1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCAsmInfo.h"
11 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZTargetStreamer.h"
13 #include "TargetInfo/SystemZTargetInfo.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstBuilder.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCParser/MCAsmLexer.h"
24 #include "llvm/MC/MCParser/MCAsmParser.h"
25 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
26 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
27 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/MC/TargetRegistry.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/SMLoc.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41
42 using namespace llvm;
43
44 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
45 // is true any MCExpr is accepted (address displacement).
inRange(const MCExpr * Expr,int64_t MinValue,int64_t MaxValue,bool AllowSymbol=false)46 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
47 bool AllowSymbol = false) {
48 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
49 int64_t Value = CE->getValue();
50 return Value >= MinValue && Value <= MaxValue;
51 }
52 return AllowSymbol;
53 }
54
55 namespace {
56
57 enum RegisterKind {
58 GR32Reg,
59 GRH32Reg,
60 GR64Reg,
61 GR128Reg,
62 FP32Reg,
63 FP64Reg,
64 FP128Reg,
65 VR32Reg,
66 VR64Reg,
67 VR128Reg,
68 AR32Reg,
69 CR64Reg,
70 };
71
72 enum MemoryKind {
73 BDMem,
74 BDXMem,
75 BDLMem,
76 BDRMem,
77 BDVMem
78 };
79
80 class SystemZOperand : public MCParsedAsmOperand {
81 private:
82 enum OperandKind {
83 KindInvalid,
84 KindToken,
85 KindReg,
86 KindImm,
87 KindImmTLS,
88 KindMem
89 };
90
91 OperandKind Kind;
92 SMLoc StartLoc, EndLoc;
93
94 // A string of length Length, starting at Data.
95 struct TokenOp {
96 const char *Data;
97 unsigned Length;
98 };
99
100 // LLVM register Num, which has kind Kind. In some ways it might be
101 // easier for this class to have a register bank (general, floating-point
102 // or access) and a raw register number (0-15). This would postpone the
103 // interpretation of the operand to the add*() methods and avoid the need
104 // for context-dependent parsing. However, we do things the current way
105 // because of the virtual getReg() method, which needs to distinguish
106 // between (say) %r0 used as a single register and %r0 used as a pair.
107 // Context-dependent parsing can also give us slightly better error
108 // messages when invalid pairs like %r1 are used.
109 struct RegOp {
110 RegisterKind Kind;
111 unsigned Num;
112 };
113
114 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
115 // MemKind says what type of memory this is and RegKind says what type
116 // the base register has (GR32Reg or GR64Reg). Length is the operand
117 // length for D(L,B)-style operands, otherwise it is null.
118 struct MemOp {
119 unsigned Base : 12;
120 unsigned Index : 12;
121 unsigned MemKind : 4;
122 unsigned RegKind : 4;
123 const MCExpr *Disp;
124 union {
125 const MCExpr *Imm;
126 unsigned Reg;
127 } Length;
128 };
129
130 // Imm is an immediate operand, and Sym is an optional TLS symbol
131 // for use with a __tls_get_offset marker relocation.
132 struct ImmTLSOp {
133 const MCExpr *Imm;
134 const MCExpr *Sym;
135 };
136
137 union {
138 TokenOp Token;
139 RegOp Reg;
140 const MCExpr *Imm;
141 ImmTLSOp ImmTLS;
142 MemOp Mem;
143 };
144
addExpr(MCInst & Inst,const MCExpr * Expr) const145 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
146 // Add as immediates when possible. Null MCExpr = 0.
147 if (!Expr)
148 Inst.addOperand(MCOperand::createImm(0));
149 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
150 Inst.addOperand(MCOperand::createImm(CE->getValue()));
151 else
152 Inst.addOperand(MCOperand::createExpr(Expr));
153 }
154
155 public:
SystemZOperand(OperandKind kind,SMLoc startLoc,SMLoc endLoc)156 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
157 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
158
159 // Create particular kinds of operand.
createInvalid(SMLoc StartLoc,SMLoc EndLoc)160 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
161 SMLoc EndLoc) {
162 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
163 }
164
createToken(StringRef Str,SMLoc Loc)165 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
166 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
167 Op->Token.Data = Str.data();
168 Op->Token.Length = Str.size();
169 return Op;
170 }
171
172 static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind,unsigned Num,SMLoc StartLoc,SMLoc EndLoc)173 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
174 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
175 Op->Reg.Kind = Kind;
176 Op->Reg.Num = Num;
177 return Op;
178 }
179
180 static std::unique_ptr<SystemZOperand>
createImm(const MCExpr * Expr,SMLoc StartLoc,SMLoc EndLoc)181 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
182 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
183 Op->Imm = Expr;
184 return Op;
185 }
186
187 static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind,RegisterKind RegKind,unsigned Base,const MCExpr * Disp,unsigned Index,const MCExpr * LengthImm,unsigned LengthReg,SMLoc StartLoc,SMLoc EndLoc)188 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
189 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
190 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
191 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
192 Op->Mem.MemKind = MemKind;
193 Op->Mem.RegKind = RegKind;
194 Op->Mem.Base = Base;
195 Op->Mem.Index = Index;
196 Op->Mem.Disp = Disp;
197 if (MemKind == BDLMem)
198 Op->Mem.Length.Imm = LengthImm;
199 if (MemKind == BDRMem)
200 Op->Mem.Length.Reg = LengthReg;
201 return Op;
202 }
203
204 static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr * Imm,const MCExpr * Sym,SMLoc StartLoc,SMLoc EndLoc)205 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
206 SMLoc StartLoc, SMLoc EndLoc) {
207 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
208 Op->ImmTLS.Imm = Imm;
209 Op->ImmTLS.Sym = Sym;
210 return Op;
211 }
212
213 // Token operands
isToken() const214 bool isToken() const override {
215 return Kind == KindToken;
216 }
getToken() const217 StringRef getToken() const {
218 assert(Kind == KindToken && "Not a token");
219 return StringRef(Token.Data, Token.Length);
220 }
221
222 // Register operands.
isReg() const223 bool isReg() const override {
224 return Kind == KindReg;
225 }
isReg(RegisterKind RegKind) const226 bool isReg(RegisterKind RegKind) const {
227 return Kind == KindReg && Reg.Kind == RegKind;
228 }
getReg() const229 unsigned getReg() const override {
230 assert(Kind == KindReg && "Not a register");
231 return Reg.Num;
232 }
233
234 // Immediate operands.
isImm() const235 bool isImm() const override {
236 return Kind == KindImm;
237 }
isImm(int64_t MinValue,int64_t MaxValue) const238 bool isImm(int64_t MinValue, int64_t MaxValue) const {
239 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
240 }
getImm() const241 const MCExpr *getImm() const {
242 assert(Kind == KindImm && "Not an immediate");
243 return Imm;
244 }
245
246 // Immediate operands with optional TLS symbol.
isImmTLS() const247 bool isImmTLS() const {
248 return Kind == KindImmTLS;
249 }
250
getImmTLS() const251 const ImmTLSOp getImmTLS() const {
252 assert(Kind == KindImmTLS && "Not a TLS immediate");
253 return ImmTLS;
254 }
255
256 // Memory operands.
isMem() const257 bool isMem() const override {
258 return Kind == KindMem;
259 }
isMem(MemoryKind MemKind) const260 bool isMem(MemoryKind MemKind) const {
261 return (Kind == KindMem &&
262 (Mem.MemKind == MemKind ||
263 // A BDMem can be treated as a BDXMem in which the index
264 // register field is 0.
265 (Mem.MemKind == BDMem && MemKind == BDXMem)));
266 }
isMem(MemoryKind MemKind,RegisterKind RegKind) const267 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
268 return isMem(MemKind) && Mem.RegKind == RegKind;
269 }
isMemDisp12(MemoryKind MemKind,RegisterKind RegKind) const270 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
272 }
isMemDisp20(MemoryKind MemKind,RegisterKind RegKind) const273 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
274 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
275 }
isMemDisp12Len4(RegisterKind RegKind) const276 bool isMemDisp12Len4(RegisterKind RegKind) const {
277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
278 }
isMemDisp12Len8(RegisterKind RegKind) const279 bool isMemDisp12Len8(RegisterKind RegKind) const {
280 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
281 }
282
getMem() const283 const MemOp& getMem() const {
284 assert(Kind == KindMem && "Not a Mem operand");
285 return Mem;
286 }
287
288 // Override MCParsedAsmOperand.
getStartLoc() const289 SMLoc getStartLoc() const override { return StartLoc; }
getEndLoc() const290 SMLoc getEndLoc() const override { return EndLoc; }
291 void print(raw_ostream &OS) const override;
292
293 /// getLocRange - Get the range between the first and last token of this
294 /// operand.
getLocRange() const295 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
296
297 // Used by the TableGen code to add particular types of operand
298 // to an instruction.
addRegOperands(MCInst & Inst,unsigned N) const299 void addRegOperands(MCInst &Inst, unsigned N) const {
300 assert(N == 1 && "Invalid number of operands");
301 Inst.addOperand(MCOperand::createReg(getReg()));
302 }
addImmOperands(MCInst & Inst,unsigned N) const303 void addImmOperands(MCInst &Inst, unsigned N) const {
304 assert(N == 1 && "Invalid number of operands");
305 addExpr(Inst, getImm());
306 }
addBDAddrOperands(MCInst & Inst,unsigned N) const307 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
308 assert(N == 2 && "Invalid number of operands");
309 assert(isMem(BDMem) && "Invalid operand type");
310 Inst.addOperand(MCOperand::createReg(Mem.Base));
311 addExpr(Inst, Mem.Disp);
312 }
addBDXAddrOperands(MCInst & Inst,unsigned N) const313 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
314 assert(N == 3 && "Invalid number of operands");
315 assert(isMem(BDXMem) && "Invalid operand type");
316 Inst.addOperand(MCOperand::createReg(Mem.Base));
317 addExpr(Inst, Mem.Disp);
318 Inst.addOperand(MCOperand::createReg(Mem.Index));
319 }
addBDLAddrOperands(MCInst & Inst,unsigned N) const320 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
321 assert(N == 3 && "Invalid number of operands");
322 assert(isMem(BDLMem) && "Invalid operand type");
323 Inst.addOperand(MCOperand::createReg(Mem.Base));
324 addExpr(Inst, Mem.Disp);
325 addExpr(Inst, Mem.Length.Imm);
326 }
addBDRAddrOperands(MCInst & Inst,unsigned N) const327 void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
328 assert(N == 3 && "Invalid number of operands");
329 assert(isMem(BDRMem) && "Invalid operand type");
330 Inst.addOperand(MCOperand::createReg(Mem.Base));
331 addExpr(Inst, Mem.Disp);
332 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
333 }
addBDVAddrOperands(MCInst & Inst,unsigned N) const334 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
335 assert(N == 3 && "Invalid number of operands");
336 assert(isMem(BDVMem) && "Invalid operand type");
337 Inst.addOperand(MCOperand::createReg(Mem.Base));
338 addExpr(Inst, Mem.Disp);
339 Inst.addOperand(MCOperand::createReg(Mem.Index));
340 }
addImmTLSOperands(MCInst & Inst,unsigned N) const341 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
342 assert(N == 2 && "Invalid number of operands");
343 assert(Kind == KindImmTLS && "Invalid operand type");
344 addExpr(Inst, ImmTLS.Imm);
345 if (ImmTLS.Sym)
346 addExpr(Inst, ImmTLS.Sym);
347 }
348
349 // Used by the TableGen code to check for particular operand types.
isGR32() const350 bool isGR32() const { return isReg(GR32Reg); }
isGRH32() const351 bool isGRH32() const { return isReg(GRH32Reg); }
isGRX32() const352 bool isGRX32() const { return false; }
isGR64() const353 bool isGR64() const { return isReg(GR64Reg); }
isGR128() const354 bool isGR128() const { return isReg(GR128Reg); }
isADDR32() const355 bool isADDR32() const { return isReg(GR32Reg); }
isADDR64() const356 bool isADDR64() const { return isReg(GR64Reg); }
isADDR128() const357 bool isADDR128() const { return false; }
isFP32() const358 bool isFP32() const { return isReg(FP32Reg); }
isFP64() const359 bool isFP64() const { return isReg(FP64Reg); }
isFP128() const360 bool isFP128() const { return isReg(FP128Reg); }
isVR32() const361 bool isVR32() const { return isReg(VR32Reg); }
isVR64() const362 bool isVR64() const { return isReg(VR64Reg); }
isVF128() const363 bool isVF128() const { return false; }
isVR128() const364 bool isVR128() const { return isReg(VR128Reg); }
isAR32() const365 bool isAR32() const { return isReg(AR32Reg); }
isCR64() const366 bool isCR64() const { return isReg(CR64Reg); }
isAnyReg() const367 bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
isBDAddr32Disp12() const368 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
isBDAddr32Disp20() const369 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
isBDAddr64Disp12() const370 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
isBDAddr64Disp20() const371 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
isBDXAddr64Disp12() const372 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
isBDXAddr64Disp20() const373 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
isBDLAddr64Disp12Len4() const374 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
isBDLAddr64Disp12Len8() const375 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
isBDRAddr64Disp12() const376 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
isBDVAddr64Disp12() const377 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
isU1Imm() const378 bool isU1Imm() const { return isImm(0, 1); }
isU2Imm() const379 bool isU2Imm() const { return isImm(0, 3); }
isU3Imm() const380 bool isU3Imm() const { return isImm(0, 7); }
isU4Imm() const381 bool isU4Imm() const { return isImm(0, 15); }
isU6Imm() const382 bool isU6Imm() const { return isImm(0, 63); }
isU8Imm() const383 bool isU8Imm() const { return isImm(0, 255); }
isS8Imm() const384 bool isS8Imm() const { return isImm(-128, 127); }
isU12Imm() const385 bool isU12Imm() const { return isImm(0, 4095); }
isU16Imm() const386 bool isU16Imm() const { return isImm(0, 65535); }
isS16Imm() const387 bool isS16Imm() const { return isImm(-32768, 32767); }
isU32Imm() const388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
isS32Imm() const389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
isU48Imm() const390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
391 };
392
393 class SystemZAsmParser : public MCTargetAsmParser {
394 #define GET_ASSEMBLER_HEADER
395 #include "SystemZGenAsmMatcher.inc"
396
397 private:
398 MCAsmParser &Parser;
399 enum RegisterGroup {
400 RegGR,
401 RegFP,
402 RegV,
403 RegAR,
404 RegCR
405 };
406 struct Register {
407 RegisterGroup Group;
408 unsigned Num;
409 SMLoc StartLoc, EndLoc;
410 };
411
getTargetStreamer()412 SystemZTargetStreamer &getTargetStreamer() {
413 assert(getParser().getStreamer().getTargetStreamer() &&
414 "do not have a target streamer");
415 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
416 return static_cast<SystemZTargetStreamer &>(TS);
417 }
418
419 bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
420
421 bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
422
423 OperandMatchResultTy parseRegister(OperandVector &Operands,
424 RegisterKind Kind);
425
426 OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
427
428 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
429 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
430 bool HasLength = false, bool HasVectorIndex = false);
431 bool parseAddressRegister(Register &Reg);
432
433 bool ParseDirectiveInsn(SMLoc L);
434 bool ParseDirectiveMachine(SMLoc L);
435 bool ParseGNUAttribute(SMLoc L);
436
437 OperandMatchResultTy parseAddress(OperandVector &Operands,
438 MemoryKind MemKind,
439 RegisterKind RegKind);
440
441 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
442 int64_t MaxVal, bool AllowTLS);
443
444 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
445
446 // Both the hlasm and att variants still rely on the basic gnu asm
447 // format with respect to inputs, clobbers, outputs etc.
448 //
449 // However, calling the overriden getAssemblerDialect() method in
450 // AsmParser is problematic. It either returns the AssemblerDialect field
451 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
452 // unset, otherwise it returns the private AssemblerDialect field in
453 // AsmParser.
454 //
455 // The problematic part is because, we forcibly set the inline asm dialect
456 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
457 // to the overriden getAssemblerDialect function in AsmParser.cpp, will
458 // not return the assembler dialect set in the respective MCAsmInfo instance.
459 //
460 // For this purpose, we explicitly query the SystemZMCAsmInfo instance
461 // here, to get the "correct" assembler dialect, and use it in various
462 // functions.
getMAIAssemblerDialect()463 unsigned getMAIAssemblerDialect() {
464 return Parser.getContext().getAsmInfo()->getAssemblerDialect();
465 }
466
467 // An alphabetic character in HLASM is a letter from 'A' through 'Z',
468 // or from 'a' through 'z', or '$', '_','#', or '@'.
isHLASMAlpha(char C)469 inline bool isHLASMAlpha(char C) {
470 return isAlpha(C) || llvm::is_contained("_@#$", C);
471 }
472
473 // A digit in HLASM is a number from 0 to 9.
isHLASMAlnum(char C)474 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
475
476 // Are we parsing using the AD_HLASM dialect?
isParsingHLASM()477 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
478
479 // Are we parsing using the AD_ATT dialect?
isParsingATT()480 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
481
482 public:
SystemZAsmParser(const MCSubtargetInfo & sti,MCAsmParser & parser,const MCInstrInfo & MII,const MCTargetOptions & Options)483 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
484 const MCInstrInfo &MII,
485 const MCTargetOptions &Options)
486 : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
487 MCAsmParserExtension::Initialize(Parser);
488
489 // Alias the .word directive to .short.
490 parser.addAliasForDirective(".word", ".short");
491
492 // Initialize the set of available features.
493 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
494 }
495
496 // Override MCTargetAsmParser.
497 bool ParseDirective(AsmToken DirectiveID) override;
498 bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
499 SMLoc &EndLoc) override;
500 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
501 bool RestoreOnFailure);
502 OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
503 SMLoc &EndLoc) override;
504 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
505 SMLoc NameLoc, OperandVector &Operands) override;
506 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
507 OperandVector &Operands, MCStreamer &Out,
508 uint64_t &ErrorInfo,
509 bool MatchingInlineAsm) override;
510 bool isLabel(AsmToken &Token) override;
511
512 // Used by the TableGen code to parse particular operand types.
parseGR32(OperandVector & Operands)513 OperandMatchResultTy parseGR32(OperandVector &Operands) {
514 return parseRegister(Operands, GR32Reg);
515 }
parseGRH32(OperandVector & Operands)516 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
517 return parseRegister(Operands, GRH32Reg);
518 }
parseGRX32(OperandVector & Operands)519 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
520 llvm_unreachable("GRX32 should only be used for pseudo instructions");
521 }
parseGR64(OperandVector & Operands)522 OperandMatchResultTy parseGR64(OperandVector &Operands) {
523 return parseRegister(Operands, GR64Reg);
524 }
parseGR128(OperandVector & Operands)525 OperandMatchResultTy parseGR128(OperandVector &Operands) {
526 return parseRegister(Operands, GR128Reg);
527 }
parseADDR32(OperandVector & Operands)528 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
529 // For the AsmParser, we will accept %r0 for ADDR32 as well.
530 return parseRegister(Operands, GR32Reg);
531 }
parseADDR64(OperandVector & Operands)532 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
533 // For the AsmParser, we will accept %r0 for ADDR64 as well.
534 return parseRegister(Operands, GR64Reg);
535 }
parseADDR128(OperandVector & Operands)536 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
537 llvm_unreachable("Shouldn't be used as an operand");
538 }
parseFP32(OperandVector & Operands)539 OperandMatchResultTy parseFP32(OperandVector &Operands) {
540 return parseRegister(Operands, FP32Reg);
541 }
parseFP64(OperandVector & Operands)542 OperandMatchResultTy parseFP64(OperandVector &Operands) {
543 return parseRegister(Operands, FP64Reg);
544 }
parseFP128(OperandVector & Operands)545 OperandMatchResultTy parseFP128(OperandVector &Operands) {
546 return parseRegister(Operands, FP128Reg);
547 }
parseVR32(OperandVector & Operands)548 OperandMatchResultTy parseVR32(OperandVector &Operands) {
549 return parseRegister(Operands, VR32Reg);
550 }
parseVR64(OperandVector & Operands)551 OperandMatchResultTy parseVR64(OperandVector &Operands) {
552 return parseRegister(Operands, VR64Reg);
553 }
parseVF128(OperandVector & Operands)554 OperandMatchResultTy parseVF128(OperandVector &Operands) {
555 llvm_unreachable("Shouldn't be used as an operand");
556 }
parseVR128(OperandVector & Operands)557 OperandMatchResultTy parseVR128(OperandVector &Operands) {
558 return parseRegister(Operands, VR128Reg);
559 }
parseAR32(OperandVector & Operands)560 OperandMatchResultTy parseAR32(OperandVector &Operands) {
561 return parseRegister(Operands, AR32Reg);
562 }
parseCR64(OperandVector & Operands)563 OperandMatchResultTy parseCR64(OperandVector &Operands) {
564 return parseRegister(Operands, CR64Reg);
565 }
parseAnyReg(OperandVector & Operands)566 OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
567 return parseAnyRegister(Operands);
568 }
parseBDAddr32(OperandVector & Operands)569 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
570 return parseAddress(Operands, BDMem, GR32Reg);
571 }
parseBDAddr64(OperandVector & Operands)572 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
573 return parseAddress(Operands, BDMem, GR64Reg);
574 }
parseBDXAddr64(OperandVector & Operands)575 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
576 return parseAddress(Operands, BDXMem, GR64Reg);
577 }
parseBDLAddr64(OperandVector & Operands)578 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
579 return parseAddress(Operands, BDLMem, GR64Reg);
580 }
parseBDRAddr64(OperandVector & Operands)581 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
582 return parseAddress(Operands, BDRMem, GR64Reg);
583 }
parseBDVAddr64(OperandVector & Operands)584 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
585 return parseAddress(Operands, BDVMem, GR64Reg);
586 }
parsePCRel12(OperandVector & Operands)587 OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
588 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
589 }
parsePCRel16(OperandVector & Operands)590 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
591 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
592 }
parsePCRel24(OperandVector & Operands)593 OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
594 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
595 }
parsePCRel32(OperandVector & Operands)596 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
597 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
598 }
parsePCRelTLS16(OperandVector & Operands)599 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
600 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
601 }
parsePCRelTLS32(OperandVector & Operands)602 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
603 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
604 }
605 };
606
607 } // end anonymous namespace
608
609 #define GET_REGISTER_MATCHER
610 #define GET_SUBTARGET_FEATURE_NAME
611 #define GET_MATCHER_IMPLEMENTATION
612 #define GET_MNEMONIC_SPELL_CHECKER
613 #include "SystemZGenAsmMatcher.inc"
614
615 // Used for the .insn directives; contains information needed to parse the
616 // operands in the directive.
617 struct InsnMatchEntry {
618 StringRef Format;
619 uint64_t Opcode;
620 int32_t NumOperands;
621 MatchClassKind OperandKinds[7];
622 };
623
624 // For equal_range comparison.
625 struct CompareInsn {
operator ()CompareInsn626 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
627 return LHS.Format < RHS;
628 }
operator ()CompareInsn629 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
630 return LHS < RHS.Format;
631 }
operator ()CompareInsn632 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
633 return LHS.Format < RHS.Format;
634 }
635 };
636
637 // Table initializing information for parsing the .insn directive.
638 static struct InsnMatchEntry InsnMatchTable[] = {
639 /* Format, Opcode, NumOperands, OperandKinds */
640 { "e", SystemZ::InsnE, 1,
641 { MCK_U16Imm } },
642 { "ri", SystemZ::InsnRI, 3,
643 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
644 { "rie", SystemZ::InsnRIE, 4,
645 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
646 { "ril", SystemZ::InsnRIL, 3,
647 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
648 { "rilu", SystemZ::InsnRILU, 3,
649 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
650 { "ris", SystemZ::InsnRIS, 5,
651 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
652 { "rr", SystemZ::InsnRR, 3,
653 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
654 { "rre", SystemZ::InsnRRE, 3,
655 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
656 { "rrf", SystemZ::InsnRRF, 5,
657 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
658 { "rrs", SystemZ::InsnRRS, 5,
659 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
660 { "rs", SystemZ::InsnRS, 4,
661 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
662 { "rse", SystemZ::InsnRSE, 4,
663 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
664 { "rsi", SystemZ::InsnRSI, 4,
665 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
666 { "rsy", SystemZ::InsnRSY, 4,
667 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
668 { "rx", SystemZ::InsnRX, 3,
669 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
670 { "rxe", SystemZ::InsnRXE, 3,
671 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
672 { "rxf", SystemZ::InsnRXF, 4,
673 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
674 { "rxy", SystemZ::InsnRXY, 3,
675 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
676 { "s", SystemZ::InsnS, 2,
677 { MCK_U32Imm, MCK_BDAddr64Disp12 } },
678 { "si", SystemZ::InsnSI, 3,
679 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
680 { "sil", SystemZ::InsnSIL, 3,
681 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
682 { "siy", SystemZ::InsnSIY, 3,
683 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
684 { "ss", SystemZ::InsnSS, 4,
685 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
686 { "sse", SystemZ::InsnSSE, 3,
687 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
688 { "ssf", SystemZ::InsnSSF, 4,
689 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
690 { "vri", SystemZ::InsnVRI, 6,
691 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
692 { "vrr", SystemZ::InsnVRR, 7,
693 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
694 MCK_U4Imm } },
695 { "vrs", SystemZ::InsnVRS, 5,
696 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
697 { "vrv", SystemZ::InsnVRV, 4,
698 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
699 { "vrx", SystemZ::InsnVRX, 4,
700 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
701 { "vsi", SystemZ::InsnVSI, 4,
702 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
703 };
704
printMCExpr(const MCExpr * E,raw_ostream & OS)705 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
706 if (!E)
707 return;
708 if (auto *CE = dyn_cast<MCConstantExpr>(E))
709 OS << *CE;
710 else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
711 OS << *UE;
712 else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
713 OS << *BE;
714 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
715 OS << *SRE;
716 else
717 OS << *E;
718 }
719
print(raw_ostream & OS) const720 void SystemZOperand::print(raw_ostream &OS) const {
721 switch (Kind) {
722 case KindToken:
723 OS << "Token:" << getToken();
724 break;
725 case KindReg:
726 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
727 break;
728 case KindImm:
729 OS << "Imm:";
730 printMCExpr(getImm(), OS);
731 break;
732 case KindImmTLS:
733 OS << "ImmTLS:";
734 printMCExpr(getImmTLS().Imm, OS);
735 if (getImmTLS().Sym) {
736 OS << ", ";
737 printMCExpr(getImmTLS().Sym, OS);
738 }
739 break;
740 case KindMem: {
741 const MemOp &Op = getMem();
742 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
743 if (Op.Base) {
744 OS << "(";
745 if (Op.MemKind == BDLMem)
746 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
747 else if (Op.MemKind == BDRMem)
748 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
749 if (Op.Index)
750 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
751 OS << SystemZInstPrinter::getRegisterName(Op.Base);
752 OS << ")";
753 }
754 break;
755 }
756 case KindInvalid:
757 break;
758 }
759 }
760
761 // Parse one register of the form %<prefix><number>.
parseRegister(Register & Reg,bool RestoreOnFailure)762 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
763 Reg.StartLoc = Parser.getTok().getLoc();
764
765 // Eat the % prefix.
766 if (Parser.getTok().isNot(AsmToken::Percent))
767 return Error(Parser.getTok().getLoc(), "register expected");
768 const AsmToken &PercentTok = Parser.getTok();
769 Parser.Lex();
770
771 // Expect a register name.
772 if (Parser.getTok().isNot(AsmToken::Identifier)) {
773 if (RestoreOnFailure)
774 getLexer().UnLex(PercentTok);
775 return Error(Reg.StartLoc, "invalid register");
776 }
777
778 // Check that there's a prefix.
779 StringRef Name = Parser.getTok().getString();
780 if (Name.size() < 2) {
781 if (RestoreOnFailure)
782 getLexer().UnLex(PercentTok);
783 return Error(Reg.StartLoc, "invalid register");
784 }
785 char Prefix = Name[0];
786
787 // Treat the rest of the register name as a register number.
788 if (Name.substr(1).getAsInteger(10, Reg.Num)) {
789 if (RestoreOnFailure)
790 getLexer().UnLex(PercentTok);
791 return Error(Reg.StartLoc, "invalid register");
792 }
793
794 // Look for valid combinations of prefix and number.
795 if (Prefix == 'r' && Reg.Num < 16)
796 Reg.Group = RegGR;
797 else if (Prefix == 'f' && Reg.Num < 16)
798 Reg.Group = RegFP;
799 else if (Prefix == 'v' && Reg.Num < 32)
800 Reg.Group = RegV;
801 else if (Prefix == 'a' && Reg.Num < 16)
802 Reg.Group = RegAR;
803 else if (Prefix == 'c' && Reg.Num < 16)
804 Reg.Group = RegCR;
805 else {
806 if (RestoreOnFailure)
807 getLexer().UnLex(PercentTok);
808 return Error(Reg.StartLoc, "invalid register");
809 }
810
811 Reg.EndLoc = Parser.getTok().getLoc();
812 Parser.Lex();
813 return false;
814 }
815
816 // Parse a register of kind Kind and add it to Operands.
817 OperandMatchResultTy
parseRegister(OperandVector & Operands,RegisterKind Kind)818 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
819 Register Reg;
820 RegisterGroup Group;
821 switch (Kind) {
822 case GR32Reg:
823 case GRH32Reg:
824 case GR64Reg:
825 case GR128Reg:
826 Group = RegGR;
827 break;
828 case FP32Reg:
829 case FP64Reg:
830 case FP128Reg:
831 Group = RegFP;
832 break;
833 case VR32Reg:
834 case VR64Reg:
835 case VR128Reg:
836 Group = RegV;
837 break;
838 case AR32Reg:
839 Group = RegAR;
840 break;
841 case CR64Reg:
842 Group = RegCR;
843 break;
844 }
845
846 // Handle register names of the form %<prefix><number>
847 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
848 if (parseRegister(Reg))
849 return MatchOperand_ParseFail;
850
851 // Check the parsed register group "Reg.Group" with the expected "Group"
852 // Have to error out if user specified wrong prefix.
853 switch (Group) {
854 case RegGR:
855 case RegFP:
856 case RegAR:
857 case RegCR:
858 if (Group != Reg.Group) {
859 Error(Reg.StartLoc, "invalid operand for instruction");
860 return MatchOperand_ParseFail;
861 }
862 break;
863 case RegV:
864 if (Reg.Group != RegV && Reg.Group != RegFP) {
865 Error(Reg.StartLoc, "invalid operand for instruction");
866 return MatchOperand_ParseFail;
867 }
868 break;
869 }
870 } else if (Parser.getTok().is(AsmToken::Integer)) {
871 if (parseIntegerRegister(Reg, Group))
872 return MatchOperand_ParseFail;
873 }
874 // Otherwise we didn't match a register operand.
875 else
876 return MatchOperand_NoMatch;
877
878 // Determine the LLVM register number according to Kind.
879 const unsigned *Regs;
880 switch (Kind) {
881 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
882 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
883 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
884 case GR128Reg: Regs = SystemZMC::GR128Regs; break;
885 case FP32Reg: Regs = SystemZMC::FP32Regs; break;
886 case FP64Reg: Regs = SystemZMC::FP64Regs; break;
887 case FP128Reg: Regs = SystemZMC::FP128Regs; break;
888 case VR32Reg: Regs = SystemZMC::VR32Regs; break;
889 case VR64Reg: Regs = SystemZMC::VR64Regs; break;
890 case VR128Reg: Regs = SystemZMC::VR128Regs; break;
891 case AR32Reg: Regs = SystemZMC::AR32Regs; break;
892 case CR64Reg: Regs = SystemZMC::CR64Regs; break;
893 }
894 if (Regs[Reg.Num] == 0) {
895 Error(Reg.StartLoc, "invalid register pair");
896 return MatchOperand_ParseFail;
897 }
898
899 Operands.push_back(
900 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
901 return MatchOperand_Success;
902 }
903
904 // Parse any type of register (including integers) and add it to Operands.
905 OperandMatchResultTy
parseAnyRegister(OperandVector & Operands)906 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
907 SMLoc StartLoc = Parser.getTok().getLoc();
908
909 // Handle integer values.
910 if (Parser.getTok().is(AsmToken::Integer)) {
911 const MCExpr *Register;
912 if (Parser.parseExpression(Register))
913 return MatchOperand_ParseFail;
914
915 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
916 int64_t Value = CE->getValue();
917 if (Value < 0 || Value > 15) {
918 Error(StartLoc, "invalid register");
919 return MatchOperand_ParseFail;
920 }
921 }
922
923 SMLoc EndLoc =
924 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
925
926 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
927 }
928 else {
929 if (isParsingHLASM())
930 return MatchOperand_NoMatch;
931
932 Register Reg;
933 if (parseRegister(Reg))
934 return MatchOperand_ParseFail;
935
936 if (Reg.Num > 15) {
937 Error(StartLoc, "invalid register");
938 return MatchOperand_ParseFail;
939 }
940
941 // Map to the correct register kind.
942 RegisterKind Kind;
943 unsigned RegNo;
944 if (Reg.Group == RegGR) {
945 Kind = GR64Reg;
946 RegNo = SystemZMC::GR64Regs[Reg.Num];
947 }
948 else if (Reg.Group == RegFP) {
949 Kind = FP64Reg;
950 RegNo = SystemZMC::FP64Regs[Reg.Num];
951 }
952 else if (Reg.Group == RegV) {
953 Kind = VR128Reg;
954 RegNo = SystemZMC::VR128Regs[Reg.Num];
955 }
956 else if (Reg.Group == RegAR) {
957 Kind = AR32Reg;
958 RegNo = SystemZMC::AR32Regs[Reg.Num];
959 }
960 else if (Reg.Group == RegCR) {
961 Kind = CR64Reg;
962 RegNo = SystemZMC::CR64Regs[Reg.Num];
963 }
964 else {
965 return MatchOperand_ParseFail;
966 }
967
968 Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
969 Reg.StartLoc, Reg.EndLoc));
970 }
971 return MatchOperand_Success;
972 }
973
parseIntegerRegister(Register & Reg,RegisterGroup Group)974 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
975 RegisterGroup Group) {
976 Reg.StartLoc = Parser.getTok().getLoc();
977 // We have an integer token
978 const MCExpr *Register;
979 if (Parser.parseExpression(Register))
980 return true;
981
982 const auto *CE = dyn_cast<MCConstantExpr>(Register);
983 if (!CE)
984 return true;
985
986 int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
987 int64_t Value = CE->getValue();
988 if (Value < 0 || Value > MaxRegNum) {
989 Error(Parser.getTok().getLoc(), "invalid register");
990 return true;
991 }
992
993 // Assign the Register Number
994 Reg.Num = (unsigned)Value;
995 Reg.Group = Group;
996 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
997
998 // At this point, successfully parsed an integer register.
999 return false;
1000 }
1001
1002 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
parseAddress(bool & HaveReg1,Register & Reg1,bool & HaveReg2,Register & Reg2,const MCExpr * & Disp,const MCExpr * & Length,bool HasLength,bool HasVectorIndex)1003 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
1004 bool &HaveReg2, Register &Reg2,
1005 const MCExpr *&Disp, const MCExpr *&Length,
1006 bool HasLength, bool HasVectorIndex) {
1007 // Parse the displacement, which must always be present.
1008 if (getParser().parseExpression(Disp))
1009 return true;
1010
1011 // Parse the optional base and index.
1012 HaveReg1 = false;
1013 HaveReg2 = false;
1014 Length = nullptr;
1015
1016 // If we have a scenario as below:
1017 // vgef %v0, 0(0), 0
1018 // This is an example of a "BDVMem" instruction type.
1019 //
1020 // So when we parse this as an integer register, the register group
1021 // needs to be tied to "RegV". Usually when the prefix is passed in
1022 // as %<prefix><reg-number> its easy to check which group it should belong to
1023 // However, if we're passing in just the integer there's no real way to
1024 // "check" what register group it should belong to.
1025 //
1026 // When the user passes in the register as an integer, the user assumes that
1027 // the compiler is responsible for substituting it as the right kind of
1028 // register. Whereas, when the user specifies a "prefix", the onus is on
1029 // the user to make sure they pass in the right kind of register.
1030 //
1031 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1032 // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1033 // (i.e. insn is of type BDVMem) is true.
1034 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1035
1036 if (getLexer().is(AsmToken::LParen)) {
1037 Parser.Lex();
1038
1039 if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1040 // Parse the first register.
1041 HaveReg1 = true;
1042 if (parseRegister(Reg1))
1043 return true;
1044 }
1045 // So if we have an integer as the first token in ([tok1], ..), it could:
1046 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1047 // instructions)
1048 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1049 else if (getLexer().is(AsmToken::Integer)) {
1050 if (HasLength) {
1051 // Instruction has a "Length" field, safe to parse the first token as
1052 // the "Length" field
1053 if (getParser().parseExpression(Length))
1054 return true;
1055 } else {
1056 // Otherwise, if the instruction has no "Length" field, parse the
1057 // token as a "Register". We don't have to worry about whether the
1058 // instruction is invalid here, because the caller will take care of
1059 // error reporting.
1060 HaveReg1 = true;
1061 if (parseIntegerRegister(Reg1, RegGroup))
1062 return true;
1063 }
1064 } else {
1065 // If its not an integer or a percent token, then if the instruction
1066 // is reported to have a "Length" then, parse it as "Length".
1067 if (HasLength) {
1068 if (getParser().parseExpression(Length))
1069 return true;
1070 }
1071 }
1072
1073 // Check whether there's a second register.
1074 if (getLexer().is(AsmToken::Comma)) {
1075 Parser.Lex();
1076 HaveReg2 = true;
1077
1078 if (getLexer().is(AsmToken::Integer)) {
1079 if (parseIntegerRegister(Reg2, RegGR))
1080 return true;
1081 } else {
1082 if (isParsingATT() && parseRegister(Reg2))
1083 return true;
1084 }
1085 }
1086
1087 // Consume the closing bracket.
1088 if (getLexer().isNot(AsmToken::RParen))
1089 return Error(Parser.getTok().getLoc(), "unexpected token in address");
1090 Parser.Lex();
1091 }
1092 return false;
1093 }
1094
1095 // Verify that Reg is a valid address register (base or index).
1096 bool
parseAddressRegister(Register & Reg)1097 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1098 if (Reg.Group == RegV) {
1099 Error(Reg.StartLoc, "invalid use of vector addressing");
1100 return true;
1101 } else if (Reg.Group != RegGR) {
1102 Error(Reg.StartLoc, "invalid address register");
1103 return true;
1104 }
1105 return false;
1106 }
1107
1108 // Parse a memory operand and add it to Operands. The other arguments
1109 // are as above.
1110 OperandMatchResultTy
parseAddress(OperandVector & Operands,MemoryKind MemKind,RegisterKind RegKind)1111 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1112 RegisterKind RegKind) {
1113 SMLoc StartLoc = Parser.getTok().getLoc();
1114 unsigned Base = 0, Index = 0, LengthReg = 0;
1115 Register Reg1, Reg2;
1116 bool HaveReg1, HaveReg2;
1117 const MCExpr *Disp;
1118 const MCExpr *Length;
1119
1120 bool HasLength = (MemKind == BDLMem) ? true : false;
1121 bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1122 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1123 HasVectorIndex))
1124 return MatchOperand_ParseFail;
1125
1126 const unsigned *Regs;
1127 switch (RegKind) {
1128 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1129 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1130 default: llvm_unreachable("invalid RegKind");
1131 }
1132
1133 switch (MemKind) {
1134 case BDMem:
1135 // If we have Reg1, it must be an address register.
1136 if (HaveReg1) {
1137 if (parseAddressRegister(Reg1))
1138 return MatchOperand_ParseFail;
1139 Base = Regs[Reg1.Num];
1140 }
1141 // There must be no Reg2.
1142 if (HaveReg2) {
1143 Error(StartLoc, "invalid use of indexed addressing");
1144 return MatchOperand_ParseFail;
1145 }
1146 break;
1147 case BDXMem:
1148 // If we have Reg1, it must be an address register.
1149 if (HaveReg1) {
1150 if (parseAddressRegister(Reg1))
1151 return MatchOperand_ParseFail;
1152 // If the are two registers, the first one is the index and the
1153 // second is the base.
1154 if (HaveReg2)
1155 Index = Regs[Reg1.Num];
1156 else
1157 Base = Regs[Reg1.Num];
1158 }
1159 // If we have Reg2, it must be an address register.
1160 if (HaveReg2) {
1161 if (parseAddressRegister(Reg2))
1162 return MatchOperand_ParseFail;
1163 Base = Regs[Reg2.Num];
1164 }
1165 break;
1166 case BDLMem:
1167 // If we have Reg2, it must be an address register.
1168 if (HaveReg2) {
1169 if (parseAddressRegister(Reg2))
1170 return MatchOperand_ParseFail;
1171 Base = Regs[Reg2.Num];
1172 }
1173 // We cannot support base+index addressing.
1174 if (HaveReg1 && HaveReg2) {
1175 Error(StartLoc, "invalid use of indexed addressing");
1176 return MatchOperand_ParseFail;
1177 }
1178 // We must have a length.
1179 if (!Length) {
1180 Error(StartLoc, "missing length in address");
1181 return MatchOperand_ParseFail;
1182 }
1183 break;
1184 case BDRMem:
1185 // We must have Reg1, and it must be a GPR.
1186 if (!HaveReg1 || Reg1.Group != RegGR) {
1187 Error(StartLoc, "invalid operand for instruction");
1188 return MatchOperand_ParseFail;
1189 }
1190 LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1191 // If we have Reg2, it must be an address register.
1192 if (HaveReg2) {
1193 if (parseAddressRegister(Reg2))
1194 return MatchOperand_ParseFail;
1195 Base = Regs[Reg2.Num];
1196 }
1197 break;
1198 case BDVMem:
1199 // We must have Reg1, and it must be a vector register.
1200 if (!HaveReg1 || Reg1.Group != RegV) {
1201 Error(StartLoc, "vector index required in address");
1202 return MatchOperand_ParseFail;
1203 }
1204 Index = SystemZMC::VR128Regs[Reg1.Num];
1205 // If we have Reg2, it must be an address register.
1206 if (HaveReg2) {
1207 if (parseAddressRegister(Reg2))
1208 return MatchOperand_ParseFail;
1209 Base = Regs[Reg2.Num];
1210 }
1211 break;
1212 }
1213
1214 SMLoc EndLoc =
1215 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1216 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1217 Index, Length, LengthReg,
1218 StartLoc, EndLoc));
1219 return MatchOperand_Success;
1220 }
1221
ParseDirective(AsmToken DirectiveID)1222 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1223 StringRef IDVal = DirectiveID.getIdentifier();
1224
1225 if (IDVal == ".insn")
1226 return ParseDirectiveInsn(DirectiveID.getLoc());
1227 if (IDVal == ".machine")
1228 return ParseDirectiveMachine(DirectiveID.getLoc());
1229 if (IDVal.startswith(".gnu_attribute"))
1230 return ParseGNUAttribute(DirectiveID.getLoc());
1231
1232 return true;
1233 }
1234
1235 /// ParseDirectiveInsn
1236 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
ParseDirectiveInsn(SMLoc L)1237 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1238 MCAsmParser &Parser = getParser();
1239
1240 // Expect instruction format as identifier.
1241 StringRef Format;
1242 SMLoc ErrorLoc = Parser.getTok().getLoc();
1243 if (Parser.parseIdentifier(Format))
1244 return Error(ErrorLoc, "expected instruction format");
1245
1246 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1247
1248 // Find entry for this format in InsnMatchTable.
1249 auto EntryRange =
1250 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1251 Format, CompareInsn());
1252
1253 // If first == second, couldn't find a match in the table.
1254 if (EntryRange.first == EntryRange.second)
1255 return Error(ErrorLoc, "unrecognized format");
1256
1257 struct InsnMatchEntry *Entry = EntryRange.first;
1258
1259 // Format should match from equal_range.
1260 assert(Entry->Format == Format);
1261
1262 // Parse the following operands using the table's information.
1263 for (int i = 0; i < Entry->NumOperands; i++) {
1264 MatchClassKind Kind = Entry->OperandKinds[i];
1265
1266 SMLoc StartLoc = Parser.getTok().getLoc();
1267
1268 // Always expect commas as separators for operands.
1269 if (getLexer().isNot(AsmToken::Comma))
1270 return Error(StartLoc, "unexpected token in directive");
1271 Lex();
1272
1273 // Parse operands.
1274 OperandMatchResultTy ResTy;
1275 if (Kind == MCK_AnyReg)
1276 ResTy = parseAnyReg(Operands);
1277 else if (Kind == MCK_VR128)
1278 ResTy = parseVR128(Operands);
1279 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1280 ResTy = parseBDXAddr64(Operands);
1281 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1282 ResTy = parseBDAddr64(Operands);
1283 else if (Kind == MCK_BDVAddr64Disp12)
1284 ResTy = parseBDVAddr64(Operands);
1285 else if (Kind == MCK_PCRel32)
1286 ResTy = parsePCRel32(Operands);
1287 else if (Kind == MCK_PCRel16)
1288 ResTy = parsePCRel16(Operands);
1289 else {
1290 // Only remaining operand kind is an immediate.
1291 const MCExpr *Expr;
1292 SMLoc StartLoc = Parser.getTok().getLoc();
1293
1294 // Expect immediate expression.
1295 if (Parser.parseExpression(Expr))
1296 return Error(StartLoc, "unexpected token in directive");
1297
1298 SMLoc EndLoc =
1299 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1300
1301 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1302 ResTy = MatchOperand_Success;
1303 }
1304
1305 if (ResTy != MatchOperand_Success)
1306 return true;
1307 }
1308
1309 // Build the instruction with the parsed operands.
1310 MCInst Inst = MCInstBuilder(Entry->Opcode);
1311
1312 for (size_t i = 0; i < Operands.size(); i++) {
1313 MCParsedAsmOperand &Operand = *Operands[i];
1314 MatchClassKind Kind = Entry->OperandKinds[i];
1315
1316 // Verify operand.
1317 unsigned Res = validateOperandClass(Operand, Kind);
1318 if (Res != Match_Success)
1319 return Error(Operand.getStartLoc(), "unexpected operand type");
1320
1321 // Add operands to instruction.
1322 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1323 if (ZOperand.isReg())
1324 ZOperand.addRegOperands(Inst, 1);
1325 else if (ZOperand.isMem(BDMem))
1326 ZOperand.addBDAddrOperands(Inst, 2);
1327 else if (ZOperand.isMem(BDXMem))
1328 ZOperand.addBDXAddrOperands(Inst, 3);
1329 else if (ZOperand.isMem(BDVMem))
1330 ZOperand.addBDVAddrOperands(Inst, 3);
1331 else if (ZOperand.isImm())
1332 ZOperand.addImmOperands(Inst, 1);
1333 else
1334 llvm_unreachable("unexpected operand type");
1335 }
1336
1337 // Emit as a regular instruction.
1338 Parser.getStreamer().emitInstruction(Inst, getSTI());
1339
1340 return false;
1341 }
1342
1343 /// ParseDirectiveMachine
1344 /// ::= .machine [ mcpu ]
ParseDirectiveMachine(SMLoc L)1345 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1346 MCAsmParser &Parser = getParser();
1347 if (Parser.getTok().isNot(AsmToken::Identifier) &&
1348 Parser.getTok().isNot(AsmToken::String))
1349 return Error(L, "unexpected token in '.machine' directive");
1350
1351 StringRef CPU = Parser.getTok().getIdentifier();
1352 Parser.Lex();
1353 if (parseToken(AsmToken::EndOfStatement))
1354 return addErrorSuffix(" in '.machine' directive");
1355
1356 MCSubtargetInfo &STI = copySTI();
1357 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1358 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1359
1360 getTargetStreamer().emitMachine(CPU);
1361
1362 return false;
1363 }
1364
ParseGNUAttribute(SMLoc L)1365 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1366 int64_t Tag;
1367 int64_t IntegerValue;
1368 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1369 return false;
1370
1371 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1372 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) {
1373 Error(Parser.getTok().getLoc(),
1374 "Unrecognized .gnu_attribute tag/value pair.");
1375 return false;
1376 }
1377
1378 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1379
1380 return true;
1381 }
1382
ParseRegister(MCRegister & RegNo,SMLoc & StartLoc,SMLoc & EndLoc,bool RestoreOnFailure)1383 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1384 SMLoc &EndLoc, bool RestoreOnFailure) {
1385 Register Reg;
1386 if (parseRegister(Reg, RestoreOnFailure))
1387 return true;
1388 if (Reg.Group == RegGR)
1389 RegNo = SystemZMC::GR64Regs[Reg.Num];
1390 else if (Reg.Group == RegFP)
1391 RegNo = SystemZMC::FP64Regs[Reg.Num];
1392 else if (Reg.Group == RegV)
1393 RegNo = SystemZMC::VR128Regs[Reg.Num];
1394 else if (Reg.Group == RegAR)
1395 RegNo = SystemZMC::AR32Regs[Reg.Num];
1396 else if (Reg.Group == RegCR)
1397 RegNo = SystemZMC::CR64Regs[Reg.Num];
1398 StartLoc = Reg.StartLoc;
1399 EndLoc = Reg.EndLoc;
1400 return false;
1401 }
1402
parseRegister(MCRegister & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)1403 bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1404 SMLoc &EndLoc) {
1405 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1406 }
1407
tryParseRegister(MCRegister & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)1408 OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo,
1409 SMLoc &StartLoc,
1410 SMLoc &EndLoc) {
1411 bool Result =
1412 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1413 bool PendingErrors = getParser().hasPendingError();
1414 getParser().clearPendingErrors();
1415 if (PendingErrors)
1416 return MatchOperand_ParseFail;
1417 if (Result)
1418 return MatchOperand_NoMatch;
1419 return MatchOperand_Success;
1420 }
1421
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)1422 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1423 StringRef Name, SMLoc NameLoc,
1424 OperandVector &Operands) {
1425
1426 // Apply mnemonic aliases first, before doing anything else, in
1427 // case the target uses it.
1428 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1429
1430 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1431
1432 // Read the remaining operands.
1433 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1434 // Read the first operand.
1435 if (parseOperand(Operands, Name)) {
1436 return true;
1437 }
1438
1439 // Read any subsequent operands.
1440 while (getLexer().is(AsmToken::Comma)) {
1441 Parser.Lex();
1442
1443 if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1444 return Error(
1445 Parser.getTok().getLoc(),
1446 "No space allowed between comma that separates operand entries");
1447
1448 if (parseOperand(Operands, Name)) {
1449 return true;
1450 }
1451 }
1452
1453 // Under the HLASM variant, we could have the remark field
1454 // The remark field occurs after the operation entries
1455 // There is a space that separates the operation entries and the
1456 // remark field.
1457 if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1458 // We've confirmed that there is a Remark field.
1459 StringRef Remark(getLexer().LexUntilEndOfStatement());
1460 Parser.Lex();
1461
1462 // If there is nothing after the space, then there is nothing to emit
1463 // We could have a situation as this:
1464 // " \n"
1465 // After lexing above, we will have
1466 // "\n"
1467 // This isn't an explicit remark field, so we don't have to output
1468 // this as a comment.
1469 if (Remark.size())
1470 // Output the entire Remarks Field as a comment
1471 getStreamer().AddComment(Remark);
1472 }
1473
1474 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1475 SMLoc Loc = getLexer().getLoc();
1476 return Error(Loc, "unexpected token in argument list");
1477 }
1478 }
1479
1480 // Consume the EndOfStatement.
1481 Parser.Lex();
1482 return false;
1483 }
1484
parseOperand(OperandVector & Operands,StringRef Mnemonic)1485 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1486 StringRef Mnemonic) {
1487 // Check if the current operand has a custom associated parser, if so, try to
1488 // custom parse the operand, or fallback to the general approach. Force all
1489 // features to be available during the operand check, or else we will fail to
1490 // find the custom parser, and then we will later get an InvalidOperand error
1491 // instead of a MissingFeature errror.
1492 FeatureBitset AvailableFeatures = getAvailableFeatures();
1493 FeatureBitset All;
1494 All.set();
1495 setAvailableFeatures(All);
1496 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1497 setAvailableFeatures(AvailableFeatures);
1498 if (ResTy == MatchOperand_Success)
1499 return false;
1500
1501 // If there wasn't a custom match, try the generic matcher below. Otherwise,
1502 // there was a match, but an error occurred, in which case, just return that
1503 // the operand parsing failed.
1504 if (ResTy == MatchOperand_ParseFail)
1505 return true;
1506
1507 // Check for a register. All real register operands should have used
1508 // a context-dependent parse routine, which gives the required register
1509 // class. The code is here to mop up other cases, like those where
1510 // the instruction isn't recognized.
1511 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1512 Register Reg;
1513 if (parseRegister(Reg))
1514 return true;
1515 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1516 return false;
1517 }
1518
1519 // The only other type of operand is an immediate or address. As above,
1520 // real address operands should have used a context-dependent parse routine,
1521 // so we treat any plain expression as an immediate.
1522 SMLoc StartLoc = Parser.getTok().getLoc();
1523 Register Reg1, Reg2;
1524 bool HaveReg1, HaveReg2;
1525 const MCExpr *Expr;
1526 const MCExpr *Length;
1527 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1528 /*HasLength*/ true, /*HasVectorIndex*/ true))
1529 return true;
1530 // If the register combination is not valid for any instruction, reject it.
1531 // Otherwise, fall back to reporting an unrecognized instruction.
1532 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1533 && parseAddressRegister(Reg1))
1534 return true;
1535 if (HaveReg2 && parseAddressRegister(Reg2))
1536 return true;
1537
1538 SMLoc EndLoc =
1539 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1540 if (HaveReg1 || HaveReg2 || Length)
1541 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1542 else
1543 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1544 return false;
1545 }
1546
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)1547 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1548 OperandVector &Operands,
1549 MCStreamer &Out,
1550 uint64_t &ErrorInfo,
1551 bool MatchingInlineAsm) {
1552 MCInst Inst;
1553 unsigned MatchResult;
1554
1555 unsigned Dialect = getMAIAssemblerDialect();
1556
1557 FeatureBitset MissingFeatures;
1558 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1559 MatchingInlineAsm, Dialect);
1560 switch (MatchResult) {
1561 case Match_Success:
1562 Inst.setLoc(IDLoc);
1563 Out.emitInstruction(Inst, getSTI());
1564 return false;
1565
1566 case Match_MissingFeature: {
1567 assert(MissingFeatures.any() && "Unknown missing feature!");
1568 // Special case the error message for the very common case where only
1569 // a single subtarget feature is missing
1570 std::string Msg = "instruction requires:";
1571 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1572 if (MissingFeatures[I]) {
1573 Msg += " ";
1574 Msg += getSubtargetFeatureName(I);
1575 }
1576 }
1577 return Error(IDLoc, Msg);
1578 }
1579
1580 case Match_InvalidOperand: {
1581 SMLoc ErrorLoc = IDLoc;
1582 if (ErrorInfo != ~0ULL) {
1583 if (ErrorInfo >= Operands.size())
1584 return Error(IDLoc, "too few operands for instruction");
1585
1586 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1587 if (ErrorLoc == SMLoc())
1588 ErrorLoc = IDLoc;
1589 }
1590 return Error(ErrorLoc, "invalid operand for instruction");
1591 }
1592
1593 case Match_MnemonicFail: {
1594 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1595 std::string Suggestion = SystemZMnemonicSpellCheck(
1596 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1597 return Error(IDLoc, "invalid instruction" + Suggestion,
1598 ((SystemZOperand &)*Operands[0]).getLocRange());
1599 }
1600 }
1601
1602 llvm_unreachable("Unexpected match type");
1603 }
1604
1605 OperandMatchResultTy
parsePCRel(OperandVector & Operands,int64_t MinVal,int64_t MaxVal,bool AllowTLS)1606 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1607 int64_t MaxVal, bool AllowTLS) {
1608 MCContext &Ctx = getContext();
1609 MCStreamer &Out = getStreamer();
1610 const MCExpr *Expr;
1611 SMLoc StartLoc = Parser.getTok().getLoc();
1612 if (getParser().parseExpression(Expr))
1613 return MatchOperand_NoMatch;
1614
1615 auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1616 if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1617 int64_t Value = CE->getValue();
1618 if (Negate)
1619 Value = -Value;
1620 if ((Value & 1) || Value < MinVal || Value > MaxVal)
1621 return true;
1622 }
1623 return false;
1624 };
1625
1626 // For consistency with the GNU assembler, treat immediates as offsets
1627 // from ".".
1628 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1629 if (isParsingHLASM()) {
1630 Error(StartLoc, "Expected PC-relative expression");
1631 return MatchOperand_ParseFail;
1632 }
1633 if (isOutOfRangeConstant(CE, false)) {
1634 Error(StartLoc, "offset out of range");
1635 return MatchOperand_ParseFail;
1636 }
1637 int64_t Value = CE->getValue();
1638 MCSymbol *Sym = Ctx.createTempSymbol();
1639 Out.emitLabel(Sym);
1640 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1641 Ctx);
1642 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1643 }
1644
1645 // For consistency with the GNU assembler, conservatively assume that a
1646 // constant offset must by itself be within the given size range.
1647 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1648 if (isOutOfRangeConstant(BE->getLHS(), false) ||
1649 isOutOfRangeConstant(BE->getRHS(),
1650 BE->getOpcode() == MCBinaryExpr::Sub)) {
1651 Error(StartLoc, "offset out of range");
1652 return MatchOperand_ParseFail;
1653 }
1654
1655 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1656 const MCExpr *Sym = nullptr;
1657 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1658 Parser.Lex();
1659
1660 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1661 Error(Parser.getTok().getLoc(), "unexpected token");
1662 return MatchOperand_ParseFail;
1663 }
1664
1665 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1666 StringRef Name = Parser.getTok().getString();
1667 if (Name == "tls_gdcall")
1668 Kind = MCSymbolRefExpr::VK_TLSGD;
1669 else if (Name == "tls_ldcall")
1670 Kind = MCSymbolRefExpr::VK_TLSLDM;
1671 else {
1672 Error(Parser.getTok().getLoc(), "unknown TLS tag");
1673 return MatchOperand_ParseFail;
1674 }
1675 Parser.Lex();
1676
1677 if (Parser.getTok().isNot(AsmToken::Colon)) {
1678 Error(Parser.getTok().getLoc(), "unexpected token");
1679 return MatchOperand_ParseFail;
1680 }
1681 Parser.Lex();
1682
1683 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1684 Error(Parser.getTok().getLoc(), "unexpected token");
1685 return MatchOperand_ParseFail;
1686 }
1687
1688 StringRef Identifier = Parser.getTok().getString();
1689 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1690 Kind, Ctx);
1691 Parser.Lex();
1692 }
1693
1694 SMLoc EndLoc =
1695 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1696
1697 if (AllowTLS)
1698 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1699 StartLoc, EndLoc));
1700 else
1701 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1702
1703 return MatchOperand_Success;
1704 }
1705
isLabel(AsmToken & Token)1706 bool SystemZAsmParser::isLabel(AsmToken &Token) {
1707 if (isParsingATT())
1708 return true;
1709
1710 // HLASM labels are ordinary symbols.
1711 // An HLASM label always starts at column 1.
1712 // An ordinary symbol syntax is laid out as follows:
1713 // Rules:
1714 // 1. Has to start with an "alphabetic character". Can be followed by up to
1715 // 62 alphanumeric characters. An "alphabetic character", in this scenario,
1716 // is a letter from 'A' through 'Z', or from 'a' through 'z',
1717 // or '$', '_', '#', or '@'
1718 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1719 // are all treated as the same symbol. However, the processing for the case
1720 // folding will not be done in this function.
1721 StringRef RawLabel = Token.getString();
1722 SMLoc Loc = Token.getLoc();
1723
1724 // An HLASM label cannot be empty.
1725 if (!RawLabel.size())
1726 return !Error(Loc, "HLASM Label cannot be empty");
1727
1728 // An HLASM label cannot exceed greater than 63 characters.
1729 if (RawLabel.size() > 63)
1730 return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1731
1732 // A label must start with an "alphabetic character".
1733 if (!isHLASMAlpha(RawLabel[0]))
1734 return !Error(Loc, "HLASM Label has to start with an alphabetic "
1735 "character or the underscore character");
1736
1737 // Now, we've established that the length is valid
1738 // and the first character is alphabetic.
1739 // Check whether remaining string is alphanumeric.
1740 for (unsigned I = 1; I < RawLabel.size(); ++I)
1741 if (!isHLASMAlnum(RawLabel[I]))
1742 return !Error(Loc, "HLASM Label has to be alphanumeric");
1743
1744 return true;
1745 }
1746
1747 // Force static initialization.
LLVMInitializeSystemZAsmParser()1748 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1749 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1750 }
1751