1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <sys/types.h>
20 #include <unistd.h>
21
22 #include <limits>
23 #include <memory>
24 #include <random>
25 #include <sstream>
26 #include <vector>
27
28 #include "allocation_listener.h"
29 #include "android-base/stringprintf.h"
30 #include "android-base/thread_annotations.h"
31 #include "art_field-inl.h"
32 #include "backtrace_helper.h"
33 #include "base/allocator.h"
34 #include "base/arena_allocator.h"
35 #include "base/dumpable.h"
36 #include "base/file_utils.h"
37 #include "base/histogram-inl.h"
38 #include "base/logging.h" // For VLOG.
39 #include "base/memory_tool.h"
40 #include "base/mutex.h"
41 #include "base/os.h"
42 #include "base/stl_util.h"
43 #include "base/systrace.h"
44 #include "base/time_utils.h"
45 #include "base/utils.h"
46 #include "class_root-inl.h"
47 #include "common_throws.h"
48 #include "debugger.h"
49 #include "dex/dex_file-inl.h"
50 #include "entrypoints/quick/quick_alloc_entrypoints.h"
51 #include "gc/accounting/card_table-inl.h"
52 #include "gc/accounting/heap_bitmap-inl.h"
53 #include "gc/accounting/mod_union_table-inl.h"
54 #include "gc/accounting/read_barrier_table.h"
55 #include "gc/accounting/remembered_set.h"
56 #include "gc/accounting/space_bitmap-inl.h"
57 #include "gc/collector/concurrent_copying.h"
58 #include "gc/collector/mark_compact.h"
59 #include "gc/collector/mark_sweep.h"
60 #include "gc/collector/partial_mark_sweep.h"
61 #include "gc/collector/semi_space.h"
62 #include "gc/collector/sticky_mark_sweep.h"
63 #include "gc/racing_check.h"
64 #include "gc/reference_processor.h"
65 #include "gc/scoped_gc_critical_section.h"
66 #include "gc/space/bump_pointer_space.h"
67 #include "gc/space/dlmalloc_space-inl.h"
68 #include "gc/space/image_space.h"
69 #include "gc/space/large_object_space.h"
70 #include "gc/space/region_space.h"
71 #include "gc/space/rosalloc_space-inl.h"
72 #include "gc/space/space-inl.h"
73 #include "gc/space/zygote_space.h"
74 #include "gc/task_processor.h"
75 #include "gc/verification.h"
76 #include "gc_pause_listener.h"
77 #include "gc_root.h"
78 #include "handle_scope-inl.h"
79 #include "heap-inl.h"
80 #include "heap-visit-objects-inl.h"
81 #include "intern_table.h"
82 #include "jit/jit.h"
83 #include "jit/jit_code_cache.h"
84 #include "jni/java_vm_ext.h"
85 #include "mirror/class-inl.h"
86 #include "mirror/executable-inl.h"
87 #include "mirror/field.h"
88 #include "mirror/method_handle_impl.h"
89 #include "mirror/object-inl.h"
90 #include "mirror/object-refvisitor-inl.h"
91 #include "mirror/object_array-inl.h"
92 #include "mirror/reference-inl.h"
93 #include "mirror/var_handle.h"
94 #include "nativehelper/scoped_local_ref.h"
95 #include "oat/image.h"
96 #include "obj_ptr-inl.h"
97 #ifdef ART_TARGET_ANDROID
98 #include "perfetto/heap_profile.h"
99 #endif
100 #include "reflection.h"
101 #include "runtime.h"
102 #include "javaheapprof/javaheapsampler.h"
103 #include "scoped_thread_state_change-inl.h"
104 #include "thread-inl.h"
105 #include "thread_list.h"
106 #include "verify_object-inl.h"
107 #include "well_known_classes.h"
108
109 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
110 #include <malloc.h> // For mallinfo()
111 #endif
112
113 namespace art HIDDEN {
114
115 #ifdef ART_TARGET_ANDROID
116 namespace {
117
118 // Enable the heap sampler Callback function used by Perfetto.
EnableHeapSamplerCallback(void * enable_ptr,const AHeapProfileEnableCallbackInfo * enable_info_ptr)119 void EnableHeapSamplerCallback(void* enable_ptr,
120 const AHeapProfileEnableCallbackInfo* enable_info_ptr) {
121 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr);
122 // Set the ART profiler sampling interval to the value from Perfetto.
123 uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr);
124 if (interval > 0) {
125 sampler_self->SetSamplingInterval(interval);
126 }
127 // Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API.
128 // AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested
129 // (non-negative) sampling interval. It is a uint64_t and gets checked for != 0
130 // Do not call heap as a temp here, it will build but test run will silently fail.
131 // Heap is not fully constructed yet in some cases.
132 sampler_self->EnableHeapSampler();
133 }
134
135 // Disable the heap sampler Callback function used by Perfetto.
DisableHeapSamplerCallback(void * disable_ptr,const AHeapProfileDisableCallbackInfo * info_ptr)136 void DisableHeapSamplerCallback(void* disable_ptr,
137 [[maybe_unused]] const AHeapProfileDisableCallbackInfo* info_ptr) {
138 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr);
139 sampler_self->DisableHeapSampler();
140 }
141
142 } // namespace
143 #endif
144
145 namespace gc {
146
147 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
148
149 // Minimum amount of remaining bytes before a concurrent GC is triggered.
150 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
151 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
152 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
153 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
154 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)155 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
156 return use_generational_cc ? 0.5 : 1.0;
157 }
158 // Whether or not we compact the zygote in PreZygoteFork.
159 static constexpr bool kCompactZygote = kMovingCollector;
160 // How many reserve entries are at the end of the allocation stack, these are only needed if the
161 // allocation stack overflows.
162 static constexpr size_t kAllocationStackReserveSize = 1024;
163 // Default mark stack size in bytes.
164 static const size_t kDefaultMarkStackSize = 64 * KB;
165 // Define space name.
166 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
167 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
168 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
169 static const char* kNonMovingSpaceName = "non moving space";
170 static const char* kZygoteSpaceName = "zygote space";
171 static constexpr bool kGCALotMode = false;
172 // GC alot mode uses a small allocation stack to stress test a lot of GC.
173 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
174 sizeof(mirror::HeapReference<mirror::Object>);
175 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
176 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
177 sizeof(mirror::HeapReference<mirror::Object>);
178 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
179 sizeof(mirror::HeapReference<mirror::Object>);
180
181 // If we violate BOTH of the following constraints, we throw OOME.
182 // They differ due to concurrent allocation.
183 // After a GC (due to allocation failure) we should retrieve at least this
184 // fraction of the current max heap size.
185 static constexpr double kMinFreedHeapAfterGcForAlloc = 0.05;
186 // After a GC (due to allocation failure), at least this fraction of the
187 // heap should be available.
188 static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
189
190 // For deterministic compilation, we need the heap to be at a well-known address.
191 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
192 // Dump the rosalloc stats on SIGQUIT.
193 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
194
195 static const char* kRegionSpaceName = "main space (region space)";
196
197 // If true, we log all GCs in the both the foreground and background. Used for debugging.
198 static constexpr bool kLogAllGCs = false;
199
200 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
201 // allocate with relaxed ergonomics for that long.
202 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
203
204 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
205 // 32 MB (0x2000000) is picked to ensure it is aligned to the largest supported PMD
206 // size, which is 32mb with a 16k page size on AArch64.
__anon1647f9090202() 207 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(([]() constexpr {
208 constexpr size_t kBegin = 32 * MB;
209 constexpr int kMaxPMDSize = (kMaxPageSize / sizeof(uint64_t)) * kMaxPageSize;
210 static_assert(IsAligned<kMaxPMDSize>(kBegin),
211 "Moving-space's begin should be aligned to the maximum supported PMD size.");
212 return kBegin;
213 })());
214 #else
215 #ifdef __ANDROID__
216 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
217 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
218 #else
219 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
220 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
221 #endif
222 #endif
223
224 // Log GC on regular (but fairly large) intervals during GC stress mode.
225 // It is expected that the other runtime options will be used to reduce the usual logging.
226 // This allows us to make the logging much less verbose while still reporting some
227 // progress (biased towards expensive GCs), and while still reporting pathological cases.
228 static constexpr int64_t kGcStressModeGcLogSampleFrequencyNs = MsToNs(10000);
229
CareAboutPauseTimes()230 static inline bool CareAboutPauseTimes() {
231 return Runtime::Current()->InJankPerceptibleProcessState();
232 }
233
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)234 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
235 uint32_t boot_image_size = 0u;
236 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
237 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
238 uint32_t reservation_size = image_header.GetImageReservationSize();
239 uint32_t image_count = image_header.GetImageSpaceCount();
240
241 CHECK_NE(image_count, 0u);
242 CHECK_LE(image_count, num_spaces - i);
243 CHECK_NE(reservation_size, 0u);
244 for (size_t j = 1u; j != image_count; ++j) {
245 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
246 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
247 }
248
249 // Check the start of the heap.
250 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
251 // Check contiguous layout of images and oat files.
252 const uint8_t* current_heap = image_spaces[i]->Begin();
253 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
254 for (size_t j = 0u; j != image_count; ++j) {
255 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
256 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
257 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
258 current_heap += RoundUp(current_header.GetImageSize(), kElfSegmentAlignment);
259 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
260 current_oat = current_header.GetOatFileEnd();
261 }
262 // Check that oat files start at the end of images.
263 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
264 // Check that the reservation size equals the size of images and oat files.
265 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
266
267 boot_image_size += reservation_size;
268 i += image_count;
269 }
270 }
271
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_oat_files,const std::vector<std::string> & image_file_names,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool always_log_explicit_gcs,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc)272 Heap::Heap(size_t initial_size,
273 size_t growth_limit,
274 size_t min_free,
275 size_t max_free,
276 double target_utilization,
277 double foreground_heap_growth_multiplier,
278 size_t stop_for_native_allocs,
279 size_t capacity,
280 size_t non_moving_space_capacity,
281 const std::vector<std::string>& boot_class_path,
282 const std::vector<std::string>& boot_class_path_locations,
283 ArrayRef<File> boot_class_path_files,
284 ArrayRef<File> boot_class_path_image_files,
285 ArrayRef<File> boot_class_path_vdex_files,
286 ArrayRef<File> boot_class_path_oat_files,
287 const std::vector<std::string>& image_file_names,
288 const InstructionSet image_instruction_set,
289 CollectorType foreground_collector_type,
290 CollectorType background_collector_type,
291 space::LargeObjectSpaceType large_object_space_type,
292 size_t large_object_threshold,
293 size_t parallel_gc_threads,
294 size_t conc_gc_threads,
295 bool low_memory_mode,
296 size_t long_pause_log_threshold,
297 size_t long_gc_log_threshold,
298 bool ignore_target_footprint,
299 bool always_log_explicit_gcs,
300 bool use_tlab,
301 bool verify_pre_gc_heap,
302 bool verify_pre_sweeping_heap,
303 bool verify_post_gc_heap,
304 bool verify_pre_gc_rosalloc,
305 bool verify_pre_sweeping_rosalloc,
306 bool verify_post_gc_rosalloc,
307 bool gc_stress_mode,
308 bool measure_gc_performance,
309 bool use_homogeneous_space_compaction_for_oom,
310 bool use_generational_cc,
311 uint64_t min_interval_homogeneous_space_compaction_by_oom,
312 bool dump_region_info_before_gc,
313 bool dump_region_info_after_gc)
314 : non_moving_space_(nullptr),
315 rosalloc_space_(nullptr),
316 dlmalloc_space_(nullptr),
317 main_space_(nullptr),
318 collector_type_(kCollectorTypeNone),
319 foreground_collector_type_(foreground_collector_type),
320 background_collector_type_(background_collector_type),
321 desired_collector_type_(foreground_collector_type_),
322 pending_task_lock_(nullptr),
323 parallel_gc_threads_(parallel_gc_threads),
324 conc_gc_threads_(conc_gc_threads),
325 low_memory_mode_(low_memory_mode),
326 long_pause_log_threshold_(long_pause_log_threshold),
327 long_gc_log_threshold_(long_gc_log_threshold),
328 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
329 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
330 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
331 pre_gc_weighted_allocated_bytes_(0.0),
332 post_gc_weighted_allocated_bytes_(0.0),
333 ignore_target_footprint_(ignore_target_footprint),
334 always_log_explicit_gcs_(always_log_explicit_gcs),
335 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
336 zygote_space_(nullptr),
337 large_object_threshold_(large_object_threshold),
338 disable_thread_flip_count_(0),
339 thread_flip_running_(false),
340 collector_type_running_(kCollectorTypeNone),
341 last_gc_cause_(kGcCauseNone),
342 thread_running_gc_(nullptr),
343 last_gc_type_(collector::kGcTypeNone),
344 next_gc_type_(collector::kGcTypePartial),
345 capacity_(capacity),
346 growth_limit_(growth_limit),
347 initial_heap_size_(initial_size),
348 target_footprint_(initial_size),
349 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
350 // this one.
351 process_state_update_lock_("process state update lock", kPostMonitorLock),
352 min_foreground_target_footprint_(0),
353 min_foreground_concurrent_start_bytes_(0),
354 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
355 total_bytes_freed_ever_(0),
356 total_objects_freed_ever_(0),
357 num_bytes_allocated_(0),
358 native_bytes_registered_(0),
359 old_native_bytes_allocated_(0),
360 native_objects_notified_(0),
361 num_bytes_freed_revoke_(0),
362 num_bytes_alive_after_gc_(0),
363 verify_missing_card_marks_(false),
364 verify_system_weaks_(false),
365 verify_pre_gc_heap_(verify_pre_gc_heap),
366 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
367 verify_post_gc_heap_(verify_post_gc_heap),
368 verify_mod_union_table_(false),
369 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
370 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
371 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
372 gc_stress_mode_(gc_stress_mode),
373 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
374 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
375 * verification is enabled, we limit the size of allocation stacks to speed up their
376 * searching.
377 */
378 max_allocation_stack_size_(kGCALotMode
379 ? kGcAlotAllocationStackSize
380 : (kVerifyObjectSupport > kVerifyObjectModeFast)
381 ? kVerifyObjectAllocationStackSize
382 : kDefaultAllocationStackSize),
383 current_allocator_(kAllocatorTypeDlMalloc),
384 current_non_moving_allocator_(kAllocatorTypeNonMoving),
385 bump_pointer_space_(nullptr),
386 temp_space_(nullptr),
387 region_space_(nullptr),
388 min_free_(min_free),
389 max_free_(max_free),
390 target_utilization_(target_utilization),
391 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
392 stop_for_native_allocs_(stop_for_native_allocs),
393 total_wait_time_(0),
394 verify_object_mode_(kVerifyObjectModeDisabled),
395 disable_moving_gc_count_(0),
396 semi_space_collector_(nullptr),
397 active_concurrent_copying_collector_(nullptr),
398 young_concurrent_copying_collector_(nullptr),
399 concurrent_copying_collector_(nullptr),
400 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
401 use_tlab_(use_tlab),
402 main_space_backup_(nullptr),
403 min_interval_homogeneous_space_compaction_by_oom_(
404 min_interval_homogeneous_space_compaction_by_oom),
405 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
406 gcs_completed_(0u),
407 max_gc_requested_(0u),
408 pending_collector_transition_(nullptr),
409 pending_heap_trim_(nullptr),
410 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
411 use_generational_cc_(use_generational_cc),
412 running_collection_is_blocking_(false),
413 blocking_gc_count_(0U),
414 blocking_gc_time_(0U),
415 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
416 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
417 gc_count_last_window_(0U),
418 blocking_gc_count_last_window_(0U),
419 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
420 blocking_gc_count_rate_histogram_(
421 "blocking gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
422 alloc_tracking_enabled_(false),
423 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
424 backtrace_lock_(nullptr),
425 seen_backtrace_count_(0u),
426 unique_backtrace_count_(0u),
427 gc_disabled_for_shutdown_(false),
428 dump_region_info_before_gc_(dump_region_info_before_gc),
429 dump_region_info_after_gc_(dump_region_info_after_gc),
430 boot_image_spaces_(),
431 boot_images_start_address_(0u),
432 boot_images_size_(0u),
433 pre_oome_gc_count_(0u) {
434 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
435 LOG(INFO) << "Heap() entering";
436 }
437
438 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
439 if (gUseUserfaultfd) {
440 CHECK_EQ(foreground_collector_type_, kCollectorTypeCMC);
441 CHECK_EQ(background_collector_type_, kCollectorTypeCMCBackground);
442 } else {
443 // This ensures that userfaultfd syscall is done before any seccomp filter is installed.
444 // TODO(b/266731037): Remove this when we no longer need to collect metric on userfaultfd
445 // support.
446 auto [uffd_supported, minor_fault_supported] = collector::MarkCompact::GetUffdAndMinorFault();
447 // The check is just to ensure that compiler doesn't eliminate the function call above.
448 // Userfaultfd support is certain to be there if its minor-fault feature is supported.
449 CHECK_IMPLIES(minor_fault_supported, uffd_supported);
450 }
451
452 if (gUseReadBarrier) {
453 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
454 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
455 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
456 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
457 << "Changing from " << foreground_collector_type_ << " to "
458 << background_collector_type_ << " (or visa versa) is not supported.";
459 }
460 verification_.reset(new Verification(this));
461 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
462 ScopedTrace trace(__FUNCTION__);
463 Runtime* const runtime = Runtime::Current();
464 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
465 // entrypoints.
466 const bool is_zygote = runtime->IsZygote();
467 if (!is_zygote) {
468 // Background compaction is currently not supported for command line runs.
469 if (background_collector_type_ != foreground_collector_type_) {
470 VLOG(heap) << "Disabling background compaction for non zygote";
471 background_collector_type_ = foreground_collector_type_;
472 }
473 }
474 ChangeCollector(desired_collector_type_);
475 live_bitmap_.reset(new accounting::HeapBitmap(this));
476 mark_bitmap_.reset(new accounting::HeapBitmap(this));
477
478 // We don't have hspace compaction enabled with CC.
479 if (foreground_collector_type_ == kCollectorTypeCC
480 || foreground_collector_type_ == kCollectorTypeCMC) {
481 use_homogeneous_space_compaction_for_oom_ = false;
482 }
483 bool support_homogeneous_space_compaction =
484 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
485 use_homogeneous_space_compaction_for_oom_;
486 // We may use the same space the main space for the non moving space if we don't need to compact
487 // from the main space.
488 // This is not the case if we support homogeneous compaction or have a moving background
489 // collector type.
490 bool separate_non_moving_space = is_zygote ||
491 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
492 IsMovingGc(background_collector_type_);
493
494 // Requested begin for the alloc space, to follow the mapped image and oat files
495 uint8_t* request_begin = nullptr;
496 // Calculate the extra space required after the boot image, see allocations below.
497 size_t heap_reservation_size = 0u;
498 if (separate_non_moving_space) {
499 heap_reservation_size = non_moving_space_capacity;
500 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
501 heap_reservation_size = capacity_;
502 }
503 heap_reservation_size = RoundUp(heap_reservation_size, gPageSize);
504 // Load image space(s).
505 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
506 MemMap heap_reservation;
507 if (space::ImageSpace::LoadBootImage(boot_class_path,
508 boot_class_path_locations,
509 boot_class_path_files,
510 boot_class_path_image_files,
511 boot_class_path_vdex_files,
512 boot_class_path_oat_files,
513 image_file_names,
514 image_instruction_set,
515 runtime->ShouldRelocate(),
516 /*executable=*/!runtime->IsAotCompiler(),
517 heap_reservation_size,
518 runtime->AllowInMemoryCompilation(),
519 runtime->GetApexVersions(),
520 &boot_image_spaces,
521 &heap_reservation)) {
522 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
523 DCHECK(!boot_image_spaces.empty());
524 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
525 DCHECK_IMPLIES(heap_reservation.IsValid(), request_begin == heap_reservation.Begin())
526 << "request_begin=" << static_cast<const void*>(request_begin)
527 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
528 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
529 boot_image_spaces_.push_back(space.get());
530 AddSpace(space.release());
531 }
532 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
533 uint32_t boot_images_end =
534 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
535 boot_images_size_ = boot_images_end - boot_images_start_address_;
536 if (kIsDebugBuild) {
537 VerifyBootImagesContiguity(boot_image_spaces_);
538 }
539 } else {
540 if (foreground_collector_type_ == kCollectorTypeCC) {
541 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
542 // when there's no image (dex2oat for target).
543 request_begin = kPreferredAllocSpaceBegin;
544 }
545 // Gross hack to make dex2oat deterministic.
546 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
547 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
548 // b/26849108
549 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
550 }
551 }
552
553 /*
554 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
555 +- nonmoving space (non_moving_space_capacity)+-
556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
557 +-????????????????????????????????????????????+-
558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
559 +-main alloc space / bump space 1 (capacity_) +-
560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
561 +-????????????????????????????????????????????+-
562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
563 +-main alloc space2 / bump space 2 (capacity_)+-
564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
565 */
566
567 MemMap main_mem_map_1;
568 MemMap main_mem_map_2;
569
570 std::string error_str;
571 MemMap non_moving_space_mem_map;
572 if (separate_non_moving_space) {
573 ScopedTrace trace2("Create separate non moving space");
574 // If we are the zygote, the non moving space becomes the zygote space when we run
575 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
576 // rename the mem map later.
577 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
578 // Reserve the non moving mem map before the other two since it needs to be at a specific
579 // address.
580 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
581 if (heap_reservation.IsValid()) {
582 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
583 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
584 } else {
585 non_moving_space_mem_map = MapAnonymousPreferredAddress(
586 space_name, request_begin, non_moving_space_capacity, &error_str);
587 }
588 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
589 DCHECK(!heap_reservation.IsValid());
590 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
591 request_begin = non_moving_space_mem_map.Begin() == kPreferredAllocSpaceBegin
592 ? non_moving_space_mem_map.End()
593 : kPreferredAllocSpaceBegin;
594 }
595 // Attempt to create 2 mem maps at or after the requested begin.
596 if (foreground_collector_type_ != kCollectorTypeCC) {
597 ScopedTrace trace2("Create main mem map");
598 if (separate_non_moving_space || !is_zygote) {
599 main_mem_map_1 = MapAnonymousPreferredAddress(
600 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
601 } else {
602 // If no separate non-moving space and we are the zygote, the main space must come right after
603 // the image space to avoid a gap. This is required since we want the zygote space to be
604 // adjacent to the image space.
605 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
606 main_mem_map_1 = MemMap::MapAnonymous(
607 kMemMapSpaceName[0],
608 request_begin,
609 capacity_,
610 PROT_READ | PROT_WRITE,
611 /* low_4gb= */ true,
612 /* reuse= */ false,
613 heap_reservation.IsValid() ? &heap_reservation : nullptr,
614 &error_str);
615 }
616 CHECK(main_mem_map_1.IsValid()) << error_str;
617 DCHECK(!heap_reservation.IsValid());
618 }
619 if (support_homogeneous_space_compaction ||
620 background_collector_type_ == kCollectorTypeSS ||
621 foreground_collector_type_ == kCollectorTypeSS) {
622 ScopedTrace trace2("Create main mem map 2");
623 main_mem_map_2 = MapAnonymousPreferredAddress(
624 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
625 CHECK(main_mem_map_2.IsValid()) << error_str;
626 }
627
628 // Create the non moving space first so that bitmaps don't take up the address range.
629 if (separate_non_moving_space) {
630 ScopedTrace trace2("Add non moving space");
631 // Non moving space is always dlmalloc since we currently don't have support for multiple
632 // active rosalloc spaces.
633 const size_t size = non_moving_space_mem_map.Size();
634 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
635 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
636 "zygote / non moving space",
637 GetDefaultStartingSize(),
638 initial_size,
639 size,
640 size,
641 /* can_move_objects= */ false);
642 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
643 << non_moving_space_mem_map_begin;
644 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
645 AddSpace(non_moving_space_);
646 }
647 // Create other spaces based on whether or not we have a moving GC.
648 if (foreground_collector_type_ == kCollectorTypeCC) {
649 CHECK(separate_non_moving_space);
650 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
651 MemMap region_space_mem_map =
652 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
653 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
654 region_space_ = space::RegionSpace::Create(
655 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
656 AddSpace(region_space_);
657 } else if (IsMovingGc(foreground_collector_type_)) {
658 // Create bump pointer spaces.
659 // We only to create the bump pointer if the foreground collector is a compacting GC.
660 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
661 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
662 std::move(main_mem_map_1));
663 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
664 AddSpace(bump_pointer_space_);
665 // For Concurrent Mark-compact GC we don't need the temp space to be in
666 // lower 4GB. So its temp space will be created by the GC itself.
667 if (foreground_collector_type_ != kCollectorTypeCMC) {
668 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
669 std::move(main_mem_map_2));
670 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
671 AddSpace(temp_space_);
672 }
673 CHECK(separate_non_moving_space);
674 } else {
675 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
676 CHECK(main_space_ != nullptr);
677 AddSpace(main_space_);
678 if (!separate_non_moving_space) {
679 non_moving_space_ = main_space_;
680 CHECK(!non_moving_space_->CanMoveObjects());
681 }
682 if (main_mem_map_2.IsValid()) {
683 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
684 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
685 initial_size,
686 growth_limit_,
687 capacity_,
688 name,
689 /* can_move_objects= */ true));
690 CHECK(main_space_backup_.get() != nullptr);
691 // Add the space so its accounted for in the heap_begin and heap_end.
692 AddSpace(main_space_backup_.get());
693 }
694 }
695 CHECK(non_moving_space_ != nullptr);
696 CHECK(!non_moving_space_->CanMoveObjects());
697 // Allocate the large object space.
698 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
699 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
700 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
701 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
702 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
703 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
704 } else {
705 // Disable the large object space by making the cutoff excessively large.
706 large_object_threshold_ = std::numeric_limits<size_t>::max();
707 large_object_space_ = nullptr;
708 }
709 if (large_object_space_ != nullptr) {
710 AddSpace(large_object_space_);
711 }
712 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
713 CHECK(!continuous_spaces_.empty());
714 // Relies on the spaces being sorted.
715 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
716 uint8_t* heap_end = continuous_spaces_.back()->Limit();
717 size_t heap_capacity = heap_end - heap_begin;
718 // Remove the main backup space since it slows down the GC to have unused extra spaces.
719 // TODO: Avoid needing to do this.
720 if (main_space_backup_.get() != nullptr) {
721 RemoveSpace(main_space_backup_.get());
722 }
723 // Allocate the card table.
724 // We currently don't support dynamically resizing the card table.
725 // Since we don't know where in the low_4gb the app image will be located, make the card table
726 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
727 UNUSED(heap_capacity);
728 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
729 // reserved by the kernel.
730 static constexpr size_t kMinHeapAddress = 4 * KB;
731 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
732 4 * GB - kMinHeapAddress));
733 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
734 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
735 rb_table_.reset(new accounting::ReadBarrierTable());
736 DCHECK(rb_table_->IsAllCleared());
737 }
738 if (HasBootImageSpace()) {
739 // Don't add the image mod union table if we are running without an image, this can crash if
740 // we use the CardCache implementation.
741 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
742 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
743 "Image mod-union table", this, image_space);
744 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
745 AddModUnionTable(mod_union_table);
746 }
747 }
748 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
749 accounting::RememberedSet* non_moving_space_rem_set =
750 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
751 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
752 AddRememberedSet(non_moving_space_rem_set);
753 }
754 // TODO: Count objects in the image space here?
755 num_bytes_allocated_.store(0, std::memory_order_relaxed);
756 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
757 kDefaultMarkStackSize));
758 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
759 allocation_stack_.reset(accounting::ObjectStack::Create(
760 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
761 live_stack_.reset(accounting::ObjectStack::Create(
762 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
763 // It's still too early to take a lock because there are no threads yet, but we can create locks
764 // now. We don't create it earlier to make it clear that you can't use locks during heap
765 // initialization.
766 gc_complete_lock_ = new Mutex("GC complete lock");
767 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
768 *gc_complete_lock_));
769
770 thread_flip_lock_ = new Mutex("GC thread flip lock");
771 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
772 *thread_flip_lock_));
773 task_processor_.reset(new TaskProcessor());
774 reference_processor_.reset(new ReferenceProcessor());
775 pending_task_lock_ = new Mutex("Pending task lock");
776 if (ignore_target_footprint_) {
777 SetIdealFootprint(std::numeric_limits<size_t>::max());
778 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
779 }
780 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
781 // Create our garbage collectors.
782 for (size_t i = 0; i < 2; ++i) {
783 const bool concurrent = i != 0;
784 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
785 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
786 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
787 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
788 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
789 }
790 }
791 if (kMovingCollector) {
792 if (MayUseCollector(kCollectorTypeSS) ||
793 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
794 use_homogeneous_space_compaction_for_oom_) {
795 semi_space_collector_ = new collector::SemiSpace(this);
796 garbage_collectors_.push_back(semi_space_collector_);
797 }
798 if (MayUseCollector(kCollectorTypeCMC)) {
799 mark_compact_ = new collector::MarkCompact(this);
800 garbage_collectors_.push_back(mark_compact_);
801 }
802 if (MayUseCollector(kCollectorTypeCC)) {
803 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
804 /*young_gen=*/false,
805 use_generational_cc_,
806 "",
807 measure_gc_performance);
808 if (use_generational_cc_) {
809 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
810 this,
811 /*young_gen=*/true,
812 use_generational_cc_,
813 "young",
814 measure_gc_performance);
815 }
816 active_concurrent_copying_collector_.store(concurrent_copying_collector_,
817 std::memory_order_relaxed);
818 DCHECK(region_space_ != nullptr);
819 concurrent_copying_collector_->SetRegionSpace(region_space_);
820 if (use_generational_cc_) {
821 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
822 // At this point, non-moving space should be created.
823 DCHECK(non_moving_space_ != nullptr);
824 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
825 }
826 garbage_collectors_.push_back(concurrent_copying_collector_);
827 if (use_generational_cc_) {
828 garbage_collectors_.push_back(young_concurrent_copying_collector_);
829 }
830 }
831 }
832 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
833 (is_zygote || separate_non_moving_space)) {
834 // Check that there's no gap between the image space and the non moving space so that the
835 // immune region won't break (eg. due to a large object allocated in the gap). This is only
836 // required when we're the zygote.
837 // Space with smallest Begin().
838 space::ImageSpace* first_space = nullptr;
839 for (space::ImageSpace* space : boot_image_spaces_) {
840 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
841 first_space = space;
842 }
843 }
844 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
845 if (!no_gap) {
846 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
847 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
848 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
849 }
850 }
851 // Perfetto Java Heap Profiler Support.
852 if (runtime->IsPerfettoJavaHeapStackProfEnabled()) {
853 // Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler.
854 InitPerfettoJavaHeapProf();
855 } else {
856 // Disable the Java Heap Profiler.
857 GetHeapSampler().DisableHeapSampler();
858 }
859
860 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
861 if (gc_stress_mode_) {
862 backtrace_lock_ = new Mutex("GC complete lock");
863 }
864 if (is_running_on_memory_tool_ || gc_stress_mode_) {
865 instrumentation->InstrumentQuickAllocEntryPoints();
866 }
867 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
868 LOG(INFO) << "Heap() exiting";
869 }
870 }
871
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)872 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
873 uint8_t* request_begin,
874 size_t capacity,
875 std::string* out_error_str) {
876 while (true) {
877 MemMap map = MemMap::MapAnonymous(name,
878 request_begin,
879 capacity,
880 PROT_READ | PROT_WRITE,
881 /*low_4gb=*/ true,
882 /*reuse=*/ false,
883 /*reservation=*/ nullptr,
884 out_error_str);
885 if (map.IsValid() || request_begin == nullptr) {
886 return map;
887 }
888 // Retry a second time with no specified request begin.
889 request_begin = nullptr;
890 }
891 }
892
MayUseCollector(CollectorType type) const893 bool Heap::MayUseCollector(CollectorType type) const {
894 return foreground_collector_type_ == type || background_collector_type_ == type;
895 }
896
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)897 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
898 size_t initial_size,
899 size_t growth_limit,
900 size_t capacity,
901 const char* name,
902 bool can_move_objects) {
903 space::MallocSpace* malloc_space = nullptr;
904 if (kUseRosAlloc) {
905 // Create rosalloc space.
906 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
907 name,
908 GetDefaultStartingSize(),
909 initial_size,
910 growth_limit,
911 capacity,
912 low_memory_mode_,
913 can_move_objects);
914 } else {
915 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
916 name,
917 GetDefaultStartingSize(),
918 initial_size,
919 growth_limit,
920 capacity,
921 can_move_objects);
922 }
923 if (collector::SemiSpace::kUseRememberedSet) {
924 accounting::RememberedSet* rem_set =
925 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
926 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
927 AddRememberedSet(rem_set);
928 }
929 CHECK(malloc_space != nullptr) << "Failed to create " << name;
930 malloc_space->SetFootprintLimit(malloc_space->Capacity());
931 return malloc_space;
932 }
933
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)934 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
935 size_t initial_size,
936 size_t growth_limit,
937 size_t capacity) {
938 // Is background compaction is enabled?
939 bool can_move_objects = IsMovingGc(background_collector_type_) !=
940 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
941 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
942 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
943 // from the main space to the zygote space. If background compaction is enabled, always pass in
944 // that we can move objets.
945 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
946 // After the zygote we want this to be false if we don't have background compaction enabled so
947 // that getting primitive array elements is faster.
948 can_move_objects = !HasZygoteSpace();
949 }
950 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
951 RemoveRememberedSet(main_space_);
952 }
953 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
954 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
955 initial_size,
956 growth_limit,
957 capacity, name,
958 can_move_objects);
959 SetSpaceAsDefault(main_space_);
960 VLOG(heap) << "Created main space " << main_space_;
961 }
962
ChangeAllocator(AllocatorType allocator)963 void Heap::ChangeAllocator(AllocatorType allocator) {
964 if (current_allocator_ != allocator) {
965 // These two allocators are only used internally and don't have any entrypoints.
966 CHECK_NE(allocator, kAllocatorTypeLOS);
967 CHECK_NE(allocator, kAllocatorTypeNonMoving);
968 current_allocator_ = allocator;
969 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
970 SetQuickAllocEntryPointsAllocator(current_allocator_);
971 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
972 }
973 }
974
IsCompilingBoot() const975 bool Heap::IsCompilingBoot() const {
976 if (!Runtime::Current()->IsAotCompiler()) {
977 return false;
978 }
979 ScopedObjectAccess soa(Thread::Current());
980 for (const auto& space : continuous_spaces_) {
981 if (space->IsImageSpace() || space->IsZygoteSpace()) {
982 return false;
983 }
984 }
985 return true;
986 }
987
IncrementDisableMovingGC(Thread * self)988 void Heap::IncrementDisableMovingGC(Thread* self) {
989 // Need to do this holding the lock to prevent races where the GC is about to run / running when
990 // we attempt to disable it.
991 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
992 MutexLock mu(self, *gc_complete_lock_);
993 ++disable_moving_gc_count_;
994 if (IsMovingGc(collector_type_running_)) {
995 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
996 }
997 }
998
DecrementDisableMovingGC(Thread * self)999 void Heap::DecrementDisableMovingGC(Thread* self) {
1000 MutexLock mu(self, *gc_complete_lock_);
1001 CHECK_GT(disable_moving_gc_count_, 0U);
1002 --disable_moving_gc_count_;
1003 }
1004
IncrementDisableThreadFlip(Thread * self)1005 void Heap::IncrementDisableThreadFlip(Thread* self) {
1006 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
1007 bool is_nested = self->GetDisableThreadFlipCount() > 0;
1008 self->IncrementDisableThreadFlipCount();
1009 if (is_nested) {
1010 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
1011 // counter. The global counter is incremented only once for a thread for the outermost enter.
1012 return;
1013 }
1014 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1015 MutexLock mu(self, *thread_flip_lock_);
1016 thread_flip_cond_->CheckSafeToWait(self);
1017 bool has_waited = false;
1018 uint64_t wait_start = 0;
1019 if (thread_flip_running_) {
1020 wait_start = NanoTime();
1021 ScopedTrace trace("IncrementDisableThreadFlip");
1022 while (thread_flip_running_) {
1023 has_waited = true;
1024 thread_flip_cond_->Wait(self);
1025 }
1026 }
1027 ++disable_thread_flip_count_;
1028 if (has_waited) {
1029 uint64_t wait_time = NanoTime() - wait_start;
1030 total_wait_time_ += wait_time;
1031 if (wait_time > long_pause_log_threshold_) {
1032 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1033 }
1034 }
1035 }
1036
EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj)1037 void Heap::EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) {
1038 if (gUseUserfaultfd) {
1039 // Use volatile to ensure that compiler loads from memory to trigger userfaults, if required.
1040 const uint8_t* start = reinterpret_cast<uint8_t*>(obj.Ptr());
1041 const uint8_t* end = AlignUp(start + obj->SizeOf(), gPageSize);
1042 // The first page is already touched by SizeOf().
1043 start += gPageSize;
1044 while (start < end) {
1045 ForceRead(start);
1046 start += gPageSize;
1047 }
1048 }
1049 }
1050
DecrementDisableThreadFlip(Thread * self)1051 void Heap::DecrementDisableThreadFlip(Thread* self) {
1052 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
1053 // the GC waiting before doing a thread flip.
1054 self->DecrementDisableThreadFlipCount();
1055 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
1056 if (!is_outermost) {
1057 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
1058 // The global counter is decremented only once for a thread for the outermost exit.
1059 return;
1060 }
1061 MutexLock mu(self, *thread_flip_lock_);
1062 CHECK_GT(disable_thread_flip_count_, 0U);
1063 --disable_thread_flip_count_;
1064 if (disable_thread_flip_count_ == 0) {
1065 // Potentially notify the GC thread blocking to begin a thread flip.
1066 thread_flip_cond_->Broadcast(self);
1067 }
1068 }
1069
ThreadFlipBegin(Thread * self)1070 void Heap::ThreadFlipBegin(Thread* self) {
1071 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
1072 // > 0, block. Otherwise, go ahead.
1073 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1074 MutexLock mu(self, *thread_flip_lock_);
1075 thread_flip_cond_->CheckSafeToWait(self);
1076 bool has_waited = false;
1077 uint64_t wait_start = NanoTime();
1078 CHECK(!thread_flip_running_);
1079 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
1080 // GC. This like a writer preference of a reader-writer lock.
1081 thread_flip_running_ = true;
1082 while (disable_thread_flip_count_ > 0) {
1083 has_waited = true;
1084 thread_flip_cond_->Wait(self);
1085 }
1086 if (has_waited) {
1087 uint64_t wait_time = NanoTime() - wait_start;
1088 total_wait_time_ += wait_time;
1089 if (wait_time > long_pause_log_threshold_) {
1090 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1091 }
1092 }
1093 }
1094
ThreadFlipEnd(Thread * self)1095 void Heap::ThreadFlipEnd(Thread* self) {
1096 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
1097 // waiting before doing a JNI critical.
1098 MutexLock mu(self, *thread_flip_lock_);
1099 CHECK(thread_flip_running_);
1100 thread_flip_running_ = false;
1101 // Potentially notify mutator threads blocking to enter a JNI critical section.
1102 thread_flip_cond_->Broadcast(self);
1103 }
1104
GrowHeapOnJankPerceptibleSwitch()1105 void Heap::GrowHeapOnJankPerceptibleSwitch() {
1106 MutexLock mu(Thread::Current(), process_state_update_lock_);
1107 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
1108 if (orig_target_footprint < min_foreground_target_footprint_) {
1109 target_footprint_.compare_exchange_strong(orig_target_footprint,
1110 min_foreground_target_footprint_,
1111 std::memory_order_relaxed);
1112 }
1113 if (IsGcConcurrent() && concurrent_start_bytes_ < min_foreground_concurrent_start_bytes_) {
1114 concurrent_start_bytes_ = min_foreground_concurrent_start_bytes_;
1115 }
1116 }
1117
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)1118 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
1119 if (old_process_state != new_process_state) {
1120 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
1121 if (jank_perceptible) {
1122 // Transition back to foreground right away to prevent jank.
1123 RequestCollectorTransition(foreground_collector_type_, 0);
1124 GrowHeapOnJankPerceptibleSwitch();
1125 } else {
1126 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1127 // special handling which does a homogenous space compaction once but then doesn't transition
1128 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1129 // transition the collector.
1130 RequestCollectorTransition(background_collector_type_, 0);
1131 }
1132 }
1133 }
1134
CreateThreadPool(size_t num_threads)1135 void Heap::CreateThreadPool(size_t num_threads) {
1136 if (num_threads == 0) {
1137 num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1138 }
1139 if (num_threads != 0) {
1140 thread_pool_.reset(ThreadPool::Create("Heap thread pool", num_threads));
1141 }
1142 }
1143
WaitForWorkersToBeCreated()1144 void Heap::WaitForWorkersToBeCreated() {
1145 DCHECK(!Runtime::Current()->IsShuttingDown(Thread::Current()))
1146 << "Cannot create new threads during runtime shutdown";
1147 if (thread_pool_ != nullptr) {
1148 thread_pool_->WaitForWorkersToBeCreated();
1149 }
1150 }
1151
MarkAllocStackAsLive(accounting::ObjectStack * stack)1152 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1153 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1154 space::ContinuousSpace* space2 = non_moving_space_;
1155 // TODO: Generalize this to n bitmaps?
1156 CHECK(space1 != nullptr);
1157 CHECK(space2 != nullptr);
1158 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1159 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1160 stack);
1161 }
1162
DeleteThreadPool()1163 void Heap::DeleteThreadPool() {
1164 thread_pool_.reset(nullptr);
1165 }
1166
AddSpace(space::Space * space)1167 void Heap::AddSpace(space::Space* space) {
1168 CHECK(space != nullptr);
1169 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1170 if (space->IsContinuousSpace()) {
1171 DCHECK(!space->IsDiscontinuousSpace());
1172 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1173 // Continuous spaces don't necessarily have bitmaps.
1174 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1175 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1176 // The region space bitmap is not added since VisitObjects visits the region space objects with
1177 // special handling.
1178 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1179 CHECK(mark_bitmap != nullptr);
1180 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1181 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1182 }
1183 continuous_spaces_.push_back(continuous_space);
1184 // Ensure that spaces remain sorted in increasing order of start address.
1185 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1186 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1187 return a->Begin() < b->Begin();
1188 });
1189 } else {
1190 CHECK(space->IsDiscontinuousSpace());
1191 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1192 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1193 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1194 discontinuous_spaces_.push_back(discontinuous_space);
1195 }
1196 if (space->IsAllocSpace()) {
1197 alloc_spaces_.push_back(space->AsAllocSpace());
1198 }
1199 }
1200
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1201 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1202 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1203 if (continuous_space->IsDlMallocSpace()) {
1204 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1205 } else if (continuous_space->IsRosAllocSpace()) {
1206 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1207 }
1208 }
1209
RemoveSpace(space::Space * space)1210 void Heap::RemoveSpace(space::Space* space) {
1211 DCHECK(space != nullptr);
1212 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1213 if (space->IsContinuousSpace()) {
1214 DCHECK(!space->IsDiscontinuousSpace());
1215 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1216 // Continuous spaces don't necessarily have bitmaps.
1217 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1218 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1219 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1220 DCHECK(mark_bitmap != nullptr);
1221 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1222 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1223 }
1224 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1225 DCHECK(it != continuous_spaces_.end());
1226 continuous_spaces_.erase(it);
1227 } else {
1228 DCHECK(space->IsDiscontinuousSpace());
1229 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1230 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1231 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1232 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1233 discontinuous_space);
1234 DCHECK(it != discontinuous_spaces_.end());
1235 discontinuous_spaces_.erase(it);
1236 }
1237 if (space->IsAllocSpace()) {
1238 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1239 DCHECK(it != alloc_spaces_.end());
1240 alloc_spaces_.erase(it);
1241 }
1242 }
1243
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1244 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1245 uint64_t current_process_cpu_time) const {
1246 uint64_t bytes_allocated = GetBytesAllocated();
1247 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1248 return weight * bytes_allocated;
1249 }
1250
CalculatePreGcWeightedAllocatedBytes()1251 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1252 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1253 pre_gc_weighted_allocated_bytes_ +=
1254 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1255 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1256 }
1257
CalculatePostGcWeightedAllocatedBytes()1258 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1259 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1260 post_gc_weighted_allocated_bytes_ +=
1261 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1262 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1263 }
1264
GetTotalGcCpuTime()1265 uint64_t Heap::GetTotalGcCpuTime() {
1266 uint64_t sum = 0;
1267 for (auto* collector : garbage_collectors_) {
1268 sum += collector->GetTotalCpuTime();
1269 }
1270 return sum;
1271 }
1272
DumpGcPerformanceInfo(std::ostream & os)1273 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1274 // Dump cumulative timings.
1275 os << "Dumping cumulative Gc timings\n";
1276 uint64_t total_duration = 0;
1277 // Dump cumulative loggers for each GC type.
1278 uint64_t total_paused_time = 0;
1279 for (auto* collector : garbage_collectors_) {
1280 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1281 total_paused_time += collector->GetTotalPausedTimeNs();
1282 collector->DumpPerformanceInfo(os);
1283 }
1284 if (total_duration != 0) {
1285 const double total_seconds = total_duration / 1.0e9;
1286 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1287 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1288 os << "Mean GC size throughput: "
1289 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1290 << " per cpu-time: "
1291 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1292 }
1293 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1294 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1295 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1296 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1297 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1298 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1299 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1300 if (HasZygoteSpace()) {
1301 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1302 }
1303 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1304 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1305 os << "Total GC count: " << GetGcCount() << "\n";
1306 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1307 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1308 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1309 os << "Total pre-OOME GC count: " << GetPreOomeGcCount() << "\n";
1310 {
1311 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1312 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1313 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1314 gc_count_rate_histogram_.DumpBins(os);
1315 os << "\n";
1316 }
1317 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1318 os << "Histogram of blocking GC count per "
1319 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1320 blocking_gc_count_rate_histogram_.DumpBins(os);
1321 os << "\n";
1322 }
1323 }
1324
1325 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1326 rosalloc_space_->DumpStats(os);
1327 }
1328
1329 os << "Native bytes total: " << GetNativeBytes()
1330 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1331
1332 os << "Total native bytes at last GC: "
1333 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1334
1335 BaseMutex::DumpAll(os);
1336 }
1337
ResetGcPerformanceInfo()1338 void Heap::ResetGcPerformanceInfo() {
1339 for (auto* collector : garbage_collectors_) {
1340 collector->ResetMeasurements();
1341 }
1342
1343 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1344
1345 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1346 pre_gc_weighted_allocated_bytes_ = 0u;
1347
1348 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1349 post_gc_weighted_allocated_bytes_ = 0u;
1350
1351 total_bytes_freed_ever_.store(0);
1352 total_objects_freed_ever_.store(0);
1353 total_wait_time_ = 0;
1354 blocking_gc_count_ = 0;
1355 blocking_gc_time_ = 0;
1356 pre_oome_gc_count_.store(0, std::memory_order_relaxed);
1357 gc_count_last_window_ = 0;
1358 blocking_gc_count_last_window_ = 0;
1359 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1360 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1361 {
1362 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1363 gc_count_rate_histogram_.Reset();
1364 blocking_gc_count_rate_histogram_.Reset();
1365 }
1366 }
1367
GetGcCount() const1368 uint64_t Heap::GetGcCount() const {
1369 uint64_t gc_count = 0U;
1370 for (auto* collector : garbage_collectors_) {
1371 gc_count += collector->GetCumulativeTimings().GetIterations();
1372 }
1373 return gc_count;
1374 }
1375
GetGcTime() const1376 uint64_t Heap::GetGcTime() const {
1377 uint64_t gc_time = 0U;
1378 for (auto* collector : garbage_collectors_) {
1379 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1380 }
1381 return gc_time;
1382 }
1383
GetBlockingGcCount() const1384 uint64_t Heap::GetBlockingGcCount() const {
1385 return blocking_gc_count_;
1386 }
1387
GetBlockingGcTime() const1388 uint64_t Heap::GetBlockingGcTime() const {
1389 return blocking_gc_time_;
1390 }
1391
DumpGcCountRateHistogram(std::ostream & os) const1392 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1393 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1394 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1395 gc_count_rate_histogram_.DumpBins(os);
1396 }
1397 }
1398
DumpBlockingGcCountRateHistogram(std::ostream & os) const1399 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1400 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1401 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1402 blocking_gc_count_rate_histogram_.DumpBins(os);
1403 }
1404 }
1405
GetPreOomeGcCount() const1406 uint64_t Heap::GetPreOomeGcCount() const {
1407 return pre_oome_gc_count_.load(std::memory_order_relaxed);
1408 }
1409
1410 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1411 static inline AllocationListener* GetAndOverwriteAllocationListener(
1412 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1413 return storage->exchange(new_value);
1414 }
1415
~Heap()1416 Heap::~Heap() {
1417 VLOG(heap) << "Starting ~Heap()";
1418 STLDeleteElements(&garbage_collectors_);
1419 // If we don't reset then the mark stack complains in its destructor.
1420 allocation_stack_->Reset();
1421 allocation_records_.reset();
1422 live_stack_->Reset();
1423 STLDeleteValues(&mod_union_tables_);
1424 STLDeleteValues(&remembered_sets_);
1425 STLDeleteElements(&continuous_spaces_);
1426 STLDeleteElements(&discontinuous_spaces_);
1427 delete gc_complete_lock_;
1428 delete thread_flip_lock_;
1429 delete pending_task_lock_;
1430 delete backtrace_lock_;
1431 uint64_t unique_count = unique_backtrace_count_.load();
1432 uint64_t seen_count = seen_backtrace_count_.load();
1433 if (unique_count != 0 || seen_count != 0) {
1434 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1435 }
1436 VLOG(heap) << "Finished ~Heap()";
1437 }
1438
1439
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1440 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1441 for (const auto& space : continuous_spaces_) {
1442 if (space->Contains(addr)) {
1443 return space;
1444 }
1445 }
1446 return nullptr;
1447 }
1448
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1449 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1450 bool fail_ok) const {
1451 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1452 if (space != nullptr) {
1453 return space;
1454 }
1455 if (!fail_ok) {
1456 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1457 }
1458 return nullptr;
1459 }
1460
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1461 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1462 bool fail_ok) const {
1463 for (const auto& space : discontinuous_spaces_) {
1464 if (space->Contains(obj.Ptr())) {
1465 return space;
1466 }
1467 }
1468 if (!fail_ok) {
1469 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1470 }
1471 return nullptr;
1472 }
1473
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1474 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1475 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1476 if (result != nullptr) {
1477 return result;
1478 }
1479 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1480 }
1481
FindSpaceFromAddress(const void * addr) const1482 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1483 for (const auto& space : continuous_spaces_) {
1484 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1485 return space;
1486 }
1487 }
1488 for (const auto& space : discontinuous_spaces_) {
1489 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1490 return space;
1491 }
1492 }
1493 return nullptr;
1494 }
1495
DumpSpaceNameFromAddress(const void * addr) const1496 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1497 space::Space* space = FindSpaceFromAddress(addr);
1498 return (space != nullptr) ? space->GetName() : "no space";
1499 }
1500
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1501 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1502 // If we're in a stack overflow, do not create a new exception. It would require running the
1503 // constructor, which will of course still be in a stack overflow. Note: we only care if the
1504 // native stack has overflowed. If the simulated stack overflows, it is still possible that the
1505 // native stack has room to create a new exception.
1506 if (self->IsHandlingStackOverflow<kNativeStackType>()) {
1507 self->SetException(
1508 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1509 return;
1510 }
1511 // Allow plugins to intercept out of memory errors.
1512 Runtime::Current()->OutOfMemoryErrorHook();
1513
1514 std::ostringstream oss;
1515 size_t total_bytes_free = GetFreeMemory();
1516 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1517 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1518 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1519 << ", growth limit "
1520 << growth_limit_;
1521 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1522 if (total_bytes_free >= byte_count) {
1523 space::AllocSpace* space = nullptr;
1524 if (allocator_type == kAllocatorTypeNonMoving) {
1525 space = non_moving_space_;
1526 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1527 allocator_type == kAllocatorTypeDlMalloc) {
1528 space = main_space_;
1529 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1530 allocator_type == kAllocatorTypeTLAB) {
1531 space = bump_pointer_space_;
1532 } else if (allocator_type == kAllocatorTypeRegion ||
1533 allocator_type == kAllocatorTypeRegionTLAB) {
1534 space = region_space_;
1535 }
1536
1537 // There is no fragmentation info to log for large-object space.
1538 if (allocator_type != kAllocatorTypeLOS) {
1539 CHECK(space != nullptr) << "allocator_type:" << allocator_type
1540 << " byte_count:" << byte_count
1541 << " total_bytes_free:" << total_bytes_free;
1542 // LogFragmentationAllocFailure returns true if byte_count is greater than
1543 // the largest free contiguous chunk in the space. Return value false
1544 // means that we are throwing OOME because the amount of free heap after
1545 // GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size.
1546 // Log an appropriate message in that case.
1547 if (!space->LogFragmentationAllocFailure(oss, byte_count)) {
1548 oss << "; giving up on allocation because <"
1549 << kMinFreeHeapAfterGcForAlloc * 100
1550 << "% of heap free after GC.";
1551 }
1552 }
1553 }
1554 self->ThrowOutOfMemoryError(oss.str().c_str());
1555 }
1556
DoPendingCollectorTransition()1557 void Heap::DoPendingCollectorTransition() {
1558 CollectorType desired_collector_type = desired_collector_type_;
1559
1560 if (collector_type_ == kCollectorTypeCC || collector_type_ == kCollectorTypeCMC) {
1561 // App's allocations (since last GC) more than the threshold then do TransitionGC
1562 // when the app was in background. If not then don't do TransitionGC.
1563 // num_bytes_allocated_since_gc should always be positive even if initially
1564 // num_bytes_alive_after_gc_ is coming from Zygote. This gives positive or zero value.
1565 size_t num_bytes_allocated_since_gc =
1566 UnsignedDifference(GetBytesAllocated(), num_bytes_alive_after_gc_);
1567 if (num_bytes_allocated_since_gc <
1568 (UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
1569 num_bytes_alive_after_gc_)/4)
1570 && !kStressCollectorTransition
1571 && !IsLowMemoryMode()) {
1572 return;
1573 }
1574 }
1575
1576 // Launch homogeneous space compaction if it is desired.
1577 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1578 if (!CareAboutPauseTimes()) {
1579 PerformHomogeneousSpaceCompact();
1580 } else {
1581 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1582 }
1583 } else if (desired_collector_type == kCollectorTypeCCBackground ||
1584 desired_collector_type == kCollectorTypeCMCBackground) {
1585 if (!CareAboutPauseTimes()) {
1586 // Invoke full compaction.
1587 CollectGarbageInternal(collector::kGcTypeFull,
1588 kGcCauseCollectorTransition,
1589 /*clear_soft_references=*/false, GetCurrentGcNum() + 1);
1590 } else {
1591 VLOG(gc) << "background compaction ignored due to jank perceptible process state";
1592 }
1593 } else {
1594 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1595 }
1596 }
1597
Trim(Thread * self)1598 void Heap::Trim(Thread* self) {
1599 Runtime* const runtime = Runtime::Current();
1600 if (!CareAboutPauseTimes()) {
1601 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1602 // about pauses.
1603 ScopedTrace trace("Deflating monitors");
1604 // Avoid race conditions on the lock word for CC.
1605 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1606 ScopedSuspendAll ssa(__FUNCTION__);
1607 uint64_t start_time = NanoTime();
1608 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1609 VLOG(heap) << "Deflating " << count << " monitors took "
1610 << PrettyDuration(NanoTime() - start_time);
1611 }
1612 TrimIndirectReferenceTables(self);
1613 TrimSpaces(self);
1614 // Trim arenas that may have been used by JIT or verifier.
1615 runtime->GetArenaPool()->TrimMaps();
1616 }
1617
1618 class TrimIndirectReferenceTableClosure : public Closure {
1619 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1620 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1621 }
Run(Thread * thread)1622 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
1623 thread->GetJniEnv()->TrimLocals();
1624 // If thread is a running mutator, then act on behalf of the trim thread.
1625 // See the code in ThreadList::RunCheckpoint.
1626 barrier_->Pass(Thread::Current());
1627 }
1628
1629 private:
1630 Barrier* const barrier_;
1631 };
1632
TrimIndirectReferenceTables(Thread * self)1633 void Heap::TrimIndirectReferenceTables(Thread* self) {
1634 ScopedObjectAccess soa(self);
1635 ScopedTrace trace(__PRETTY_FUNCTION__);
1636 JavaVMExt* vm = soa.Vm();
1637 // Trim globals indirect reference table.
1638 vm->TrimGlobals();
1639 // Trim locals indirect reference tables.
1640 // TODO: May also want to look for entirely empty pages maintained by SmallIrtAllocator.
1641 Barrier barrier(0);
1642 TrimIndirectReferenceTableClosure closure(&barrier);
1643 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1644 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1645 if (barrier_count != 0) {
1646 barrier.Increment(self, barrier_count);
1647 }
1648 }
1649
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1650 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1651 // This can be called in either kRunnable or suspended states.
1652 // TODO: Consider fixing that?
1653 ThreadState old_thread_state = self->GetState();
1654 if (old_thread_state == ThreadState::kRunnable) {
1655 Locks::mutator_lock_->AssertSharedHeld(self);
1656 // Manually inlining the following call breaks thread-safety analysis.
1657 StartGCRunnable(self, cause, collector_type);
1658 return;
1659 }
1660 Locks::mutator_lock_->AssertNotHeld(self);
1661 self->SetState(ThreadState::kWaitingForGcToComplete);
1662 MutexLock mu(self, *gc_complete_lock_);
1663 WaitForGcToCompleteLocked(cause, self);
1664 collector_type_running_ = collector_type;
1665 last_gc_cause_ = cause;
1666 thread_running_gc_ = self;
1667 self->SetState(old_thread_state);
1668 }
1669
StartGCRunnable(Thread * self,GcCause cause,CollectorType collector_type)1670 void Heap::StartGCRunnable(Thread* self, GcCause cause, CollectorType collector_type) {
1671 Locks::mutator_lock_->AssertSharedHeld(self);
1672 while (true) {
1673 self->TransitionFromRunnableToSuspended(ThreadState::kWaitingForGcToComplete);
1674 {
1675 MutexLock mu(self, *gc_complete_lock_);
1676 // Ensure there is only one GC at a time.
1677 WaitForGcToCompleteLocked(cause, self);
1678 collector_type_running_ = collector_type;
1679 last_gc_cause_ = cause;
1680 thread_running_gc_ = self;
1681 }
1682 // We have to be careful returning to runnable state, since that could cause us to block.
1683 // That would be bad, since collector_type_running_ is set, and hence no GC is possible in this
1684 // state, allowing deadlock.
1685 if (LIKELY(self->TryTransitionFromSuspendedToRunnable())) {
1686 return;
1687 }
1688 {
1689 MutexLock mu(self, *gc_complete_lock_);
1690 collector_type_running_ = kCollectorTypeNone;
1691 thread_running_gc_ = nullptr;
1692 }
1693 self->TransitionFromSuspendedToRunnable(); // Will handle suspension request and block.
1694 }
1695 }
1696
TrimSpaces(Thread * self)1697 void Heap::TrimSpaces(Thread* self) {
1698 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1699 // trimming.
1700 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1701 ScopedTrace trace(__PRETTY_FUNCTION__);
1702 const uint64_t start_ns = NanoTime();
1703 // Trim the managed spaces.
1704 uint64_t total_alloc_space_allocated = 0;
1705 uint64_t total_alloc_space_size = 0;
1706 uint64_t managed_reclaimed = 0;
1707 {
1708 ScopedObjectAccess soa(self);
1709 for (const auto& space : continuous_spaces_) {
1710 if (space->IsMallocSpace()) {
1711 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1712 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1713 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1714 // for a long period of time.
1715 managed_reclaimed += malloc_space->Trim();
1716 }
1717 total_alloc_space_size += malloc_space->Size();
1718 }
1719 }
1720 }
1721 total_alloc_space_allocated = GetBytesAllocated();
1722 if (large_object_space_ != nullptr) {
1723 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1724 }
1725 if (bump_pointer_space_ != nullptr) {
1726 total_alloc_space_allocated -= bump_pointer_space_->Size();
1727 }
1728 if (region_space_ != nullptr) {
1729 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1730 }
1731 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1732 static_cast<float>(total_alloc_space_size);
1733 uint64_t gc_heap_end_ns = NanoTime();
1734 // We never move things in the native heap, so we can finish the GC at this point.
1735 FinishGC(self, collector::kGcTypeNone);
1736
1737 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1738 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1739 << static_cast<int>(100 * managed_utilization) << "%.";
1740 }
1741
IsValidObjectAddress(const void * addr) const1742 bool Heap::IsValidObjectAddress(const void* addr) const {
1743 if (addr == nullptr) {
1744 return true;
1745 }
1746 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1747 }
1748
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1749 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1750 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1751 }
1752
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1753 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1754 bool search_allocation_stack,
1755 bool search_live_stack,
1756 bool sorted) {
1757 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1758 return false;
1759 }
1760 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1761 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1762 if (obj == klass) {
1763 // This case happens for java.lang.Class.
1764 return true;
1765 }
1766 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1767 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1768 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1769 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1770 return temp_space_->Contains(obj.Ptr());
1771 }
1772 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1773 return true;
1774 }
1775 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1776 space::DiscontinuousSpace* d_space = nullptr;
1777 if (c_space != nullptr) {
1778 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1779 return true;
1780 }
1781 } else {
1782 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1783 if (d_space != nullptr) {
1784 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1785 return true;
1786 }
1787 }
1788 }
1789 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1790 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1791 if (i > 0) {
1792 NanoSleep(MsToNs(10));
1793 }
1794 if (search_allocation_stack) {
1795 if (sorted) {
1796 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1797 return true;
1798 }
1799 } else if (allocation_stack_->Contains(obj.Ptr())) {
1800 return true;
1801 }
1802 }
1803
1804 if (search_live_stack) {
1805 if (sorted) {
1806 if (live_stack_->ContainsSorted(obj.Ptr())) {
1807 return true;
1808 }
1809 } else if (live_stack_->Contains(obj.Ptr())) {
1810 return true;
1811 }
1812 }
1813 }
1814 // We need to check the bitmaps again since there is a race where we mark something as live and
1815 // then clear the stack containing it.
1816 if (c_space != nullptr) {
1817 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1818 return true;
1819 }
1820 } else {
1821 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1822 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1823 return true;
1824 }
1825 }
1826 return false;
1827 }
1828
DumpSpaces() const1829 std::string Heap::DumpSpaces() const {
1830 std::ostringstream oss;
1831 DumpSpaces(oss);
1832 return oss.str();
1833 }
1834
DumpSpaces(std::ostream & stream) const1835 void Heap::DumpSpaces(std::ostream& stream) const {
1836 for (const auto& space : continuous_spaces_) {
1837 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1838 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1839 stream << space << " " << *space << "\n";
1840 if (live_bitmap != nullptr) {
1841 stream << live_bitmap << " " << *live_bitmap << "\n";
1842 }
1843 if (mark_bitmap != nullptr) {
1844 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1845 }
1846 }
1847 for (const auto& space : discontinuous_spaces_) {
1848 stream << space << " " << *space << "\n";
1849 }
1850 }
1851
VerifyObjectBody(ObjPtr<mirror::Object> obj)1852 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1853 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1854 return;
1855 }
1856
1857 // Ignore early dawn of the universe verifications.
1858 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1859 return;
1860 }
1861 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1862 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1863 CHECK(c != nullptr) << "Null class in object " << obj;
1864 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1865 CHECK(VerifyClassClass(c));
1866
1867 if (verify_object_mode_ > kVerifyObjectModeFast) {
1868 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1869 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1870 }
1871 }
1872
VerifyHeap()1873 void Heap::VerifyHeap() {
1874 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1875 auto visitor = [&](mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS {
1876 VerifyObjectBody(obj);
1877 };
1878 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1879 // NO_THREAD_SAFETY_ANALYSIS.
1880 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1881 GetLiveBitmap()->Visit(visitor);
1882 };
1883 no_thread_safety_analysis();
1884 }
1885
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1886 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1887 // Use signed comparison since freed bytes can be negative when background compaction foreground
1888 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1889 // free list backed space, which may increase memory footprint due to padding and binning.
1890 RACING_DCHECK_LE(freed_bytes,
1891 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1892 // Note: This relies on 2s complement for handling negative freed_bytes.
1893 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1894 if (Runtime::Current()->HasStatsEnabled()) {
1895 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1896 thread_stats->freed_objects += freed_objects;
1897 thread_stats->freed_bytes += freed_bytes;
1898 // TODO: Do this concurrently.
1899 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1900 global_stats->freed_objects += freed_objects;
1901 global_stats->freed_bytes += freed_bytes;
1902 }
1903 }
1904
RecordFreeRevoke()1905 void Heap::RecordFreeRevoke() {
1906 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1907 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1908 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1909 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1910 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1911 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1912 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1913 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1914 bytes_freed) << "num_bytes_allocated_ underflow";
1915 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1916 }
1917
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1918 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1919 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1920 return rosalloc_space_;
1921 }
1922 for (const auto& space : continuous_spaces_) {
1923 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1924 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1925 return space->AsContinuousSpace()->AsRosAllocSpace();
1926 }
1927 }
1928 }
1929 return nullptr;
1930 }
1931
EntrypointsInstrumented()1932 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1933 instrumentation::Instrumentation* const instrumentation =
1934 Runtime::Current()->GetInstrumentation();
1935 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1936 }
1937
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1938 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1939 AllocatorType allocator,
1940 bool instrumented,
1941 size_t alloc_size,
1942 size_t* bytes_allocated,
1943 size_t* usable_size,
1944 size_t* bytes_tl_bulk_allocated,
1945 ObjPtr<mirror::Class>* klass) {
1946 bool was_default_allocator = allocator == GetCurrentAllocator();
1947 // Make sure there is no pending exception since we may need to throw an OOME.
1948 self->AssertNoPendingException();
1949 DCHECK(klass != nullptr);
1950
1951 StackHandleScope<1> hs(self);
1952 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1953
1954 auto send_object_pre_alloc =
1955 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1956 if (UNLIKELY(instrumented)) {
1957 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1958 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1959 l->PreObjectAllocated(self, h_klass, &alloc_size);
1960 }
1961 }
1962 };
1963 #define PERFORM_SUSPENDING_OPERATION(op) \
1964 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1965 ScopedAllowThreadSuspension ats; \
1966 auto res = (op); \
1967 send_object_pre_alloc(); \
1968 return res; \
1969 }()
1970
1971 // The allocation failed. If the GC is running, block until it completes, and then retry the
1972 // allocation.
1973 collector::GcType last_gc =
1974 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1975 // If we were the default allocator but the allocator changed while we were suspended,
1976 // abort the allocation.
1977 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1978 (!instrumented && EntrypointsInstrumented())) {
1979 return nullptr;
1980 }
1981 uint32_t starting_gc_num = GetCurrentGcNum();
1982 if (last_gc != collector::kGcTypeNone) {
1983 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1984 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1985 usable_size, bytes_tl_bulk_allocated);
1986 if (ptr != nullptr) {
1987 return ptr;
1988 }
1989 }
1990 if (IsGCDisabledForShutdown()) {
1991 // We're just shutting down and GCs don't work anymore. Try a different allocator.
1992 mirror::Object* ptr = TryToAllocate<true, false>(self,
1993 kAllocatorTypeNonMoving,
1994 alloc_size,
1995 bytes_allocated,
1996 usable_size,
1997 bytes_tl_bulk_allocated);
1998 if (ptr != nullptr) {
1999 return ptr;
2000 }
2001 }
2002
2003 int64_t bytes_freed_before = GetBytesFreedEver();
2004 auto have_reclaimed_enough = [&]() {
2005 size_t curr_bytes_allocated = GetBytesAllocated();
2006 size_t free_heap = UnsignedDifference(growth_limit_, curr_bytes_allocated);
2007 int64_t newly_freed = GetBytesFreedEver() - bytes_freed_before;
2008 double free_heap_ratio = static_cast<double>(free_heap) / growth_limit_;
2009 double newly_freed_ratio = static_cast<double>(newly_freed) / growth_limit_;
2010 return free_heap_ratio >= kMinFreeHeapAfterGcForAlloc ||
2011 newly_freed_ratio >= kMinFreedHeapAfterGcForAlloc;
2012 };
2013 // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
2014 // if it's not already tried. If that doesn't succeed then go for the most
2015 // exhaustive option. Perform a full-heap collection including clearing
2016 // SoftReferences. In case of ConcurrentCopying, it will also ensure that
2017 // all regions are evacuated. If allocation doesn't succeed even after that
2018 // then there is no hope, so we throw OOME.
2019 collector::GcType tried_type = next_gc_type_;
2020 if (last_gc < tried_type) {
2021 VLOG(gc) << "Starting a blocking GC " << kGcCauseForAlloc;
2022 PERFORM_SUSPENDING_OPERATION(
2023 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1));
2024
2025 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2026 (!instrumented && EntrypointsInstrumented())) {
2027 return nullptr;
2028 }
2029 // Check this even if we didn't actually run a GC; if we didn't someone else probably did.
2030 if (have_reclaimed_enough()) {
2031 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
2032 alloc_size, bytes_allocated,
2033 usable_size, bytes_tl_bulk_allocated);
2034 if (ptr != nullptr) {
2035 return ptr;
2036 }
2037 }
2038 }
2039 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
2040 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
2041 // VM spec requires that all SoftReferences have been collected and cleared before throwing
2042 // OOME.
2043 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
2044 << " allocation";
2045 // TODO: Run finalization, but this may cause more allocations to occur.
2046 // We don't need a WaitForGcToComplete here either.
2047 // TODO: Should check whether another thread already just ran a GC with soft
2048 // references.
2049
2050 DCHECK(!gc_plan_.empty());
2051
2052 int64_t min_freed_to_continue =
2053 static_cast<int64_t>(kMinFreedHeapAfterGcForAlloc * growth_limit_ + alloc_size);
2054 // Repeatedly collect the entire heap until either
2055 // (a) this was insufficiently productive at reclaiming memory and we should give upt to avoid
2056 // "GC thrashing", or
2057 // (b) GC was sufficiently productive (reclaimed min_freed_to_continue bytes) AND allowed us to
2058 // satisfy the allocation request.
2059 bool gc_ran;
2060 int gc_attempts = 0;
2061 // A requested GC can fail to run because either someone else beat us to it, or because we can't
2062 // run a GC in this state. In the latter case, we return quickly. Just try a small number of
2063 // times.
2064 static constexpr int kMaxGcAttempts = 5;
2065 do {
2066 bytes_freed_before = GetBytesFreedEver();
2067 pre_oome_gc_count_.fetch_add(1, std::memory_order_relaxed);
2068 // TODO(b/353333767): Do this only if nobody else beats us to it. If we're having trouble
2069 // allocating, probably other threads are in the same boat.
2070 starting_gc_num = GetCurrentGcNum();
2071 gc_ran = PERFORM_SUSPENDING_OPERATION(
2072 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, starting_gc_num + 1) !=
2073 collector::kGcTypeNone);
2074 ++gc_attempts;
2075 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2076 (!instrumented && EntrypointsInstrumented())) {
2077 return nullptr;
2078 }
2079 bool ran_homogeneous_space_compaction = false;
2080 bool immediately_reclaimed_enough = have_reclaimed_enough();
2081 if (!immediately_reclaimed_enough) {
2082 const uint64_t current_time = NanoTime();
2083 if (allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) {
2084 if (use_homogeneous_space_compaction_for_oom_ &&
2085 current_time - last_time_homogeneous_space_compaction_by_oom_ >
2086 min_interval_homogeneous_space_compaction_by_oom_) {
2087 last_time_homogeneous_space_compaction_by_oom_ = current_time;
2088 ran_homogeneous_space_compaction =
2089 (PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact()) ==
2090 HomogeneousSpaceCompactResult::kSuccess);
2091 // Thread suspension could have occurred.
2092 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2093 (!instrumented && EntrypointsInstrumented())) {
2094 return nullptr;
2095 }
2096 // Always print that we ran homogeneous space compation since this can cause jank.
2097 VLOG(heap) << "Ran heap homogeneous space compaction, "
2098 << " requested defragmentation "
2099 << count_requested_homogeneous_space_compaction_.load()
2100 << " performed defragmentation "
2101 << count_performed_homogeneous_space_compaction_.load()
2102 << " ignored homogeneous space compaction "
2103 << count_ignored_homogeneous_space_compaction_.load()
2104 << " delayed count = "
2105 << count_delayed_oom_.load();
2106 }
2107 }
2108 }
2109 if (immediately_reclaimed_enough ||
2110 (ran_homogeneous_space_compaction && have_reclaimed_enough())) {
2111 mirror::Object* ptr = TryToAllocate<true, true>(
2112 self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated);
2113 if (ptr != nullptr) {
2114 if (ran_homogeneous_space_compaction) {
2115 count_delayed_oom_++;
2116 }
2117 return ptr;
2118 }
2119 }
2120 // This loops only if we reclaimed plenty of memory, but presumably some other thread beat us
2121 // to allocating it. In the very unlikely case that we're running into a serious fragmentation
2122 // issue, and there is no other thread allocating, GCs will quickly become unsuccessful, and we
2123 // will stop then. If another thread is allocating aggressively, this may go on for a while,
2124 // but we are still making progress somewhere.
2125 } while ((!gc_ran && gc_attempts < kMaxGcAttempts) ||
2126 GetBytesFreedEver() - bytes_freed_before > min_freed_to_continue);
2127 #undef PERFORM_SUSPENDING_OPERATION
2128 // Throw an OOM error.
2129 {
2130 ScopedAllowThreadSuspension ats;
2131 ThrowOutOfMemoryError(self, alloc_size, allocator);
2132 }
2133 return nullptr;
2134 }
2135
SetTargetHeapUtilization(float target)2136 void Heap::SetTargetHeapUtilization(float target) {
2137 DCHECK_GT(target, 0.1f); // asserted in Java code
2138 DCHECK_LT(target, 1.0f);
2139 target_utilization_ = target;
2140 }
2141
GetObjectsAllocated() const2142 size_t Heap::GetObjectsAllocated() const {
2143 Thread* const self = Thread::Current();
2144 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGetObjectsAllocated);
2145 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
2146 // us to suspend while we are doing SuspendAll. b/35232978
2147 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2148 gc::kGcCauseGetObjectsAllocated,
2149 gc::kCollectorTypeGetObjectsAllocated);
2150 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
2151 ScopedSuspendAll ssa(__FUNCTION__);
2152 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2153 size_t total = 0;
2154 for (space::AllocSpace* space : alloc_spaces_) {
2155 total += space->GetObjectsAllocated();
2156 }
2157 return total;
2158 }
2159
GetBytesAllocatedEver() const2160 uint64_t Heap::GetBytesAllocatedEver() const {
2161 // Force the returned value to be monotonically increasing, in the sense that if this is called
2162 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
2163 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
2164 // and total_bytes_freed_ever_ is incremented later.
2165 static std::atomic<uint64_t> max_bytes_so_far(0);
2166 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
2167 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire) + GetBytesAllocated();
2168 DCHECK(current_bytes < (static_cast<uint64_t>(1) << 63)); // result is "positive".
2169 do {
2170 if (current_bytes <= so_far) {
2171 return so_far;
2172 }
2173 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
2174 current_bytes, std::memory_order_relaxed));
2175 return current_bytes;
2176 }
2177
2178 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)2179 static bool MatchesClass(mirror::Object* obj,
2180 Handle<mirror::Class> h_class,
2181 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
2182 mirror::Class* instance_class = obj->GetClass();
2183 CHECK(instance_class != nullptr);
2184 ObjPtr<mirror::Class> klass = h_class.Get();
2185 if (use_is_assignable_from) {
2186 return klass != nullptr && klass->IsAssignableFrom(instance_class);
2187 }
2188 return instance_class == klass;
2189 }
2190
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)2191 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
2192 bool use_is_assignable_from,
2193 uint64_t* counts) {
2194 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2195 for (size_t i = 0; i < classes.size(); ++i) {
2196 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
2197 ++counts[i];
2198 }
2199 }
2200 };
2201 VisitObjects(instance_counter);
2202 }
2203
CollectGarbage(bool clear_soft_references,GcCause cause)2204 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2205 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2206 // last GC will not have necessarily been cleared.
2207 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY);
2208 }
2209
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2210 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2211 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2212 foreground_collector_type_ == kCollectorTypeCMS;
2213 }
2214
PerformHomogeneousSpaceCompact()2215 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2216 Thread* self = Thread::Current();
2217 // Inc requested homogeneous space compaction.
2218 count_requested_homogeneous_space_compaction_++;
2219 // Store performed homogeneous space compaction at a new request arrival.
2220 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2221 Locks::mutator_lock_->AssertNotHeld(self);
2222 {
2223 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2224 MutexLock mu(self, *gc_complete_lock_);
2225 // Ensure there is only one GC at a time.
2226 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2227 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2228 // count is non zero.
2229 // If the collector type changed to something which doesn't benefit from homogeneous space
2230 // compaction, exit.
2231 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2232 !main_space_->CanMoveObjects()) {
2233 return kErrorReject;
2234 }
2235 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2236 return kErrorUnsupported;
2237 }
2238 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2239 }
2240 if (Runtime::Current()->IsShuttingDown(self)) {
2241 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2242 // cause objects to get finalized.
2243 FinishGC(self, collector::kGcTypeNone);
2244 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2245 }
2246 collector::GarbageCollector* collector;
2247 {
2248 ScopedSuspendAll ssa(__FUNCTION__);
2249 uint64_t start_time = NanoTime();
2250 // Launch compaction.
2251 space::MallocSpace* to_space = main_space_backup_.release();
2252 space::MallocSpace* from_space = main_space_;
2253 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2254 const uint64_t space_size_before_compaction = from_space->Size();
2255 AddSpace(to_space);
2256 // Make sure that we will have enough room to copy.
2257 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2258 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2259 const uint64_t space_size_after_compaction = to_space->Size();
2260 main_space_ = to_space;
2261 main_space_backup_.reset(from_space);
2262 RemoveSpace(from_space);
2263 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2264 // Update performed homogeneous space compaction count.
2265 count_performed_homogeneous_space_compaction_++;
2266 // Print statics log and resume all threads.
2267 uint64_t duration = NanoTime() - start_time;
2268 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2269 << PrettySize(space_size_before_compaction) << " -> "
2270 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2271 << std::fixed << static_cast<double>(space_size_after_compaction) /
2272 static_cast<double>(space_size_before_compaction);
2273 }
2274 // Finish GC.
2275 // Get the references we need to enqueue.
2276 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2277 GrowForUtilization(semi_space_collector_);
2278 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2279 FinishGC(self, collector::kGcTypeFull);
2280 // Enqueue any references after losing the GC locks.
2281 clear->Run(self);
2282 clear->Finalize();
2283 {
2284 ScopedObjectAccess soa(self);
2285 soa.Vm()->UnloadNativeLibraries();
2286 }
2287 return HomogeneousSpaceCompactResult::kSuccess;
2288 }
2289
SetDefaultConcurrentStartBytes()2290 void Heap::SetDefaultConcurrentStartBytes() {
2291 MutexLock mu(Thread::Current(), *gc_complete_lock_);
2292 if (collector_type_running_ != kCollectorTypeNone) {
2293 // If a collector is already running, just let it set concurrent_start_bytes_ .
2294 return;
2295 }
2296 SetDefaultConcurrentStartBytesLocked();
2297 }
2298
SetDefaultConcurrentStartBytesLocked()2299 void Heap::SetDefaultConcurrentStartBytesLocked() {
2300 if (IsGcConcurrent()) {
2301 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
2302 size_t reserve_bytes = target_footprint / 4;
2303 reserve_bytes = std::min(reserve_bytes, kMaxConcurrentRemainingBytes);
2304 reserve_bytes = std::max(reserve_bytes, kMinConcurrentRemainingBytes);
2305 concurrent_start_bytes_ = UnsignedDifference(target_footprint, reserve_bytes);
2306 } else {
2307 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2308 }
2309 }
2310
ChangeCollector(CollectorType collector_type)2311 void Heap::ChangeCollector(CollectorType collector_type) {
2312 // TODO: Only do this with all mutators suspended to avoid races.
2313 if (collector_type != collector_type_) {
2314 collector_type_ = collector_type;
2315 gc_plan_.clear();
2316 switch (collector_type_) {
2317 case kCollectorTypeCC: {
2318 if (use_generational_cc_) {
2319 gc_plan_.push_back(collector::kGcTypeSticky);
2320 }
2321 gc_plan_.push_back(collector::kGcTypeFull);
2322 if (use_tlab_) {
2323 ChangeAllocator(kAllocatorTypeRegionTLAB);
2324 } else {
2325 ChangeAllocator(kAllocatorTypeRegion);
2326 }
2327 break;
2328 }
2329 case kCollectorTypeCMC: {
2330 gc_plan_.push_back(collector::kGcTypeFull);
2331 if (use_tlab_) {
2332 ChangeAllocator(kAllocatorTypeTLAB);
2333 } else {
2334 ChangeAllocator(kAllocatorTypeBumpPointer);
2335 }
2336 break;
2337 }
2338 case kCollectorTypeSS: {
2339 gc_plan_.push_back(collector::kGcTypeFull);
2340 if (use_tlab_) {
2341 ChangeAllocator(kAllocatorTypeTLAB);
2342 } else {
2343 ChangeAllocator(kAllocatorTypeBumpPointer);
2344 }
2345 break;
2346 }
2347 case kCollectorTypeMS: {
2348 gc_plan_.push_back(collector::kGcTypeSticky);
2349 gc_plan_.push_back(collector::kGcTypePartial);
2350 gc_plan_.push_back(collector::kGcTypeFull);
2351 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2352 break;
2353 }
2354 case kCollectorTypeCMS: {
2355 gc_plan_.push_back(collector::kGcTypeSticky);
2356 gc_plan_.push_back(collector::kGcTypePartial);
2357 gc_plan_.push_back(collector::kGcTypeFull);
2358 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2359 break;
2360 }
2361 default: {
2362 UNIMPLEMENTED(FATAL);
2363 UNREACHABLE();
2364 }
2365 }
2366 SetDefaultConcurrentStartBytesLocked();
2367 }
2368 }
2369
2370 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2371 class ZygoteCompactingCollector final : public collector::SemiSpace {
2372 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2373 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2374 : SemiSpace(heap, "zygote collector"),
2375 bin_live_bitmap_(nullptr),
2376 bin_mark_bitmap_(nullptr),
2377 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2378
BuildBins(space::ContinuousSpace * space)2379 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2380 bin_live_bitmap_ = space->GetLiveBitmap();
2381 bin_mark_bitmap_ = space->GetMarkBitmap();
2382 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2383 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2384 // Note: This requires traversing the space in increasing order of object addresses.
2385 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2386 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2387 size_t bin_size = object_addr - prev;
2388 // Add the bin consisting of the end of the previous object to the start of the current object.
2389 AddBin(bin_size, prev);
2390 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2391 };
2392 bin_live_bitmap_->Walk(visitor);
2393 // Add the last bin which spans after the last object to the end of the space.
2394 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2395 }
2396
2397 private:
2398 // Maps from bin sizes to locations.
2399 std::multimap<size_t, uintptr_t> bins_;
2400 // Live bitmap of the space which contains the bins.
2401 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2402 // Mark bitmap of the space which contains the bins.
2403 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2404 const bool is_running_on_memory_tool_;
2405
AddBin(size_t size,uintptr_t position)2406 void AddBin(size_t size, uintptr_t position) {
2407 if (is_running_on_memory_tool_) {
2408 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2409 }
2410 if (size != 0) {
2411 bins_.insert(std::make_pair(size, position));
2412 }
2413 }
2414
ShouldSweepSpace(space::ContinuousSpace * space) const2415 bool ShouldSweepSpace([[maybe_unused]] space::ContinuousSpace* space) const override {
2416 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2417 // allocator.
2418 return false;
2419 }
2420
MarkNonForwardedObject(mirror::Object * obj)2421 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2422 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2423 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2424 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2425 mirror::Object* forward_address;
2426 // Find the smallest bin which we can move obj in.
2427 auto it = bins_.lower_bound(alloc_size);
2428 if (it == bins_.end()) {
2429 // No available space in the bins, place it in the target space instead (grows the zygote
2430 // space).
2431 size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
2432 forward_address = to_space_->Alloc(
2433 self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
2434 if (to_space_live_bitmap_ != nullptr) {
2435 to_space_live_bitmap_->Set(forward_address);
2436 } else {
2437 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2438 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2439 }
2440 } else {
2441 size_t size = it->first;
2442 uintptr_t pos = it->second;
2443 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2444 forward_address = reinterpret_cast<mirror::Object*>(pos);
2445 // Set the live and mark bits so that sweeping system weaks works properly.
2446 bin_live_bitmap_->Set(forward_address);
2447 bin_mark_bitmap_->Set(forward_address);
2448 DCHECK_GE(size, alloc_size);
2449 // Add a new bin with the remaining space.
2450 AddBin(size - alloc_size, pos + alloc_size);
2451 }
2452 // Copy the object over to its new location.
2453 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2454 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2455 if (kUseBakerReadBarrier) {
2456 obj->AssertReadBarrierState();
2457 forward_address->AssertReadBarrierState();
2458 }
2459 return forward_address;
2460 }
2461 };
2462
UnBindBitmaps()2463 void Heap::UnBindBitmaps() {
2464 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2465 for (const auto& space : GetContinuousSpaces()) {
2466 if (space->IsContinuousMemMapAllocSpace()) {
2467 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2468 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2469 alloc_space->UnBindBitmaps();
2470 }
2471 }
2472 }
2473 }
2474
IncrementFreedEver()2475 void Heap::IncrementFreedEver() {
2476 // Counters are updated only by us, but may be read concurrently.
2477 // The updates should become visible after the corresponding live object info.
2478 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2479 + GetCurrentGcIteration()->GetFreedObjects()
2480 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2481 std::memory_order_release);
2482 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2483 + GetCurrentGcIteration()->GetFreedBytes()
2484 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2485 std::memory_order_release);
2486 }
2487
2488 #pragma clang diagnostic push
2489 #if !ART_USE_FUTEXES
2490 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2491 # pragma clang diagnostic ignored "-Wframe-larger-than="
2492 #endif
2493 // This has a large frame, but shouldn't be run anywhere near the stack limit.
2494 // FIXME: BUT it did exceed... http://b/197647048
2495 # pragma clang diagnostic ignored "-Wframe-larger-than="
PreZygoteFork()2496 void Heap::PreZygoteFork() {
2497 if (!HasZygoteSpace()) {
2498 // We still want to GC in case there is some unreachable non moving objects that could cause a
2499 // suboptimal bin packing when we compact the zygote space.
2500 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY);
2501 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2502 // the trim process may require locking the mutator lock.
2503 non_moving_space_->Trim();
2504 }
2505 // We need to close userfaultfd fd for app/webview zygotes to avoid getattr
2506 // (stat) on the fd during fork.
2507 Thread* self = Thread::Current();
2508 MutexLock mu(self, zygote_creation_lock_);
2509 // Try to see if we have any Zygote spaces.
2510 if (HasZygoteSpace()) {
2511 return;
2512 }
2513 Runtime* runtime = Runtime::Current();
2514 // Setup linear-alloc pool for post-zygote fork allocations before freezing
2515 // snapshots of intern-table and class-table.
2516 runtime->SetupLinearAllocForPostZygoteFork(self);
2517 runtime->GetInternTable()->AddNewTable();
2518 runtime->GetClassLinker()->MoveClassTableToPreZygote();
2519 VLOG(heap) << "Starting PreZygoteFork";
2520 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2521 // there.
2522 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2523 const bool same_space = non_moving_space_ == main_space_;
2524 if (kCompactZygote) {
2525 // Temporarily disable rosalloc verification because the zygote
2526 // compaction will mess up the rosalloc internal metadata.
2527 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2528 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2529 zygote_collector.BuildBins(non_moving_space_);
2530 // Create a new bump pointer space which we will compact into.
2531 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2532 non_moving_space_->Limit());
2533 // Compact the bump pointer space to a new zygote bump pointer space.
2534 bool reset_main_space = false;
2535 if (IsMovingGc(collector_type_)) {
2536 if (collector_type_ == kCollectorTypeCC) {
2537 zygote_collector.SetFromSpace(region_space_);
2538 } else {
2539 zygote_collector.SetFromSpace(bump_pointer_space_);
2540 }
2541 } else {
2542 CHECK(main_space_ != nullptr);
2543 CHECK_NE(main_space_, non_moving_space_)
2544 << "Does not make sense to compact within the same space";
2545 // Copy from the main space.
2546 zygote_collector.SetFromSpace(main_space_);
2547 reset_main_space = true;
2548 }
2549 zygote_collector.SetToSpace(&target_space);
2550 zygote_collector.SetSwapSemiSpaces(false);
2551 zygote_collector.Run(kGcCauseCollectorTransition, false);
2552 if (reset_main_space) {
2553 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2554 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2555 MemMap mem_map = main_space_->ReleaseMemMap();
2556 RemoveSpace(main_space_);
2557 space::Space* old_main_space = main_space_;
2558 CreateMainMallocSpace(std::move(mem_map),
2559 kDefaultInitialSize,
2560 std::min(mem_map.Size(), growth_limit_),
2561 mem_map.Size());
2562 delete old_main_space;
2563 AddSpace(main_space_);
2564 } else {
2565 if (collector_type_ == kCollectorTypeCC) {
2566 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2567 // Evacuated everything out of the region space, clear the mark bitmap.
2568 region_space_->GetMarkBitmap()->Clear();
2569 } else {
2570 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2571 }
2572 }
2573 if (temp_space_ != nullptr) {
2574 CHECK(temp_space_->IsEmpty());
2575 }
2576 IncrementFreedEver();
2577 // Update the end and write out image.
2578 non_moving_space_->SetEnd(target_space.End());
2579 non_moving_space_->SetLimit(target_space.Limit());
2580 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2581 }
2582 // Change the collector to the post zygote one.
2583 ChangeCollector(foreground_collector_type_);
2584 // Save the old space so that we can remove it after we complete creating the zygote space.
2585 space::MallocSpace* old_alloc_space = non_moving_space_;
2586 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2587 // the remaining available space.
2588 // Remove the old space before creating the zygote space since creating the zygote space sets
2589 // the old alloc space's bitmaps to null.
2590 RemoveSpace(old_alloc_space);
2591 if (collector::SemiSpace::kUseRememberedSet) {
2592 // Consistency bound check.
2593 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2594 // Remove the remembered set for the now zygote space (the old
2595 // non-moving space). Note now that we have compacted objects into
2596 // the zygote space, the data in the remembered set is no longer
2597 // needed. The zygote space will instead have a mod-union table
2598 // from this point on.
2599 RemoveRememberedSet(old_alloc_space);
2600 }
2601 // Remaining space becomes the new non moving space.
2602 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2603 &non_moving_space_);
2604 CHECK(!non_moving_space_->CanMoveObjects());
2605 if (same_space) {
2606 main_space_ = non_moving_space_;
2607 SetSpaceAsDefault(main_space_);
2608 }
2609 delete old_alloc_space;
2610 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2611 AddSpace(zygote_space_);
2612 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2613 AddSpace(non_moving_space_);
2614 constexpr bool set_mark_bit = kUseBakerReadBarrier
2615 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2616 if (set_mark_bit) {
2617 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2618 // safe since we mark all of the objects that may reference non immune objects as gray.
2619 zygote_space_->SetMarkBitInLiveObjects();
2620 }
2621
2622 // Create the zygote space mod union table.
2623 accounting::ModUnionTable* mod_union_table =
2624 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2625 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2626
2627 if (collector_type_ != kCollectorTypeCC && collector_type_ != kCollectorTypeCMC) {
2628 // Set all the cards in the mod-union table since we don't know which objects contain references
2629 // to large objects.
2630 mod_union_table->SetCards();
2631 } else {
2632 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2633 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2634 // necessary to have marked since the zygote space may not refer to any objects not in the
2635 // zygote or image spaces at this point.
2636 mod_union_table->ProcessCards();
2637 mod_union_table->ClearTable();
2638
2639 // For CC and CMC we never collect zygote large objects. This means we do not need to set the
2640 // cards for the zygote mod-union table and we can also clear all of the existing image
2641 // mod-union tables. The existing mod-union tables are only for image spaces and may only
2642 // reference zygote and image objects.
2643 for (auto& pair : mod_union_tables_) {
2644 CHECK(pair.first->IsImageSpace());
2645 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2646 accounting::ModUnionTable* table = pair.second;
2647 table->ClearTable();
2648 }
2649 }
2650 AddModUnionTable(mod_union_table);
2651 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2652 if (collector::SemiSpace::kUseRememberedSet) {
2653 // Add a new remembered set for the post-zygote non-moving space.
2654 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2655 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2656 non_moving_space_);
2657 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2658 << "Failed to create post-zygote non-moving space remembered set";
2659 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2660 }
2661 }
2662 #pragma clang diagnostic pop
2663
FlushAllocStack()2664 void Heap::FlushAllocStack() {
2665 MarkAllocStackAsLive(allocation_stack_.get());
2666 allocation_stack_->Reset();
2667 }
2668
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2669 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2670 accounting::ContinuousSpaceBitmap* bitmap2,
2671 accounting::LargeObjectBitmap* large_objects,
2672 accounting::ObjectStack* stack) {
2673 DCHECK(bitmap1 != nullptr);
2674 DCHECK(bitmap2 != nullptr);
2675 const auto* limit = stack->End();
2676 for (auto* it = stack->Begin(); it != limit; ++it) {
2677 const mirror::Object* obj = it->AsMirrorPtr();
2678 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2679 if (bitmap1->HasAddress(obj)) {
2680 bitmap1->Set(obj);
2681 } else if (bitmap2->HasAddress(obj)) {
2682 bitmap2->Set(obj);
2683 } else {
2684 DCHECK(large_objects != nullptr);
2685 large_objects->Set(obj);
2686 }
2687 }
2688 }
2689 }
2690
SwapSemiSpaces()2691 void Heap::SwapSemiSpaces() {
2692 CHECK(bump_pointer_space_ != nullptr);
2693 CHECK(temp_space_ != nullptr);
2694 std::swap(bump_pointer_space_, temp_space_);
2695 }
2696
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2697 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2698 space::ContinuousMemMapAllocSpace* source_space,
2699 GcCause gc_cause) {
2700 CHECK(kMovingCollector);
2701 if (target_space != source_space) {
2702 // Don't swap spaces since this isn't a typical semi space collection.
2703 semi_space_collector_->SetSwapSemiSpaces(false);
2704 semi_space_collector_->SetFromSpace(source_space);
2705 semi_space_collector_->SetToSpace(target_space);
2706 semi_space_collector_->Run(gc_cause, false);
2707 return semi_space_collector_;
2708 }
2709 LOG(FATAL) << "Unsupported";
2710 UNREACHABLE();
2711 }
2712
TraceHeapSize(size_t heap_size)2713 void Heap::TraceHeapSize(size_t heap_size) {
2714 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2715 }
2716
2717 #if defined(__GLIBC__)
2718 # define IF_GLIBC(x) x
2719 #else
2720 # define IF_GLIBC(x)
2721 #endif
2722
GetNativeBytes()2723 size_t Heap::GetNativeBytes() {
2724 size_t malloc_bytes;
2725 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
2726 IF_GLIBC(size_t mmapped_bytes;)
2727 struct mallinfo mi = mallinfo();
2728 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2729 // and it is thread-safe.
2730 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2731 // Shouldn't happen, but glibc declares uordblks as int.
2732 // Avoiding sign extension gets us correct behavior for another 2 GB.
2733 malloc_bytes = (unsigned int)mi.uordblks;
2734 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2735 } else {
2736 malloc_bytes = mi.uordblks;
2737 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2738 }
2739 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2740 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2741 // However, malloc implementations seem to interpret hblkhd differently, namely as
2742 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2743 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2744 // previously helped, and which appears to use a reading of the spec compatible
2745 // with our adjustment.
2746 #if defined(__GLIBC__)
2747 if (mmapped_bytes > malloc_bytes) {
2748 malloc_bytes = mmapped_bytes;
2749 }
2750 #endif // GLIBC
2751 #else // Neither Bionic nor Glibc
2752 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2753 // disable GC triggering based on malloc().
2754 malloc_bytes = 1000;
2755 #endif
2756 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2757 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2758 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2759 // However it would change as pages are unmapped and remapped due to memory pressure, among
2760 // other things. It seems risky to trigger GCs as a result of such changes.
2761 }
2762
GCNumberLt(uint32_t gc_num1,uint32_t gc_num2)2763 static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) {
2764 // unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping.
2765 uint32_t difference = gc_num2 - gc_num1;
2766 bool completed_more_than_requested = difference > 0x80000000;
2767 return difference > 0 && !completed_more_than_requested;
2768 }
2769
2770
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references,uint32_t requested_gc_num)2771 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2772 GcCause gc_cause,
2773 bool clear_soft_references,
2774 uint32_t requested_gc_num) {
2775 Thread* self = Thread::Current();
2776 Runtime* runtime = Runtime::Current();
2777 // If the heap can't run the GC, silently fail and return that no GC was run.
2778 switch (gc_type) {
2779 case collector::kGcTypePartial: {
2780 if (!HasZygoteSpace()) {
2781 // Do not increment gcs_completed_ . We should retry with kGcTypeFull.
2782 return collector::kGcTypeNone;
2783 }
2784 break;
2785 }
2786 default: {
2787 // Other GC types don't have any special cases which makes them not runnable. The main case
2788 // here is full GC.
2789 }
2790 }
2791 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2792 Locks::mutator_lock_->AssertNotHeld(self);
2793 SelfDeletingTask* clear; // Unconditionally set below.
2794 {
2795 // We should not ever become runnable and re-suspend while executing a GC.
2796 // This would likely cause a deadlock if we acted on a suspension request.
2797 // TODO: We really want to assert that we don't transition to kRunnable.
2798 ScopedAssertNoThreadSuspension scoped_assert("Performing GC");
2799 if (self->IsHandlingStackOverflow<kNativeStackType>()) {
2800 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2801 // space to run the GC. Note: we only care if the native stack has overflowed. If the
2802 // simulated stack overflows it is still possible that the native stack has room to run the
2803 // GC.
2804
2805 // Count this as a GC in case someone is waiting for it to complete.
2806 gcs_completed_.fetch_add(1, std::memory_order_release);
2807 return collector::kGcTypeNone;
2808 }
2809 bool compacting_gc;
2810 {
2811 gc_complete_lock_->AssertNotHeld(self);
2812 // Already not runnable; just switch suspended states. We remain in a suspended state until
2813 // FinishGC(). This avoids the complicated dance in StartGC().
2814 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2815 MutexLock mu(self, *gc_complete_lock_);
2816 // Ensure there is only one GC at a time.
2817 WaitForGcToCompleteLocked(gc_cause, self);
2818 if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
2819 // The appropriate GC was already triggered elsewhere.
2820 return collector::kGcTypeNone;
2821 }
2822 compacting_gc = IsMovingGc(collector_type_);
2823 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2824 if (compacting_gc && disable_moving_gc_count_ != 0) {
2825 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2826 // Again count this as a GC.
2827 gcs_completed_.fetch_add(1, std::memory_order_release);
2828 return collector::kGcTypeNone;
2829 }
2830 if (gc_disabled_for_shutdown_) {
2831 gcs_completed_.fetch_add(1, std::memory_order_release);
2832 return collector::kGcTypeNone;
2833 }
2834 collector_type_running_ = collector_type_;
2835 last_gc_cause_ = gc_cause;
2836 }
2837 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2838 ++runtime->GetStats()->gc_for_alloc_count;
2839 ++self->GetStats()->gc_for_alloc_count;
2840 }
2841 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2842
2843 DCHECK_LT(gc_type, collector::kGcTypeMax);
2844 DCHECK_NE(gc_type, collector::kGcTypeNone);
2845
2846 collector::GarbageCollector* collector = nullptr;
2847 // TODO: Clean this up.
2848 if (compacting_gc) {
2849 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2850 current_allocator_ == kAllocatorTypeTLAB ||
2851 current_allocator_ == kAllocatorTypeRegion ||
2852 current_allocator_ == kAllocatorTypeRegionTLAB);
2853 switch (collector_type_) {
2854 case kCollectorTypeSS:
2855 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2856 semi_space_collector_->SetToSpace(temp_space_);
2857 semi_space_collector_->SetSwapSemiSpaces(true);
2858 collector = semi_space_collector_;
2859 break;
2860 case kCollectorTypeCMC:
2861 collector = mark_compact_;
2862 break;
2863 case kCollectorTypeCC:
2864 collector::ConcurrentCopying* active_cc_collector;
2865 if (use_generational_cc_) {
2866 // TODO: Other threads must do the flip checkpoint before they start poking at
2867 // active_concurrent_copying_collector_. So we should not concurrency here.
2868 active_cc_collector = (gc_type == collector::kGcTypeSticky) ?
2869 young_concurrent_copying_collector_ :
2870 concurrent_copying_collector_;
2871 active_concurrent_copying_collector_.store(active_cc_collector,
2872 std::memory_order_relaxed);
2873 DCHECK(active_cc_collector->RegionSpace() == region_space_);
2874 collector = active_cc_collector;
2875 } else {
2876 collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed);
2877 }
2878 break;
2879 default:
2880 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2881 }
2882 // temp_space_ will be null for kCollectorTypeCMC.
2883 if (temp_space_ != nullptr &&
2884 collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) {
2885 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2886 if (kIsDebugBuild) {
2887 // Try to read each page of the memory map in case mprotect didn't work properly
2888 // b/19894268.
2889 temp_space_->GetMemMap()->TryReadable();
2890 }
2891 CHECK(temp_space_->IsEmpty());
2892 }
2893 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2894 current_allocator_ == kAllocatorTypeDlMalloc) {
2895 collector = FindCollectorByGcType(gc_type);
2896 } else {
2897 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2898 }
2899
2900 CHECK(collector != nullptr) << "Could not find garbage collector with collector_type="
2901 << static_cast<size_t>(collector_type_)
2902 << " and gc_type=" << gc_type;
2903 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2904 IncrementFreedEver();
2905 RequestTrim(self);
2906 // Collect cleared references.
2907 clear = reference_processor_->CollectClearedReferences(self);
2908 // Grow the heap so that we know when to perform the next GC.
2909 GrowForUtilization(collector, bytes_allocated_before_gc);
2910 old_native_bytes_allocated_.store(GetNativeBytes());
2911 LogGC(gc_cause, collector);
2912 FinishGC(self, gc_type);
2913 // We're suspended up to this point.
2914 }
2915 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2916 // otherwise we can deadlock.
2917 clear->Run(self);
2918 clear->Finalize();
2919 // Inform DDMS that a GC completed.
2920 Dbg::GcDidFinish();
2921
2922 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2923 // deadlocks in case the JNI_OnUnload function does allocations.
2924 {
2925 ScopedObjectAccess soa(self);
2926 soa.Vm()->UnloadNativeLibraries();
2927 }
2928 return gc_type;
2929 }
2930
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2931 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2932 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2933 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2934 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2935 // (mutator time blocked >= long_pause_log_threshold_).
2936 bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
2937 if (!log_gc && CareAboutPauseTimes()) {
2938 // GC for alloc pauses the allocating thread, so consider it as a pause.
2939 log_gc = duration > long_gc_log_threshold_ ||
2940 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2941 for (uint64_t pause : pause_times) {
2942 log_gc = log_gc || pause >= long_pause_log_threshold_;
2943 }
2944 }
2945 bool is_sampled = false;
2946 if (UNLIKELY(gc_stress_mode_)) {
2947 static std::atomic_int64_t accumulated_duration_ns = 0;
2948 accumulated_duration_ns += duration;
2949 if (accumulated_duration_ns >= kGcStressModeGcLogSampleFrequencyNs) {
2950 accumulated_duration_ns -= kGcStressModeGcLogSampleFrequencyNs;
2951 log_gc = true;
2952 is_sampled = true;
2953 }
2954 }
2955 if (log_gc) {
2956 const size_t percent_free = GetPercentFree();
2957 const size_t current_heap_size = GetBytesAllocated();
2958 const size_t total_memory = GetTotalMemory();
2959 std::ostringstream pause_string;
2960 for (size_t i = 0; i < pause_times.size(); ++i) {
2961 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2962 << ((i != pause_times.size() - 1) ? "," : "");
2963 }
2964 LOG(INFO) << gc_cause << " " << collector->GetName()
2965 << (is_sampled ? " (sampled)" : "")
2966 << " GC freed "
2967 << PrettySize(current_gc_iteration_.GetFreedBytes()) << " AllocSpace bytes, "
2968 << current_gc_iteration_.GetFreedLargeObjects() << "("
2969 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2970 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2971 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2972 << " total " << PrettyDuration((duration / 1000) * 1000);
2973 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2974 }
2975 }
2976
FinishGC(Thread * self,collector::GcType gc_type)2977 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2978 MutexLock mu(self, *gc_complete_lock_);
2979 collector_type_running_ = kCollectorTypeNone;
2980 if (gc_type != collector::kGcTypeNone) {
2981 last_gc_type_ = gc_type;
2982
2983 // Update stats.
2984 ++gc_count_last_window_;
2985 if (running_collection_is_blocking_) {
2986 // If the currently running collection was a blocking one,
2987 // increment the counters and reset the flag.
2988 ++blocking_gc_count_;
2989 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2990 ++blocking_gc_count_last_window_;
2991 }
2992 // Update the gc count rate histograms if due.
2993 UpdateGcCountRateHistograms();
2994 }
2995 // Reset.
2996 running_collection_is_blocking_ = false;
2997 thread_running_gc_ = nullptr;
2998 if (gc_type != collector::kGcTypeNone) {
2999 gcs_completed_.fetch_add(1, std::memory_order_release);
3000 }
3001 // Wake anyone who may have been waiting for the GC to complete.
3002 gc_complete_cond_->Broadcast(self);
3003 }
3004
UpdateGcCountRateHistograms()3005 void Heap::UpdateGcCountRateHistograms() {
3006 // Invariant: if the time since the last update includes more than
3007 // one windows, all the GC runs (if > 0) must have happened in first
3008 // window because otherwise the update must have already taken place
3009 // at an earlier GC run. So, we report the non-first windows with
3010 // zero counts to the histograms.
3011 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
3012 uint64_t now = NanoTime();
3013 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
3014 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
3015 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
3016
3017 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
3018 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
3019 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
3020 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
3021 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
3022 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
3023 }
3024
3025 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
3026 // Record the first window.
3027 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
3028 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
3029 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
3030 // Record the other windows (with zero counts).
3031 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
3032 gc_count_rate_histogram_.AddValue(0);
3033 blocking_gc_count_rate_histogram_.AddValue(0);
3034 }
3035 // Update the last update time and reset the counters.
3036 last_update_time_gc_count_rate_histograms_ =
3037 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
3038 gc_count_last_window_ = 1; // Include the current run.
3039 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
3040 }
3041 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
3042 }
3043
3044 class RootMatchesObjectVisitor : public SingleRootVisitor {
3045 public:
RootMatchesObjectVisitor(const mirror::Object * obj)3046 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
3047
VisitRoot(mirror::Object * root,const RootInfo & info)3048 void VisitRoot(mirror::Object* root, const RootInfo& info)
3049 override REQUIRES_SHARED(Locks::mutator_lock_) {
3050 if (root == obj_) {
3051 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
3052 }
3053 }
3054
3055 private:
3056 const mirror::Object* const obj_;
3057 };
3058
3059
3060 class ScanVisitor {
3061 public:
operator ()(const mirror::Object * obj) const3062 void operator()(const mirror::Object* obj) const {
3063 LOG(ERROR) << "Would have rescanned object " << obj;
3064 }
3065 };
3066
3067 // Verify a reference from an object.
3068 class VerifyReferenceVisitor : public SingleRootVisitor {
3069 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3070 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3071 REQUIRES_SHARED(Locks::mutator_lock_)
3072 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
3073 CHECK_EQ(self_, Thread::Current());
3074 }
3075
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3076 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3077 REQUIRES_SHARED(Locks::mutator_lock_) {
3078 if (verify_referent_) {
3079 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
3080 }
3081 }
3082
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const3083 void operator()(ObjPtr<mirror::Object> obj,
3084 MemberOffset offset,
3085 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
3086 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
3087 }
3088
IsLive(ObjPtr<mirror::Object> obj) const3089 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
3090 return heap_->IsLiveObjectLocked(obj, true, false, true);
3091 }
3092
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3093 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3094 REQUIRES_SHARED(Locks::mutator_lock_) {
3095 if (!root->IsNull()) {
3096 VisitRoot(root);
3097 }
3098 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3099 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3100 REQUIRES_SHARED(Locks::mutator_lock_) {
3101 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
3102 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
3103 }
3104
VisitRoot(mirror::Object * root,const RootInfo & root_info)3105 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
3106 REQUIRES_SHARED(Locks::mutator_lock_) {
3107 if (root == nullptr) {
3108 LOG(ERROR) << "Root is null with info " << root_info.GetType();
3109 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
3110 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
3111 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
3112 }
3113 }
3114
3115 private:
3116 // TODO: Fix the no thread safety analysis.
3117 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const3118 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
3119 NO_THREAD_SAFETY_ANALYSIS {
3120 if (ref == nullptr || IsLive(ref)) {
3121 // Verify that the reference is live.
3122 return true;
3123 }
3124 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
3125 *fail_count_ += 1;
3126 if (*fail_count_ == 1) {
3127 // Only print message for the first failure to prevent spam.
3128 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
3129 }
3130 if (obj != nullptr) {
3131 // Only do this part for non roots.
3132 accounting::CardTable* card_table = heap_->GetCardTable();
3133 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
3134 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3135 uint8_t* card_addr = card_table->CardFromAddr(obj);
3136 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
3137 << offset << "\n card value = " << static_cast<int>(*card_addr);
3138 if (heap_->IsValidObjectAddress(obj->GetClass())) {
3139 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
3140 } else {
3141 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
3142 }
3143
3144 // Attempt to find the class inside of the recently freed objects.
3145 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
3146 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
3147 space::MallocSpace* space = ref_space->AsMallocSpace();
3148 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
3149 if (ref_class != nullptr) {
3150 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
3151 << ref_class->PrettyClass();
3152 } else {
3153 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
3154 }
3155 }
3156
3157 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
3158 ref->GetClass()->IsClass()) {
3159 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
3160 } else {
3161 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
3162 << ") is not a valid heap address";
3163 }
3164
3165 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
3166 void* cover_begin = card_table->AddrFromCard(card_addr);
3167 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
3168 accounting::CardTable::kCardSize);
3169 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
3170 << "-" << cover_end;
3171 accounting::ContinuousSpaceBitmap* bitmap =
3172 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
3173
3174 if (bitmap == nullptr) {
3175 LOG(ERROR) << "Object " << obj << " has no bitmap";
3176 if (!VerifyClassClass(obj->GetClass())) {
3177 LOG(ERROR) << "Object " << obj << " failed class verification!";
3178 }
3179 } else {
3180 // Print out how the object is live.
3181 if (bitmap->Test(obj)) {
3182 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3183 }
3184 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
3185 LOG(ERROR) << "Object " << obj << " found in allocation stack";
3186 }
3187 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
3188 LOG(ERROR) << "Object " << obj << " found in live stack";
3189 }
3190 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
3191 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
3192 }
3193 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
3194 LOG(ERROR) << "Ref " << ref << " found in live stack";
3195 }
3196 // Attempt to see if the card table missed the reference.
3197 ScanVisitor scan_visitor;
3198 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
3199 card_table->Scan<false>(bitmap, byte_cover_begin,
3200 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
3201 }
3202
3203 // Search to see if any of the roots reference our object.
3204 RootMatchesObjectVisitor visitor1(obj);
3205 Runtime::Current()->VisitRoots(&visitor1);
3206 // Search to see if any of the roots reference our reference.
3207 RootMatchesObjectVisitor visitor2(ref);
3208 Runtime::Current()->VisitRoots(&visitor2);
3209 }
3210 return false;
3211 }
3212
3213 Thread* const self_;
3214 Heap* const heap_;
3215 size_t* const fail_count_;
3216 const bool verify_referent_;
3217 };
3218
3219 // Verify all references within an object, for use with HeapBitmap::Visit.
3220 class VerifyObjectVisitor {
3221 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3222 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3223 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3224
operator ()(mirror::Object * obj)3225 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3226 // Note: we are verifying the references in obj but not obj itself, this is because obj must
3227 // be live or else how did we find it in the live bitmap?
3228 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3229 // The class doesn't count as a reference but we should verify it anyways.
3230 obj->VisitReferences(visitor, visitor);
3231 }
3232
VerifyRoots()3233 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3234 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3235 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3236 Runtime::Current()->VisitRoots(&visitor);
3237 }
3238
GetFailureCount() const3239 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
3240 CHECK_EQ(self_, Thread::Current());
3241 return *fail_count_;
3242 }
3243
3244 private:
3245 Thread* const self_;
3246 Heap* const heap_;
3247 size_t* const fail_count_;
3248 const bool verify_referent_;
3249 };
3250
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3251 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3252 // Slow path, the allocation stack push back must have already failed.
3253 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3254 do {
3255 // TODO: Add handle VerifyObject.
3256 StackHandleScope<1> hs(self);
3257 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3258 // Push our object into the reserve region of the allocation stack. This is only required due
3259 // to heap verification requiring that roots are live (either in the live bitmap or in the
3260 // allocation stack).
3261 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3262 CollectGarbageInternal(collector::kGcTypeSticky,
3263 kGcCauseForAlloc,
3264 false,
3265 GetCurrentGcNum() + 1);
3266 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3267 }
3268
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3269 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3270 ObjPtr<mirror::Object>* obj) {
3271 // Slow path, the allocation stack push back must have already failed.
3272 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3273 StackReference<mirror::Object>* start_address;
3274 StackReference<mirror::Object>* end_address;
3275 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3276 &end_address)) {
3277 // TODO: Add handle VerifyObject.
3278 StackHandleScope<1> hs(self);
3279 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3280 // Push our object into the reserve region of the allocaiton stack. This is only required due
3281 // to heap verification requiring that roots are live (either in the live bitmap or in the
3282 // allocation stack).
3283 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3284 // Push into the reserve allocation stack.
3285 CollectGarbageInternal(collector::kGcTypeSticky,
3286 kGcCauseForAlloc,
3287 false,
3288 GetCurrentGcNum() + 1);
3289 }
3290 self->SetThreadLocalAllocationStack(start_address, end_address);
3291 // Retry on the new thread-local allocation stack.
3292 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3293 }
3294
3295 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3296 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3297 Thread* self = Thread::Current();
3298 Locks::mutator_lock_->AssertExclusiveHeld(self);
3299 // Lets sort our allocation stacks so that we can efficiently binary search them.
3300 allocation_stack_->Sort();
3301 live_stack_->Sort();
3302 // Since we sorted the allocation stack content, need to revoke all
3303 // thread-local allocation stacks.
3304 RevokeAllThreadLocalAllocationStacks(self);
3305 size_t fail_count = 0;
3306 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3307 // Verify objects in the allocation stack since these will be objects which were:
3308 // 1. Allocated prior to the GC (pre GC verification).
3309 // 2. Allocated during the GC (pre sweep GC verification).
3310 // We don't want to verify the objects in the live stack since they themselves may be
3311 // pointing to dead objects if they are not reachable.
3312 VisitObjectsPaused(visitor);
3313 // Verify the roots:
3314 visitor.VerifyRoots();
3315 if (visitor.GetFailureCount() > 0) {
3316 // Dump mod-union tables.
3317 for (const auto& table_pair : mod_union_tables_) {
3318 accounting::ModUnionTable* mod_union_table = table_pair.second;
3319 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3320 }
3321 // Dump remembered sets.
3322 for (const auto& table_pair : remembered_sets_) {
3323 accounting::RememberedSet* remembered_set = table_pair.second;
3324 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3325 }
3326 DumpSpaces(LOG_STREAM(ERROR));
3327 }
3328 return visitor.GetFailureCount();
3329 }
3330
3331 class VerifyReferenceCardVisitor {
3332 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3333 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3334 REQUIRES_SHARED(Locks::mutator_lock_,
3335 Locks::heap_bitmap_lock_)
3336 : heap_(heap), failed_(failed) {
3337 }
3338
3339 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3340 void VisitRootIfNonNull(
3341 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3342 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
3343
3344 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3345 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3346 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3347 NO_THREAD_SAFETY_ANALYSIS {
3348 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3349 // Filter out class references since changing an object's class does not mark the card as dirty.
3350 // Also handles large objects, since the only reference they hold is a class reference.
3351 if (ref != nullptr && !ref->IsClass()) {
3352 accounting::CardTable* card_table = heap_->GetCardTable();
3353 // If the object is not dirty and it is referencing something in the live stack other than
3354 // class, then it must be on a dirty card.
3355 if (!card_table->AddrIsInCardTable(obj)) {
3356 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3357 *failed_ = true;
3358 } else if (!card_table->IsDirty(obj)) {
3359 // TODO: Check mod-union tables.
3360 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3361 // kCardDirty - 1 if it didnt get touched since we aged it.
3362 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3363 if (live_stack->ContainsSorted(ref)) {
3364 if (live_stack->ContainsSorted(obj)) {
3365 LOG(ERROR) << "Object " << obj << " found in live stack";
3366 }
3367 if (heap_->GetLiveBitmap()->Test(obj)) {
3368 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3369 }
3370 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3371 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3372 << " in live stack";
3373
3374 // Print which field of the object is dead.
3375 if (!obj->IsObjectArray()) {
3376 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3377 CHECK(klass != nullptr);
3378 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3379 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3380 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3381 << field.PrettyField();
3382 break;
3383 }
3384 }
3385 } else {
3386 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3387 obj->AsObjectArray<mirror::Object>();
3388 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3389 if (object_array->Get(i) == ref) {
3390 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3391 }
3392 }
3393 }
3394
3395 *failed_ = true;
3396 }
3397 }
3398 }
3399 }
3400
3401 private:
3402 Heap* const heap_;
3403 bool* const failed_;
3404 };
3405
3406 class VerifyLiveStackReferences {
3407 public:
VerifyLiveStackReferences(Heap * heap)3408 explicit VerifyLiveStackReferences(Heap* heap)
3409 : heap_(heap),
3410 failed_(false) {}
3411
operator ()(mirror::Object * obj) const3412 void operator()(mirror::Object* obj) const
3413 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3414 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3415 obj->VisitReferences(visitor, VoidFunctor());
3416 }
3417
Failed() const3418 bool Failed() const {
3419 return failed_;
3420 }
3421
3422 private:
3423 Heap* const heap_;
3424 bool failed_;
3425 };
3426
VerifyMissingCardMarks()3427 bool Heap::VerifyMissingCardMarks() {
3428 Thread* self = Thread::Current();
3429 Locks::mutator_lock_->AssertExclusiveHeld(self);
3430 // We need to sort the live stack since we binary search it.
3431 live_stack_->Sort();
3432 // Since we sorted the allocation stack content, need to revoke all
3433 // thread-local allocation stacks.
3434 RevokeAllThreadLocalAllocationStacks(self);
3435 VerifyLiveStackReferences visitor(this);
3436 GetLiveBitmap()->Visit(visitor);
3437 // We can verify objects in the live stack since none of these should reference dead objects.
3438 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3439 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3440 visitor(it->AsMirrorPtr());
3441 }
3442 }
3443 return !visitor.Failed();
3444 }
3445
SwapStacks()3446 void Heap::SwapStacks() {
3447 if (kUseThreadLocalAllocationStack) {
3448 live_stack_->AssertAllZero();
3449 }
3450 allocation_stack_.swap(live_stack_);
3451 }
3452
RevokeAllThreadLocalAllocationStacks(Thread * self)3453 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3454 // This must be called only during the pause.
3455 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3456 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3457 MutexLock mu2(self, *Locks::thread_list_lock_);
3458 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3459 for (Thread* t : thread_list) {
3460 t->RevokeThreadLocalAllocationStack();
3461 }
3462 }
3463
AssertThreadLocalBuffersAreRevoked(Thread * thread)3464 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3465 if (kIsDebugBuild) {
3466 if (rosalloc_space_ != nullptr) {
3467 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3468 }
3469 if (bump_pointer_space_ != nullptr) {
3470 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3471 }
3472 }
3473 }
3474
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3475 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3476 if (kIsDebugBuild) {
3477 if (bump_pointer_space_ != nullptr) {
3478 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3479 }
3480 }
3481 }
3482
FindModUnionTableFromSpace(space::Space * space)3483 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3484 auto it = mod_union_tables_.find(space);
3485 if (it == mod_union_tables_.end()) {
3486 return nullptr;
3487 }
3488 return it->second;
3489 }
3490
FindRememberedSetFromSpace(space::Space * space)3491 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3492 auto it = remembered_sets_.find(space);
3493 if (it == remembered_sets_.end()) {
3494 return nullptr;
3495 }
3496 return it->second;
3497 }
3498
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3499 void Heap::ProcessCards(TimingLogger* timings,
3500 bool use_rem_sets,
3501 bool process_alloc_space_cards,
3502 bool clear_alloc_space_cards) {
3503 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3504 // Clear cards and keep track of cards cleared in the mod-union table.
3505 for (const auto& space : continuous_spaces_) {
3506 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3507 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3508 if (table != nullptr) {
3509 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3510 "ImageModUnionClearCards";
3511 TimingLogger::ScopedTiming t2(name, timings);
3512 table->ProcessCards();
3513 } else if (use_rem_sets && rem_set != nullptr) {
3514 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3515 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3516 rem_set->ClearCards();
3517 } else if (process_alloc_space_cards) {
3518 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3519 if (clear_alloc_space_cards) {
3520 uint8_t* end = space->End();
3521 if (space->IsImageSpace()) {
3522 // Image space end is the end of the mirror objects, it is not necessarily page or card
3523 // aligned. Align up so that the check in ClearCardRange does not fail.
3524 end = AlignUp(end, accounting::CardTable::kCardSize);
3525 }
3526 card_table_->ClearCardRange(space->Begin(), end);
3527 } else {
3528 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3529 // cards were dirty before the GC started.
3530 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3531 // -> clean(cleaning thread).
3532 // The races are we either end up with: Aged card, unaged card. Since we have the
3533 // checkpoint roots and then we scan / update mod union tables after. We will always
3534 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3535 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3536 VoidFunctor());
3537 }
3538 }
3539 }
3540 }
3541
3542 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3543 mirror::Object* MarkObject(mirror::Object* obj) override {
3544 return obj;
3545 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3546 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3547 }
3548 };
3549
PreGcVerificationPaused(collector::GarbageCollector * gc)3550 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3551 Thread* const self = Thread::Current();
3552 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3553 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3554 if (verify_pre_gc_heap_) {
3555 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3556 size_t failures = VerifyHeapReferences();
3557 if (failures > 0) {
3558 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3559 << " failures";
3560 }
3561 }
3562 // Check that all objects which reference things in the live stack are on dirty cards.
3563 if (verify_missing_card_marks_) {
3564 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3565 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3566 SwapStacks();
3567 // Sort the live stack so that we can quickly binary search it later.
3568 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3569 << " missing card mark verification failed\n" << DumpSpaces();
3570 SwapStacks();
3571 }
3572 if (verify_mod_union_table_) {
3573 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3574 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3575 for (const auto& table_pair : mod_union_tables_) {
3576 accounting::ModUnionTable* mod_union_table = table_pair.second;
3577 IdentityMarkHeapReferenceVisitor visitor;
3578 mod_union_table->UpdateAndMarkReferences(&visitor);
3579 mod_union_table->Verify();
3580 }
3581 }
3582 }
3583
PreGcVerification(collector::GarbageCollector * gc)3584 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3585 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3586 collector::GarbageCollector::ScopedPause pause(gc, false);
3587 PreGcVerificationPaused(gc);
3588 }
3589 }
3590
PrePauseRosAllocVerification(collector::GarbageCollector * gc)3591 void Heap::PrePauseRosAllocVerification([[maybe_unused]] collector::GarbageCollector* gc) {
3592 // TODO: Add a new runtime option for this?
3593 if (verify_pre_gc_rosalloc_) {
3594 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3595 }
3596 }
3597
PreSweepingGcVerification(collector::GarbageCollector * gc)3598 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3599 Thread* const self = Thread::Current();
3600 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3601 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3602 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3603 // reachable objects.
3604 if (verify_pre_sweeping_heap_) {
3605 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3606 CHECK_NE(self->GetState(), ThreadState::kRunnable);
3607 {
3608 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3609 // Swapping bound bitmaps does nothing.
3610 gc->SwapBitmaps();
3611 }
3612 // Pass in false since concurrent reference processing can mean that the reference referents
3613 // may point to dead objects at the point which PreSweepingGcVerification is called.
3614 size_t failures = VerifyHeapReferences(false);
3615 if (failures > 0) {
3616 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3617 << " failures";
3618 }
3619 {
3620 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3621 gc->SwapBitmaps();
3622 }
3623 }
3624 if (verify_pre_sweeping_rosalloc_) {
3625 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3626 }
3627 }
3628
PostGcVerificationPaused(collector::GarbageCollector * gc)3629 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3630 // Only pause if we have to do some verification.
3631 Thread* const self = Thread::Current();
3632 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3633 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3634 if (verify_system_weaks_) {
3635 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3636 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3637 mark_sweep->VerifySystemWeaks();
3638 }
3639 if (verify_post_gc_rosalloc_) {
3640 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3641 }
3642 if (verify_post_gc_heap_) {
3643 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3644 size_t failures = VerifyHeapReferences();
3645 if (failures > 0) {
3646 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3647 << " failures";
3648 }
3649 }
3650 }
3651
PostGcVerification(collector::GarbageCollector * gc)3652 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3653 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3654 collector::GarbageCollector::ScopedPause pause(gc, false);
3655 PostGcVerificationPaused(gc);
3656 }
3657 }
3658
RosAllocVerification(TimingLogger * timings,const char * name)3659 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3660 TimingLogger::ScopedTiming t(name, timings);
3661 for (const auto& space : continuous_spaces_) {
3662 if (space->IsRosAllocSpace()) {
3663 VLOG(heap) << name << " : " << space->GetName();
3664 space->AsRosAllocSpace()->Verify();
3665 }
3666 }
3667 }
3668
WaitForGcToComplete(GcCause cause,Thread * self)3669 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3670 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
3671 MutexLock mu(self, *gc_complete_lock_);
3672 return WaitForGcToCompleteLocked(cause, self, /* only_one= */ true);
3673 }
3674
WaitForGcToCompleteLocked(GcCause cause,Thread * self,bool only_one)3675 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self, bool only_one) {
3676 gc_complete_cond_->CheckSafeToWait(self);
3677 collector::GcType last_gc_type = collector::kGcTypeNone;
3678 GcCause last_gc_cause = kGcCauseNone;
3679 if (collector_type_running_ != kCollectorTypeNone) {
3680 uint64_t wait_start = NanoTime();
3681 uint32_t starting_gc_num = GetCurrentGcNum();
3682 while (collector_type_running_ != kCollectorTypeNone &&
3683 (!only_one || GCNumberLt(GetCurrentGcNum(), starting_gc_num + 1))) {
3684 if (!task_processor_->IsRunningThread(self)) {
3685 // The current thread is about to wait for a currently running
3686 // collection to finish. If the waiting thread is not the heap
3687 // task daemon thread, the currently running collection is
3688 // considered as a blocking GC.
3689 running_collection_is_blocking_ = true;
3690 VLOG(gc) << "Waiting for a blocking GC " << cause;
3691 }
3692 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3693 // We must wait, change thread state then sleep on gc_complete_cond_;
3694 gc_complete_cond_->Wait(self);
3695 last_gc_type = last_gc_type_;
3696 last_gc_cause = last_gc_cause_;
3697 }
3698 uint64_t wait_time = NanoTime() - wait_start;
3699 total_wait_time_ += wait_time;
3700 if (wait_time > long_pause_log_threshold_) {
3701 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3702 << PrettyDuration(wait_time);
3703 }
3704 }
3705 if (!task_processor_->IsRunningThread(self)) {
3706 // The current thread is about to run a collection. If the thread
3707 // is not the heap task daemon thread, it's considered as a
3708 // blocking GC (i.e., blocking itself).
3709 running_collection_is_blocking_ = true;
3710 }
3711 DCHECK(only_one || collector_type_running_ == kCollectorTypeNone);
3712 return last_gc_type;
3713 }
3714
DumpForSigQuit(std::ostream & os)3715 void Heap::DumpForSigQuit(std::ostream& os) {
3716 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3717 << PrettySize(GetTotalMemory()) << "\n";
3718 {
3719 os << "Image spaces:\n";
3720 ScopedObjectAccess soa(Thread::Current());
3721 for (const auto& space : continuous_spaces_) {
3722 if (space->IsImageSpace()) {
3723 os << space->GetName() << "\n";
3724 }
3725 }
3726 }
3727 DumpGcPerformanceInfo(os);
3728 }
3729
GetPercentFree()3730 size_t Heap::GetPercentFree() {
3731 return static_cast<size_t>(100.0f * static_cast<float>(
3732 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3733 }
3734
SetIdealFootprint(size_t target_footprint)3735 void Heap::SetIdealFootprint(size_t target_footprint) {
3736 if (target_footprint > GetMaxMemory()) {
3737 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3738 << PrettySize(GetMaxMemory());
3739 target_footprint = GetMaxMemory();
3740 }
3741 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3742 }
3743
IsMovableObject(ObjPtr<mirror::Object> obj) const3744 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3745 if (kMovingCollector) {
3746 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3747 if (space != nullptr) {
3748 // TODO: Check large object?
3749 return space->CanMoveObjects();
3750 }
3751 }
3752 return false;
3753 }
3754
FindCollectorByGcType(collector::GcType gc_type)3755 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3756 for (auto* collector : garbage_collectors_) {
3757 if (collector->GetCollectorType() == collector_type_ &&
3758 collector->GetGcType() == gc_type) {
3759 return collector;
3760 }
3761 }
3762 return nullptr;
3763 }
3764
HeapGrowthMultiplier() const3765 double Heap::HeapGrowthMultiplier() const {
3766 // If we don't care about pause times we are background, so return 1.0.
3767 if (!CareAboutPauseTimes()) {
3768 return 1.0;
3769 }
3770 return foreground_heap_growth_multiplier_;
3771 }
3772
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3773 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3774 size_t bytes_allocated_before_gc) {
3775 // We're running in the thread that set collector_type_running_ to something other than none,
3776 // thus ensuring that there is only one of us running. Thus
3777 // collector_type_running_ != kCollectorTypeNone, but that's a little tricky to turn into a
3778 // DCHECK.
3779
3780 // We know what our utilization is at this moment.
3781 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3782 const size_t bytes_allocated = GetBytesAllocated();
3783 // Trace the new heap size after the GC is finished.
3784 TraceHeapSize(bytes_allocated);
3785 uint64_t target_size, grow_bytes;
3786 collector::GcType gc_type = collector_ran->GetGcType();
3787 MutexLock mu(Thread::Current(), process_state_update_lock_);
3788 // Use the multiplier to grow more for foreground.
3789 const double multiplier = HeapGrowthMultiplier();
3790 if (gc_type != collector::kGcTypeSticky) {
3791 // Grow the heap for non sticky GC.
3792 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3793 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3794 << " target_utilization_=" << target_utilization_;
3795 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3796 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3797 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3798 next_gc_type_ = collector::kGcTypeSticky;
3799 } else {
3800 collector::GcType non_sticky_gc_type = NonStickyGcType();
3801 // Find what the next non sticky collector will be.
3802 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3803 if (use_generational_cc_) {
3804 if (non_sticky_collector == nullptr) {
3805 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3806 }
3807 CHECK(non_sticky_collector != nullptr);
3808 }
3809 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3810
3811 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3812 // do another sticky collection next.
3813 // We also check that the bytes allocated aren't over the target_footprint, or
3814 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3815 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3816 // if the sticky GC throughput always remained >= the full/partial throughput.
3817 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3818 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3819 non_sticky_collector->GetEstimatedMeanThroughput() &&
3820 non_sticky_collector->NumberOfIterations() > 0 &&
3821 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3822 next_gc_type_ = collector::kGcTypeSticky;
3823 } else {
3824 next_gc_type_ = non_sticky_gc_type;
3825 }
3826 // If we have freed enough memory, shrink the heap back down.
3827 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3828 if (bytes_allocated + adjusted_max_free < target_footprint) {
3829 target_size = bytes_allocated + adjusted_max_free;
3830 grow_bytes = max_free_;
3831 } else {
3832 target_size = std::max(bytes_allocated, target_footprint);
3833 // The same whether jank perceptible or not; just avoid the adjustment.
3834 grow_bytes = 0;
3835 }
3836 }
3837 CHECK_LE(target_size, std::numeric_limits<size_t>::max())
3838 << " bytes_allocated:" << bytes_allocated
3839 << " bytes_freed:" << current_gc_iteration_.GetFreedBytes()
3840 << " large_obj_bytes_freed:" << current_gc_iteration_.GetFreedLargeObjectBytes();
3841 if (!ignore_target_footprint_) {
3842 SetIdealFootprint(target_size);
3843 // Store target size (computed with foreground heap growth multiplier) for updating
3844 // target_footprint_ when process state switches to foreground.
3845 // target_size = 0 ensures that target_footprint_ is not updated on
3846 // process-state switch.
3847 min_foreground_target_footprint_ =
3848 (multiplier <= 1.0 && grow_bytes > 0)
3849 ? std::min(
3850 bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_),
3851 GetMaxMemory())
3852 : 0;
3853
3854 if (IsGcConcurrent()) {
3855 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3856 current_gc_iteration_.GetFreedLargeObjectBytes() +
3857 current_gc_iteration_.GetFreedRevokeBytes();
3858 // Records the number of bytes allocated at the time of GC finish,excluding the number of
3859 // bytes allocated during GC.
3860 num_bytes_alive_after_gc_ = UnsignedDifference(bytes_allocated_before_gc, freed_bytes);
3861 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3862 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3863 // Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc.
3864 const size_t bytes_allocated_during_gc =
3865 UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3866 // Calculate when to perform the next ConcurrentGC.
3867 // Estimate how many remaining bytes we will have when we need to start the next GC.
3868 size_t remaining_bytes = bytes_allocated_during_gc;
3869 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3870 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3871 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3872 if (UNLIKELY(remaining_bytes > target_footprint)) {
3873 // A never going to happen situation that from the estimated allocation rate we will exceed
3874 // the applications entire footprint with the given estimated allocation rate. Schedule
3875 // another GC nearly straight away.
3876 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3877 }
3878 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3879 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3880 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3881 // right away.
3882 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3883 // Store concurrent_start_bytes_ (computed with foreground heap growth multiplier) for update
3884 // itself when process state switches to foreground.
3885 min_foreground_concurrent_start_bytes_ =
3886 min_foreground_target_footprint_ != 0
3887 ? std::max(min_foreground_target_footprint_ - remaining_bytes, bytes_allocated)
3888 : 0;
3889 }
3890 }
3891 }
3892
ClampGrowthLimit()3893 void Heap::ClampGrowthLimit() {
3894 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3895 ScopedObjectAccess soa(Thread::Current());
3896 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3897 capacity_ = growth_limit_;
3898 for (const auto& space : continuous_spaces_) {
3899 if (space->IsMallocSpace()) {
3900 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3901 malloc_space->ClampGrowthLimit();
3902 }
3903 }
3904 if (large_object_space_ != nullptr) {
3905 large_object_space_->ClampGrowthLimit(capacity_);
3906 }
3907 if (collector_type_ == kCollectorTypeCC) {
3908 DCHECK(region_space_ != nullptr);
3909 // Twice the capacity as CC needs extra space for evacuating objects.
3910 region_space_->ClampGrowthLimit(2 * capacity_);
3911 } else if (collector_type_ == kCollectorTypeCMC) {
3912 DCHECK(gUseUserfaultfd);
3913 DCHECK_NE(mark_compact_, nullptr);
3914 DCHECK_NE(bump_pointer_space_, nullptr);
3915 mark_compact_->ClampGrowthLimit(capacity_);
3916 }
3917 // This space isn't added for performance reasons.
3918 if (main_space_backup_.get() != nullptr) {
3919 main_space_backup_->ClampGrowthLimit();
3920 }
3921 }
3922
ClearGrowthLimit()3923 void Heap::ClearGrowthLimit() {
3924 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3925 && growth_limit_ < capacity_) {
3926 target_footprint_.store(capacity_, std::memory_order_relaxed);
3927 SetDefaultConcurrentStartBytes();
3928 }
3929 growth_limit_ = capacity_;
3930 ScopedObjectAccess soa(Thread::Current());
3931 for (const auto& space : continuous_spaces_) {
3932 if (space->IsMallocSpace()) {
3933 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3934 malloc_space->ClearGrowthLimit();
3935 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3936 }
3937 }
3938 // This space isn't added for performance reasons.
3939 if (main_space_backup_.get() != nullptr) {
3940 main_space_backup_->ClearGrowthLimit();
3941 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3942 }
3943 }
3944
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3945 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3946 ScopedObjectAccess soa(self);
3947 StackHandleScope<1u> hs(self);
3948 // Use handle wrapper to update the `*object` if the object gets moved.
3949 HandleWrapperObjPtr<mirror::Object> h_object = hs.NewHandleWrapper(object);
3950 WellKnownClasses::java_lang_ref_FinalizerReference_add->InvokeStatic<'V', 'L'>(
3951 self, h_object.Get());
3952 }
3953
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,uint32_t observed_gc_num,ObjPtr<mirror::Object> * obj)3954 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3955 bool force_full,
3956 uint32_t observed_gc_num,
3957 ObjPtr<mirror::Object>* obj) {
3958 StackHandleScope<1> hs(self);
3959 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3960 RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num);
3961 }
3962
3963 class Heap::ConcurrentGCTask : public HeapTask {
3964 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full,uint32_t gc_num)3965 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num)
3966 : HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {}
Run(Thread * self)3967 void Run(Thread* self) override {
3968 Runtime* runtime = Runtime::Current();
3969 gc::Heap* heap = runtime->GetHeap();
3970 DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1
3971 heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_);
3972 CHECK_IMPLIES(GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_), runtime->IsShuttingDown(self));
3973 }
3974
3975 private:
3976 const GcCause cause_;
3977 const bool force_full_; // If true, force full (or partial) collection.
3978 const uint32_t my_gc_num_; // Sequence number of requested GC.
3979 };
3980
CanAddHeapTask(Thread * self)3981 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3982 Runtime* runtime = Runtime::Current();
3983 // We only care if the native stack has overflowed. If the simulated stack overflows, it is still
3984 // possible that the native stack has room to add a heap task.
3985 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3986 !self->IsHandlingStackOverflow<kNativeStackType>();
3987 }
3988
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t observed_gc_num)3989 bool Heap::RequestConcurrentGC(Thread* self,
3990 GcCause cause,
3991 bool force_full,
3992 uint32_t observed_gc_num) {
3993 uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed);
3994 if (!GCNumberLt(observed_gc_num, max_gc_requested)) {
3995 // observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc.
3996 if (CanAddHeapTask(self)) {
3997 // Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful.
3998 if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) {
3999 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
4000 cause,
4001 force_full,
4002 observed_gc_num + 1));
4003 }
4004 DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4005 // If we increased max_gc_requested_, then we added a task that will eventually cause
4006 // gcs_completed_ to be incremented (to at least observed_gc_num + 1).
4007 // If the CAS failed, somebody else did.
4008 return true;
4009 }
4010 return false;
4011 }
4012 return true; // Vacuously.
4013 }
4014
ConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t requested_gc_num)4015 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) {
4016 if (!Runtime::Current()->IsShuttingDown(self)) {
4017 // Wait for any GCs currently running to finish. If this incremented GC number, we're done.
4018 WaitForGcToComplete(cause, self);
4019 if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4020 collector::GcType next_gc_type = next_gc_type_;
4021 // If forcing full and next gc type is sticky, override with a non-sticky type.
4022 if (force_full && next_gc_type == collector::kGcTypeSticky) {
4023 next_gc_type = NonStickyGcType();
4024 }
4025 // If we can't run the GC type we wanted to run, find the next appropriate one and try
4026 // that instead. E.g. can't do partial, so do full instead.
4027 // We must ensure that we run something that ends up incrementing gcs_completed_.
4028 // In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that
4029 // effect, but the subsequent KGcTypeFull call will.
4030 if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num)
4031 == collector::kGcTypeNone) {
4032 for (collector::GcType gc_type : gc_plan_) {
4033 if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4034 // Somebody did it for us.
4035 break;
4036 }
4037 // Attempt to run the collector, if we succeed, we are done.
4038 if (gc_type > next_gc_type &&
4039 CollectGarbageInternal(gc_type, cause, false, requested_gc_num)
4040 != collector::kGcTypeNone) {
4041 break;
4042 }
4043 }
4044 }
4045 }
4046 }
4047 }
4048
4049 class Heap::CollectorTransitionTask : public HeapTask {
4050 public:
CollectorTransitionTask(uint64_t target_time)4051 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
4052
Run(Thread * self)4053 void Run(Thread* self) override {
4054 gc::Heap* heap = Runtime::Current()->GetHeap();
4055 heap->DoPendingCollectorTransition();
4056 heap->ClearPendingCollectorTransition(self);
4057 }
4058 };
4059
ClearPendingCollectorTransition(Thread * self)4060 void Heap::ClearPendingCollectorTransition(Thread* self) {
4061 MutexLock mu(self, *pending_task_lock_);
4062 pending_collector_transition_ = nullptr;
4063 }
4064
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)4065 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
4066 Thread* self = Thread::Current();
4067 desired_collector_type_ = desired_collector_type;
4068 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
4069 return;
4070 }
4071 if (collector_type_ == kCollectorTypeCC) {
4072 // For CC, we invoke a full compaction when going to the background, but the collector type
4073 // doesn't change.
4074 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
4075 }
4076 if (collector_type_ == kCollectorTypeCMC) {
4077 // For CMC collector type doesn't change.
4078 DCHECK_EQ(desired_collector_type_, kCollectorTypeCMCBackground);
4079 }
4080 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
4081 DCHECK_NE(collector_type_, kCollectorTypeCMCBackground);
4082 CollectorTransitionTask* added_task = nullptr;
4083 const uint64_t target_time = NanoTime() + delta_time;
4084 {
4085 MutexLock mu(self, *pending_task_lock_);
4086 // If we have an existing collector transition, update the target time to be the new target.
4087 if (pending_collector_transition_ != nullptr) {
4088 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
4089 return;
4090 }
4091 added_task = new CollectorTransitionTask(target_time);
4092 pending_collector_transition_ = added_task;
4093 }
4094 task_processor_->AddTask(self, added_task);
4095 }
4096
4097 class Heap::HeapTrimTask : public HeapTask {
4098 public:
HeapTrimTask(uint64_t delta_time)4099 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)4100 void Run(Thread* self) override {
4101 gc::Heap* heap = Runtime::Current()->GetHeap();
4102 heap->Trim(self);
4103 heap->ClearPendingTrim(self);
4104 }
4105 };
4106
ClearPendingTrim(Thread * self)4107 void Heap::ClearPendingTrim(Thread* self) {
4108 MutexLock mu(self, *pending_task_lock_);
4109 pending_heap_trim_ = nullptr;
4110 }
4111
RequestTrim(Thread * self)4112 void Heap::RequestTrim(Thread* self) {
4113 if (!CanAddHeapTask(self)) {
4114 return;
4115 }
4116 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
4117 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
4118 // a space it will hold its lock and can become a cause of jank.
4119 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
4120 // forking.
4121
4122 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
4123 // because that only marks object heads, so a large array looks like lots of empty space. We
4124 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
4125 // to utilization (which is probably inversely proportional to how much benefit we can expect).
4126 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
4127 // not how much use we're making of those pages.
4128 HeapTrimTask* added_task = nullptr;
4129 {
4130 MutexLock mu(self, *pending_task_lock_);
4131 if (pending_heap_trim_ != nullptr) {
4132 // Already have a heap trim request in task processor, ignore this request.
4133 return;
4134 }
4135 added_task = new HeapTrimTask(kHeapTrimWait);
4136 pending_heap_trim_ = added_task;
4137 }
4138 task_processor_->AddTask(self, added_task);
4139 }
4140
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)4141 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
4142 size_t previous_num_bytes_freed_revoke =
4143 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
4144 // Check the updated value is less than the number of bytes allocated. There is a risk of
4145 // execution being suspended between the increment above and the CHECK below, leading to
4146 // the use of previous_num_bytes_freed_revoke in the comparison.
4147 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
4148 previous_num_bytes_freed_revoke + freed_bytes_revoke);
4149 }
4150
RevokeThreadLocalBuffers(Thread * thread)4151 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
4152 if (rosalloc_space_ != nullptr) {
4153 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4154 if (freed_bytes_revoke > 0U) {
4155 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4156 }
4157 }
4158 if (bump_pointer_space_ != nullptr) {
4159 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
4160 }
4161 if (region_space_ != nullptr) {
4162 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
4163 }
4164 }
4165
RevokeRosAllocThreadLocalBuffers(Thread * thread)4166 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
4167 if (rosalloc_space_ != nullptr) {
4168 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4169 if (freed_bytes_revoke > 0U) {
4170 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4171 }
4172 }
4173 }
4174
RevokeAllThreadLocalBuffers()4175 void Heap::RevokeAllThreadLocalBuffers() {
4176 if (rosalloc_space_ != nullptr) {
4177 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
4178 if (freed_bytes_revoke > 0U) {
4179 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4180 }
4181 }
4182 if (bump_pointer_space_ != nullptr) {
4183 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
4184 }
4185 if (region_space_ != nullptr) {
4186 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
4187 }
4188 }
4189
4190 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
4191 // different fractions of Java allocations.
4192 // For now, we essentially do not count old native allocations at all, so that we can preserve the
4193 // existing behavior of not limiting native heap size. If we seriously considered it, we would
4194 // have to adjust collection thresholds when we encounter large amounts of old native memory,
4195 // and handle native out-of-memory situations.
4196
4197 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
4198 static constexpr size_t kNewNativeDiscountFactor = 2;
4199
4200 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
4201 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
4202 // running out of memory.
4203 static constexpr float kStopForNativeFactor = 4.0;
4204
4205 // Return the ratio of the weighted native + java allocated bytes to its target value.
4206 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
4207 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)4208 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
4209 // Collection check for native allocation. Does not enforce Java heap bounds.
4210 // With adj_start_bytes defined below, effectively checks
4211 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
4212 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
4213 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
4214 if (old_native_bytes > current_native_bytes) {
4215 // Net decrease; skip the check, but update old value.
4216 // It's OK to lose an update if two stores race.
4217 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
4218 return 0.0;
4219 } else {
4220 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
4221 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
4222 + old_native_bytes / kOldNativeDiscountFactor;
4223 size_t add_bytes_allowed = static_cast<size_t>(
4224 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
4225 size_t java_gc_start_bytes = is_gc_concurrent
4226 ? concurrent_start_bytes_
4227 : target_footprint_.load(std::memory_order_relaxed);
4228 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
4229 add_bytes_allowed / kNewNativeDiscountFactor);
4230 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
4231 / static_cast<float>(adj_start_bytes);
4232 }
4233 }
4234
CheckGCForNative(Thread * self)4235 inline void Heap::CheckGCForNative(Thread* self) {
4236 bool is_gc_concurrent = IsGcConcurrent();
4237 uint32_t starting_gc_num = GetCurrentGcNum();
4238 size_t current_native_bytes = GetNativeBytes();
4239 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
4240 if (UNLIKELY(gc_urgency >= 1.0)) {
4241 if (is_gc_concurrent) {
4242 bool requested =
4243 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num);
4244 if (requested && gc_urgency > kStopForNativeFactor
4245 && current_native_bytes > stop_for_native_allocs_) {
4246 // We're in danger of running out of memory due to rampant native allocation.
4247 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
4248 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
4249 }
4250 // Count how many times we do this, so we can warn if this becomes excessive.
4251 // Stop after a while, out of excessive caution.
4252 static constexpr int kGcWaitIters = 20;
4253 for (int i = 1; i <= kGcWaitIters; ++i) {
4254 if (!GCNumberLt(GetCurrentGcNum(), max_gc_requested_.load(std::memory_order_relaxed))
4255 || WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
4256 break;
4257 }
4258 CHECK(GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4259 if (i % 10 == 0) {
4260 LOG(WARNING) << "Slept " << i << " times in native allocation, waiting for GC";
4261 }
4262 static constexpr int kGcWaitSleepMicros = 2000;
4263 usleep(kGcWaitSleepMicros); // Encourage our requested GC to start.
4264 }
4265 }
4266 } else {
4267 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1);
4268 }
4269 }
4270 }
4271
4272 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)4273 void Heap::NotifyNativeAllocations(JNIEnv* env) {
4274 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
4275 CheckGCForNative(Thread::ForEnv(env));
4276 }
4277
4278 // Register a native allocation with an explicit size.
4279 // This should only be done for large allocations of non-malloc memory, which we wouldn't
4280 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)4281 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
4282 // Cautiously check for a wrapped negative bytes argument.
4283 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
4284 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
4285 uint32_t objects_notified =
4286 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
4287 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
4288 || bytes > kCheckImmediatelyThreshold) {
4289 CheckGCForNative(Thread::ForEnv(env));
4290 }
4291 // Heap profiler treats this as a Java allocation with a null object.
4292 if (GetHeapSampler().IsEnabled()) {
4293 JHPCheckNonTlabSampleAllocation(Thread::Current(), nullptr, bytes);
4294 }
4295 }
4296
RegisterNativeFree(JNIEnv *,size_t bytes)4297 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
4298 size_t allocated;
4299 size_t new_freed_bytes;
4300 do {
4301 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
4302 new_freed_bytes = std::min(allocated, bytes);
4303 // We should not be registering more free than allocated bytes.
4304 // But correctly keep going in non-debug builds.
4305 DCHECK_EQ(new_freed_bytes, bytes);
4306 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
4307 allocated - new_freed_bytes));
4308 }
4309
GetTotalMemory() const4310 size_t Heap::GetTotalMemory() const {
4311 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
4312 }
4313
AddModUnionTable(accounting::ModUnionTable * mod_union_table)4314 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
4315 DCHECK(mod_union_table != nullptr);
4316 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
4317 }
4318
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)4319 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
4320 // Compare rounded sizes since the allocation may have been retried after rounding the size.
4321 // See b/37885600
4322 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
4323 (c->IsVariableSize() ||
4324 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
4325 RoundUp(byte_count, kObjectAlignment)))
4326 << "ClassFlags=" << c->GetClassFlags()
4327 << " IsClassClass=" << c->IsClassClass()
4328 << " byte_count=" << byte_count
4329 << " IsVariableSize=" << c->IsVariableSize()
4330 << " ObjectSize=" << c->GetObjectSize()
4331 << " sizeof(Class)=" << sizeof(mirror::Class)
4332 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4333 CHECK_GE(byte_count, sizeof(mirror::Object));
4334 }
4335
AddRememberedSet(accounting::RememberedSet * remembered_set)4336 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4337 CHECK(remembered_set != nullptr);
4338 space::Space* space = remembered_set->GetSpace();
4339 CHECK(space != nullptr);
4340 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4341 remembered_sets_.Put(space, remembered_set);
4342 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4343 }
4344
RemoveRememberedSet(space::Space * space)4345 void Heap::RemoveRememberedSet(space::Space* space) {
4346 CHECK(space != nullptr);
4347 auto it = remembered_sets_.find(space);
4348 CHECK(it != remembered_sets_.end());
4349 delete it->second;
4350 remembered_sets_.erase(it);
4351 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4352 }
4353
ClearMarkedObjects(bool release_eagerly)4354 void Heap::ClearMarkedObjects(bool release_eagerly) {
4355 // Clear all of the spaces' mark bitmaps.
4356 for (const auto& space : GetContinuousSpaces()) {
4357 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4358 space->GetMarkBitmap()->Clear(release_eagerly);
4359 }
4360 }
4361 // Clear the marked objects in the discontinous space object sets.
4362 for (const auto& space : GetDiscontinuousSpaces()) {
4363 space->GetMarkBitmap()->Clear(release_eagerly);
4364 }
4365 }
4366
SetAllocationRecords(AllocRecordObjectMap * records)4367 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4368 allocation_records_.reset(records);
4369 }
4370
VisitAllocationRecords(RootVisitor * visitor) const4371 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4372 if (IsAllocTrackingEnabled()) {
4373 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4374 if (IsAllocTrackingEnabled()) {
4375 GetAllocationRecords()->VisitRoots(visitor);
4376 }
4377 }
4378 }
4379
SweepAllocationRecords(IsMarkedVisitor * visitor) const4380 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4381 if (IsAllocTrackingEnabled()) {
4382 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4383 if (IsAllocTrackingEnabled()) {
4384 GetAllocationRecords()->SweepAllocationRecords(visitor);
4385 }
4386 }
4387 }
4388
AllowNewAllocationRecords() const4389 void Heap::AllowNewAllocationRecords() const {
4390 CHECK(!gUseReadBarrier);
4391 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4392 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4393 if (allocation_records != nullptr) {
4394 allocation_records->AllowNewAllocationRecords();
4395 }
4396 }
4397
DisallowNewAllocationRecords() const4398 void Heap::DisallowNewAllocationRecords() const {
4399 CHECK(!gUseReadBarrier);
4400 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4401 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4402 if (allocation_records != nullptr) {
4403 allocation_records->DisallowNewAllocationRecords();
4404 }
4405 }
4406
BroadcastForNewAllocationRecords() const4407 void Heap::BroadcastForNewAllocationRecords() const {
4408 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4409 // be set to false while some threads are waiting for system weak access in
4410 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4411 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4412 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4413 if (allocation_records != nullptr) {
4414 allocation_records->BroadcastForNewAllocationRecords();
4415 }
4416 }
4417
4418 // Perfetto Java Heap Profiler Support.
4419
4420 // Perfetto initialization.
InitPerfettoJavaHeapProf()4421 void Heap::InitPerfettoJavaHeapProf() {
4422 // Initialize Perfetto Heap info and Heap id.
4423 uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id.
4424 #ifdef ART_TARGET_ANDROID
4425 // Register the heap and create the heapid.
4426 // Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler.
4427 AHeapInfo* info = AHeapInfo_create("com.android.art");
4428 // Set the Enable Callback, there is no callback data ("nullptr").
4429 AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_);
4430 // Set the Disable Callback.
4431 AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_);
4432 heap_id = AHeapProfile_registerHeap(info);
4433 // Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through
4434 // the callback function.
4435 #else
4436 // This is the host case, enable the Java Heap Profiler for host testing.
4437 // Perfetto API is currently not available on host.
4438 heap_sampler_.EnableHeapSampler();
4439 #endif
4440 heap_sampler_.SetHeapID(heap_id);
4441 VLOG(heap) << "Java Heap Profiler Initialized";
4442 }
4443
JHPCheckNonTlabSampleAllocation(Thread * self,mirror::Object * obj,size_t alloc_size)4444 void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) {
4445 bool take_sample = false;
4446 size_t bytes_until_sample = 0;
4447 HeapSampler& prof_heap_sampler = GetHeapSampler();
4448 // An allocation occurred, sample it, even if non-Tlab.
4449 // In case take_sample is already set from the previous GetSampleOffset
4450 // because we tried the Tlab allocation first, we will not use this value.
4451 // A new value is generated below. Also bytes_until_sample will be updated.
4452 // Note that we are not using the return value from the GetSampleOffset in
4453 // the NonTlab case here.
4454 prof_heap_sampler.GetSampleOffset(
4455 alloc_size, self->GetTlabPosOffset(), &take_sample, &bytes_until_sample);
4456 prof_heap_sampler.SetBytesUntilSample(bytes_until_sample);
4457 if (take_sample) {
4458 prof_heap_sampler.ReportSample(obj, alloc_size);
4459 }
4460 VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation or RegisterNativeAllocation";
4461 }
4462
JHPCalculateNextTlabSize(Thread * self,size_t jhp_def_tlab_size,size_t alloc_size,bool * take_sample,size_t * bytes_until_sample)4463 size_t Heap::JHPCalculateNextTlabSize(Thread* self,
4464 size_t jhp_def_tlab_size,
4465 size_t alloc_size,
4466 bool* take_sample,
4467 size_t* bytes_until_sample) {
4468 size_t next_sample_point = GetHeapSampler().GetSampleOffset(
4469 alloc_size, self->GetTlabPosOffset(), take_sample, bytes_until_sample);
4470 return std::min(next_sample_point, jhp_def_tlab_size);
4471 }
4472
AdjustSampleOffset(size_t adjustment)4473 void Heap::AdjustSampleOffset(size_t adjustment) {
4474 GetHeapSampler().AdjustSampleOffset(adjustment);
4475 }
4476
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4477 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4478 DCHECK(gc_stress_mode_);
4479 auto* const runtime = Runtime::Current();
4480 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4481 // Check if we should GC.
4482 bool new_backtrace = false;
4483 {
4484 static constexpr size_t kMaxFrames = 16u;
4485 MutexLock mu(self, *backtrace_lock_);
4486 FixedSizeBacktrace<kMaxFrames> backtrace;
4487 backtrace.Collect(/* skip_count= */ 2);
4488 uint64_t hash = backtrace.Hash();
4489 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4490 if (new_backtrace) {
4491 seen_backtraces_.insert(hash);
4492 }
4493 }
4494 if (new_backtrace) {
4495 StackHandleScope<1> hs(self);
4496 auto h = hs.NewHandleWrapper(obj);
4497 CollectGarbage(/* clear_soft_references= */ false);
4498 unique_backtrace_count_.fetch_add(1);
4499 } else {
4500 seen_backtrace_count_.fetch_add(1);
4501 }
4502 }
4503 }
4504
DisableGCForShutdown()4505 void Heap::DisableGCForShutdown() {
4506 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4507 gc_disabled_for_shutdown_ = true;
4508 }
4509
IsGCDisabledForShutdown() const4510 bool Heap::IsGCDisabledForShutdown() const {
4511 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4512 return gc_disabled_for_shutdown_;
4513 }
4514
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4515 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4516 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4517 any_of(boot_image_spaces_.begin(),
4518 boot_image_spaces_.end(),
4519 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4520 return space->HasAddress(obj.Ptr());
4521 }));
4522 return IsBootImageAddress(obj.Ptr());
4523 }
4524
IsInBootImageOatFile(const void * p) const4525 bool Heap::IsInBootImageOatFile(const void* p) const {
4526 DCHECK_EQ(IsBootImageAddress(p),
4527 any_of(boot_image_spaces_.begin(),
4528 boot_image_spaces_.end(),
4529 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4530 return space->GetOatFile()->Contains(p);
4531 }));
4532 return IsBootImageAddress(p);
4533 }
4534
SetAllocationListener(AllocationListener * l)4535 void Heap::SetAllocationListener(AllocationListener* l) {
4536 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4537
4538 if (old == nullptr) {
4539 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4540 }
4541 }
4542
RemoveAllocationListener()4543 void Heap::RemoveAllocationListener() {
4544 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4545
4546 if (old != nullptr) {
4547 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4548 }
4549 }
4550
SetGcPauseListener(GcPauseListener * l)4551 void Heap::SetGcPauseListener(GcPauseListener* l) {
4552 gc_pause_listener_.store(l, std::memory_order_relaxed);
4553 }
4554
RemoveGcPauseListener()4555 void Heap::RemoveGcPauseListener() {
4556 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4557 }
4558
AllocWithNewTLAB(Thread * self,AllocatorType allocator_type,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4559 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4560 AllocatorType allocator_type,
4561 size_t alloc_size,
4562 bool grow,
4563 size_t* bytes_allocated,
4564 size_t* usable_size,
4565 size_t* bytes_tl_bulk_allocated) {
4566 mirror::Object* ret = nullptr;
4567 bool take_sample = false;
4568 size_t bytes_until_sample = 0;
4569 bool jhp_enabled = GetHeapSampler().IsEnabled();
4570
4571 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4572 DCHECK_GT(alloc_size, self->TlabSize());
4573 // There is enough space if we grow the TLAB. Lets do that. This increases the
4574 // TLAB bytes.
4575 const size_t min_expand_size = alloc_size - self->TlabSize();
4576 size_t next_tlab_size =
4577 jhp_enabled ? JHPCalculateNextTlabSize(
4578 self, kPartialTlabSize, alloc_size, &take_sample, &bytes_until_sample) :
4579 kPartialTlabSize;
4580 const size_t expand_bytes = std::max(
4581 min_expand_size,
4582 std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size));
4583 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4584 return nullptr;
4585 }
4586 *bytes_tl_bulk_allocated = expand_bytes;
4587 self->ExpandTlab(expand_bytes);
4588 DCHECK_LE(alloc_size, self->TlabSize());
4589 } else if (allocator_type == kAllocatorTypeTLAB) {
4590 DCHECK(bump_pointer_space_ != nullptr);
4591 // Try to allocate a page-aligned TLAB (not necessary though).
4592 // TODO: for large allocations, which are rare, maybe we should allocate
4593 // that object and return. There is no need to revoke the current TLAB,
4594 // particularly if it's mostly unutilized.
4595 size_t next_tlab_size = RoundDown(alloc_size + kDefaultTLABSize, gPageSize) - alloc_size;
4596 if (jhp_enabled) {
4597 next_tlab_size = JHPCalculateNextTlabSize(
4598 self, next_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4599 }
4600 const size_t new_tlab_size = alloc_size + next_tlab_size;
4601 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4602 return nullptr;
4603 }
4604 // Try allocating a new thread local buffer, if the allocation fails the space must be
4605 // full so return null.
4606 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4607 return nullptr;
4608 }
4609 if (jhp_enabled) {
4610 VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size;
4611 }
4612 } else {
4613 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4614 DCHECK(region_space_ != nullptr);
4615 if (space::RegionSpace::kRegionSize >= alloc_size) {
4616 // Non-large. Check OOME for a tlab.
4617 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4618 space::RegionSpace::kRegionSize,
4619 grow))) {
4620 size_t next_pr_tlab_size =
4621 kUsePartialTlabs ? kPartialTlabSize : gc::space::RegionSpace::kRegionSize;
4622 if (jhp_enabled) {
4623 next_pr_tlab_size = JHPCalculateNextTlabSize(
4624 self, next_pr_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4625 }
4626 const size_t new_tlab_size = kUsePartialTlabs
4627 ? std::max(alloc_size, next_pr_tlab_size)
4628 : next_pr_tlab_size;
4629 // Try to allocate a tlab.
4630 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4631 // Failed to allocate a tlab. Try non-tlab.
4632 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4633 bytes_allocated,
4634 usable_size,
4635 bytes_tl_bulk_allocated);
4636 if (jhp_enabled) {
4637 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4638 }
4639 return ret;
4640 }
4641 // Fall-through to using the TLAB below.
4642 } else {
4643 // Check OOME for a non-tlab allocation.
4644 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4645 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4646 bytes_allocated,
4647 usable_size,
4648 bytes_tl_bulk_allocated);
4649 if (jhp_enabled) {
4650 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4651 }
4652 return ret;
4653 }
4654 // Neither tlab or non-tlab works. Give up.
4655 return nullptr;
4656 }
4657 } else {
4658 // Large. Check OOME.
4659 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4660 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4661 bytes_allocated,
4662 usable_size,
4663 bytes_tl_bulk_allocated);
4664 if (jhp_enabled) {
4665 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4666 }
4667 return ret;
4668 }
4669 return nullptr;
4670 }
4671 }
4672 // Refilled TLAB, return.
4673 ret = self->AllocTlab(alloc_size);
4674 DCHECK(ret != nullptr);
4675 *bytes_allocated = alloc_size;
4676 *usable_size = alloc_size;
4677
4678 // JavaHeapProfiler: Send the thread information about this allocation in case a sample is
4679 // requested.
4680 // This is the fallthrough from both the if and else if above cases => Cases that use TLAB.
4681 if (jhp_enabled) {
4682 if (take_sample) {
4683 GetHeapSampler().ReportSample(ret, alloc_size);
4684 // Update the bytes_until_sample now that the allocation is already done.
4685 GetHeapSampler().SetBytesUntilSample(bytes_until_sample);
4686 }
4687 VLOG(heap) << "JHP:Fallthrough Tlab allocation";
4688 }
4689
4690 return ret;
4691 }
4692
GetVerification() const4693 const Verification* Heap::GetVerification() const {
4694 return verification_.get();
4695 }
4696
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4697 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4698 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4699 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4700 }
4701
4702 // Run a gc if we haven't run one since initial_gc_num. This forces processes to
4703 // reclaim memory allocated during startup, even if they don't do much
4704 // allocation post startup. If the process is actively allocating and triggering
4705 // GCs, or has moved to the background and hence forced a GC, this does nothing.
4706 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4707 public:
TriggerPostForkCCGcTask(uint64_t target_time,uint32_t initial_gc_num)4708 explicit TriggerPostForkCCGcTask(uint64_t target_time, uint32_t initial_gc_num) :
4709 HeapTask(target_time), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4710 void Run(Thread* self) override {
4711 gc::Heap* heap = Runtime::Current()->GetHeap();
4712 if (heap->GetCurrentGcNum() == initial_gc_num_) {
4713 if (kLogAllGCs) {
4714 LOG(INFO) << "Forcing GC for allocation-inactive process";
4715 }
4716 heap->RequestConcurrentGC(self, kGcCauseBackground, false, initial_gc_num_);
4717 }
4718 }
4719 private:
4720 uint32_t initial_gc_num_;
4721 };
4722
4723 // Reduce target footprint, if no GC has occurred since initial_gc_num.
4724 // If a GC already occurred, it will have done this for us.
4725 class Heap::ReduceTargetFootprintTask : public HeapTask {
4726 public:
ReduceTargetFootprintTask(uint64_t target_time,size_t new_target_sz,uint32_t initial_gc_num)4727 explicit ReduceTargetFootprintTask(uint64_t target_time, size_t new_target_sz,
4728 uint32_t initial_gc_num) :
4729 HeapTask(target_time), new_target_sz_(new_target_sz), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4730 void Run(Thread* self) override {
4731 gc::Heap* heap = Runtime::Current()->GetHeap();
4732 MutexLock mu(self, *(heap->gc_complete_lock_));
4733 if (heap->GetCurrentGcNum() == initial_gc_num_
4734 && heap->collector_type_running_ == kCollectorTypeNone) {
4735 size_t target_footprint = heap->target_footprint_.load(std::memory_order_relaxed);
4736 if (target_footprint > new_target_sz_) {
4737 if (heap->target_footprint_.CompareAndSetStrongRelaxed(target_footprint, new_target_sz_)) {
4738 heap->SetDefaultConcurrentStartBytesLocked();
4739 }
4740 }
4741 }
4742 }
4743 private:
4744 size_t new_target_sz_;
4745 uint32_t initial_gc_num_;
4746 };
4747
4748 // Return a pseudo-random integer between 0 and 19999, using the uid as a seed. We want this to
4749 // be deterministic for a given process, but to vary randomly across processes. Empirically, the
4750 // uids for processes for which this matters are distinct.
GetPseudoRandomFromUid()4751 static uint32_t GetPseudoRandomFromUid() {
4752 std::default_random_engine rng(getuid());
4753 std::uniform_int_distribution<int> dist(0, 19999);
4754 return dist(rng);
4755 }
4756
PostForkChildAction(Thread * self)4757 void Heap::PostForkChildAction(Thread* self) {
4758 uint32_t starting_gc_num = GetCurrentGcNum();
4759 uint64_t last_adj_time = NanoTime();
4760 next_gc_type_ = NonStickyGcType(); // Always start with a full gc.
4761
4762 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
4763 if (gUseUserfaultfd) {
4764 DCHECK_NE(mark_compact_, nullptr);
4765 mark_compact_->CreateUserfaultfd(/*post_fork*/true);
4766 }
4767
4768 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4769 // max values to avoid GC during app launch.
4770 // Set target_footprint_ to the largest allowed value.
4771 SetIdealFootprint(growth_limit_);
4772 SetDefaultConcurrentStartBytes();
4773
4774 // Shrink heap after kPostForkMaxHeapDurationMS, to force a memory hog process to GC.
4775 // This remains high enough that many processes will continue without a GC.
4776 if (initial_heap_size_ < growth_limit_) {
4777 size_t first_shrink_size = std::max(growth_limit_ / 4, initial_heap_size_);
4778 last_adj_time += MsToNs(kPostForkMaxHeapDurationMS);
4779 GetTaskProcessor()->AddTask(
4780 self, new ReduceTargetFootprintTask(last_adj_time, first_shrink_size, starting_gc_num));
4781 // Shrink to a small value after a substantial time period. This will typically force a
4782 // GC if none has occurred yet. Has no effect if there was a GC before this anyway, which
4783 // is commonly the case, e.g. because of a process transition.
4784 if (initial_heap_size_ < first_shrink_size) {
4785 last_adj_time += MsToNs(4 * kPostForkMaxHeapDurationMS);
4786 GetTaskProcessor()->AddTask(
4787 self,
4788 new ReduceTargetFootprintTask(last_adj_time, initial_heap_size_, starting_gc_num));
4789 }
4790 }
4791 // Schedule a GC after a substantial period of time. This will become a no-op if another GC is
4792 // scheduled in the interim. If not, we want to avoid holding onto start-up garbage.
4793 uint64_t post_fork_gc_time = last_adj_time
4794 + MsToNs(4 * kPostForkMaxHeapDurationMS + GetPseudoRandomFromUid());
4795 GetTaskProcessor()->AddTask(self,
4796 new TriggerPostForkCCGcTask(post_fork_gc_time, starting_gc_num));
4797 }
4798
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4799 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4800 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4801 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4802 // All these classes are in the BootstrapClassLoader.
4803 if (!klass->IsBootStrapClassLoaded()) {
4804 return;
4805 }
4806 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4807 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4808 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4809 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4810 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4811 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4812 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4813 } else if (art::GetClassRoot<art::mirror::StaticFieldVarHandle>()->IsAssignableFrom(klass)) {
4814 down_cast<mirror::StaticFieldVarHandle*>(ref)->VisitTarget(visit);
4815 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4816 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4817 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4818 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4819 }
4820 });
4821 }
4822
AddHeapTask(gc::HeapTask * task)4823 bool Heap::AddHeapTask(gc::HeapTask* task) {
4824 Thread* const self = Thread::Current();
4825 if (!CanAddHeapTask(self)) {
4826 return false;
4827 }
4828 GetTaskProcessor()->AddTask(self, task);
4829 return true;
4830 }
4831
GetForegroundCollectorName()4832 std::string Heap::GetForegroundCollectorName() {
4833 std::ostringstream oss;
4834 oss << foreground_collector_type_;
4835 return oss.str();
4836 }
4837
HasAppImageSpaceFor(const std::string & dex_location) const4838 bool Heap::HasAppImageSpaceFor(const std::string& dex_location) const {
4839 ScopedObjectAccess soa(Thread::Current());
4840 for (space::ContinuousSpace* space : continuous_spaces_) {
4841 // An image space is either a boot image space or an app image space.
4842 if (space->IsImageSpace() &&
4843 !IsBootImageAddress(space->Begin()) &&
4844 (space->AsImageSpace()->GetOatFile()->GetOatDexFiles()[0]->GetDexFileLocation() ==
4845 dex_location)) {
4846 return true;
4847 }
4848 }
4849 return false;
4850 }
4851
4852 } // namespace gc
4853 } // namespace art
4854