xref: /aosp_15_r20/external/skia/src/core/SkPoint.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPoint.h"
9 #include "include/core/SkTypes.h"
10 #include "include/private/base/SkFloatingPoint.h"
11 #include "src/core/SkPointPriv.h"
12 
13 #include <cmath>
14 
15 ///////////////////////////////////////////////////////////////////////////////
16 
scale(float scale,SkPoint * dst) const17 void SkPoint::scale(float scale, SkPoint* dst) const {
18     SkASSERT(dst);
19     dst->set(fX * scale, fY * scale);
20 }
21 
normalize()22 bool SkPoint::normalize() {
23     return this->setLength(fX, fY, 1);
24 }
25 
setNormalize(float x,float y)26 bool SkPoint::setNormalize(float x, float y) {
27     return this->setLength(x, y, 1);
28 }
29 
setLength(float length)30 bool SkPoint::setLength(float length) {
31     return this->setLength(fX, fY, length);
32 }
33 
34 /*
35  *  We have to worry about 2 tricky conditions:
36  *  1. underflow of mag2 (compared against nearlyzero^2)
37  *  2. overflow of mag2 (compared w/ isfinite)
38  *
39  *  If we underflow, we return false. If we overflow, we compute again using
40  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
41  */
set_point_length(SkPoint * pt,float x,float y,float length,float * orig_length=nullptr)42 template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
43                                                 float* orig_length = nullptr) {
44     SkASSERT(!use_rsqrt || (orig_length == nullptr));
45 
46     // our mag2 step overflowed to infinity, so use doubles instead.
47     // much slower, but needed when x or y are very large, other wise we
48     // divide by inf. and return (0,0) vector.
49     double xx = x;
50     double yy = y;
51     double dmag = sqrt(xx * xx + yy * yy);
52     double dscale = sk_ieee_double_divide(length, dmag);
53     x *= dscale;
54     y *= dscale;
55     // check if we're not finite, or we're zero-length
56     if (!SkIsFinite(x, y) || (x == 0 && y == 0)) {
57         pt->set(0, 0);
58         return false;
59     }
60     float mag = 0;
61     if (orig_length) {
62         mag = sk_double_to_float(dmag);
63     }
64     pt->set(x, y);
65     if (orig_length) {
66         *orig_length = mag;
67     }
68     return true;
69 }
70 
Normalize(SkPoint * pt)71 float SkPoint::Normalize(SkPoint* pt) {
72     float mag;
73     if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
74         return mag;
75     }
76     return 0;
77 }
78 
Length(float dx,float dy)79 float SkPoint::Length(float dx, float dy) {
80     float mag2 = dx * dx + dy * dy;
81     if (SkIsFinite(mag2)) {
82         return std::sqrt(mag2);
83     } else {
84         double xx = dx;
85         double yy = dy;
86         return sk_double_to_float(sqrt(xx * xx + yy * yy));
87     }
88 }
89 
setLength(float x,float y,float length)90 bool SkPoint::setLength(float x, float y, float length) {
91     return set_point_length<false>(this, x, y, length);
92 }
93 
SetLengthFast(SkPoint * pt,float length)94 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
95     return set_point_length<true>(pt, pt->fX, pt->fY, length);
96 }
97 
98 
99 ///////////////////////////////////////////////////////////////////////////////
100 
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)101 float SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
102                                                const SkPoint& b,
103                                                Side* side) {
104 
105     SkVector u = b - a;
106     SkVector v = pt - a;
107 
108     float uLengthSqd = LengthSqd(u);
109     float det = u.cross(v);
110     if (side) {
111         SkASSERT(-1 == kLeft_Side &&
112                   0 == kOn_Side &&
113                   1 == kRight_Side);
114         *side = (Side)sk_float_sgn(det);
115     }
116     float temp = sk_ieee_float_divide(det, uLengthSqd);
117     temp *= det;
118     // It's possible we have a degenerate line vector, or we're so far away it looks degenerate
119     // In this case, return squared distance to point A.
120     if (!SkIsFinite(temp)) {
121         return LengthSqd(v);
122     }
123     return temp;
124 }
125 
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)126 float SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
127                                                       const SkPoint& b) {
128     // See comments to distanceToLineBetweenSqd. If the projection of c onto
129     // u is between a and b then this returns the same result as that
130     // function. Otherwise, it returns the distance to the closest of a and
131     // b. Let the projection of v onto u be v'.  There are three cases:
132     //    1. v' points opposite to u. c is not between a and b and is closer
133     //       to a than b.
134     //    2. v' points along u and has magnitude less than y. c is between
135     //       a and b and the distance to the segment is the same as distance
136     //       to the line ab.
137     //    3. v' points along u and has greater magnitude than u. c is not
138     //       between a and b and is closer to b than a.
139     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
140     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise,
141     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
142     // avoid a sqrt to compute |u|.
143 
144     SkVector u = b - a;
145     SkVector v = pt - a;
146 
147     float uLengthSqd = LengthSqd(u);
148     float uDotV = SkPoint::DotProduct(u, v);
149 
150     // closest point is point A
151     if (uDotV <= 0) {
152         return LengthSqd(v);
153     // closest point is point B
154     } else if (uDotV > uLengthSqd) {
155         return DistanceToSqd(b, pt);
156     // closest point is inside segment
157     } else {
158         float det = u.cross(v);
159         float temp = sk_ieee_float_divide(det, uLengthSqd);
160         temp *= det;
161         // It's possible we have a degenerate segment, or we're so far away it looks degenerate
162         // In this case, return squared distance to point A.
163         if (!SkIsFinite(temp)) {
164             return LengthSqd(v);
165         }
166         return temp;
167     }
168 }
169