2949 (!cpi->oxcf.txfm_cfg.enable_rect_tx &&
2950 tx_size_wide[tx_size] != tx_size_high[tx_size])) {
2951 continue;
2952 }
2953
2954 #if !CONFIG_REALTIME_ONLY
2955 if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_SPLIT) break;
2956
2957 // Set the flag to enable the evaluation of NN classifier to prune transform
2958 // depths. As the features are based on intra residual information of
2959 // largest transform, the evaluation of NN model is enabled only for this
2960 // case.
2961 txfm_params->enable_nn_prune_intra_tx_depths =
2962 (cpi->sf.tx_sf.prune_intra_tx_depths_using_nn && tx_size == start_tx);
2963 #endif
2964
2965 RD_STATS this_rd_stats;
2966 // When the speed feature use_rd_based_breakout_for_intra_tx_search is
2967 // enabled, use the known minimum best_rd for early termination.
2968 const int64_t rd_thresh =
2969 cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search
2970 ? AOMMIN(ref_best_rd, best_rd)
2971 : ref_best_rd;
2972 rd[depth] = uniform_txfm_yrd(cpi, x, &this_rd_stats, rd_thresh, bs, tx_size,
2973 FTXS_NONE, skip_trellis);
2974 if (rd[depth] < best_rd) {
2975 av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks);
2976 av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks);
2977 best_tx_size = tx_size;
2978 best_rd = rd[depth];
2979 *rd_stats = this_rd_stats;
2980 }
2981 if (tx_size == TX_4X4) break;
2982 // If we are searching three depths, prune the smallest size depending
2983 // on rd results for the first two depths for low contrast blocks.
2984 if (depth > init_depth && depth != MAX_TX_DEPTH &&
2985 x->source_variance < 256) {
2986 if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break;
2987 }
2988 }
2989
2990 if (rd_stats->rate != INT_MAX) {
2991 mbmi->tx_size = best_tx_size;
2992 av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks);
2993 av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks);
2994 }
2995
2996 #if !CONFIG_REALTIME_ONLY
2997 // Reset the flags to avoid any unintentional evaluation of NN model and
2998 // consumption of prune depths.
2999 txfm_params->enable_nn_prune_intra_tx_depths = false;
3000 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_NONE;
3001 #endif
3002 }
3003
3004 // Search for the best transform type for the given transform block in the
3005 // given plane/channel, and calculate the corresponding RD cost.
block_rd_txfm(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)3006 static inline void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
3007 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
3008 void *arg) {
3009 struct rdcost_block_args *args = arg;
3010 if (args->exit_early) {
3011 args->incomplete_exit = 1;
3012 return;
3013 }
3014
3015 MACROBLOCK *const x = args->x;
3016 MACROBLOCKD *const xd = &x->e_mbd;
3017 const int is_inter = is_inter_block(xd->mi[0]);
3018 const AV1_COMP *cpi = args->cpi;
3019 ENTROPY_CONTEXT *a = args->t_above + blk_col;
3020 ENTROPY_CONTEXT *l = args->t_left + blk_row;
3021 const AV1_COMMON *cm = &cpi->common;
3022 RD_STATS this_rd_stats;
3023 av1_init_rd_stats(&this_rd_stats);
3024
3025 if (!is_inter) {
3026 av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
3027 av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
3028 #if !CONFIG_REALTIME_ONLY
3029 const TxfmSearchParams *const txfm_params = &x->txfm_search_params;
3030 if (txfm_params->enable_nn_prune_intra_tx_depths) {
3031 ml_predict_intra_tx_depth_prune(x, blk_row, blk_col, plane_bsize,
3032 tx_size);
3033 if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_LARGEST) {
3034 av1_invalid_rd_stats(&args->rd_stats);
3035 args->exit_early = 1;
3036 return;
3037 }
3038 }
3039 #endif
3040 }
3041
3042 TXB_CTX txb_ctx;
3043 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
3044 search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
3045 &txb_ctx, args->ftxs_mode, args->skip_trellis,
3046 args->best_rd - args->current_rd, &this_rd_stats);
3047
3048 #if !CONFIG_REALTIME_ONLY
3049 if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
3050 assert(!is_inter || plane_bsize < BLOCK_8X8);
3051 cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
3052 }
3053 #endif
3054
3055 #if CONFIG_RD_DEBUG
3056 update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate);
3057 #endif // CONFIG_RD_DEBUG
3058 av1_set_txb_context(x, plane, block, tx_size, a, l);
3059
3060 const int blk_idx =
3061 blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col;
3062
3063 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
3064 if (plane == 0)
3065 set_blk_skip(txfm_info->blk_skip, plane, blk_idx,
3066 x->plane[plane].eobs[block] == 0);
3067 else
3068 set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0);
3069
3070 int64_t rd;
3071 if (is_inter) {
3072 const int64_t no_skip_txfm_rd =
3073 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3074 const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
3075 rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd);
3076 this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block];
3077 } else {
3078 // Signal non-skip_txfm for Intra blocks
3079 rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3080 this_rd_stats.skip_txfm = 0;
3081 }
3082
3083 av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
3084
3085 args->current_rd += rd;
3086 if (args->current_rd > args->best_rd) args->exit_early = 1;
3087 }
3088
av1_estimate_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size)3089 int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3090 RD_STATS *rd_stats, int64_t ref_best_rd,
3091 BLOCK_SIZE bs, TX_SIZE tx_size) {
3092 MACROBLOCKD *const xd = &x->e_mbd;
3093 MB_MODE_INFO *const mbmi = xd->mi[0];
3094 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3095 const ModeCosts *mode_costs = &x->mode_costs;
3096 const int is_inter = is_inter_block(mbmi);
3097 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3098 block_signals_txsize(mbmi->bsize);
3099 int tx_size_rate = 0;
3100 if (tx_select) {
3101 const int ctx = txfm_partition_context(
3102 xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
3103 tx_size_rate = mode_costs->txfm_partition_cost[ctx][0];
3104 }
3105 const int skip_ctx = av1_get_skip_txfm_context(xd);
3106 const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
3107 const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
3108 const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0);
3109 const int64_t no_this_rd =
3110 RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
3111 mbmi->tx_size = tx_size;
3112
3113 const uint8_t txw_unit = tx_size_wide_unit[tx_size];
3114 const uint8_t txh_unit = tx_size_high_unit[tx_size];
3115 const int step = txw_unit * txh_unit;
3116 const int max_blocks_wide = max_block_wide(xd, bs, 0);
3117 const int max_blocks_high = max_block_high(xd, bs, 0);
3118
3119 struct rdcost_block_args args;
3120 av1_zero(args);
3121 args.x = x;
3122 args.cpi = cpi;
3123 args.best_rd = ref_best_rd;
3124 args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd);
3125 av1_init_rd_stats(&args.rd_stats);
3126 av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left);
3127 int i = 0;
3128 for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit;
3129 blk_row += txh_unit) {
3130 for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) {
3131 RD_STATS this_rd_stats;
3132 av1_init_rd_stats(&this_rd_stats);
3133
3134 if (args.exit_early) {
3135 args.incomplete_exit = 1;
3136 break;
3137 }
3138
3139 ENTROPY_CONTEXT *a = args.t_above + blk_col;
3140 ENTROPY_CONTEXT *l = args.t_left + blk_row;
3141 TXB_CTX txb_ctx;
3142 get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx);
3143
3144 TxfmParam txfm_param;
3145 QUANT_PARAM quant_param;
3146 av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param);
3147 av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param);
3148
3149 av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param);
3150 av1_quant(x, 0, i, &txfm_param, &quant_param);
3151
3152 this_rd_stats.rate =
3153 cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0);
3154
3155 const SCAN_ORDER *const scan_order =
3156 get_scan(txfm_param.tx_size, txfm_param.tx_type);
3157 dist_block_tx_domain(x, 0, i, tx_size, quant_param.qmatrix,
3158 scan_order->scan, &this_rd_stats.dist,
3159 &this_rd_stats.sse);
3160
3161 const int64_t no_skip_txfm_rd =
3162 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3163 const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
3164
3165 this_rd_stats.skip_txfm &= !x->plane[0].eobs[i];
3166
3167 av1_merge_rd_stats(&args.rd_stats, &this_rd_stats);
3168 args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd);
3169
3170 if (args.current_rd > ref_best_rd) {
3171 args.exit_early = 1;
3172 break;
3173 }
3174
3175 av1_set_txb_context(x, 0, i, tx_size, a, l);
3176 i += step;
3177 }
3178 }
3179
3180 if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats);
3181
3182 *rd_stats = args.rd_stats;
3183 if (rd_stats->rate == INT_MAX) return INT64_MAX;
3184
3185 int64_t rd;
3186 // rdstats->rate should include all the rate except skip/non-skip cost as the
3187 // same is accounted in the caller functions after rd evaluation of all
3188 // planes. However the decisions should be done after considering the
3189 // skip/non-skip header cost
3190 if (rd_stats->skip_txfm && is_inter) {
3191 rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3192 } else {
3193 // Intra blocks are always signalled as non-skip
3194 rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
3195 rd_stats->dist);
3196 rd_stats->rate += tx_size_rate;
3197 }
3198 // Check if forcing the block to skip transform leads to smaller RD cost.
3199 if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
3200 int64_t temp_skip_txfm_rd =
3201 RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3202 if (temp_skip_txfm_rd <= rd) {
3203 rd = temp_skip_txfm_rd;
3204 rd_stats->rate = 0;
3205 rd_stats->dist = rd_stats->sse;
3206 rd_stats->skip_txfm = 1;
3207 }
3208 }
3209
3210 return rd;
3211 }
3212
3213 // Search for the best transform type for a luma inter-predicted block, given
3214 // the transform block partitions.
3215 // This function is used only when some speed features are enabled.
tx_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,BLOCK_SIZE plane_bsize,int depth,ENTROPY_CONTEXT * above_ctx,ENTROPY_CONTEXT * left_ctx,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int64_t ref_best_rd,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode)3216 static inline void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
3217 int blk_col, int block, TX_SIZE tx_size,
3218 BLOCK_SIZE plane_bsize, int depth,
3219 ENTROPY_CONTEXT *above_ctx,
3220 ENTROPY_CONTEXT *left_ctx,
3221 TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
3222 int64_t ref_best_rd, RD_STATS *rd_stats,
3223 FAST_TX_SEARCH_MODE ftxs_mode) {
3224 assert(tx_size < TX_SIZES_ALL);
3225 MACROBLOCKD *const xd = &x->e_mbd;
3226 MB_MODE_INFO *const mbmi = xd->mi[0];
3227 assert(is_inter_block(mbmi));
3228 const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
3229 const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
3230
3231 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
3232
3233 const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
3234 plane_bsize, blk_row, blk_col)];
3235 const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
3236 mbmi->bsize, tx_size);
3237
3238 av1_init_rd_stats(rd_stats);
3239 if (tx_size == plane_tx_size) {
3240 ENTROPY_CONTEXT *ta = above_ctx + blk_col;
3241 ENTROPY_CONTEXT *tl = left_ctx + blk_row;
3242 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
3243 TXB_CTX txb_ctx;
3244 get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);
3245
3246 const int zero_blk_rate =
3247 x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)]
3248 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
3249 rd_stats->zero_rate = zero_blk_rate;
3250 tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
3251 rd_stats, ftxs_mode, ref_best_rd);
3252 const int mi_width = mi_size_wide[plane_bsize];
3253 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
3254 if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
3255 RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
3256 rd_stats->skip_txfm == 1) {
3257 rd_stats->rate = zero_blk_rate;
3258 rd_stats->dist = rd_stats->sse;
3259 rd_stats->skip_txfm = 1;
3260 set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1);
3261 x->plane[0].eobs[block] = 0;
3262 x->plane[0].txb_entropy_ctx[block] = 0;
3263 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
3264 } else {
3265 rd_stats->skip_txfm = 0;
3266 set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0);
3267 }
3268 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3269 rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0];
3270 av1_set_txb_context(x, 0, block, tx_size, ta, tl);
3271 txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
3272 tx_size);
3273 } else {
3274 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
3275 const int txb_width = tx_size_wide_unit[sub_txs];
3276 const int txb_height = tx_size_high_unit[sub_txs];
3277 const int step = txb_height * txb_width;
3278 const int row_end =
3279 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
3280 const int col_end =
3281 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
3282 RD_STATS pn_rd_stats;
3283 int64_t this_rd = 0;
3284 assert(txb_width > 0 && txb_height > 0);
3285
3286 for (int row = 0; row < row_end; row += txb_height) {
3287 const int offsetr = blk_row + row;
3288 for (int col = 0; col < col_end; col += txb_width) {
3289 const int offsetc = blk_col + col;
3290
3291 av1_init_rd_stats(&pn_rd_stats);
3292 tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
3293 depth + 1, above_ctx, left_ctx, tx_above, tx_left,
3294 ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
3295 if (pn_rd_stats.rate == INT_MAX) {
3296 av1_invalid_rd_stats(rd_stats);
3297 return;
3298 }
3299 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3300 this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
3301 block += step;
3302 }
3303 }
3304
3305 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3306 rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1];
3307 }
3308 }
3309
3310 // search for tx type with tx sizes already decided for a inter-predicted luma
3311 // partition block. It's used only when some speed features are enabled.
3312 // Return value 0: early termination triggered, no valid rd cost available;
3313 // 1: rd cost values are valid.
inter_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode)3314 static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3315 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3316 int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
3317 if (ref_best_rd < 0) {
3318 av1_invalid_rd_stats(rd_stats);
3319 return 0;
3320 }
3321
3322 av1_init_rd_stats(rd_stats);
3323
3324 MACROBLOCKD *const xd = &x->e_mbd;
3325 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3326 const struct macroblockd_plane *const pd = &xd->plane[0];
3327 const int mi_width = mi_size_wide[bsize];
3328 const int mi_height = mi_size_high[bsize];
3329 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
3330 const int bh = tx_size_high_unit[max_tx_size];
3331 const int bw = tx_size_wide_unit[max_tx_size];
3332 const int step = bw * bh;
3333 const int init_depth = get_search_init_depth(
3334 mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3335 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3336 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3337 TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3338 TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3339 av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3340 memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3341 memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3342
3343 int64_t this_rd = 0;
3344 for (int idy = 0, block = 0; idy < mi_height; idy += bh) {
3345 for (int idx = 0; idx < mi_width; idx += bw) {
3346 RD_STATS pn_rd_stats;
3347 av1_init_rd_stats(&pn_rd_stats);
3348 tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth,
3349 ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd,
3350 &pn_rd_stats, ftxs_mode);
3351 if (pn_rd_stats.rate == INT_MAX) {
3352 av1_invalid_rd_stats(rd_stats);
3353 return 0;
3354 }
3355 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3356 this_rd +=
3357 AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
3358 RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
3359 block += step;
3360 }
3361 }
3362
3363 const int skip_ctx = av1_get_skip_txfm_context(xd);
3364 const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3365 const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3366 const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3367 this_rd =
3368 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist);
3369 if (skip_txfm_rd < this_rd) {
3370 this_rd = skip_txfm_rd;
3371 rd_stats->rate = 0;
3372 rd_stats->dist = rd_stats->sse;
3373 rd_stats->skip_txfm = 1;
3374 }
3375
3376 const int is_cost_valid = this_rd > ref_best_rd;
3377 if (!is_cost_valid) {
3378 // reset cost value
3379 av1_invalid_rd_stats(rd_stats);
3380 }
3381 return is_cost_valid;
3382 }
3383
3384 // Search for the best transform size and type for current inter-predicted
3385 // luma block with recursive transform block partitioning. The obtained
3386 // transform selection will be saved in xd->mi[0], the corresponding RD stats
3387 // will be saved in rd_stats. The returned value is the corresponding RD cost.
select_tx_size_and_type(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3388 static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x,
3389 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3390 int64_t ref_best_rd) {
3391 MACROBLOCKD *const xd = &x->e_mbd;
3392 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3393 assert(is_inter_block(xd->mi[0]));
3394 assert(bsize < BLOCK_SIZES_ALL);
3395 const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD;
3396 int64_t rd_thresh = ref_best_rd;
3397 if (rd_thresh == 0) {
3398 av1_invalid_rd_stats(rd_stats);
3399 return INT64_MAX;
3400 }
3401 if (fast_tx_search && rd_thresh < INT64_MAX) {
3402 if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
3403 }
3404 assert(rd_thresh > 0);
3405 const FAST_TX_SEARCH_MODE ftxs_mode =
3406 fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
3407 const struct macroblockd_plane *const pd = &xd->plane[0];
3408 assert(bsize < BLOCK_SIZES_ALL);
3409 const int mi_width = mi_size_wide[bsize];
3410 const int mi_height = mi_size_high[bsize];
3411 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3412 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3413 TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3414 TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3415 av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3416 memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3417 memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3418 const int init_depth = get_search_init_depth(
3419 mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3420 const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
3421 const int bh = tx_size_high_unit[max_tx_size];
3422 const int bw = tx_size_wide_unit[max_tx_size];
3423 const int step = bw * bh;
3424 const int skip_ctx = av1_get_skip_txfm_context(xd);
3425 const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3426 const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3427 int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0);
3428 int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0);
3429 int block = 0;
3430
3431 av1_init_rd_stats(rd_stats);
3432 for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) {
3433 for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) {
3434 const int64_t best_rd_sofar =
3435 (rd_thresh == INT64_MAX)
3436 ? INT64_MAX
3437 : (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd)));
3438 int is_cost_valid = 1;
3439 RD_STATS pn_rd_stats;
3440 // Search for the best transform block size and type for the sub-block.
3441 select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize,
3442 ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX,
3443 best_rd_sofar, &is_cost_valid, ftxs_mode);
3444 if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
3445 av1_invalid_rd_stats(rd_stats);
3446 return INT64_MAX;
3447 }
3448 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3449 skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3450 no_skip_txfm_rd =
3451 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3452 block += step;
3453 }
3454 }
3455
3456 if (rd_stats->rate == INT_MAX) return INT64_MAX;
3457
3458 rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd);
3459
3460 // If fast_tx_search is true, only DCT and 1D DCT were tested in
3461 // select_inter_block_yrd() above. Do a better search for tx type with
3462 // tx sizes already decided.
3463 if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) {
3464 if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
3465 return INT64_MAX;
3466 }
3467
3468 int64_t final_rd;
3469 if (rd_stats->skip_txfm) {
3470 final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3471 } else {
3472 final_rd =
3473 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3474 if (!xd->lossless[xd->mi[0]->segment_id]) {
3475 final_rd =
3476 AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse));
3477 }
3478 }
3479
3480 return final_rd;
3481 }
3482
3483 // Return 1 to terminate transform search early. The decision is made based on
3484 // the comparison with the reference RD cost and the model-estimated RD cost.
model_based_tx_search_prune(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int64_t ref_best_rd)3485 static inline int model_based_tx_search_prune(const AV1_COMP *cpi,
3486 MACROBLOCK *x, BLOCK_SIZE bsize,
3487 int64_t ref_best_rd) {
3488 const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level;
3489 assert(level >= 0 && level <= 2);
3490 int model_rate;
3491 int64_t model_dist;
3492 uint8_t model_skip;
3493 MACROBLOCKD *const xd = &x->e_mbd;
3494 model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE](
3495 cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL,
3496 NULL, NULL, NULL);
3497 if (model_skip) return 0;
3498 const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
3499 // TODO(debargha, urvang): Improve the model and make the check below
3500 // tighter.
3501 static const int prune_factor_by8[] = { 3, 5 };
3502 const int factor = prune_factor_by8[level - 1];
3503 return ((model_rd * factor) >> 3) > ref_best_rd;
3504 }
3505
av1_pick_recursive_tx_size_type_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3506 void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3507 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3508 int64_t ref_best_rd) {
3509 MACROBLOCKD *const xd = &x->e_mbd;
3510 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3511 assert(is_inter_block(xd->mi[0]));
3512
3513 av1_invalid_rd_stats(rd_stats);
3514
3515 // If modeled RD cost is a lot worse than the best so far, terminate early.
3516 if (cpi->sf.tx_sf.model_based_prune_tx_search_level &&
3517 ref_best_rd != INT64_MAX) {
3518 if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return;
3519 }
3520
3521 // Hashing based speed feature. If the hash of the prediction residue block is
3522 // found in the hash table, use previous search results and terminate early.
3523 uint32_t hash = 0;
3524 MB_RD_RECORD *mb_rd_record = NULL;
3525 const int mi_row = x->e_mbd.mi_row;
3526 const int mi_col = x->e_mbd.mi_col;
3527 const int within_border =
3528 mi_row >= xd->tile.mi_row_start &&
3529 (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
3530 mi_col >= xd->tile.mi_col_start &&
3531 (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);
3532 const int is_mb_rd_hash_enabled =
3533 (within_border && cpi->sf.rd_sf.use_mb_rd_hash);
3534 const int n4 = bsize_to_num_blk(bsize);
3535 if (is_mb_rd_hash_enabled) {
3536 hash = get_block_residue_hash(x, bsize);
3537 mb_rd_record = x->txfm_search_info.mb_rd_record;
3538 const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3539 if (match_index != -1) {
3540 MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3541 fetch_mb_rd_info(n4, mb_rd_info, rd_stats, x);
3542 return;
3543 }
3544 }
3545
3546 // If we predict that skip is the optimal RD decision - set the respective
3547 // context and terminate early.
3548 int64_t dist;
3549 if (txfm_params->skip_txfm_level &&
3550 predict_skip_txfm(x, bsize, &dist,
3551 cpi->common.features.reduced_tx_set_used)) {
3552 set_skip_txfm(x, rd_stats, bsize, dist);
3553 // Save the RD search results into mb_rd_record.
3554 if (is_mb_rd_hash_enabled)
3555 save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3556 return;
3557 }
3558 #if CONFIG_SPEED_STATS
3559 ++x->txfm_search_info.tx_search_count;
3560 #endif // CONFIG_SPEED_STATS
3561
3562 const int64_t rd =
3563 select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd);
3564
3565 if (rd == INT64_MAX) {
3566 // We should always find at least one candidate unless ref_best_rd is less
3567 // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
3568 // might have failed to find something better)
3569 assert(ref_best_rd != INT64_MAX);
3570 av1_invalid_rd_stats(rd_stats);
3571 return;
3572 }
3573
3574 // Save the RD search results into mb_rd_record.
3575 if (is_mb_rd_hash_enabled) {
3576 assert(mb_rd_record != NULL);
3577 save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3578 }
3579 }
3580
av1_pick_uniform_tx_size_type_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bs,int64_t ref_best_rd)3581 void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3582 RD_STATS *rd_stats, BLOCK_SIZE bs,
3583 int64_t ref_best_rd) {
3584 MACROBLOCKD *const xd = &x->e_mbd;
3585 MB_MODE_INFO *const mbmi = xd->mi[0];
3586 const TxfmSearchParams *tx_params = &x->txfm_search_params;
3587 assert(bs == mbmi->bsize);
3588 const int is_inter = is_inter_block(mbmi);
3589 const int mi_row = xd->mi_row;
3590 const int mi_col = xd->mi_col;
3591
3592 av1_init_rd_stats(rd_stats);
3593
3594 // Hashing based speed feature for inter blocks. If the hash of the residue
3595 // block is found in the table, use previously saved search results and
3596 // terminate early.
3597 uint32_t hash = 0;
3598 MB_RD_RECORD *mb_rd_record = NULL;
3599 const int num_blks = bsize_to_num_blk(bs);
3600 if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) {
3601 const int within_border =
3602 mi_row >= xd->tile.mi_row_start &&
3603 (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) &&
3604 mi_col >= xd->tile.mi_col_start &&
3605 (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end);
3606 if (within_border) {
3607 hash = get_block_residue_hash(x, bs);
3608 mb_rd_record = x->txfm_search_info.mb_rd_record;
3609 const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3610 if (match_index != -1) {
3611 MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3612 fetch_mb_rd_info(num_blks, mb_rd_info, rd_stats, x);
3613 return;
3614 }
3615 }
3616 }
3617
3618 // If we predict that skip is the optimal RD decision - set the respective
3619 // context and terminate early.
3620 int64_t dist;
3621 if (tx_params->skip_txfm_level && is_inter &&
3622 !xd->lossless[mbmi->segment_id] &&
3623 predict_skip_txfm(x, bs, &dist,
3624 cpi->common.features.reduced_tx_set_used)) {
3625 // Populate rdstats as per skip decision
3626 set_skip_txfm(x, rd_stats, bs, dist);
3627 // Save the RD search results into mb_rd_record.
3628 if (mb_rd_record) {
3629 save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3630 }
3631 return;
3632 }
3633
3634 if (xd->lossless[mbmi->segment_id]) {
3635 // Lossless mode can only pick the smallest (4x4) transform size.
3636 choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3637 } else if (tx_params->tx_size_search_method == USE_LARGESTALL) {
3638 choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3639 } else {
3640 choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
3641 }
3642
3643 // Save the RD search results into mb_rd_record for possible reuse in future.
3644 if (mb_rd_record) {
3645 save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3646 }
3647 }
3648
av1_txfm_uvrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3649 int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats,
3650 BLOCK_SIZE bsize, int64_t ref_best_rd) {
3651 av1_init_rd_stats(rd_stats);
3652 if (ref_best_rd < 0) return 0;
3653 if (!x->e_mbd.is_chroma_ref) return 1;
3654
3655 MACROBLOCKD *const xd = &x->e_mbd;
3656 MB_MODE_INFO *const mbmi = xd->mi[0];
3657 struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
3658 const int is_inter = is_inter_block(mbmi);
3659 int64_t this_rd = 0, skip_txfm_rd = 0;
3660 const BLOCK_SIZE plane_bsize =
3661 get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
3662
3663 if (is_inter) {
3664 for (int plane = 1; plane < MAX_MB_PLANE; ++plane)
3665 av1_subtract_plane(x, plane_bsize, plane);
3666 }
3667
3668 const int skip_trellis = 0;
3669 const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
3670 int is_cost_valid = 1;
3671 for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
3672 RD_STATS this_rd_stats;
3673 int64_t chroma_ref_best_rd = ref_best_rd;
3674 // For inter blocks, refined ref_best_rd is used for early exit
3675 // For intra blocks, even though current rd crosses ref_best_rd, early
3676 // exit is not recommended as current rd is used for gating subsequent
3677 // modes as well (say, for angular modes)
3678 // TODO(any): Extend the early exit mechanism for intra modes as well
3679 if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter &&
3680 chroma_ref_best_rd != INT64_MAX)
3681 chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd);
3682 av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane,
3683 plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis);
3684 if (this_rd_stats.rate == INT_MAX) {
3685 is_cost_valid = 0;
3686 break;
3687 }
3688 av1_merge_rd_stats(rd_stats, &this_rd_stats);
3689 this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3690 skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse);
3691 if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) {
3692 is_cost_valid = 0;
3693 break;
3694 }
3695 }
3696
3697 if (!is_cost_valid) {
3698 // reset cost value
3699 av1_invalid_rd_stats(rd_stats);
3700 }
3701
3702 return is_cost_valid;
3703 }
3704
av1_txfm_rd_in_plane(MACROBLOCK * x,const AV1_COMP * cpi,RD_STATS * rd_stats,int64_t ref_best_rd,int64_t current_rd,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)3705 void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
3706 RD_STATS *rd_stats, int64_t ref_best_rd,
3707 int64_t current_rd, int plane, BLOCK_SIZE plane_bsize,
3708 TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode,
3709 int skip_trellis) {
3710 assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size));
3711
3712 if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
3713 txsize_sqr_up_map[tx_size] == TX_64X64) {
3714 av1_invalid_rd_stats(rd_stats);
3715 return;
3716 }
3717
3718 if (current_rd > ref_best_rd) {
3719 av1_invalid_rd_stats(rd_stats);
3720 return;
3721 }
3722
3723 MACROBLOCKD *const xd = &x->e_mbd;
3724 const struct macroblockd_plane *const pd = &xd->plane[plane];
3725 struct rdcost_block_args args;
3726 av1_zero(args);
3727 args.x = x;
3728 args.cpi = cpi;
3729 args.best_rd = ref_best_rd;
3730 args.current_rd = current_rd;
3731 args.ftxs_mode = ftxs_mode;
3732 args.skip_trellis = skip_trellis;
3733 av1_init_rd_stats(&args.rd_stats);
3734
3735 av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left);
3736 av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm,
3737 &args);
3738
3739 MB_MODE_INFO *const mbmi = xd->mi[0];
3740 const int is_inter = is_inter_block(mbmi);
3741 const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early;
3742
3743 if (invalid_rd) {
3744 av1_invalid_rd_stats(rd_stats);
3745 } else {
3746 *rd_stats = args.rd_stats;
3747 }
3748 }
3749
av1_txfm_search(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RD_STATS * rd_stats,RD_STATS * rd_stats_y,RD_STATS * rd_stats_uv,int mode_rate,int64_t ref_best_rd)3750 int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
3751 RD_STATS *rd_stats, RD_STATS *rd_stats_y,
3752 RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) {
3753 MACROBLOCKD *const xd = &x->e_mbd;
3754 TxfmSearchParams *txfm_params = &x->txfm_search_params;
3755 const int skip_ctx = av1_get_skip_txfm_context(xd);
3756 const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0],
3757 x->mode_costs.skip_txfm_cost[skip_ctx][1] };
3758 const int64_t min_header_rate =
3759 mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]);
3760 // Account for minimum skip and non_skip rd.
3761 // Eventually either one of them will be added to mode_rate
3762 const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0);
3763 if (min_header_rd_possible > ref_best_rd) {
3764 av1_invalid_rd_stats(rd_stats_y);
3765 return 0;
3766 }
3767
3768 const AV1_COMMON *cm = &cpi->common;
3769 MB_MODE_INFO *const mbmi = xd->mi[0];
3770 const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0);
3771 const int64_t rd_thresh =
3772 ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd;
3773 av1_init_rd_stats(rd_stats);
3774 av1_init_rd_stats(rd_stats_y);
3775 rd_stats->rate = mode_rate;
3776
3777 // cost and distortion
3778 av1_subtract_plane(x, bsize, 0);
3779 if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3780 !xd->lossless[mbmi->segment_id]) {
3781 av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3782 #if CONFIG_COLLECT_RD_STATS == 2
3783 PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize);
3784 #endif // CONFIG_COLLECT_RD_STATS == 2
3785 } else {
3786 av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3787 memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
3788 for (int i = 0; i < xd->height * xd->width; ++i)
3789 set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm);
3790 }
3791
3792 if (rd_stats_y->rate == INT_MAX) return 0;
3793
3794 av1_merge_rd_stats(rd_stats, rd_stats_y);
3795
3796 const int64_t non_skip_txfm_rdcosty =
3797 RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist);
3798 const int64_t skip_txfm_rdcosty =
3799 RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse);
3800 const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty);
3801 if (min_rdcosty > ref_best_rd) return 0;
3802
3803 av1_init_rd_stats(rd_stats_uv);
3804 const int num_planes = av1_num_planes(cm);
3805 if (num_planes > 1) {
3806 int64_t ref_best_chroma_rd = ref_best_rd;
3807 // Calculate best rd cost possible for chroma
3808 if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma &&
3809 (ref_best_chroma_rd != INT64_MAX)) {
3810 ref_best_chroma_rd = (ref_best_chroma_rd -
3811 AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty));
3812 }
3813 const int is_cost_valid_uv =
3814 av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd);
3815 if (!is_cost_valid_uv) return 0;
3816 av1_merge_rd_stats(rd_stats, rd_stats_uv);
3817 }
3818
3819 int choose_skip_txfm = rd_stats->skip_txfm;
3820 if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) {
3821 const int64_t rdcost_no_skip_txfm = RDCOST(
3822 x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0],
3823 rd_stats->dist);
3824 const int64_t rdcost_skip_txfm =
3825 RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse);
3826 if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1;
3827 }
3828 if (choose_skip_txfm) {
3829 rd_stats_y->rate = 0;
3830 rd_stats_uv->rate = 0;
3831 rd_stats->rate = mode_rate + skip_txfm_cost[1];
3832 rd_stats->dist = rd_stats->sse;
3833 rd_stats_y->dist = rd_stats_y->sse;
3834 rd_stats_uv->dist = rd_stats_uv->sse;
3835 mbmi->skip_txfm = 1;
3836 if (rd_stats->skip_txfm) {
3837 const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3838 if (tmprd > ref_best_rd) return 0;
3839 }
3840 } else {
3841 rd_stats->rate += skip_txfm_cost[0];
3842 mbmi->skip_txfm = 0;
3843 }
3844
3845 return 1;
3846 }
3847