1 // Copyright 2018 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/task/sequence_manager/thread_controller_with_message_pump_impl.h"
6
7 #include <algorithm>
8 #include <atomic>
9 #include <optional>
10 #include <utility>
11
12 #include "base/auto_reset.h"
13 #include "base/feature_list.h"
14 #include "base/logging.h"
15 #include "base/memory/ptr_util.h"
16 #include "base/memory/stack_allocated.h"
17 #include "base/message_loop/message_pump.h"
18 #include "base/metrics/histogram.h"
19 #include "base/metrics/histogram_macros.h"
20 #include "base/task/sequence_manager/tasks.h"
21 #include "base/task/task_features.h"
22 #include "base/threading/hang_watcher.h"
23 #include "base/time/tick_clock.h"
24 #include "base/time/time.h"
25 #include "base/trace_event/base_tracing.h"
26 #include "build/build_config.h"
27
28 #if BUILDFLAG(IS_IOS)
29 #include "base/message_loop/message_pump_apple.h"
30 #elif BUILDFLAG(IS_ANDROID)
31 #include "base/message_loop/message_pump_android.h"
32 #endif
33
34 namespace base {
35 namespace sequence_manager {
36 namespace internal {
37 namespace {
38
39 // Returns |next_run_time| capped at 1 day from |lazy_now|. This is used to
40 // mitigate https://crbug.com/850450 where some platforms are unhappy with
41 // delays > 100,000,000 seconds. In practice, a diagnosis metric showed that no
42 // sleep > 1 hour ever completes (always interrupted by an earlier MessageLoop
43 // event) and 99% of completed sleeps are the ones scheduled for <= 1 second.
44 // Details @ https://crrev.com/c/1142589.
CapAtOneDay(TimeTicks next_run_time,LazyNow * lazy_now)45 TimeTicks CapAtOneDay(TimeTicks next_run_time, LazyNow* lazy_now) {
46 return std::min(next_run_time, lazy_now->Now() + Days(1));
47 }
48
49 BASE_FEATURE(kAvoidScheduleWorkDuringNativeEventProcessing,
50 "AvoidScheduleWorkDuringNativeEventProcessing",
51 base::FEATURE_DISABLED_BY_DEFAULT);
52
53 #if BUILDFLAG(IS_WIN)
54 // If enabled, deactivate the high resolution timer immediately in DoWork(),
55 // instead of waiting for next DoIdleWork.
56 BASE_FEATURE(kUseLessHighResTimers,
57 "UseLessHighResTimers",
58 base::FEATURE_ENABLED_BY_DEFAULT);
59 std::atomic_bool g_use_less_high_res_timers = true;
60 #endif
61
62 std::atomic_bool g_run_tasks_by_batches = false;
63 std::atomic_bool g_avoid_schedule_calls_during_native_event_processing = false;
64
GetLeewayForWakeUp(std::optional<WakeUp> wake_up)65 base::TimeDelta GetLeewayForWakeUp(std::optional<WakeUp> wake_up) {
66 if (!wake_up || wake_up->delay_policy == subtle::DelayPolicy::kPrecise) {
67 return TimeDelta();
68 }
69 return wake_up->leeway;
70 }
71
72 } // namespace
73
74 // static
InitializeFeatures()75 void ThreadControllerWithMessagePumpImpl::InitializeFeatures() {
76 g_run_tasks_by_batches.store(FeatureList::IsEnabled(base::kRunTasksByBatches),
77 std::memory_order_relaxed);
78 g_avoid_schedule_calls_during_native_event_processing.store(
79 FeatureList::IsEnabled(kAvoidScheduleWorkDuringNativeEventProcessing),
80 std::memory_order_relaxed);
81 #if BUILDFLAG(IS_WIN)
82 g_use_less_high_res_timers.store(
83 FeatureList::IsEnabled(kUseLessHighResTimers), std::memory_order_relaxed);
84 #endif
85 }
86
87 // static
ResetFeatures()88 void ThreadControllerWithMessagePumpImpl::ResetFeatures() {
89 g_run_tasks_by_batches.store(
90 base::kRunTasksByBatches.default_state == FEATURE_ENABLED_BY_DEFAULT,
91 std::memory_order_relaxed);
92 }
93
ThreadControllerWithMessagePumpImpl(const SequenceManager::Settings & settings)94 ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
95 const SequenceManager::Settings& settings)
96 : ThreadController(settings.clock),
97 work_deduplicator_(associated_thread_),
98 can_run_tasks_by_batches_(settings.can_run_tasks_by_batches) {}
99
ThreadControllerWithMessagePumpImpl(std::unique_ptr<MessagePump> message_pump,const SequenceManager::Settings & settings)100 ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
101 std::unique_ptr<MessagePump> message_pump,
102 const SequenceManager::Settings& settings)
103 : ThreadControllerWithMessagePumpImpl(settings) {
104 BindToCurrentThread(std::move(message_pump));
105 }
106
~ThreadControllerWithMessagePumpImpl()107 ThreadControllerWithMessagePumpImpl::~ThreadControllerWithMessagePumpImpl() {
108 // Destructors of MessagePump::Delegate and
109 // SingleThreadTaskRunner::CurrentDefaultHandle will do all the clean-up.
110 // ScopedSetSequenceLocalStorageMapForCurrentThread destructor will
111 // de-register the current thread as a sequence.
112
113 #if BUILDFLAG(IS_WIN)
114 if (main_thread_only().in_high_res_mode) {
115 main_thread_only().in_high_res_mode = false;
116 Time::ActivateHighResolutionTimer(false);
117 }
118 #endif
119 }
120
121 // static
122 std::unique_ptr<ThreadControllerWithMessagePumpImpl>
CreateUnbound(const SequenceManager::Settings & settings)123 ThreadControllerWithMessagePumpImpl::CreateUnbound(
124 const SequenceManager::Settings& settings) {
125 return base::WrapUnique(new ThreadControllerWithMessagePumpImpl(settings));
126 }
127
128 ThreadControllerWithMessagePumpImpl::MainThreadOnly::MainThreadOnly() = default;
129
130 ThreadControllerWithMessagePumpImpl::MainThreadOnly::~MainThreadOnly() =
131 default;
132
SetSequencedTaskSource(SequencedTaskSource * task_source)133 void ThreadControllerWithMessagePumpImpl::SetSequencedTaskSource(
134 SequencedTaskSource* task_source) {
135 DCHECK(task_source);
136 DCHECK(!main_thread_only().task_source);
137 main_thread_only().task_source = task_source;
138 }
139
BindToCurrentThread(std::unique_ptr<MessagePump> message_pump)140 void ThreadControllerWithMessagePumpImpl::BindToCurrentThread(
141 std::unique_ptr<MessagePump> message_pump) {
142 associated_thread_->BindToCurrentThread();
143 pump_ = std::move(message_pump);
144 work_id_provider_ = WorkIdProvider::GetForCurrentThread();
145 RunLoop::RegisterDelegateForCurrentThread(this);
146 scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique<
147 base::internal::ScopedSetSequenceLocalStorageMapForCurrentThread>(
148 &sequence_local_storage_map_);
149 {
150 base::internal::CheckedAutoLock task_runner_lock(task_runner_lock_);
151 if (task_runner_)
152 InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
153 }
154 if (work_deduplicator_.BindToCurrentThread() ==
155 ShouldScheduleWork::kScheduleImmediate) {
156 pump_->ScheduleWork();
157 }
158 }
159
SetWorkBatchSize(int work_batch_size)160 void ThreadControllerWithMessagePumpImpl::SetWorkBatchSize(
161 int work_batch_size) {
162 DCHECK_GE(work_batch_size, 1);
163 CHECK(main_thread_only().can_change_batch_size);
164 main_thread_only().work_batch_size = work_batch_size;
165 }
166
WillQueueTask(PendingTask * pending_task)167 void ThreadControllerWithMessagePumpImpl::WillQueueTask(
168 PendingTask* pending_task) {
169 task_annotator_.WillQueueTask("SequenceManager PostTask", pending_task);
170 }
171
ScheduleWork()172 void ThreadControllerWithMessagePumpImpl::ScheduleWork() {
173 base::internal::CheckedLock::AssertNoLockHeldOnCurrentThread();
174 if (work_deduplicator_.OnWorkRequested() ==
175 ShouldScheduleWork::kScheduleImmediate) {
176 if (!associated_thread_->IsBoundToCurrentThread()) {
177 run_level_tracker_.RecordScheduleWork();
178 } else {
179 TRACE_EVENT_INSTANT("wakeup.flow", "ScheduleWorkToSelf");
180 }
181 pump_->ScheduleWork();
182 }
183 }
BeginNativeWorkBeforeDoWork()184 void ThreadControllerWithMessagePumpImpl::BeginNativeWorkBeforeDoWork() {
185 if (!g_avoid_schedule_calls_during_native_event_processing.load(
186 std::memory_order_relaxed)) {
187 return;
188 }
189 in_native_work_batch_ = true;
190
191 // Reuse the deduplicator facility to indicate that there is no need for
192 // ScheduleWork() until the next time we look for work.
193 work_deduplicator_.OnWorkStarted();
194 }
195
SetNextDelayedDoWork(LazyNow * lazy_now,std::optional<WakeUp> wake_up)196 void ThreadControllerWithMessagePumpImpl::SetNextDelayedDoWork(
197 LazyNow* lazy_now,
198 std::optional<WakeUp> wake_up) {
199 DCHECK(!wake_up || !wake_up->is_immediate());
200 // It's very rare for PostDelayedTask to be called outside of a DoWork in
201 // production, so most of the time this does nothing.
202 if (work_deduplicator_.OnDelayedWorkRequested() !=
203 ShouldScheduleWork::kScheduleImmediate) {
204 return;
205 }
206 TimeTicks run_time =
207 wake_up.has_value()
208 ? pump_->AdjustDelayedRunTime(wake_up->earliest_time(), wake_up->time,
209 wake_up->latest_time())
210 : TimeTicks::Max();
211 DCHECK_LT(lazy_now->Now(), run_time);
212
213 if (!run_time.is_max()) {
214 run_time = CapAtOneDay(run_time, lazy_now);
215 }
216 // |pump_| can't be null as all postTasks are cross-thread before binding,
217 // and delayed cross-thread postTasks do the thread hop through an immediate
218 // task.
219 pump_->ScheduleDelayedWork(
220 {run_time, GetLeewayForWakeUp(wake_up), lazy_now->Now()});
221 }
222
RunsTasksInCurrentSequence()223 bool ThreadControllerWithMessagePumpImpl::RunsTasksInCurrentSequence() {
224 return associated_thread_->IsBoundToCurrentThread();
225 }
226
SetDefaultTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner)227 void ThreadControllerWithMessagePumpImpl::SetDefaultTaskRunner(
228 scoped_refptr<SingleThreadTaskRunner> task_runner) {
229 base::internal::CheckedAutoLock lock(task_runner_lock_);
230 task_runner_ = task_runner;
231 if (associated_thread_->IsBound()) {
232 DCHECK(associated_thread_->IsBoundToCurrentThread());
233 // Thread task runner handle will be created in BindToCurrentThread().
234 InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
235 }
236 }
237
238 void ThreadControllerWithMessagePumpImpl::
InitializeSingleThreadTaskRunnerCurrentDefaultHandle()239 InitializeSingleThreadTaskRunnerCurrentDefaultHandle() {
240 // Only one SingleThreadTaskRunner::CurrentDefaultHandle can exist at any
241 // time, so reset the old one.
242 main_thread_only().thread_task_runner_handle.reset();
243 main_thread_only().thread_task_runner_handle =
244 std::make_unique<SingleThreadTaskRunner::CurrentDefaultHandle>(
245 task_runner_);
246 // When the task runner is known, bind the power manager. Power notifications
247 // are received through that sequence.
248 power_monitor_.BindToCurrentThread();
249 }
250
251 scoped_refptr<SingleThreadTaskRunner>
GetDefaultTaskRunner()252 ThreadControllerWithMessagePumpImpl::GetDefaultTaskRunner() {
253 base::internal::CheckedAutoLock lock(task_runner_lock_);
254 return task_runner_;
255 }
256
RestoreDefaultTaskRunner()257 void ThreadControllerWithMessagePumpImpl::RestoreDefaultTaskRunner() {
258 // There is no default task runner (as opposed to ThreadControllerImpl).
259 }
260
AddNestingObserver(RunLoop::NestingObserver * observer)261 void ThreadControllerWithMessagePumpImpl::AddNestingObserver(
262 RunLoop::NestingObserver* observer) {
263 DCHECK(!main_thread_only().nesting_observer);
264 DCHECK(observer);
265 main_thread_only().nesting_observer = observer;
266 RunLoop::AddNestingObserverOnCurrentThread(this);
267 }
268
RemoveNestingObserver(RunLoop::NestingObserver * observer)269 void ThreadControllerWithMessagePumpImpl::RemoveNestingObserver(
270 RunLoop::NestingObserver* observer) {
271 DCHECK_EQ(main_thread_only().nesting_observer, observer);
272 main_thread_only().nesting_observer = nullptr;
273 RunLoop::RemoveNestingObserverOnCurrentThread(this);
274 }
275
OnBeginWorkItem()276 void ThreadControllerWithMessagePumpImpl::OnBeginWorkItem() {
277 LazyNow lazy_now(time_source_);
278 OnBeginWorkItemImpl(lazy_now);
279 }
280
OnBeginWorkItemImpl(LazyNow & lazy_now)281 void ThreadControllerWithMessagePumpImpl::OnBeginWorkItemImpl(
282 LazyNow& lazy_now) {
283 hang_watch_scope_.emplace();
284 work_id_provider_->IncrementWorkId();
285 run_level_tracker_.OnWorkStarted(lazy_now);
286 main_thread_only().task_source->OnBeginWork();
287 }
288
OnEndWorkItem(int run_level_depth)289 void ThreadControllerWithMessagePumpImpl::OnEndWorkItem(int run_level_depth) {
290 LazyNow lazy_now(time_source_);
291 OnEndWorkItemImpl(lazy_now, run_level_depth);
292 }
293
OnEndWorkItemImpl(LazyNow & lazy_now,int run_level_depth)294 void ThreadControllerWithMessagePumpImpl::OnEndWorkItemImpl(
295 LazyNow& lazy_now,
296 int run_level_depth) {
297 // Work completed, begin a new hang watch until the next task (watching the
298 // pump's overhead).
299 hang_watch_scope_.emplace();
300 work_id_provider_->IncrementWorkId();
301 run_level_tracker_.OnWorkEnded(lazy_now, run_level_depth);
302 }
303
BeforeWait()304 void ThreadControllerWithMessagePumpImpl::BeforeWait() {
305 // DoWork is guaranteed to be called after native work batches and before
306 // wait.
307 CHECK(!in_native_work_batch_);
308
309 // In most cases, DoIdleWork() will already have cleared the
310 // `hang_watch_scope_` but in some cases where the native side of the
311 // MessagePump impl is instrumented, it's possible to get a BeforeWait()
312 // outside of a DoWork cycle (e.g. message_pump_win.cc :
313 // MessagePumpForUI::HandleWorkMessage).
314 hang_watch_scope_.reset();
315
316 work_id_provider_->IncrementWorkId();
317 LazyNow lazy_now(time_source_);
318 run_level_tracker_.OnIdle(lazy_now);
319 }
320
321 MessagePump::Delegate::NextWorkInfo
DoWork()322 ThreadControllerWithMessagePumpImpl::DoWork() {
323 in_native_work_batch_ = false;
324
325 #if BUILDFLAG(IS_WIN)
326 // We've been already in a wakeup here. Deactivate the high res timer of OS
327 // immediately instead of waiting for next DoIdleWork().
328 if (g_use_less_high_res_timers.load(std::memory_order_relaxed) &&
329 main_thread_only().in_high_res_mode) {
330 main_thread_only().in_high_res_mode = false;
331 Time::ActivateHighResolutionTimer(false);
332 }
333 #endif
334 MessagePump::Delegate::NextWorkInfo next_work_info{};
335
336 work_deduplicator_.OnWorkStarted();
337 LazyNow continuation_lazy_now(time_source_);
338 std::optional<WakeUp> next_wake_up = DoWorkImpl(&continuation_lazy_now);
339
340 // If we are yielding after DoWorkImpl (a work batch) set the flag boolean.
341 // This will inform the MessagePump to schedule a new continuation based on
342 // the information below, but even if its immediate let the native sequence
343 // have a chance to run.
344 // When we have |g_run_tasks_by_batches| active we want to always set the flag
345 // to true to have a similar behavior on Android as on the desktop platforms
346 // for this experiment.
347 if (RunsTasksByBatches() ||
348 (!main_thread_only().yield_to_native_after_batch.is_null() &&
349 continuation_lazy_now.Now() <
350 main_thread_only().yield_to_native_after_batch)) {
351 next_work_info.yield_to_native = true;
352 }
353 // Schedule a continuation.
354 WorkDeduplicator::NextTask next_task =
355 (next_wake_up && next_wake_up->is_immediate())
356 ? WorkDeduplicator::NextTask::kIsImmediate
357 : WorkDeduplicator::NextTask::kIsDelayed;
358 if (work_deduplicator_.DidCheckForMoreWork(next_task) ==
359 ShouldScheduleWork::kScheduleImmediate) {
360 // Need to run new work immediately, but due to the contract of DoWork
361 // we only need to return a null TimeTicks to ensure that happens.
362 return next_work_info;
363 }
364
365 // Special-casing here avoids unnecessarily sampling Now() when out of work.
366 if (!next_wake_up) {
367 next_work_info.delayed_run_time = TimeTicks::Max();
368 return next_work_info;
369 }
370
371 // The MessagePump will schedule the wake up on our behalf, so we need to
372 // update |next_work_info.delayed_run_time|.
373 TimeTicks next_delayed_do_work = pump_->AdjustDelayedRunTime(
374 next_wake_up->earliest_time(), next_wake_up->time,
375 next_wake_up->latest_time());
376
377 // Don't request a run time past |main_thread_only().quit_runloop_after|.
378 if (next_delayed_do_work > main_thread_only().quit_runloop_after) {
379 next_delayed_do_work = main_thread_only().quit_runloop_after;
380 // If we've passed |quit_runloop_after| there's no more work to do.
381 if (continuation_lazy_now.Now() >= main_thread_only().quit_runloop_after) {
382 next_work_info.delayed_run_time = TimeTicks::Max();
383 return next_work_info;
384 }
385 }
386
387 next_work_info.delayed_run_time =
388 CapAtOneDay(next_delayed_do_work, &continuation_lazy_now);
389 next_work_info.leeway = GetLeewayForWakeUp(next_wake_up);
390 next_work_info.recent_now = continuation_lazy_now.Now();
391 return next_work_info;
392 }
393
DoWorkImpl(LazyNow * continuation_lazy_now)394 std::optional<WakeUp> ThreadControllerWithMessagePumpImpl::DoWorkImpl(
395 LazyNow* continuation_lazy_now) {
396 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
397 "ThreadControllerImpl::DoWork");
398
399 if (!main_thread_only().task_execution_allowed) {
400 // Broadcast in a trace event that application tasks were disallowed. This
401 // helps spot nested loops that intentionally starve application tasks.
402 TRACE_EVENT0("base", "ThreadController: application tasks disallowed");
403 if (main_thread_only().quit_runloop_after == TimeTicks::Max())
404 return std::nullopt;
405 return WakeUp{main_thread_only().quit_runloop_after};
406 }
407
408 DCHECK(main_thread_only().task_source);
409
410 // Keep running tasks for up to 8ms before yielding to the pump when tasks are
411 // run by batches.
412 const base::TimeDelta batch_duration =
413 RunsTasksByBatches() ? base::Milliseconds(8) : base::Milliseconds(0);
414
415 const std::optional<base::TimeTicks> start_time =
416 batch_duration.is_zero()
417 ? std::nullopt
418 : std::optional<base::TimeTicks>(time_source_->NowTicks());
419 std::optional<base::TimeTicks> recent_time = start_time;
420
421 // Loops for |batch_duration|, or |work_batch_size| times if |batch_duration|
422 // is zero.
423 for (int num_tasks_executed = 0;
424 (!batch_duration.is_zero() &&
425 (recent_time.value() - start_time.value()) < batch_duration) ||
426 (batch_duration.is_zero() &&
427 num_tasks_executed < main_thread_only().work_batch_size);
428 ++num_tasks_executed) {
429 LazyNow lazy_now_select_task(recent_time, time_source_);
430 // Include SelectNextTask() in the scope of the work item. This ensures
431 // it's covered in tracing and hang reports. This is particularly
432 // important when SelectNextTask() finds no work immediately after a
433 // wakeup, otherwise the power-inefficient wakeup is invisible in
434 // tracing. OnApplicationTaskSelected() assumes this ordering as well.
435 OnBeginWorkItemImpl(lazy_now_select_task);
436 int run_depth = static_cast<int>(run_level_tracker_.num_run_levels());
437
438 const SequencedTaskSource::SelectTaskOption select_task_option =
439 power_monitor_.IsProcessInPowerSuspendState()
440 ? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
441 : SequencedTaskSource::SelectTaskOption::kDefault;
442 std::optional<SequencedTaskSource::SelectedTask> selected_task =
443 main_thread_only().task_source->SelectNextTask(lazy_now_select_task,
444 select_task_option);
445 LazyNow lazy_now_task_selected(time_source_);
446 run_level_tracker_.OnApplicationTaskSelected(
447 (selected_task && selected_task->task.delayed_run_time.is_null())
448 ? selected_task->task.queue_time
449 : TimeTicks(),
450 lazy_now_task_selected);
451 if (!selected_task) {
452 OnEndWorkItemImpl(lazy_now_task_selected, run_depth);
453 break;
454 }
455
456 // Execute the task and assume the worst: it is probably not reentrant.
457 AutoReset<bool> ban_nested_application_tasks(
458 &main_thread_only().task_execution_allowed, false);
459
460 // Trace-parsing tools (DevTools, Lighthouse, etc) consume this event to
461 // determine long tasks.
462 // See https://crbug.com/681863 and https://crbug.com/874982
463 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "RunTask");
464
465 {
466 // Always track the start of the task, as this is low-overhead.
467 TaskAnnotator::LongTaskTracker long_task_tracker(
468 time_source_, selected_task->task, &task_annotator_);
469
470 // Note: all arguments after task are just passed to a TRACE_EVENT for
471 // logging so lambda captures are safe as lambda is executed inline.
472 SequencedTaskSource* source = main_thread_only().task_source;
473 task_annotator_.RunTask(
474 "ThreadControllerImpl::RunTask", selected_task->task,
475 [&selected_task, &source](perfetto::EventContext& ctx) {
476 if (selected_task->task_execution_trace_logger) {
477 selected_task->task_execution_trace_logger.Run(
478 ctx, selected_task->task);
479 }
480 source->MaybeEmitTaskDetails(ctx, selected_task.value());
481 });
482 }
483
484 // Reset `selected_task` before the call to `DidRunTask()` below makes its
485 // `PendingTask` reference dangling.
486 selected_task.reset();
487
488 LazyNow lazy_now_after_run_task(time_source_);
489 main_thread_only().task_source->DidRunTask(lazy_now_after_run_task);
490 // End the work item scope after DidRunTask() as it can process microtasks
491 // (which are extensions of the RunTask).
492 OnEndWorkItemImpl(lazy_now_after_run_task, run_depth);
493
494 // If DidRunTask() read the clock (lazy_now_after_run_task.has_value()) or
495 // if |batch_duration| > 0, store the clock value in `recent_time` so it can
496 // be reused by SelectNextTask() at the next loop iteration.
497 if (lazy_now_after_run_task.has_value() || !batch_duration.is_zero()) {
498 recent_time = lazy_now_after_run_task.Now();
499 } else {
500 recent_time.reset();
501 }
502
503 // When Quit() is called we must stop running the batch because the
504 // caller expects per-task granularity.
505 if (main_thread_only().quit_pending)
506 break;
507 }
508
509 if (main_thread_only().quit_pending)
510 return std::nullopt;
511
512 work_deduplicator_.WillCheckForMoreWork();
513
514 // Re-check the state of the power after running tasks. An executed task may
515 // have been a power change notification.
516 const SequencedTaskSource::SelectTaskOption select_task_option =
517 power_monitor_.IsProcessInPowerSuspendState()
518 ? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
519 : SequencedTaskSource::SelectTaskOption::kDefault;
520 return main_thread_only().task_source->GetPendingWakeUp(continuation_lazy_now,
521 select_task_option);
522 }
523
RunsTasksByBatches() const524 bool ThreadControllerWithMessagePumpImpl::RunsTasksByBatches() const {
525 return can_run_tasks_by_batches_ &&
526 g_run_tasks_by_batches.load(std::memory_order_relaxed);
527 }
528
DoIdleWork()529 bool ThreadControllerWithMessagePumpImpl::DoIdleWork() {
530 struct OnIdle {
531 STACK_ALLOCATED();
532
533 public:
534 OnIdle(const TickClock* time_source, RunLevelTracker& run_level_tracker_ref)
535 : lazy_now(time_source), run_level_tracker(run_level_tracker_ref) {}
536
537 // Very last step before going idle, must be fast as this is hidden from the
538 // DoIdleWork trace event below.
539 ~OnIdle() { run_level_tracker.OnIdle(lazy_now); }
540
541 LazyNow lazy_now;
542
543 private:
544 RunLevelTracker& run_level_tracker;
545 };
546 std::optional<OnIdle> on_idle;
547
548 // Must be after `on_idle` as this trace event's scope must end before the END
549 // of the "ThreadController active" trace event emitted from
550 // `run_level_tracker_.OnIdle()`.
551 TRACE_EVENT0("sequence_manager", "SequenceManager::DoIdleWork");
552
553 #if BUILDFLAG(IS_WIN)
554 if (!power_monitor_.IsProcessInPowerSuspendState()) {
555 // Avoid calling Time::ActivateHighResolutionTimer() between
556 // suspend/resume as the system hangs if we do (crbug.com/1074028).
557 // OnResume() will generate a task on this thread per the
558 // ThreadControllerPowerMonitor observer and DoIdleWork() will thus get
559 // another chance to set the right high-resolution-timer-state before
560 // going to sleep after resume.
561
562 const bool need_high_res_mode =
563 main_thread_only().task_source->HasPendingHighResolutionTasks();
564 if (main_thread_only().in_high_res_mode != need_high_res_mode) {
565 // On Windows we activate the high resolution timer so that the wait
566 // _if_ triggered by the timer happens with good resolution. If we don't
567 // do this the default resolution is 15ms which might not be acceptable
568 // for some tasks.
569 main_thread_only().in_high_res_mode = need_high_res_mode;
570 Time::ActivateHighResolutionTimer(need_high_res_mode);
571 }
572 }
573 #endif // BUILDFLAG(IS_WIN)
574
575 if (main_thread_only().task_source->OnIdle()) {
576 // The OnIdle() callback resulted in more immediate work, so schedule a
577 // DoWork callback. For some message pumps returning true from here is
578 // sufficient to do that but not on mac.
579 pump_->ScheduleWork();
580 return false;
581 }
582
583 // This is mostly redundant with the identical call in BeforeWait (upcoming)
584 // but some uninstrumented MessagePump impls don't call BeforeWait so it must
585 // also be done here.
586 hang_watch_scope_.reset();
587
588 // All return paths below are truly idle.
589 on_idle.emplace(time_source_, run_level_tracker_);
590
591 // Check if any runloop timeout has expired.
592 if (main_thread_only().quit_runloop_after != TimeTicks::Max() &&
593 main_thread_only().quit_runloop_after <= on_idle->lazy_now.Now()) {
594 Quit();
595 return false;
596 }
597
598 // RunLoop::Delegate knows whether we called Run() or RunUntilIdle().
599 if (ShouldQuitWhenIdle())
600 Quit();
601
602 return false;
603 }
604
RunDepth()605 int ThreadControllerWithMessagePumpImpl::RunDepth() {
606 return static_cast<int>(run_level_tracker_.num_run_levels());
607 }
608
Run(bool application_tasks_allowed,TimeDelta timeout)609 void ThreadControllerWithMessagePumpImpl::Run(bool application_tasks_allowed,
610 TimeDelta timeout) {
611 DCHECK(RunsTasksInCurrentSequence());
612
613 // Inside a `RunLoop`, all work that has mutual exclusion or ordering
614 // expectations with the task source is tracked, so it's safe to allow running
615 // tasks synchronously in `RunOrPostTask()`.
616 main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(true);
617
618 LazyNow lazy_now_run_loop_start(time_source_);
619
620 // RunLoops can be nested so we need to restore the previous value of
621 // |quit_runloop_after| upon exit. NB we could use saturated arithmetic here
622 // but don't because we have some tests which assert the number of calls to
623 // Now.
624 AutoReset<TimeTicks> quit_runloop_after(
625 &main_thread_only().quit_runloop_after,
626 (timeout == TimeDelta::Max()) ? TimeTicks::Max()
627 : lazy_now_run_loop_start.Now() + timeout);
628
629 run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kInBetweenWorkItems,
630 lazy_now_run_loop_start);
631
632 // Quit may have been called outside of a Run(), so |quit_pending| might be
633 // true here. We can't use InTopLevelDoWork() in Quit() as this call may be
634 // outside top-level DoWork but still in Run().
635 main_thread_only().quit_pending = false;
636 hang_watch_scope_.emplace();
637 if (application_tasks_allowed && !main_thread_only().task_execution_allowed) {
638 // Allow nested task execution as explicitly requested.
639 DCHECK(RunLoop::IsNestedOnCurrentThread());
640 main_thread_only().task_execution_allowed = true;
641 pump_->Run(this);
642 main_thread_only().task_execution_allowed = false;
643 } else {
644 pump_->Run(this);
645 }
646
647 run_level_tracker_.OnRunLoopEnded();
648 main_thread_only().quit_pending = false;
649
650 // If this was a nested loop, hang watch the remainder of the task which
651 // caused it. Otherwise, stop watching as we're no longer running.
652 if (RunLoop::IsNestedOnCurrentThread()) {
653 hang_watch_scope_.emplace();
654 } else {
655 hang_watch_scope_.reset();
656 }
657 work_id_provider_->IncrementWorkId();
658
659 // Work outside of a `RunLoop` may have mutual exclusion or ordering
660 // guarantees with the task source, so disallow running tasks synchronously in
661 // `RunOrPostTask()`.
662 if (run_level_tracker_.num_run_levels() == 0) {
663 main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(false);
664 }
665 }
666
OnBeginNestedRunLoop()667 void ThreadControllerWithMessagePumpImpl::OnBeginNestedRunLoop() {
668 // We don't need to ScheduleWork here! That's because the call to pump_->Run()
669 // above, which is always called for RunLoop().Run(), guarantees a call to
670 // DoWork on all platforms.
671 if (main_thread_only().nesting_observer)
672 main_thread_only().nesting_observer->OnBeginNestedRunLoop();
673 }
674
OnExitNestedRunLoop()675 void ThreadControllerWithMessagePumpImpl::OnExitNestedRunLoop() {
676 if (main_thread_only().nesting_observer)
677 main_thread_only().nesting_observer->OnExitNestedRunLoop();
678 }
679
Quit()680 void ThreadControllerWithMessagePumpImpl::Quit() {
681 DCHECK(RunsTasksInCurrentSequence());
682 // Interrupt a batch of work.
683 main_thread_only().quit_pending = true;
684
685 // If we're in a nested RunLoop, continuation will be posted if necessary.
686 pump_->Quit();
687 }
688
EnsureWorkScheduled()689 void ThreadControllerWithMessagePumpImpl::EnsureWorkScheduled() {
690 if (work_deduplicator_.OnWorkRequested() ==
691 ShouldScheduleWork::kScheduleImmediate) {
692 pump_->ScheduleWork();
693 }
694 }
695
696 void ThreadControllerWithMessagePumpImpl::
SetTaskExecutionAllowedInNativeNestedLoop(bool allowed)697 SetTaskExecutionAllowedInNativeNestedLoop(bool allowed) {
698 if (allowed) {
699 // We need to schedule work unconditionally because we might be about to
700 // enter an OS level nested message loop. Unlike a RunLoop().Run() we don't
701 // get a call to DoWork on entering for free.
702 work_deduplicator_.OnWorkRequested(); // Set the pending DoWork flag.
703 } else {
704 // We've (probably) just left an OS level nested message loop. Make sure a
705 // subsequent PostTask within the same Task doesn't ScheduleWork with the
706 // pump (this will be done anyway when the task exits).
707 work_deduplicator_.OnWorkStarted();
708 }
709 if (!pump_->HandleNestedNativeLoopWithApplicationTasks(allowed)) {
710 // Pump does not have its own support for native nested loops,
711 // ThreadController must handle scheduling for upcoming tasks.
712 if (allowed) {
713 pump_->ScheduleWork();
714 }
715 }
716 main_thread_only().task_execution_allowed = allowed;
717 }
718
IsTaskExecutionAllowed() const719 bool ThreadControllerWithMessagePumpImpl::IsTaskExecutionAllowed() const {
720 return main_thread_only().task_execution_allowed;
721 }
722
GetBoundMessagePump() const723 MessagePump* ThreadControllerWithMessagePumpImpl::GetBoundMessagePump() const {
724 return pump_.get();
725 }
726
PrioritizeYieldingToNative(base::TimeTicks prioritize_until)727 void ThreadControllerWithMessagePumpImpl::PrioritizeYieldingToNative(
728 base::TimeTicks prioritize_until) {
729 main_thread_only().yield_to_native_after_batch = prioritize_until;
730 }
731
732 #if BUILDFLAG(IS_IOS)
AttachToMessagePump()733 void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
734 static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Attach(this);
735 }
736
DetachFromMessagePump()737 void ThreadControllerWithMessagePumpImpl::DetachFromMessagePump() {
738 static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Detach();
739 }
740 #elif BUILDFLAG(IS_ANDROID)
AttachToMessagePump()741 void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
742 CHECK(main_thread_only().work_batch_size == 1);
743 // Aborting the message pump currently relies on the batch size being 1.
744 main_thread_only().can_change_batch_size = false;
745 static_cast<MessagePumpForUI*>(pump_.get())->Attach(this);
746 }
747 #endif
748
ShouldQuitRunLoopWhenIdle()749 bool ThreadControllerWithMessagePumpImpl::ShouldQuitRunLoopWhenIdle() {
750 if (run_level_tracker_.num_run_levels() == 0)
751 return false;
752 // It's only safe to call ShouldQuitWhenIdle() when in a RunLoop.
753 return ShouldQuitWhenIdle();
754 }
755
756 } // namespace internal
757 } // namespace sequence_manager
758 } // namespace base
759