xref: /aosp_15_r20/art/runtime/mirror/class.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "class.h"
18 
19 #include <unordered_set>
20 #include <string_view>
21 
22 #include "android-base/macros.h"
23 #include "android-base/stringprintf.h"
24 
25 #include "array-inl.h"
26 #include "art_field-inl.h"
27 #include "art_method-inl.h"
28 #include "base/logging.h"  // For VLOG.
29 #include "base/pointer_size.h"
30 #include "base/sdk_version.h"
31 #include "base/utils.h"
32 #include "class-inl.h"
33 #include "class_ext-inl.h"
34 #include "class_linker-inl.h"
35 #include "class_loader.h"
36 #include "class_root-inl.h"
37 #include "dex/descriptors_names.h"
38 #include "dex/dex_file-inl.h"
39 #include "dex/dex_file_annotations.h"
40 #include "dex/signature-inl.h"
41 #include "dex_cache-inl.h"
42 #include "field.h"
43 #include "gc/accounting/card_table-inl.h"
44 #include "gc/heap-inl.h"
45 #include "handle_scope-inl.h"
46 #include "hidden_api.h"
47 #include "jni_id_type.h"
48 #include "subtype_check.h"
49 #include "method.h"
50 #include "object-inl.h"
51 #include "object-refvisitor-inl.h"
52 #include "object_array-alloc-inl.h"
53 #include "object_array-inl.h"
54 #include "object_lock.h"
55 #include "string-inl.h"
56 #include "runtime.h"
57 #include "thread.h"
58 #include "throwable.h"
59 #include "well_known_classes.h"
60 
61 namespace art HIDDEN {
62 
63 namespace mirror {
64 
65 using android::base::StringPrintf;
66 
IsMirrored()67 bool Class::IsMirrored() {
68   if (LIKELY(!IsBootStrapClassLoaded())) {
69     return false;
70   }
71   if (IsPrimitive() || IsArrayClass() || IsProxyClass()) {
72     return true;
73   }
74   std::string name_storage;
75   const std::string_view name(this->GetDescriptor(&name_storage));
76   return IsMirroredDescriptor(name);
77 }
78 
GetPrimitiveClass(ObjPtr<mirror::String> name)79 ObjPtr<mirror::Class> Class::GetPrimitiveClass(ObjPtr<mirror::String> name) {
80   const char* expected_name = nullptr;
81   ClassRoot class_root = ClassRoot::kJavaLangObject;  // Invalid.
82   if (name != nullptr && name->GetLength() >= 2) {
83     // Perfect hash for the expected values: from the second letters of the primitive types,
84     // only 'y' has the bit 0x10 set, so use it to change 'b' to 'B'.
85     char hash = name->CharAt(0) ^ ((name->CharAt(1) & 0x10) << 1);
86     switch (hash) {
87       case 'b': expected_name = "boolean"; class_root = ClassRoot::kPrimitiveBoolean; break;
88       case 'B': expected_name = "byte";    class_root = ClassRoot::kPrimitiveByte;    break;
89       case 'c': expected_name = "char";    class_root = ClassRoot::kPrimitiveChar;    break;
90       case 'd': expected_name = "double";  class_root = ClassRoot::kPrimitiveDouble;  break;
91       case 'f': expected_name = "float";   class_root = ClassRoot::kPrimitiveFloat;   break;
92       case 'i': expected_name = "int";     class_root = ClassRoot::kPrimitiveInt;     break;
93       case 'l': expected_name = "long";    class_root = ClassRoot::kPrimitiveLong;    break;
94       case 's': expected_name = "short";   class_root = ClassRoot::kPrimitiveShort;   break;
95       case 'v': expected_name = "void";    class_root = ClassRoot::kPrimitiveVoid;    break;
96       default: break;
97     }
98   }
99   if (expected_name != nullptr && name->Equals(expected_name)) {
100     ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
101     DCHECK(klass != nullptr);
102     return klass;
103   } else {
104     Thread* self = Thread::Current();
105     if (name == nullptr) {
106       // Note: ThrowNullPointerException() requires a message which we deliberately want to omit.
107       self->ThrowNewException("Ljava/lang/NullPointerException;", /* msg= */ nullptr);
108     } else {
109       self->ThrowNewException("Ljava/lang/ClassNotFoundException;", name->ToModifiedUtf8().c_str());
110     }
111     return nullptr;
112   }
113 }
114 
EnsureExtDataPresent(Handle<Class> h_this,Thread * self)115 ObjPtr<ClassExt> Class::EnsureExtDataPresent(Handle<Class> h_this, Thread* self) {
116   ObjPtr<ClassExt> existing(h_this->GetExtData());
117   if (!existing.IsNull()) {
118     return existing;
119   }
120   StackHandleScope<2> hs(self);
121   // Clear exception so we can allocate.
122   Handle<Throwable> throwable(hs.NewHandle(self->GetException()));
123   self->ClearException();
124   // Allocate the ClassExt
125   Handle<ClassExt> new_ext(hs.NewHandle(ClassExt::Alloc(self)));
126   if (new_ext == nullptr) {
127     // OOM allocating the classExt.
128     // TODO Should we restore the suppressed exception?
129     self->AssertPendingOOMException();
130     return nullptr;
131   } else {
132     MemberOffset ext_offset(OFFSET_OF_OBJECT_MEMBER(Class, ext_data_));
133     bool set;
134     // Set the ext_data_ field using CAS semantics.
135     if (Runtime::Current()->IsActiveTransaction()) {
136       set = h_this->CasFieldObject<true>(ext_offset,
137                                          nullptr,
138                                          new_ext.Get(),
139                                          CASMode::kStrong,
140                                          std::memory_order_seq_cst);
141     } else {
142       set = h_this->CasFieldObject<false>(ext_offset,
143                                           nullptr,
144                                           new_ext.Get(),
145                                           CASMode::kStrong,
146                                           std::memory_order_seq_cst);
147     }
148     ObjPtr<ClassExt> ret(set ? new_ext.Get() : h_this->GetExtData());
149     DCHECK_IMPLIES(set, h_this->GetExtData() == new_ext.Get());
150     CHECK(!ret.IsNull());
151     // Restore the exception if there was one.
152     if (throwable != nullptr) {
153       self->SetException(throwable.Get());
154     }
155     return ret;
156   }
157 }
158 
159 template <typename T>
CheckSetStatus(Thread * self,T thiz,ClassStatus new_status,ClassStatus old_status)160 static void CheckSetStatus(Thread* self, T thiz, ClassStatus new_status, ClassStatus old_status)
161     REQUIRES_SHARED(Locks::mutator_lock_) {
162   if (UNLIKELY(new_status <= old_status && new_status != ClassStatus::kErrorUnresolved &&
163                new_status != ClassStatus::kErrorResolved && new_status != ClassStatus::kRetired)) {
164     LOG(FATAL) << "Unexpected change back of class status for " << thiz->PrettyClass() << " "
165                << old_status << " -> " << new_status;
166   }
167   if (old_status == ClassStatus::kInitialized) {
168     // We do not hold the lock for making the class visibly initialized
169     // as this is unnecessary and could lead to deadlocks.
170     CHECK_EQ(new_status, ClassStatus::kVisiblyInitialized);
171   } else if ((new_status >= ClassStatus::kResolved || old_status >= ClassStatus::kResolved) &&
172              !Locks::mutator_lock_->IsExclusiveHeld(self)) {
173     // When classes are being resolved the resolution code should hold the
174     // lock or have everything else suspended
175     CHECK_EQ(thiz->GetLockOwnerThreadId(), self->GetThreadId())
176         << "Attempt to change status of class while not holding its lock: " << thiz->PrettyClass()
177         << " " << old_status << " -> " << new_status;
178   }
179   if (UNLIKELY(Locks::mutator_lock_->IsExclusiveHeld(self))) {
180     CHECK(!Class::IsErroneous(new_status))
181         << "status " << new_status
182         << " cannot be set while suspend-all is active. Would require allocations.";
183     CHECK(thiz->IsResolved())
184         << thiz->PrettyClass()
185         << " not resolved during suspend-all status change. Waiters might be missed!";
186   }
187 }
188 
SetStatusInternal(ClassStatus new_status)189 void Class::SetStatusInternal(ClassStatus new_status) {
190   if (kBitstringSubtypeCheckEnabled) {
191     // FIXME: This looks broken with respect to aborted transactions.
192     SubtypeCheck<ObjPtr<mirror::Class>>::WriteStatus(this, new_status);
193   } else {
194     // The ClassStatus is always in the 4 most-significant bits of status_.
195     static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32");
196     uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize);
197     if (Runtime::Current()->IsActiveTransaction()) {
198       SetField32Volatile<true>(StatusOffset(), new_status_value);
199     } else {
200       SetField32Volatile<false>(StatusOffset(), new_status_value);
201     }
202   }
203 }
204 
SetStatusLocked(ClassStatus new_status)205 void Class::SetStatusLocked(ClassStatus new_status) {
206   ClassStatus old_status = GetStatus();
207   CheckSetStatus(Thread::Current(), this, new_status, old_status);
208   SetStatusInternal(new_status);
209 }
210 
SetStatus(Handle<Class> h_this,ClassStatus new_status,Thread * self)211 void Class::SetStatus(Handle<Class> h_this, ClassStatus new_status, Thread* self) {
212   ClassStatus old_status = h_this->GetStatus();
213   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
214   bool class_linker_initialized = class_linker != nullptr && class_linker->IsInitialized();
215   if (LIKELY(class_linker_initialized)) {
216     CheckSetStatus(self, h_this, new_status, old_status);
217   }
218   if (UNLIKELY(IsErroneous(new_status))) {
219     CHECK(!h_this->IsErroneous())
220         << "Attempt to set as erroneous an already erroneous class "
221         << h_this->PrettyClass()
222         << " old_status: " << old_status << " new_status: " << new_status;
223     CHECK_EQ(new_status == ClassStatus::kErrorResolved, old_status >= ClassStatus::kResolved);
224     if (VLOG_IS_ON(class_linker)) {
225       LOG(ERROR) << "Setting " << h_this->PrettyDescriptor() << " to erroneous.";
226       if (self->IsExceptionPending()) {
227         LOG(ERROR) << "Exception: " << self->GetException()->Dump();
228       }
229     }
230 
231     ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
232     if (!ext.IsNull()) {
233       self->AssertPendingException();
234       ext->SetErroneousStateError(self->GetException());
235     } else {
236       self->AssertPendingOOMException();
237     }
238     self->AssertPendingException();
239   }
240 
241   h_this->SetStatusInternal(new_status);
242 
243   // Setting the object size alloc fast path needs to be after the status write so that if the
244   // alloc path sees a valid object size, we would know that it's initialized as long as it has a
245   // load-acquire/fake dependency.
246   if (new_status == ClassStatus::kVisiblyInitialized && !h_this->IsVariableSize()) {
247     DCHECK_EQ(h_this->GetObjectSizeAllocFastPath(), std::numeric_limits<uint32_t>::max());
248     // Finalizable objects must always go slow path.
249     if (!h_this->IsFinalizable()) {
250       h_this->SetObjectSizeAllocFastPath(RoundUp(h_this->GetObjectSize(), kObjectAlignment));
251     }
252   }
253 
254   if (!class_linker_initialized) {
255     // When the class linker is being initialized its single threaded and by definition there can be
256     // no waiters. During initialization classes may appear temporary but won't be retired as their
257     // size was statically computed.
258   } else {
259     // Classes that are being resolved or initialized need to notify waiters that the class status
260     // changed. See ClassLinker::EnsureResolved and ClassLinker::WaitForInitializeClass.
261     if (h_this->IsTemp()) {
262       // Class is a temporary one, ensure that waiters for resolution get notified of retirement
263       // so that they can grab the new version of the class from the class linker's table.
264       CHECK_LT(new_status, ClassStatus::kResolved) << h_this->PrettyDescriptor();
265       if (new_status == ClassStatus::kRetired || new_status == ClassStatus::kErrorUnresolved) {
266         h_this->NotifyAll(self);
267       }
268     } else if (old_status == ClassStatus::kInitialized) {
269       // Do not notify for transition from kInitialized to ClassStatus::kVisiblyInitialized.
270       // This is a hidden transition, not observable by bytecode.
271       DCHECK_EQ(new_status, ClassStatus::kVisiblyInitialized);  // Already CHECK()ed above.
272     } else {
273       CHECK_NE(new_status, ClassStatus::kRetired);
274       if (old_status >= ClassStatus::kResolved || new_status >= ClassStatus::kResolved) {
275         h_this->NotifyAll(self);
276       }
277     }
278   }
279 }
280 
SetStatusForPrimitiveOrArray(ClassStatus new_status)281 void Class::SetStatusForPrimitiveOrArray(ClassStatus new_status) {
282   DCHECK(IsPrimitive<kVerifyNone>() || IsArrayClass<kVerifyNone>());
283   DCHECK(!IsErroneous(new_status));
284   DCHECK(!IsErroneous(GetStatus<kVerifyNone>()));
285   DCHECK_GT(new_status, GetStatus<kVerifyNone>());
286 
287   if (kBitstringSubtypeCheckEnabled) {
288     LOG(FATAL) << "Unimplemented";
289   }
290   // The ClassStatus is always in the 4 most-significant bits of status_.
291   static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32");
292   uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize);
293   // Use normal store. For primitives and core arrays classes (Object[],
294   // Class[], String[] and primitive arrays), the status is set while the
295   // process is still single threaded. For other arrays classes, it is set
296   // in a pre-fence visitor which initializes all fields and the subsequent
297   // fence together with address dependency shall ensure memory visibility.
298   SetField32</*kTransactionActive=*/ false,
299              /*kCheckTransaction=*/ false,
300              kVerifyNone>(StatusOffset(), new_status_value);
301 
302   // Do not update `object_alloc_fast_path_`. Arrays are variable size and
303   // instances of primitive classes cannot be created at all.
304 
305   // There can be no waiters to notify as these classes are initialized
306   // before another thread can see them.
307 }
308 
SetDexCache(ObjPtr<DexCache> new_dex_cache)309 void Class::SetDexCache(ObjPtr<DexCache> new_dex_cache) {
310   SetFieldObjectTransaction(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache);
311 }
312 
SetClassSize(uint32_t new_class_size)313 void Class::SetClassSize(uint32_t new_class_size) {
314   if (kIsDebugBuild && new_class_size < GetClassSize()) {
315     DumpClass(LOG_STREAM(FATAL_WITHOUT_ABORT), kDumpClassFullDetail);
316     LOG(FATAL_WITHOUT_ABORT) << new_class_size << " vs " << GetClassSize();
317     LOG(FATAL) << "class=" << PrettyTypeOf();
318   }
319   SetField32</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
320       OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size);
321 }
322 
GetObsoleteClass()323 ObjPtr<Class> Class::GetObsoleteClass() {
324   ObjPtr<ClassExt> ext(GetExtData());
325   if (ext.IsNull()) {
326     return nullptr;
327   } else {
328     return ext->GetObsoleteClass();
329   }
330 }
331 
332 // Return the class' name. The exact format is bizarre, but it's the specified behavior for
333 // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int"
334 // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than
335 // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness.
ComputeName(Handle<Class> h_this)336 ObjPtr<String> Class::ComputeName(Handle<Class> h_this) {
337   ObjPtr<String> name = h_this->GetName();
338   if (name != nullptr) {
339     return name;
340   }
341   std::string temp;
342   const char* descriptor = h_this->GetDescriptor(&temp);
343   Thread* self = Thread::Current();
344   if ((descriptor[0] != 'L') && (descriptor[0] != '[')) {
345     // The descriptor indicates that this is the class for
346     // a primitive type; special-case the return value.
347     const char* c_name = nullptr;
348     switch (descriptor[0]) {
349     case 'Z': c_name = "boolean"; break;
350     case 'B': c_name = "byte";    break;
351     case 'C': c_name = "char";    break;
352     case 'S': c_name = "short";   break;
353     case 'I': c_name = "int";     break;
354     case 'J': c_name = "long";    break;
355     case 'F': c_name = "float";   break;
356     case 'D': c_name = "double";  break;
357     case 'V': c_name = "void";    break;
358     default:
359       LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]);
360     }
361     name = String::AllocFromModifiedUtf8(self, c_name);
362   } else {
363     // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package
364     // components.
365     name = String::AllocFromModifiedUtf8(self, DescriptorToDot(descriptor).c_str());
366   }
367   h_this->SetName(name);
368   return name;
369 }
370 
DumpClass(std::ostream & os,int flags)371 void Class::DumpClass(std::ostream& os, int flags) {
372   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
373   if ((flags & kDumpClassFullDetail) == 0) {
374     os << PrettyClass();
375     if ((flags & kDumpClassClassLoader) != 0) {
376       os << ' ' << GetClassLoader();
377     }
378     if ((flags & kDumpClassInitialized) != 0) {
379       os << ' ' << GetStatus();
380     }
381     os << "\n";
382     return;
383   }
384 
385   ObjPtr<Class> super = GetSuperClass();
386   auto image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
387 
388   std::string temp;
389   os << "----- " << (IsInterface() ? "interface" : "class") << " "
390      << "'" << GetDescriptor(&temp) << "' cl=" << GetClassLoader() << " -----\n"
391      << "  objectSize=" << SizeOf() << " "
392      << "(" << (super != nullptr ? super->SizeOf() : -1) << " from super)\n"
393      << StringPrintf("  access=0x%04x.%04x\n",
394                      GetAccessFlags() >> 16,
395                      GetAccessFlags() & kAccJavaFlagsMask);
396   if (super != nullptr) {
397     os << "  super='" << super->PrettyClass() << "' (cl=" << super->GetClassLoader() << ")\n";
398   }
399   if (IsArrayClass()) {
400     os << "  componentType=" << PrettyClass(GetComponentType()) << "\n";
401   }
402   const size_t num_direct_interfaces = NumDirectInterfaces();
403   if (num_direct_interfaces > 0) {
404     os << "  interfaces (" << num_direct_interfaces << "):\n";
405     for (size_t i = 0; i < num_direct_interfaces; ++i) {
406       ObjPtr<Class> interface = GetDirectInterface(i);
407       if (interface == nullptr) {
408         os << StringPrintf("    %2zd: nullptr!\n", i);
409       } else {
410         ObjPtr<ClassLoader> cl = interface->GetClassLoader();
411         os << StringPrintf("    %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl.Ptr());
412       }
413     }
414   }
415   if (!IsLoaded()) {
416     os << "  class not yet loaded";
417   } else {
418     os << "  vtable (" << NumVirtualMethods() << " entries, "
419         << (super != nullptr ? super->NumVirtualMethods() : 0) << " in super):\n";
420     for (size_t i = 0; i < NumVirtualMethods(); ++i) {
421       os << StringPrintf("    %2zd: %s\n", i, ArtMethod::PrettyMethod(
422           GetVirtualMethodDuringLinking(i, image_pointer_size)).c_str());
423     }
424     os << "  direct methods (" << NumDirectMethods() << " entries):\n";
425     for (size_t i = 0; i < NumDirectMethods(); ++i) {
426       os << StringPrintf("    %2zd: %s\n", i, ArtMethod::PrettyMethod(
427           GetDirectMethod(i, image_pointer_size)).c_str());
428     }
429     if (NumStaticFields() > 0) {
430       os << "  static fields (" << NumStaticFields() << " entries):\n";
431       if (IsResolved()) {
432         for (size_t i = 0; i < NumStaticFields(); ++i) {
433           os << StringPrintf("    %2zd: %s\n", i, ArtField::PrettyField(GetStaticField(i)).c_str());
434         }
435       } else {
436         os << "    <not yet available>";
437       }
438     }
439     if (NumInstanceFields() > 0) {
440       os << "  instance fields (" << NumInstanceFields() << " entries):\n";
441       if (IsResolved()) {
442         for (size_t i = 0; i < NumInstanceFields(); ++i) {
443           os << StringPrintf("    %2zd: %s\n", i,
444                              ArtField::PrettyField(GetInstanceField(i)).c_str());
445         }
446       } else {
447         os << "    <not yet available>";
448       }
449     }
450   }
451 }
452 
SetReferenceInstanceOffsets(uint32_t new_reference_offsets)453 void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) {
454   if (kIsDebugBuild) {
455     // Check that the number of bits set in the reference offset bitmap
456     // agrees with the number of references.
457     uint32_t count = 0;
458     for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) {
459       count += c->NumReferenceInstanceFieldsDuringLinking();
460     }
461     uint32_t pop_cnt;
462     if ((new_reference_offsets & kVisitReferencesSlowpathMask) == 0) {
463       pop_cnt = static_cast<uint32_t>(POPCOUNT(new_reference_offsets));
464     } else {
465       uint32_t bitmap_num_words = new_reference_offsets & ~kVisitReferencesSlowpathMask;
466       uint32_t* overflow_bitmap =
467           reinterpret_cast<uint32_t*>(reinterpret_cast<uint8_t*>(this) +
468                                       (GetClassSize() - bitmap_num_words * sizeof(uint32_t)));
469       pop_cnt = 0;
470       for (uint32_t i = 0; i < bitmap_num_words; i++) {
471         pop_cnt += static_cast<uint32_t>(POPCOUNT(overflow_bitmap[i]));
472       }
473     }
474     // +1 for the Class in Object.
475     CHECK_EQ(pop_cnt + 1, count);
476   }
477   // Not called within a transaction.
478   SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_),
479                     new_reference_offsets);
480 }
481 
IsInSamePackage(std::string_view descriptor1,std::string_view descriptor2)482 bool Class::IsInSamePackage(std::string_view descriptor1, std::string_view descriptor2) {
483   static_assert(std::string_view::npos + 1u == 0u);
484   size_t d1_after_package = descriptor1.rfind('/') + 1u;
485   return descriptor2.starts_with(descriptor1.substr(0u, d1_after_package)) &&
486          descriptor2.find('/', d1_after_package) == std::string_view::npos;
487 }
488 
IsInSamePackage(ObjPtr<Class> that)489 bool Class::IsInSamePackage(ObjPtr<Class> that) {
490   ObjPtr<Class> klass1 = this;
491   ObjPtr<Class> klass2 = that;
492   if (klass1 == klass2) {
493     return true;
494   }
495   // Class loaders must match.
496   if (klass1->GetClassLoader() != klass2->GetClassLoader()) {
497     return false;
498   }
499   // Arrays are in the same package when their element classes are.
500   while (klass1->IsArrayClass()) {
501     klass1 = klass1->GetComponentType();
502   }
503   while (klass2->IsArrayClass()) {
504     klass2 = klass2->GetComponentType();
505   }
506   // trivial check again for array types
507   if (klass1 == klass2) {
508     return true;
509   }
510   // Compare the package part of the descriptor string.
511   if (UNLIKELY(klass1->IsProxyClass()) || UNLIKELY(klass2->IsProxyClass())) {
512     std::string temp1, temp2;
513     return IsInSamePackage(klass1->GetDescriptor(&temp1), klass2->GetDescriptor(&temp2));
514   }
515   if (UNLIKELY(klass1->IsPrimitive()) || UNLIKELY(klass2->IsPrimitive())) {
516     if (klass1->IsPrimitive() && klass2->IsPrimitive()) {
517       return true;
518     }
519     ObjPtr<Class> other_class = klass1->IsPrimitive() ? klass2 : klass1;
520     return other_class->GetDescriptorView().find('/') == std::string_view::npos;
521   }
522   return IsInSamePackage(klass1->GetDescriptorView(), klass2->GetDescriptorView());
523 }
524 
IsThrowableClass()525 bool Class::IsThrowableClass() {
526   return GetClassRoot<mirror::Throwable>()->IsAssignableFrom(this);
527 }
528 
529 template <typename SignatureType>
FindInterfaceMethodWithSignature(ObjPtr<Class> klass,std::string_view name,const SignatureType & signature,PointerSize pointer_size)530 static inline ArtMethod* FindInterfaceMethodWithSignature(ObjPtr<Class> klass,
531                                                           std::string_view name,
532                                                           const SignatureType& signature,
533                                                           PointerSize pointer_size)
534     REQUIRES_SHARED(Locks::mutator_lock_) {
535   // If the current class is not an interface, skip the search of its declared methods;
536   // such lookup is used only to distinguish between IncompatibleClassChangeError and
537   // NoSuchMethodError and the caller has already tried to search methods in the class.
538   if (LIKELY(klass->IsInterface())) {
539     // Search declared methods, both direct and virtual.
540     // (This lookup is used also for invoke-static on interface classes.)
541     for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) {
542       if (method.GetNameView() == name && method.GetSignature() == signature) {
543         return &method;
544       }
545     }
546   }
547 
548   // TODO: If there is a unique maximally-specific non-abstract superinterface method,
549   // we should return it, otherwise an arbitrary one can be returned.
550   ObjPtr<IfTable> iftable = klass->GetIfTable();
551   for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) {
552     ObjPtr<Class> iface = iftable->GetInterface(i);
553     for (ArtMethod& method : iface->GetVirtualMethodsSlice(pointer_size)) {
554       if (method.GetNameView() == name && method.GetSignature() == signature) {
555         return &method;
556       }
557     }
558   }
559 
560   // Then search for public non-static methods in the java.lang.Object.
561   if (LIKELY(klass->IsInterface())) {
562     ObjPtr<Class> object_class = klass->GetSuperClass();
563     DCHECK(object_class->IsObjectClass());
564     for (ArtMethod& method : object_class->GetDeclaredMethodsSlice(pointer_size)) {
565       if (method.IsPublic() && !method.IsStatic() &&
566           method.GetNameView() == name && method.GetSignature() == signature) {
567         return &method;
568       }
569     }
570   }
571   return nullptr;
572 }
573 
FindInterfaceMethod(std::string_view name,std::string_view signature,PointerSize pointer_size)574 ArtMethod* Class::FindInterfaceMethod(std::string_view name,
575                                       std::string_view signature,
576                                       PointerSize pointer_size) {
577   return FindInterfaceMethodWithSignature(this, name, signature, pointer_size);
578 }
579 
FindInterfaceMethod(std::string_view name,const Signature & signature,PointerSize pointer_size)580 ArtMethod* Class::FindInterfaceMethod(std::string_view name,
581                                       const Signature& signature,
582                                       PointerSize pointer_size) {
583   return FindInterfaceMethodWithSignature(this, name, signature, pointer_size);
584 }
585 
FindInterfaceMethod(ObjPtr<DexCache> dex_cache,uint32_t dex_method_idx,PointerSize pointer_size)586 ArtMethod* Class::FindInterfaceMethod(ObjPtr<DexCache> dex_cache,
587                                       uint32_t dex_method_idx,
588                                       PointerSize pointer_size) {
589   // We always search by name and signature, ignoring the type index in the MethodId.
590   const DexFile& dex_file = *dex_cache->GetDexFile();
591   const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
592   std::string_view name = dex_file.GetStringView(method_id.name_idx_);
593   const Signature signature = dex_file.GetMethodSignature(method_id);
594   return FindInterfaceMethod(name, signature, pointer_size);
595 }
596 
IsValidInheritanceCheck(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> declaring_class)597 static inline bool IsValidInheritanceCheck(ObjPtr<mirror::Class> klass,
598                                            ObjPtr<mirror::Class> declaring_class)
599     REQUIRES_SHARED(Locks::mutator_lock_) {
600   if (klass->IsArrayClass()) {
601     return declaring_class->IsObjectClass();
602   } else if (klass->IsInterface()) {
603     return declaring_class->IsObjectClass() || declaring_class == klass;
604   } else {
605     return klass->IsSubClass(declaring_class);
606   }
607 }
608 
IsInheritedMethod(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> declaring_class,ArtMethod & method)609 static inline bool IsInheritedMethod(ObjPtr<mirror::Class> klass,
610                                      ObjPtr<mirror::Class> declaring_class,
611                                      ArtMethod& method)
612     REQUIRES_SHARED(Locks::mutator_lock_) {
613   DCHECK_EQ(declaring_class, method.GetDeclaringClass());
614   DCHECK_NE(klass, declaring_class);
615   DCHECK(IsValidInheritanceCheck(klass, declaring_class));
616   uint32_t access_flags = method.GetAccessFlags();
617   if ((access_flags & (kAccPublic | kAccProtected)) != 0) {
618     return true;
619   }
620   if ((access_flags & kAccPrivate) != 0) {
621     return false;
622   }
623   for (; klass != declaring_class; klass = klass->GetSuperClass()) {
624     if (!klass->IsInSamePackage(declaring_class)) {
625       return false;
626     }
627   }
628   return true;
629 }
630 
631 template <typename SignatureType>
FindClassMethodWithSignature(ObjPtr<Class> this_klass,std::string_view name,const SignatureType & signature,PointerSize pointer_size)632 static inline ArtMethod* FindClassMethodWithSignature(ObjPtr<Class> this_klass,
633                                                       std::string_view name,
634                                                       const SignatureType& signature,
635                                                       PointerSize pointer_size)
636     REQUIRES_SHARED(Locks::mutator_lock_) {
637   // Search declared methods first.
638   for (ArtMethod& method : this_klass->GetDeclaredMethodsSlice(pointer_size)) {
639     ArtMethod* np_method = method.GetInterfaceMethodIfProxy(pointer_size);
640     if (np_method->GetNameView() == name && np_method->GetSignature() == signature) {
641       return &method;
642     }
643   }
644 
645   // Then search the superclass chain. If we find an inherited method, return it.
646   // If we find a method that's not inherited because of access restrictions,
647   // try to find a method inherited from an interface in copied methods.
648   ObjPtr<Class> klass = this_klass->GetSuperClass();
649   ArtMethod* uninherited_method = nullptr;
650   for (; klass != nullptr; klass = klass->GetSuperClass()) {
651     DCHECK(!klass->IsProxyClass());
652     for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) {
653       if (method.GetNameView() == name && method.GetSignature() == signature) {
654         if (IsInheritedMethod(this_klass, klass, method)) {
655           return &method;
656         }
657         uninherited_method = &method;
658         break;
659       }
660     }
661     if (uninherited_method != nullptr) {
662       break;
663     }
664   }
665 
666   // Then search copied methods.
667   // If we found a method that's not inherited, stop the search in its declaring class.
668   ObjPtr<Class> end_klass = klass;
669   DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr);
670   klass = this_klass;
671   if (UNLIKELY(klass->IsProxyClass())) {
672     DCHECK(klass->GetCopiedMethodsSlice(pointer_size).empty());
673     klass = klass->GetSuperClass();
674   }
675   for (; klass != end_klass; klass = klass->GetSuperClass()) {
676     DCHECK(!klass->IsProxyClass());
677     for (ArtMethod& method : klass->GetCopiedMethodsSlice(pointer_size)) {
678       if (method.GetNameView() == name && method.GetSignature() == signature) {
679         return &method;  // No further check needed, copied methods are inherited by definition.
680       }
681     }
682   }
683   return uninherited_method;  // Return the `uninherited_method` if any.
684 }
685 
686 
FindClassMethod(std::string_view name,std::string_view signature,PointerSize pointer_size)687 ArtMethod* Class::FindClassMethod(std::string_view name,
688                                   std::string_view signature,
689                                   PointerSize pointer_size) {
690   return FindClassMethodWithSignature(this, name, signature, pointer_size);
691 }
692 
FindClassMethod(std::string_view name,const Signature & signature,PointerSize pointer_size)693 ArtMethod* Class::FindClassMethod(std::string_view name,
694                                   const Signature& signature,
695                                   PointerSize pointer_size) {
696   return FindClassMethodWithSignature(this, name, signature, pointer_size);
697 }
698 
699 // Binary search a range with a three-way compare function.
700 //
701 // Return a tuple consisting of a `success` value, the index of the match (`mid`) and
702 // the remaining range when we found the match (`begin` and `end`). This is useful for
703 // subsequent binary search with a secondary comparator, see `ClassMemberBinarySearch()`.
704 template <typename Compare>
705 ALWAYS_INLINE
BinarySearch(uint32_t begin,uint32_t end,Compare && cmp)706 std::tuple<bool, uint32_t, uint32_t, uint32_t> BinarySearch(uint32_t begin,
707                                                             uint32_t end,
708                                                             Compare&& cmp)
709     REQUIRES_SHARED(Locks::mutator_lock_) {
710   while (begin != end) {
711     uint32_t mid = (begin + end) >> 1;
712     auto cmp_result = cmp(mid);
713     if (cmp_result == 0) {
714       return {true, mid, begin, end};
715     }
716     if (cmp_result > 0) {
717       begin = mid + 1u;
718     } else {
719       end = mid;
720     }
721   }
722   return {false, 0u, 0u, 0u};
723 }
724 
725 // Binary search for class members. The range passed to this search must be sorted, so
726 // declared methods or fields cannot be searched directly but declared direct methods,
727 // declared virtual methods, declared static fields or declared instance fields can.
728 template <typename NameCompare, typename SecondCompare, typename NameIndexGetter>
729 ALWAYS_INLINE
ClassMemberBinarySearch(uint32_t begin,uint32_t end,NameCompare && name_cmp,SecondCompare && second_cmp,NameIndexGetter && get_name_idx)730 std::tuple<bool, uint32_t> ClassMemberBinarySearch(uint32_t begin,
731                                                    uint32_t end,
732                                                    NameCompare&& name_cmp,
733                                                    SecondCompare&& second_cmp,
734                                                    NameIndexGetter&& get_name_idx)
735     REQUIRES_SHARED(Locks::mutator_lock_) {
736   // First search for the item with the given name.
737   bool success;
738   uint32_t mid;
739   std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_cmp);
740   if (!success) {
741     return {false, 0u};
742   }
743   // If found, do the secondary comparison.
744   auto second_cmp_result = second_cmp(mid);
745   if (second_cmp_result == 0) {
746     return {true, mid};
747   }
748   // We have matched the name but not the secondary comparison. We no longer need to
749   // search for the name as string as we know the matching name string index.
750   // Repeat the above binary searches and secondary comparisons with a simpler name
751   // index compare until the search range contains only matching name.
752   auto name_idx = get_name_idx(mid);
753   if (second_cmp_result > 0) {
754     do {
755       begin = mid + 1u;
756       auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) {
757         DCHECK_LE(name_idx, get_name_idx(mid2));
758         return (name_idx != get_name_idx(mid2)) ? -1 : 0;
759       };
760       std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp);
761       if (!success) {
762         return {false, 0u};
763       }
764       second_cmp_result = second_cmp(mid);
765     } while (second_cmp_result > 0);
766     end = mid;
767   } else {
768     do {
769       end = mid;
770       auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) {
771         DCHECK_GE(name_idx, get_name_idx(mid2));
772         return (name_idx != get_name_idx(mid2)) ? 1 : 0;
773       };
774       std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp);
775       if (!success) {
776         return {false, 0u};
777       }
778       second_cmp_result = second_cmp(mid);
779     } while (second_cmp_result < 0);
780     begin = mid + 1u;
781   }
782   if (second_cmp_result == 0) {
783     return {true, mid};
784   }
785   // All items in the remaining range have a matching name, so search with secondary comparison.
786   std::tie(success, mid, std::ignore, std::ignore) = BinarySearch(begin, end, second_cmp);
787   return {success, mid};
788 }
789 
FindDeclaredClassMethod(ObjPtr<mirror::Class> klass,const DexFile & dex_file,std::string_view name,Signature signature,PointerSize pointer_size)790 static std::tuple<bool, ArtMethod*> FindDeclaredClassMethod(ObjPtr<mirror::Class> klass,
791                                                             const DexFile& dex_file,
792                                                             std::string_view name,
793                                                             Signature signature,
794                                                             PointerSize pointer_size)
795     REQUIRES_SHARED(Locks::mutator_lock_) {
796   DCHECK(&klass->GetDexFile() == &dex_file);
797   DCHECK(!name.empty());
798 
799   ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size);
800   DCHECK(!declared_methods.empty());
801   auto get_method_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE
802       -> const dex::MethodId& {
803     ArtMethod& method = declared_methods[mid];
804     DCHECK(method.GetDexFile() == &dex_file);
805     DCHECK_NE(method.GetDexMethodIndex(), dex::kDexNoIndex);
806     return dex_file.GetMethodId(method.GetDexMethodIndex());
807   };
808   auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
809     // Do not use ArtMethod::GetNameView() to avoid reloading dex file through the same
810     // declaring class from different methods and also avoid the runtime method check.
811     const dex::MethodId& method_id = get_method_id(mid);
812     return DexFile::CompareMemberNames(name, dex_file.GetMethodNameView(method_id));
813   };
814   auto signature_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
815     // Do not use ArtMethod::GetSignature() to avoid reloading dex file through the same
816     // declaring class from different methods and also avoid the runtime method check.
817     const dex::MethodId& method_id = get_method_id(mid);
818     return signature.Compare(dex_file.GetMethodSignature(method_id));
819   };
820   auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
821     const dex::MethodId& method_id = get_method_id(mid);
822     return method_id.name_idx_;
823   };
824 
825   // Use binary search in the sorted direct methods, then in the sorted virtual methods.
826   uint32_t num_direct_methods = klass->NumDirectMethods();
827   uint32_t num_declared_methods = dchecked_integral_cast<uint32_t>(declared_methods.size());
828   DCHECK_LE(num_direct_methods, num_declared_methods);
829   const uint32_t ranges[2][2] = {
830      {0u, num_direct_methods},                   // Declared direct methods.
831      {num_direct_methods, num_declared_methods}  // Declared virtual methods.
832   };
833   for (const uint32_t (&range)[2] : ranges) {
834     auto [success, mid] =
835         ClassMemberBinarySearch(range[0], range[1], name_cmp, signature_cmp, get_name_idx);
836     if (success) {
837       return {true, &declared_methods[mid]};
838     }
839   }
840 
841   // Did not find a declared method in either slice.
842   return {false, nullptr};
843 }
844 
845 FLATTEN
FindClassMethod(ObjPtr<DexCache> dex_cache,uint32_t dex_method_idx,PointerSize pointer_size)846 ArtMethod* Class::FindClassMethod(ObjPtr<DexCache> dex_cache,
847                                   uint32_t dex_method_idx,
848                                   PointerSize pointer_size) {
849   // FIXME: Hijacking a proxy class by a custom class loader can break this assumption.
850   DCHECK(!IsProxyClass());
851 
852   // First try to find a declared method by dex_method_idx if we have a dex_cache match.
853   ObjPtr<DexCache> this_dex_cache = GetDexCache();
854   if (this_dex_cache == dex_cache) {
855     // Lookup is always performed in the class referenced by the MethodId.
856     DCHECK_EQ(dex_type_idx_, GetDexFile().GetMethodId(dex_method_idx).class_idx_.index_);
857     for (ArtMethod& method : GetDeclaredMethodsSlice(pointer_size)) {
858       if (method.GetDexMethodIndex() == dex_method_idx) {
859         return &method;
860       }
861     }
862   }
863 
864   // If not found, we need to search by name and signature.
865   const DexFile& dex_file = *dex_cache->GetDexFile();
866   const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
867   const Signature signature = dex_file.GetMethodSignature(method_id);
868   std::string_view name;  // Do not touch the dex file string data until actually needed.
869 
870   // If we do not have a dex_cache match, try to find the declared method in this class now.
871   if (this_dex_cache != dex_cache && !GetDeclaredMethodsSlice(pointer_size).empty()) {
872     DCHECK(name.empty());
873     name = dex_file.GetMethodNameView(method_id);
874     auto [success, method] = FindDeclaredClassMethod(
875         this, *this_dex_cache->GetDexFile(), name, signature, pointer_size);
876     DCHECK_EQ(success, method != nullptr);
877     if (success) {
878       return method;
879     }
880   }
881 
882   // Then search the superclass chain. If we find an inherited method, return it.
883   // If we find a method that's not inherited because of access restrictions,
884   // try to find a method inherited from an interface in copied methods.
885   ArtMethod* uninherited_method = nullptr;
886   ObjPtr<Class> klass = GetSuperClass();
887   for (; klass != nullptr; klass = klass->GetSuperClass()) {
888     ArtMethod* candidate_method = nullptr;
889     ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size);
890     ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache();
891     if (klass_dex_cache == dex_cache) {
892       // Matching dex_cache. We cannot compare the `dex_method_idx` anymore because
893       // the type index differs, so compare the name index and proto index.
894       for (ArtMethod& method : declared_methods) {
895         const dex::MethodId& cmp_method_id = dex_file.GetMethodId(method.GetDexMethodIndex());
896         if (cmp_method_id.name_idx_ == method_id.name_idx_ &&
897             cmp_method_id.proto_idx_ == method_id.proto_idx_) {
898           candidate_method = &method;
899           break;
900         }
901       }
902     } else if (!declared_methods.empty()) {
903       if (name.empty()) {
904         name = dex_file.GetMethodNameView(method_id);
905       }
906       auto [success, method] = FindDeclaredClassMethod(
907           klass, *klass_dex_cache->GetDexFile(), name, signature, pointer_size);
908       DCHECK_EQ(success, method != nullptr);
909       if (success) {
910         candidate_method = method;
911       }
912     }
913     if (candidate_method != nullptr) {
914       if (IsInheritedMethod(this, klass, *candidate_method)) {
915         return candidate_method;
916       } else {
917         uninherited_method = candidate_method;
918         break;
919       }
920     }
921   }
922 
923   // Then search copied methods.
924   // If we found a method that's not inherited, stop the search in its declaring class.
925   ObjPtr<Class> end_klass = klass;
926   DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr);
927   // After we have searched the declared methods of the super-class chain,
928   // search copied methods which can contain methods from interfaces.
929   for (klass = this; klass != end_klass; klass = klass->GetSuperClass()) {
930     ArraySlice<ArtMethod> copied_methods = klass->GetCopiedMethodsSlice(pointer_size);
931     if (!copied_methods.empty() && name.empty()) {
932       name = dex_file.GetMethodNameView(method_id);
933     }
934     for (ArtMethod& method : copied_methods) {
935       if (method.GetNameView() == name && method.GetSignature() == signature) {
936         return &method;  // No further check needed, copied methods are inherited by definition.
937       }
938     }
939   }
940   return uninherited_method;  // Return the `uninherited_method` if any.
941 }
942 
FindConstructor(std::string_view signature,PointerSize pointer_size)943 ArtMethod* Class::FindConstructor(std::string_view signature, PointerSize pointer_size) {
944   // Internal helper, never called on proxy classes. We can skip GetInterfaceMethodIfProxy().
945   DCHECK(!IsProxyClass());
946   std::string_view name("<init>");
947   for (ArtMethod& method : GetDirectMethodsSliceUnchecked(pointer_size)) {
948     if (method.GetName() == name && method.GetSignature() == signature) {
949       return &method;
950     }
951   }
952   return nullptr;
953 }
954 
FindDeclaredDirectMethodByName(std::string_view name,PointerSize pointer_size)955 ArtMethod* Class::FindDeclaredDirectMethodByName(std::string_view name, PointerSize pointer_size) {
956   for (auto& method : GetDirectMethods(pointer_size)) {
957     ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
958     if (name == np_method->GetName()) {
959       return &method;
960     }
961   }
962   return nullptr;
963 }
964 
FindDeclaredVirtualMethodByName(std::string_view name,PointerSize pointer_size)965 ArtMethod* Class::FindDeclaredVirtualMethodByName(std::string_view name, PointerSize pointer_size) {
966   for (auto& method : GetVirtualMethods(pointer_size)) {
967     ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
968     if (name == np_method->GetName()) {
969       return &method;
970     }
971   }
972   return nullptr;
973 }
974 
FindVirtualMethodForInterfaceSuper(ArtMethod * method,PointerSize pointer_size)975 ArtMethod* Class::FindVirtualMethodForInterfaceSuper(ArtMethod* method, PointerSize pointer_size) {
976   DCHECK(method->GetDeclaringClass()->IsInterface());
977   DCHECK(IsInterface()) << "Should only be called on a interface class";
978   // Check if we have one defined on this interface first. This includes searching copied ones to
979   // get any conflict methods. Conflict methods are copied into each subtype from the supertype. We
980   // don't do any indirect method checks here.
981   for (ArtMethod& iface_method : GetVirtualMethods(pointer_size)) {
982     if (method->HasSameNameAndSignature(&iface_method)) {
983       return &iface_method;
984     }
985   }
986 
987   std::vector<ArtMethod*> abstract_methods;
988   // Search through the IFTable for a working version. We don't need to check for conflicts
989   // because if there was one it would appear in this classes virtual_methods_ above.
990 
991   Thread* self = Thread::Current();
992   StackHandleScope<2> hs(self);
993   MutableHandle<IfTable> iftable(hs.NewHandle(GetIfTable()));
994   MutableHandle<Class> iface(hs.NewHandle<Class>(nullptr));
995   size_t iftable_count = GetIfTableCount();
996   // Find the method. We don't need to check for conflicts because they would have been in the
997   // copied virtuals of this interface.  Order matters, traverse in reverse topological order; most
998   // subtypiest interfaces get visited first.
999   for (size_t k = iftable_count; k != 0;) {
1000     k--;
1001     DCHECK_LT(k, iftable->Count());
1002     iface.Assign(iftable->GetInterface(k));
1003     // Iterate through every declared method on this interface. Each direct method's name/signature
1004     // is unique so the order of the inner loop doesn't matter.
1005     for (auto& method_iter : iface->GetDeclaredVirtualMethods(pointer_size)) {
1006       ArtMethod* current_method = &method_iter;
1007       if (current_method->HasSameNameAndSignature(method)) {
1008         if (current_method->IsDefault()) {
1009           // Handle JLS soft errors, a default method from another superinterface tree can
1010           // "override" an abstract method(s) from another superinterface tree(s).  To do this,
1011           // ignore any [default] method which are dominated by the abstract methods we've seen so
1012           // far. Check if overridden by any in abstract_methods. We do not need to check for
1013           // default_conflicts because we would hit those before we get to this loop.
1014           bool overridden = false;
1015           for (ArtMethod* possible_override : abstract_methods) {
1016             DCHECK(possible_override->HasSameNameAndSignature(current_method));
1017             if (iface->IsAssignableFrom(possible_override->GetDeclaringClass())) {
1018               overridden = true;
1019               break;
1020             }
1021           }
1022           if (!overridden) {
1023             return current_method;
1024           }
1025         } else {
1026           // Is not default.
1027           // This might override another default method. Just stash it for now.
1028           abstract_methods.push_back(current_method);
1029         }
1030       }
1031     }
1032   }
1033   // If we reach here we either never found any declaration of the method (in which case
1034   // 'abstract_methods' is empty or we found no non-overriden default methods in which case
1035   // 'abstract_methods' contains a number of abstract implementations of the methods. We choose one
1036   // of these arbitrarily.
1037   return abstract_methods.empty() ? nullptr : abstract_methods[0];
1038 }
1039 
FindClassInitializer(PointerSize pointer_size)1040 ArtMethod* Class::FindClassInitializer(PointerSize pointer_size) {
1041   for (ArtMethod& method : GetDirectMethods(pointer_size)) {
1042     if (method.IsClassInitializer()) {
1043       DCHECK_STREQ(method.GetName(), "<clinit>");
1044       DCHECK_STREQ(method.GetSignature().ToString().c_str(), "()V");
1045       return &method;
1046     }
1047   }
1048   return nullptr;
1049 }
1050 
FindFieldByNameAndType(const DexFile & dex_file,LengthPrefixedArray<ArtField> * fields,std::string_view name,std::string_view type)1051 static std::tuple<bool, ArtField*> FindFieldByNameAndType(const DexFile& dex_file,
1052                                                           LengthPrefixedArray<ArtField>* fields,
1053                                                           std::string_view name,
1054                                                           std::string_view type)
1055     REQUIRES_SHARED(Locks::mutator_lock_) {
1056   DCHECK(fields != nullptr);
1057   DCHECK(!name.empty());
1058   DCHECK(!type.empty());
1059 
1060   // Fields are sorted by class, then name, then type descriptor. This is verified in dex file
1061   // verifier. There can be multiple fields with the same name in the same class due to proguard.
1062   // Note: `std::string_view::compare()` uses lexicographical comparison and treats the `char`
1063   // as unsigned; for Modified-UTF-8 without embedded nulls this is consistent with the
1064   // `CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues()` ordering.
1065   auto get_field_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE
1066       -> const dex::FieldId& {
1067     ArtField& field = fields->At(mid);
1068     DCHECK(field.GetDexFile() == &dex_file);
1069     return dex_file.GetFieldId(field.GetDexFieldIndex());
1070   };
1071   auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1072     const dex::FieldId& field_id = get_field_id(mid);
1073     return DexFile::CompareMemberNames(name, dex_file.GetFieldNameView(field_id));
1074   };
1075   auto type_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1076     const dex::FieldId& field_id = get_field_id(mid);
1077     return DexFile::CompareDescriptors(
1078         type, dex_file.GetTypeDescriptorView(dex_file.GetTypeId(field_id.type_idx_)));
1079   };
1080   auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1081     const dex::FieldId& field_id = get_field_id(mid);
1082     return field_id.name_idx_;
1083   };
1084 
1085   // Use binary search in the sorted fields.
1086   auto [success, mid] =
1087       ClassMemberBinarySearch(/*begin=*/ 0u, fields->size(), name_cmp, type_cmp, get_name_idx);
1088 
1089   if (kIsDebugBuild) {
1090     ArtField* found = nullptr;
1091     for (ArtField& field : MakeIterationRangeFromLengthPrefixedArray(fields)) {
1092       if (name == field.GetName() && type == field.GetTypeDescriptor()) {
1093         found = &field;
1094         break;
1095       }
1096     }
1097 
1098     ArtField* ret = success ? &fields->At(mid) : nullptr;
1099     CHECK_EQ(found, ret)
1100         << "Found " << ArtField::PrettyField(found) << " vs " << ArtField::PrettyField(ret);
1101   }
1102 
1103   if (success) {
1104     return {true, &fields->At(mid)};
1105   }
1106 
1107   return {false, nullptr};
1108 }
1109 
FindDeclaredInstanceField(std::string_view name,std::string_view type)1110 ArtField* Class::FindDeclaredInstanceField(std::string_view name, std::string_view type) {
1111   // Binary search by name. Interfaces are not relevant because they can't contain instance fields.
1112   LengthPrefixedArray<ArtField>* ifields = GetIFieldsPtr();
1113   if (ifields == nullptr) {
1114     return nullptr;
1115   }
1116   DCHECK(!IsProxyClass());
1117   auto [success, field] = FindFieldByNameAndType(GetDexFile(), ifields, name, type);
1118   DCHECK_EQ(success, field != nullptr);
1119   return field;
1120 }
1121 
FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache,uint32_t dex_field_idx)1122 ArtField* Class::FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) {
1123   if (GetDexCache() == dex_cache) {
1124     for (ArtField& field : GetIFields()) {
1125       if (field.GetDexFieldIndex() == dex_field_idx) {
1126         return &field;
1127       }
1128     }
1129   }
1130   return nullptr;
1131 }
1132 
FindInstanceField(std::string_view name,std::string_view type)1133 ArtField* Class::FindInstanceField(std::string_view name, std::string_view type) {
1134   // Is the field in this class, or any of its superclasses?
1135   // Interfaces are not relevant because they can't contain instance fields.
1136   for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) {
1137     ArtField* f = c->FindDeclaredInstanceField(name, type);
1138     if (f != nullptr) {
1139       return f;
1140     }
1141   }
1142   return nullptr;
1143 }
1144 
FindDeclaredStaticField(std::string_view name,std::string_view type)1145 ArtField* Class::FindDeclaredStaticField(std::string_view name, std::string_view type) {
1146   DCHECK(!type.empty());
1147   LengthPrefixedArray<ArtField>* sfields = GetSFieldsPtr();
1148   if (sfields == nullptr) {
1149     return nullptr;
1150   }
1151   if (UNLIKELY(IsProxyClass())) {
1152     // Proxy fields do not have appropriate dex field indexes required by
1153     // `FindFieldByNameAndType()`. However, each proxy class has exactly
1154     // the same artificial fields created by the `ClassLinker`.
1155     DCHECK_EQ(sfields->size(), 2u);
1156     DCHECK_EQ(strcmp(sfields->At(0).GetName(), "interfaces"), 0);
1157     DCHECK_EQ(strcmp(sfields->At(0).GetTypeDescriptor(), "[Ljava/lang/Class;"), 0);
1158     DCHECK_EQ(strcmp(sfields->At(1).GetName(), "throws"), 0);
1159     DCHECK_EQ(strcmp(sfields->At(1).GetTypeDescriptor(), "[[Ljava/lang/Class;"), 0);
1160     if (name == "interfaces") {
1161       return (type == "[Ljava/lang/Class;") ? &sfields->At(0) : nullptr;
1162     } else if (name == "throws") {
1163       return (type == "[[Ljava/lang/Class;") ? &sfields->At(1) : nullptr;
1164     } else {
1165       return nullptr;
1166     }
1167   }
1168   auto [success, field] = FindFieldByNameAndType(GetDexFile(), sfields, name, type);
1169   DCHECK_EQ(success, field != nullptr);
1170   return field;
1171 }
1172 
FindDeclaredStaticField(ObjPtr<DexCache> dex_cache,uint32_t dex_field_idx)1173 ArtField* Class::FindDeclaredStaticField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) {
1174   if (dex_cache == GetDexCache()) {
1175     for (ArtField& field : GetSFields()) {
1176       if (field.GetDexFieldIndex() == dex_field_idx) {
1177         return &field;
1178       }
1179     }
1180   }
1181   return nullptr;
1182 }
1183 
GetDeclaredFields(Thread * self,bool public_only,bool force_resolve)1184 ObjPtr<mirror::ObjectArray<mirror::Field>> Class::GetDeclaredFields(
1185     Thread* self,
1186     bool public_only,
1187     bool force_resolve) REQUIRES_SHARED(Locks::mutator_lock_) {
1188   if (UNLIKELY(IsObsoleteObject())) {
1189     ThrowRuntimeException("Obsolete Object!");
1190     return nullptr;
1191   }
1192   StackHandleScope<1> hs(self);
1193   IterationRange<StrideIterator<ArtField>> ifields = GetIFields();
1194   IterationRange<StrideIterator<ArtField>> sfields = GetSFields();
1195   size_t array_size = NumInstanceFields() + NumStaticFields();
1196   auto hiddenapi_context = hiddenapi::GetReflectionCallerAccessContext(self);
1197   // Lets go subtract all the non discoverable fields.
1198   for (ArtField& field : ifields) {
1199     if (!IsDiscoverable(public_only, hiddenapi_context, &field)) {
1200       --array_size;
1201     }
1202   }
1203   for (ArtField& field : sfields) {
1204     if (!IsDiscoverable(public_only, hiddenapi_context, &field)) {
1205       --array_size;
1206     }
1207   }
1208   size_t array_idx = 0;
1209   auto object_array = hs.NewHandle(mirror::ObjectArray<mirror::Field>::Alloc(
1210       self, GetClassRoot<mirror::ObjectArray<mirror::Field>>(), array_size));
1211   if (object_array == nullptr) {
1212     return nullptr;
1213   }
1214   for (ArtField& field : ifields) {
1215     if (IsDiscoverable(public_only, hiddenapi_context, &field)) {
1216       ObjPtr<mirror::Field> reflect_field =
1217           mirror::Field::CreateFromArtField(self, &field, force_resolve);
1218       if (reflect_field == nullptr) {
1219         if (kIsDebugBuild) {
1220           self->AssertPendingException();
1221         }
1222         // Maybe null due to OOME or type resolving exception.
1223         return nullptr;
1224       }
1225       // We're initializing a newly allocated object, so we do not need to record that under
1226       // a transaction. If the transaction is aborted, the whole object shall be unreachable.
1227       object_array->SetWithoutChecks</*kTransactionActive=*/ false,
1228                                      /*kCheckTransaction=*/ false>(
1229                                          array_idx++, reflect_field);
1230     }
1231   }
1232   for (ArtField& field : sfields) {
1233     if (IsDiscoverable(public_only, hiddenapi_context, &field)) {
1234       ObjPtr<mirror::Field> reflect_field =
1235           mirror::Field::CreateFromArtField(self, &field, force_resolve);
1236       if (reflect_field == nullptr) {
1237         if (kIsDebugBuild) {
1238           self->AssertPendingException();
1239         }
1240         return nullptr;
1241       }
1242       // We're initializing a newly allocated object, so we do not need to record that under
1243       // a transaction. If the transaction is aborted, the whole object shall be unreachable.
1244       object_array->SetWithoutChecks</*kTransactionActive=*/ false,
1245                                      /*kCheckTransaction=*/ false>(
1246                                          array_idx++, reflect_field);
1247     }
1248   }
1249   DCHECK_EQ(array_idx, array_size);
1250   return object_array.Get();
1251 }
1252 
FindStaticField(std::string_view name,std::string_view type)1253 ArtField* Class::FindStaticField(std::string_view name, std::string_view type) {
1254   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1255   // Is the field in this class (or its interfaces), or any of its
1256   // superclasses (or their interfaces)?
1257   for (ObjPtr<Class> k = this; k != nullptr; k = k->GetSuperClass()) {
1258     // Is the field in this class?
1259     ArtField* f = k->FindDeclaredStaticField(name, type);
1260     if (f != nullptr) {
1261       return f;
1262     }
1263     // Is this field in any of this class' interfaces?
1264     for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) {
1265       ObjPtr<Class> interface = k->GetDirectInterface(i);
1266       DCHECK(interface != nullptr);
1267       f = interface->FindStaticField(name, type);
1268       if (f != nullptr) {
1269         return f;
1270       }
1271     }
1272   }
1273   return nullptr;
1274 }
1275 
1276 // Find a field using the JLS field resolution order.
1277 // Template arguments can be used to limit the search to either static or instance fields.
1278 // The search should be limited only if we know that a full search would yield a field of
1279 // the right type or no field at all. This can be known for field references in a method
1280 // if we have previously verified that method and did not find a field type mismatch.
1281 template <bool kSearchInstanceFields, bool kSearchStaticFields>
1282 ALWAYS_INLINE
FindFieldImpl(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1283 ArtField* FindFieldImpl(ObjPtr<mirror::Class> klass,
1284                         ObjPtr<mirror::DexCache> dex_cache,
1285                         uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_) {
1286   static_assert(kSearchInstanceFields || kSearchStaticFields);
1287 
1288   // FIXME: Hijacking a proxy class by a custom class loader can break this assumption.
1289   DCHECK(!klass->IsProxyClass());
1290 
1291   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1292 
1293   // First try to find a declared field by `field_idx` if we have a `dex_cache` match.
1294   ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache();
1295   if (klass_dex_cache == dex_cache) {
1296     // Lookup is always performed in the class referenced by the FieldId.
1297     DCHECK_EQ(klass->GetDexTypeIndex(),
1298               klass_dex_cache->GetDexFile()->GetFieldId(field_idx).class_idx_);
1299     ArtField* f =  kSearchInstanceFields
1300         ? klass->FindDeclaredInstanceField(klass_dex_cache, field_idx)
1301         : nullptr;
1302     if (kSearchStaticFields && f == nullptr) {
1303       f = klass->FindDeclaredStaticField(klass_dex_cache, field_idx);
1304     }
1305     if (f != nullptr) {
1306       return f;
1307     }
1308   }
1309 
1310   const DexFile& dex_file = *dex_cache->GetDexFile();
1311   const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
1312 
1313   std::string_view name;  // Do not touch the dex file string data until actually needed.
1314   std::string_view type;
1315   auto ensure_name_and_type_initialized = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
1316     if (name.empty()) {
1317       name = dex_file.GetFieldNameView(field_id);
1318       type = dex_file.GetFieldTypeDescriptorView(field_id);
1319     }
1320   };
1321 
1322   auto search_direct_interfaces = [&](ObjPtr<mirror::Class> k)
1323       REQUIRES_SHARED(Locks::mutator_lock_) {
1324     // TODO: The `FindStaticField()` performs a recursive search and it's possible to
1325     // construct interface hierarchies that make the time complexity exponential in depth.
1326     // Rewrite this with a `HashSet<mirror::Class*>` to mark classes we have already
1327     // searched for the field, so that we call `FindDeclaredStaticField()` only once
1328     // on each interface. And use a work queue to avoid unlimited recursion depth.
1329     // TODO: Once we call `FindDeclaredStaticField()` directly, use search by indexes
1330     // instead of strings if the interface's dex cache matches `dex_cache`. This shall
1331     // allow delaying the `ensure_name_and_type_initialized()` call further.
1332     uint32_t num_interfaces = k->NumDirectInterfaces();
1333     if (num_interfaces != 0u) {
1334       ensure_name_and_type_initialized();
1335       for (uint32_t i = 0; i != num_interfaces; ++i) {
1336         ObjPtr<Class> interface = k->GetDirectInterface(i);
1337         DCHECK(interface != nullptr);
1338         ArtField* f = interface->FindStaticField(name, type);
1339         if (f != nullptr) {
1340           return f;
1341         }
1342       }
1343     }
1344     return static_cast<ArtField*>(nullptr);
1345   };
1346 
1347   auto find_field_by_name_and_type = [&](ObjPtr<mirror::Class> k, ObjPtr<DexCache> k_dex_cache)
1348       REQUIRES_SHARED(Locks::mutator_lock_) -> std::tuple<bool, ArtField*> {
1349     if ((!kSearchInstanceFields || k->GetIFieldsPtr() == nullptr) &&
1350         (!kSearchStaticFields || k->GetSFieldsPtr() == nullptr)) {
1351       return {false, nullptr};
1352     }
1353     ensure_name_and_type_initialized();
1354     const DexFile& k_dex_file = *k_dex_cache->GetDexFile();
1355     if (kSearchInstanceFields && k->GetIFieldsPtr() != nullptr) {
1356       auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetIFieldsPtr(), name, type);
1357       DCHECK_EQ(success, field != nullptr);
1358       if (success) {
1359         return {true, field};
1360       }
1361     }
1362     if (kSearchStaticFields && k->GetSFieldsPtr() != nullptr) {
1363       auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetSFieldsPtr(), name, type);
1364       DCHECK_EQ(success, field != nullptr);
1365       if (success) {
1366         return {true, field};
1367       }
1368     }
1369     return {false, nullptr};
1370   };
1371 
1372   // If we had a dex cache mismatch, search declared fields by name and type.
1373   if (klass_dex_cache != dex_cache) {
1374     auto [success, field] = find_field_by_name_and_type(klass, klass_dex_cache);
1375     DCHECK_EQ(success, field != nullptr);
1376     if (success) {
1377       return field;
1378     }
1379   }
1380 
1381   // Search direct interfaces for static fields.
1382   if (kSearchStaticFields) {
1383     ArtField* f = search_direct_interfaces(klass);
1384     if (f != nullptr) {
1385       return f;
1386     }
1387   }
1388 
1389   // Continue searching in superclasses.
1390   for (ObjPtr<Class> k = klass->GetSuperClass(); k != nullptr; k = k->GetSuperClass()) {
1391     // Is the field in this class?
1392     ObjPtr<DexCache> k_dex_cache = k->GetDexCache();
1393     if (k_dex_cache == dex_cache) {
1394       // Matching dex_cache. We cannot compare the `field_idx` anymore because
1395       // the type index differs, so compare the name index and type index.
1396       if (kSearchInstanceFields) {
1397         for (ArtField& field : k->GetIFields()) {
1398           const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex());
1399           if (other_field_id.name_idx_ == field_id.name_idx_ &&
1400               other_field_id.type_idx_ == field_id.type_idx_) {
1401             return &field;
1402           }
1403         }
1404       }
1405       if (kSearchStaticFields) {
1406         for (ArtField& field : k->GetSFields()) {
1407           const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex());
1408            if (other_field_id.name_idx_ == field_id.name_idx_ &&
1409               other_field_id.type_idx_ == field_id.type_idx_) {
1410             return &field;
1411           }
1412         }
1413       }
1414     } else {
1415       auto [success, field] = find_field_by_name_and_type(k, k_dex_cache);
1416       DCHECK_EQ(success, field != nullptr);
1417       if (success) {
1418         return field;
1419       }
1420     }
1421     if (kSearchStaticFields) {
1422       // Is this field in any of this class' interfaces?
1423       ArtField* f = search_direct_interfaces(k);
1424       if (f != nullptr) {
1425         return f;
1426       }
1427     }
1428   }
1429   return nullptr;
1430 }
1431 
1432 FLATTEN
FindField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1433 ArtField* Class::FindField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1434   return FindFieldImpl</*kSearchInstanceFields=*/ true,
1435                        /*kSearchStaticFields*/ true>(this, dex_cache, field_idx);
1436 }
1437 
1438 FLATTEN
FindInstanceField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1439 ArtField* Class::FindInstanceField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1440   return FindFieldImpl</*kSearchInstanceFields=*/ true,
1441                        /*kSearchStaticFields*/ false>(this, dex_cache, field_idx);
1442 }
1443 
1444 FLATTEN
FindStaticField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1445 ArtField* Class::FindStaticField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1446   return FindFieldImpl</*kSearchInstanceFields=*/ false,
1447                        /*kSearchStaticFields*/ true>(this, dex_cache, field_idx);
1448 }
1449 
ClearSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size)1450 void Class::ClearSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) {
1451   DCHECK(IsVerified());
1452   for (auto& m : GetMethods(pointer_size)) {
1453     if (m.IsManagedAndInvokable()) {
1454       m.ClearSkipAccessChecks();
1455     }
1456   }
1457 }
1458 
ClearMustCountLocksFlagOnAllMethods(PointerSize pointer_size)1459 void Class::ClearMustCountLocksFlagOnAllMethods(PointerSize pointer_size) {
1460   DCHECK(IsVerified());
1461   for (auto& m : GetMethods(pointer_size)) {
1462     if (m.IsManagedAndInvokable()) {
1463       m.ClearMustCountLocks();
1464     }
1465   }
1466 }
1467 
ClearDontCompileFlagOnAllMethods(PointerSize pointer_size)1468 void Class::ClearDontCompileFlagOnAllMethods(PointerSize pointer_size) {
1469   DCHECK(IsVerified());
1470   for (auto& m : GetMethods(pointer_size)) {
1471     if (m.IsManagedAndInvokable()) {
1472       m.ClearDontCompile();
1473     }
1474   }
1475 }
1476 
SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size)1477 void Class::SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) {
1478   DCHECK(IsVerified());
1479   for (auto& m : GetMethods(pointer_size)) {
1480     // Copied methods that have code come from default interface methods. The
1481     // flag should be set on these copied methods at the point of copy, which is
1482     // after the interface has been verified.
1483     if (m.IsManagedAndInvokable() && !m.IsCopied()) {
1484       m.SetSkipAccessChecks();
1485     }
1486   }
1487 }
1488 
GetDescriptor(std::string * storage)1489 const char* Class::GetDescriptor(std::string* storage) {
1490   size_t dim = 0u;
1491   ObjPtr<mirror::Class> klass = this;
1492   while (klass->IsArrayClass()) {
1493     ++dim;
1494     // No read barrier needed, we're reading a chain of constant references for comparison
1495     // with null. Then we follow up below with reading constant references to read constant
1496     // primitive data in both proxy and non-proxy paths. See ReadBarrierOption.
1497     klass = klass->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>();
1498   }
1499   if (klass->IsProxyClass()) {
1500     // No read barrier needed, the `name` field is constant for proxy classes and
1501     // the contents of the String are also constant. See ReadBarrierOption.
1502     ObjPtr<mirror::String> name = klass->GetName<kVerifyNone, kWithoutReadBarrier>();
1503     DCHECK(name != nullptr);
1504     *storage = DotToDescriptor(name->ToModifiedUtf8().c_str());
1505   } else {
1506     const char* descriptor;
1507     if (klass->IsPrimitive()) {
1508       descriptor = Primitive::Descriptor(klass->GetPrimitiveType());
1509     } else {
1510       const DexFile& dex_file = klass->GetDexFile();
1511       const dex::TypeId& type_id = dex_file.GetTypeId(klass->GetDexTypeIndex());
1512       descriptor = dex_file.GetTypeDescriptor(type_id);
1513     }
1514     if (dim == 0) {
1515       return descriptor;
1516     }
1517     *storage = descriptor;
1518   }
1519   storage->insert(0u, dim, '[');
1520   return storage->c_str();
1521 }
1522 
GetClassDef()1523 const dex::ClassDef* Class::GetClassDef() {
1524   uint16_t class_def_idx = GetDexClassDefIndex();
1525   if (class_def_idx == DexFile::kDexNoIndex16) {
1526     return nullptr;
1527   }
1528   return &GetDexFile().GetClassDef(class_def_idx);
1529 }
1530 
GetDirectInterfaceTypeIdx(uint32_t idx)1531 dex::TypeIndex Class::GetDirectInterfaceTypeIdx(uint32_t idx) {
1532   DCHECK(!IsPrimitive());
1533   DCHECK(!IsArrayClass());
1534   return GetInterfaceTypeList()->GetTypeItem(idx).type_idx_;
1535 }
1536 
GetDirectInterface(uint32_t idx)1537 ObjPtr<Class> Class::GetDirectInterface(uint32_t idx) {
1538   DCHECK(!IsPrimitive());
1539   if (IsArrayClass()) {
1540     ObjPtr<IfTable> iftable = GetIfTable();
1541     DCHECK(iftable != nullptr);
1542     DCHECK_EQ(iftable->Count(), 2u);
1543     DCHECK_LT(idx, 2u);
1544     ObjPtr<Class> interface = iftable->GetInterface(idx);
1545     DCHECK(interface != nullptr);
1546     return interface;
1547   } else if (IsProxyClass()) {
1548     ObjPtr<ObjectArray<Class>> interfaces = GetProxyInterfaces();
1549     DCHECK(interfaces != nullptr);
1550     return interfaces->Get(idx);
1551   } else {
1552     dex::TypeIndex type_idx = GetDirectInterfaceTypeIdx(idx);
1553     ObjPtr<Class> interface = Runtime::Current()->GetClassLinker()->LookupResolvedType(
1554         type_idx, GetDexCache(), GetClassLoader());
1555     return interface;
1556   }
1557 }
1558 
ResolveDirectInterface(Thread * self,Handle<Class> klass,uint32_t idx)1559 ObjPtr<Class> Class::ResolveDirectInterface(Thread* self, Handle<Class> klass, uint32_t idx) {
1560   ObjPtr<Class> interface = klass->GetDirectInterface(idx);
1561   if (interface == nullptr) {
1562     DCHECK(!klass->IsArrayClass());
1563     DCHECK(!klass->IsProxyClass());
1564     dex::TypeIndex type_idx = klass->GetDirectInterfaceTypeIdx(idx);
1565     interface = Runtime::Current()->GetClassLinker()->ResolveType(type_idx, klass.Get());
1566     CHECK_IMPLIES(interface == nullptr, self->IsExceptionPending());
1567   }
1568   return interface;
1569 }
1570 
GetCommonSuperClass(Handle<Class> klass)1571 ObjPtr<Class> Class::GetCommonSuperClass(Handle<Class> klass) {
1572   DCHECK(klass != nullptr);
1573   DCHECK(!klass->IsInterface());
1574   DCHECK(!IsInterface());
1575   ObjPtr<Class> common_super_class = this;
1576   while (!common_super_class->IsAssignableFrom(klass.Get())) {
1577     ObjPtr<Class> old_common = common_super_class;
1578     common_super_class = old_common->GetSuperClass();
1579     DCHECK(common_super_class != nullptr) << old_common->PrettyClass();
1580   }
1581   return common_super_class;
1582 }
1583 
GetSourceFile()1584 const char* Class::GetSourceFile() {
1585   const DexFile& dex_file = GetDexFile();
1586   const dex::ClassDef* dex_class_def = GetClassDef();
1587   if (dex_class_def == nullptr) {
1588     // Generated classes have no class def.
1589     return nullptr;
1590   }
1591   return dex_file.GetSourceFile(*dex_class_def);
1592 }
1593 
GetLocation()1594 std::string Class::GetLocation() {
1595   ObjPtr<DexCache> dex_cache = GetDexCache();
1596   if (dex_cache != nullptr && !IsProxyClass()) {
1597     return dex_cache->GetLocation()->ToModifiedUtf8();
1598   }
1599   // Arrays and proxies are generated and have no corresponding dex file location.
1600   return "generated class";
1601 }
1602 
GetInterfaceTypeList()1603 const dex::TypeList* Class::GetInterfaceTypeList() {
1604   const dex::ClassDef* class_def = GetClassDef();
1605   if (class_def == nullptr) {
1606     return nullptr;
1607   }
1608   return GetDexFile().GetInterfacesList(*class_def);
1609 }
1610 
PopulateEmbeddedVTable(PointerSize pointer_size)1611 void Class::PopulateEmbeddedVTable(PointerSize pointer_size) {
1612   ObjPtr<PointerArray> table = GetVTableDuringLinking();
1613   CHECK(table != nullptr) << PrettyClass();
1614   const size_t table_length = table->GetLength();
1615   SetEmbeddedVTableLength(table_length);
1616   for (size_t i = 0; i < table_length; i++) {
1617     SetEmbeddedVTableEntry(i, table->GetElementPtrSize<ArtMethod*>(i, pointer_size), pointer_size);
1618   }
1619   // Keep java.lang.Object class's vtable around for since it's easier
1620   // to be reused by array classes during their linking.
1621   if (!IsObjectClass()) {
1622     SetVTable(nullptr);
1623   }
1624 }
1625 
1626 // Set the bitmap of reference instance field offsets.
PopulateReferenceOffsetBitmap()1627 void Class::PopulateReferenceOffsetBitmap() {
1628   size_t num_reference_fields;
1629   ObjPtr<mirror::Class> super_class;
1630   ObjPtr<Class> klass;
1631   // Find the first class with non-zero instance reference fields.
1632   for (klass = this; klass != nullptr; klass = super_class) {
1633     super_class = klass->GetSuperClass();
1634     num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
1635     if (num_reference_fields != 0) {
1636       break;
1637     }
1638   }
1639 
1640   uint32_t ref_offsets = 0;
1641   // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
1642   if (super_class != nullptr) {
1643     // All of the reference fields added by this class are guaranteed to be grouped in memory
1644     // starting at an appropriately aligned address after super class object data.
1645     uint32_t start_offset =
1646         RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference<mirror::Object>));
1647     uint32_t start_bit =
1648         (start_offset - mirror::kObjectHeaderSize) / sizeof(mirror::HeapReference<mirror::Object>);
1649     uint32_t end_bit = start_bit + num_reference_fields;
1650     bool overflowing = end_bit > 31;
1651     uint32_t* overflow_bitmap;  // Pointer to the last word of overflow bitmap to be written into.
1652     uint32_t overflow_words_to_write;  // Number of overflow bitmap words remaining to write.
1653     // Index in 'overflow_bitmap' from where to start writing bitmap words (in reverse order).
1654     int32_t overflow_bitmap_word_idx;
1655     if (overflowing) {
1656       // We will write overflow bitmap in reverse.
1657       overflow_bitmap =
1658           reinterpret_cast<uint32_t*>(reinterpret_cast<uint8_t*>(this) + GetClassSize());
1659       DCHECK_ALIGNED(overflow_bitmap, sizeof(uint32_t));
1660       overflow_bitmap_word_idx = 0;
1661       overflow_words_to_write = RoundUp(end_bit, 32) / 32;
1662     }
1663     // TODO: Simplify by copying the bitmap from the super-class and then
1664     // appending the reference fields added by this class.
1665     while (true) {
1666       if (UNLIKELY(overflowing)) {
1667         // Write all the bitmap words which got skipped between previous
1668         // super-class and the current one.
1669         for (uint32_t new_words_to_write = RoundUp(end_bit, 32) / 32;
1670              overflow_words_to_write > new_words_to_write;
1671              overflow_words_to_write--) {
1672           overflow_bitmap[--overflow_bitmap_word_idx] = ref_offsets;
1673           ref_offsets = 0;
1674         }
1675         // Handle the references in the current super-class.
1676         if (num_reference_fields != 0u) {
1677           uint32_t aligned_end_bit = RoundDown(end_bit, 32);
1678           uint32_t aligned_start_bit = RoundUp(start_bit, 32);
1679           // Handle the case where a class' references are spanning across multiple 32-bit
1680           // words of the overflow bitmap.
1681           if (aligned_end_bit >= aligned_start_bit) {
1682             // handle the unaligned end first
1683             if (aligned_end_bit < end_bit) {
1684               ref_offsets |= 0xffffffffu >> (32 - (end_bit - aligned_end_bit));
1685               overflow_bitmap[--overflow_bitmap_word_idx] = ref_offsets;
1686               overflow_words_to_write--;
1687               ref_offsets = 0;
1688             }
1689             // store all the 32-bit bitmap words in between
1690             for (; aligned_end_bit > aligned_start_bit; aligned_end_bit -= 32) {
1691               overflow_bitmap[--overflow_bitmap_word_idx] = 0xffffffffu;
1692               overflow_words_to_write--;
1693             }
1694             CHECK_EQ(ref_offsets, 0u);
1695             // handle the unaligned start now
1696             if (aligned_start_bit > start_bit) {
1697               ref_offsets = 0xffffffffu << (32 - (aligned_start_bit - start_bit));
1698             }
1699           } else {
1700             DCHECK_EQ(aligned_start_bit - aligned_end_bit, 32u);
1701             ref_offsets |= (0xffffffffu << (32 - (aligned_start_bit - start_bit))) &
1702                            (0xffffffffu >> (32 - (end_bit - aligned_end_bit)));
1703           }
1704         }
1705       } else if (num_reference_fields != 0u) {
1706         ref_offsets |= (0xffffffffu << start_bit) & (0xffffffffu >> (32 - end_bit));
1707       }
1708 
1709       klass = super_class;
1710       super_class = klass->GetSuperClass();
1711       if (super_class == nullptr) {
1712         break;
1713       }
1714       num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
1715       start_offset =
1716           RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference<mirror::Object>));
1717       start_bit = (start_offset - mirror::kObjectHeaderSize) /
1718                   sizeof(mirror::HeapReference<mirror::Object>);
1719       end_bit = start_bit + num_reference_fields;
1720     }
1721     if (overflowing) {
1722       // We should not have more than one word left to write in the overflow bitmap.
1723       DCHECK_LE(overflow_words_to_write, 1u)
1724           << "overflow_bitmap_word_idx:" << -overflow_bitmap_word_idx;
1725       if (overflow_words_to_write > 0) {
1726         overflow_bitmap[--overflow_bitmap_word_idx] = ref_offsets;
1727       }
1728       ref_offsets = -overflow_bitmap_word_idx | kVisitReferencesSlowpathMask;
1729     }
1730   }
1731   SetReferenceInstanceOffsets(ref_offsets);
1732 }
1733 
1734 class ReadBarrierOnNativeRootsVisitor {
1735  public:
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const1736   void operator()([[maybe_unused]] ObjPtr<Object> obj,
1737                   [[maybe_unused]] MemberOffset offset,
1738                   [[maybe_unused]] bool is_static) const {}
1739 
VisitRootIfNonNull(CompressedReference<Object> * root) const1740   void VisitRootIfNonNull(CompressedReference<Object>* root) const
1741       REQUIRES_SHARED(Locks::mutator_lock_) {
1742     if (!root->IsNull()) {
1743       VisitRoot(root);
1744     }
1745   }
1746 
VisitRoot(CompressedReference<Object> * root) const1747   void VisitRoot(CompressedReference<Object>* root) const
1748       REQUIRES_SHARED(Locks::mutator_lock_) {
1749     ObjPtr<Object> old_ref = root->AsMirrorPtr();
1750     ObjPtr<Object> new_ref = ReadBarrier::BarrierForRoot(root);
1751     if (old_ref != new_ref) {
1752       // Update the field atomically. This may fail if mutator updates before us, but it's ok.
1753       auto* atomic_root =
1754           reinterpret_cast<Atomic<CompressedReference<Object>>*>(root);
1755       atomic_root->CompareAndSetStrongSequentiallyConsistent(
1756           CompressedReference<Object>::FromMirrorPtr(old_ref.Ptr()),
1757           CompressedReference<Object>::FromMirrorPtr(new_ref.Ptr()));
1758     }
1759   }
1760 };
1761 
1762 // The pre-fence visitor for Class::CopyOf().
1763 class CopyClassVisitor {
1764  public:
CopyClassVisitor(Thread * self,Handle<Class> * orig,size_t new_length,size_t copy_bytes,ImTable * imt,PointerSize pointer_size)1765   CopyClassVisitor(Thread* self,
1766                    Handle<Class>* orig,
1767                    size_t new_length,
1768                    size_t copy_bytes,
1769                    ImTable* imt,
1770                    PointerSize pointer_size)
1771       : self_(self), orig_(orig), new_length_(new_length),
1772         copy_bytes_(copy_bytes), imt_(imt), pointer_size_(pointer_size) {
1773   }
1774 
operator ()(ObjPtr<Object> obj,size_t usable_size) const1775   void operator()(ObjPtr<Object> obj, [[maybe_unused]] size_t usable_size) const
1776       REQUIRES_SHARED(Locks::mutator_lock_) {
1777     StackHandleScope<1> hs(self_);
1778     Handle<mirror::Class> h_new_class_obj(hs.NewHandle(obj->AsClass()));
1779     Object::CopyObject(h_new_class_obj.Get(), orig_->Get(), copy_bytes_);
1780     Class::SetStatus(h_new_class_obj, ClassStatus::kResolving, self_);
1781     h_new_class_obj->PopulateEmbeddedVTable(pointer_size_);
1782     h_new_class_obj->SetImt(imt_, pointer_size_);
1783     h_new_class_obj->SetClassSize(new_length_);
1784     h_new_class_obj->PopulateReferenceOffsetBitmap();
1785     // Visit all of the references to make sure there is no from space references in the native
1786     // roots.
1787     h_new_class_obj->Object::VisitReferences(ReadBarrierOnNativeRootsVisitor(), VoidFunctor());
1788   }
1789 
1790  private:
1791   Thread* const self_;
1792   Handle<Class>* const orig_;
1793   const size_t new_length_;
1794   const size_t copy_bytes_;
1795   ImTable* imt_;
1796   const PointerSize pointer_size_;
1797   DISALLOW_COPY_AND_ASSIGN(CopyClassVisitor);
1798 };
1799 
CopyOf(Handle<Class> h_this,Thread * self,int32_t new_length,ImTable * imt,PointerSize pointer_size)1800 ObjPtr<Class> Class::CopyOf(Handle<Class> h_this,
1801                             Thread* self,
1802                             int32_t new_length,
1803                             ImTable* imt,
1804                             PointerSize pointer_size) {
1805   DCHECK_GE(new_length, static_cast<int32_t>(sizeof(Class)));
1806   // We may get copied by a compacting GC.
1807   Runtime* runtime = Runtime::Current();
1808   gc::Heap* heap = runtime->GetHeap();
1809   // The num_bytes (3rd param) is sizeof(Class) as opposed to SizeOf()
1810   // to skip copying the tail part that we will overwrite here.
1811   CopyClassVisitor visitor(self, &h_this, new_length, sizeof(Class), imt, pointer_size);
1812   ObjPtr<mirror::Class> java_lang_Class = GetClassRoot<mirror::Class>(runtime->GetClassLinker());
1813   ObjPtr<Object> new_class = kMovingClasses ?
1814       heap->AllocObject(self, java_lang_Class, new_length, visitor) :
1815       heap->AllocNonMovableObject(self, java_lang_Class, new_length, visitor);
1816   if (UNLIKELY(new_class == nullptr)) {
1817     self->AssertPendingOOMException();
1818     return nullptr;
1819   }
1820   return new_class->AsClass();
1821 }
1822 
DescriptorEquals(ObjPtr<mirror::Class> match)1823 bool Class::DescriptorEquals(ObjPtr<mirror::Class> match) {
1824   DCHECK(match != nullptr);
1825   ObjPtr<mirror::Class> klass = this;
1826   while (klass->IsArrayClass()) {
1827     // No read barrier needed, we're reading a chain of constant references for comparison
1828     // with null. Then we follow up below with reading constant references to read constant
1829     // primitive data in both proxy and non-proxy paths. See ReadBarrierOption.
1830     klass = klass->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>();
1831     DCHECK(klass != nullptr);
1832     match = match->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>();
1833     if (match == nullptr){
1834       return false;
1835     }
1836   }
1837   if (match->IsArrayClass()) {
1838     return false;
1839   }
1840 
1841   if (UNLIKELY(klass->IsPrimitive()) || UNLIKELY(match->IsPrimitive())) {
1842     return klass->GetPrimitiveType() == match->GetPrimitiveType();
1843   }
1844 
1845   if (UNLIKELY(klass->IsProxyClass())) {
1846     return klass->ProxyDescriptorEquals(match);
1847   }
1848   if (UNLIKELY(match->IsProxyClass())) {
1849     return match->ProxyDescriptorEquals(klass);
1850   }
1851 
1852   const DexFile& klass_dex_file = klass->GetDexFile();
1853   const DexFile& match_dex_file = match->GetDexFile();
1854   dex::TypeIndex klass_type_index = klass->GetDexTypeIndex();
1855   dex::TypeIndex match_type_index = match->GetDexTypeIndex();
1856   if (&klass_dex_file == &match_dex_file) {
1857     return klass_type_index == match_type_index;
1858   }
1859   std::string_view klass_descriptor = klass_dex_file.GetTypeDescriptorView(klass_type_index);
1860   std::string_view match_descriptor = match_dex_file.GetTypeDescriptorView(match_type_index);
1861   return klass_descriptor == match_descriptor;
1862 }
1863 
ProxyDescriptorEquals(ObjPtr<mirror::Class> match)1864 bool Class::ProxyDescriptorEquals(ObjPtr<mirror::Class> match) {
1865   DCHECK(IsProxyClass());
1866   ObjPtr<mirror::String> name = GetName<kVerifyNone, kWithoutReadBarrier>();
1867   DCHECK(name != nullptr);
1868 
1869   DCHECK(match != nullptr);
1870   DCHECK(!match->IsArrayClass());
1871   DCHECK(!match->IsPrimitive());
1872   if (match->IsProxyClass()) {
1873     ObjPtr<mirror::String> match_name = match->GetName<kVerifyNone, kWithoutReadBarrier>();
1874     DCHECK(name != nullptr);
1875     return name->Equals(match_name);
1876   }
1877 
1878   // Note: Proxy descriptor should never match a non-proxy descriptor but ART does not enforce that.
1879   std::string descriptor = DotToDescriptor(name->ToModifiedUtf8().c_str());
1880   std::string_view match_descriptor =
1881       match->GetDexFile().GetTypeDescriptorView(match->GetDexTypeIndex());
1882   return descriptor == match_descriptor;
1883 }
1884 
ProxyDescriptorEquals(std::string_view match)1885 bool Class::ProxyDescriptorEquals(std::string_view match) {
1886   DCHECK(IsProxyClass());
1887   std::string storage;
1888   const char* descriptor = GetDescriptor(&storage);
1889   DCHECK(descriptor == storage.c_str());
1890   return storage == match;
1891 }
1892 
UpdateHashForProxyClass(uint32_t hash,ObjPtr<mirror::Class> proxy_class)1893 uint32_t Class::UpdateHashForProxyClass(uint32_t hash, ObjPtr<mirror::Class> proxy_class) {
1894   // No read barrier needed, the `name` field is constant for proxy classes and
1895   // the contents of the String are also constant. See ReadBarrierOption.
1896   // Note: The `proxy_class` can be a from-space reference.
1897   DCHECK(proxy_class->IsProxyClass());
1898   ObjPtr<mirror::String> name = proxy_class->GetName<kVerifyNone, kWithoutReadBarrier>();
1899   DCHECK(name != nullptr);
1900   // Update hash for characters we would get from `DotToDescriptor(name->ToModifiedUtf8())`.
1901   DCHECK_NE(name->GetLength(), 0);
1902   DCHECK_NE(name->CharAt(0), '[');
1903   hash = UpdateModifiedUtf8Hash(hash, 'L');
1904   if (name->IsCompressed()) {
1905     std::string_view dot_name(reinterpret_cast<const char*>(name->GetValueCompressed()),
1906                               name->GetLength());
1907     for (char c : dot_name) {
1908       hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/');
1909     }
1910   } else {
1911     std::string dot_name = name->ToModifiedUtf8();
1912     for (char c : dot_name) {
1913       hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/');
1914     }
1915   }
1916   hash = UpdateModifiedUtf8Hash(hash, ';');
1917   return hash;
1918 }
1919 
1920 // TODO: Move this to java_lang_Class.cc?
GetDeclaredConstructor(Thread * self,Handle<ObjectArray<Class>> args,PointerSize pointer_size)1921 ArtMethod* Class::GetDeclaredConstructor(
1922     Thread* self, Handle<ObjectArray<Class>> args, PointerSize pointer_size) {
1923   for (auto& m : GetDirectMethods(pointer_size)) {
1924     // Skip <clinit> which is a static constructor, as well as non constructors.
1925     if (m.IsStatic() || !m.IsConstructor()) {
1926       continue;
1927     }
1928     // May cause thread suspension and exceptions.
1929     if (m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->EqualParameters(args)) {
1930       return &m;
1931     }
1932     if (UNLIKELY(self->IsExceptionPending())) {
1933       return nullptr;
1934     }
1935   }
1936   return nullptr;
1937 }
1938 
Depth()1939 uint32_t Class::Depth() {
1940   uint32_t depth = 0;
1941   for (ObjPtr<Class> cls = this; cls->GetSuperClass() != nullptr; cls = cls->GetSuperClass()) {
1942     depth++;
1943   }
1944   return depth;
1945 }
1946 
FindTypeIndexInOtherDexFile(const DexFile & dex_file)1947 dex::TypeIndex Class::FindTypeIndexInOtherDexFile(const DexFile& dex_file) {
1948   std::string_view descriptor;
1949   std::optional<std::string> temp;
1950   if (IsPrimitive() || IsArrayClass() || IsProxyClass()) {
1951     temp.emplace();
1952     descriptor = GetDescriptor(&temp.value());
1953   } else {
1954     descriptor = GetDescriptorView();
1955   }
1956   const dex::TypeId* type_id = dex_file.FindTypeId(descriptor);
1957   return (type_id == nullptr) ? dex::TypeIndex() : dex_file.GetIndexForTypeId(*type_id);
1958 }
1959 
1960 ALWAYS_INLINE
IsMethodPreferredOver(ArtMethod * orig_method,bool orig_method_hidden,ArtMethod * new_method,bool new_method_hidden)1961 static bool IsMethodPreferredOver(ArtMethod* orig_method,
1962                                   bool orig_method_hidden,
1963                                   ArtMethod* new_method,
1964                                   bool new_method_hidden) {
1965   DCHECK(new_method != nullptr);
1966 
1967   // Is this the first result?
1968   if (orig_method == nullptr) {
1969     return true;
1970   }
1971 
1972   // Original method is hidden, the new one is not?
1973   if (orig_method_hidden && !new_method_hidden) {
1974     return true;
1975   }
1976 
1977   // We iterate over virtual methods first and then over direct ones,
1978   // so we can never be in situation where `orig_method` is direct and
1979   // `new_method` is virtual.
1980   DCHECK_IMPLIES(orig_method->IsDirect(), new_method->IsDirect());
1981 
1982   // Original method is synthetic, the new one is not?
1983   if (orig_method->IsSynthetic() && !new_method->IsSynthetic()) {
1984     return true;
1985   }
1986 
1987   return false;
1988 }
1989 
1990 template <PointerSize kPointerSize>
GetDeclaredMethodInternal(Thread * self,ObjPtr<Class> klass,ObjPtr<String> name,ObjPtr<ObjectArray<Class>> args,const std::function<hiddenapi::AccessContext ()> & fn_get_access_context)1991 ObjPtr<Method> Class::GetDeclaredMethodInternal(
1992     Thread* self,
1993     ObjPtr<Class> klass,
1994     ObjPtr<String> name,
1995     ObjPtr<ObjectArray<Class>> args,
1996     const std::function<hiddenapi::AccessContext()>& fn_get_access_context) {
1997   // Covariant return types (or smali) permit the class to define
1998   // multiple methods with the same name and parameter types.
1999   // Prefer (in decreasing order of importance):
2000   //  1) non-hidden method over hidden
2001   //  2) virtual methods over direct
2002   //  3) non-synthetic methods over synthetic
2003   // We never return miranda methods that were synthesized by the runtime.
2004   StackHandleScope<3> hs(self);
2005   auto h_method_name = hs.NewHandle(name);
2006   if (UNLIKELY(h_method_name == nullptr)) {
2007     ThrowNullPointerException("name == null");
2008     return nullptr;
2009   }
2010   auto h_args = hs.NewHandle(args);
2011   Handle<Class> h_klass = hs.NewHandle(klass);
2012   constexpr hiddenapi::AccessMethod access_method = hiddenapi::AccessMethod::kNone;
2013   ArtMethod* result = nullptr;
2014   bool result_hidden = false;
2015   for (auto& m : h_klass->GetDeclaredVirtualMethods(kPointerSize)) {
2016     if (m.IsMiranda()) {
2017       continue;
2018     }
2019     ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize);
2020     if (!np_method->NameEquals(h_method_name.Get())) {
2021       continue;
2022     }
2023     // `ArtMethod::EqualParameters()` may throw when resolving types.
2024     if (!np_method->EqualParameters(h_args)) {
2025       if (UNLIKELY(self->IsExceptionPending())) {
2026         return nullptr;
2027       }
2028       continue;
2029     }
2030     bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method);
2031     if (!m_hidden && !m.IsSynthetic()) {
2032       // Non-hidden, virtual, non-synthetic. Best possible result, exit early.
2033       return Method::CreateFromArtMethod<kPointerSize>(self, &m);
2034     } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) {
2035       // Remember as potential result.
2036       result = &m;
2037       result_hidden = m_hidden;
2038     }
2039   }
2040 
2041   if ((result != nullptr) && !result_hidden) {
2042     // We have not found a non-hidden, virtual, non-synthetic method, but
2043     // if we have found a non-hidden, virtual, synthetic method, we cannot
2044     // do better than that later.
2045     DCHECK(!result->IsDirect());
2046     DCHECK(result->IsSynthetic());
2047   } else {
2048     for (auto& m : h_klass->GetDirectMethods(kPointerSize)) {
2049       auto modifiers = m.GetAccessFlags();
2050       if ((modifiers & kAccConstructor) != 0) {
2051         continue;
2052       }
2053       ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize);
2054       if (!np_method->NameEquals(h_method_name.Get())) {
2055         continue;
2056       }
2057       // `ArtMethod::EqualParameters()` may throw when resolving types.
2058       if (!np_method->EqualParameters(h_args)) {
2059         if (UNLIKELY(self->IsExceptionPending())) {
2060           return nullptr;
2061         }
2062         continue;
2063       }
2064       DCHECK(!m.IsMiranda());  // Direct methods cannot be miranda methods.
2065       bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method);
2066       if (!m_hidden && !m.IsSynthetic()) {
2067         // Non-hidden, direct, non-synthetic. Any virtual result could only have been
2068         // hidden, therefore this is the best possible match. Exit now.
2069         DCHECK((result == nullptr) || result_hidden);
2070         return Method::CreateFromArtMethod<kPointerSize>(self, &m);
2071       } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) {
2072         // Remember as potential result.
2073         result = &m;
2074         result_hidden = m_hidden;
2075       }
2076     }
2077   }
2078 
2079   return result != nullptr
2080       ? Method::CreateFromArtMethod<kPointerSize>(self, result)
2081       : nullptr;
2082 }
2083 
2084 template
2085 ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k32>(
2086     Thread* self,
2087     ObjPtr<Class> klass,
2088     ObjPtr<String> name,
2089     ObjPtr<ObjectArray<Class>> args,
2090     const std::function<hiddenapi::AccessContext()>& fn_get_access_context);
2091 template
2092 ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k64>(
2093     Thread* self,
2094     ObjPtr<Class> klass,
2095     ObjPtr<String> name,
2096     ObjPtr<ObjectArray<Class>> args,
2097     const std::function<hiddenapi::AccessContext()>& fn_get_access_context);
2098 
2099 template <PointerSize kPointerSize>
GetDeclaredConstructorInternal(Thread * self,ObjPtr<Class> klass,ObjPtr<ObjectArray<Class>> args)2100 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal(
2101     Thread* self,
2102     ObjPtr<Class> klass,
2103     ObjPtr<ObjectArray<Class>> args) {
2104   StackHandleScope<1> hs(self);
2105   ArtMethod* result = klass->GetDeclaredConstructor(self, hs.NewHandle(args), kPointerSize);
2106   return result != nullptr
2107       ? Constructor::CreateFromArtMethod<kPointerSize>(self, result)
2108       : nullptr;
2109 }
2110 
2111 // Constructor::CreateFromArtMethod<kTransactionActive>(self, result)
2112 
2113 template
2114 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k32>(
2115     Thread* self,
2116     ObjPtr<Class> klass,
2117     ObjPtr<ObjectArray<Class>> args);
2118 template
2119 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k64>(
2120     Thread* self,
2121     ObjPtr<Class> klass,
2122     ObjPtr<ObjectArray<Class>> args);
2123 
GetInnerClassFlags(Handle<Class> h_this,int32_t default_value)2124 int32_t Class::GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) {
2125   if (h_this->IsProxyClass() || h_this->GetDexCache() == nullptr) {
2126     return default_value;
2127   }
2128   uint32_t flags;
2129   if (!annotations::GetInnerClassFlags(h_this, &flags)) {
2130     return default_value;
2131   }
2132   return flags;
2133 }
2134 
SetObjectSizeAllocFastPath(uint32_t new_object_size)2135 void Class::SetObjectSizeAllocFastPath(uint32_t new_object_size) {
2136   if (Runtime::Current()->IsActiveTransaction()) {
2137     SetField32Volatile<true>(ObjectSizeAllocFastPathOffset(), new_object_size);
2138   } else {
2139     SetField32Volatile<false>(ObjectSizeAllocFastPathOffset(), new_object_size);
2140   }
2141 }
2142 
PrettyDescriptor(ObjPtr<mirror::Class> klass)2143 std::string Class::PrettyDescriptor(ObjPtr<mirror::Class> klass) {
2144   if (klass == nullptr) {
2145     return "null";
2146   }
2147   return klass->PrettyDescriptor();
2148 }
2149 
PrettyDescriptor()2150 std::string Class::PrettyDescriptor() {
2151   std::string temp;
2152   return art::PrettyDescriptor(GetDescriptor(&temp));
2153 }
2154 
PrettyClass(ObjPtr<mirror::Class> c)2155 std::string Class::PrettyClass(ObjPtr<mirror::Class> c) {
2156   if (c == nullptr) {
2157     return "null";
2158   }
2159   return c->PrettyClass();
2160 }
2161 
PrettyClass()2162 std::string Class::PrettyClass() {
2163   std::string result;
2164   if (IsObsoleteObject()) {
2165     result += "(Obsolete)";
2166   }
2167   if (IsRetired()) {
2168     result += "(Retired)";
2169   }
2170   result += "java.lang.Class<";
2171   result += PrettyDescriptor();
2172   result += ">";
2173   return result;
2174 }
2175 
PrettyClassAndClassLoader(ObjPtr<mirror::Class> c)2176 std::string Class::PrettyClassAndClassLoader(ObjPtr<mirror::Class> c) {
2177   if (c == nullptr) {
2178     return "null";
2179   }
2180   return c->PrettyClassAndClassLoader();
2181 }
2182 
PrettyClassAndClassLoader()2183 std::string Class::PrettyClassAndClassLoader() {
2184   std::string result;
2185   result += "java.lang.Class<";
2186   result += PrettyDescriptor();
2187   result += ",";
2188   result += mirror::Object::PrettyTypeOf(GetClassLoader());
2189   // TODO: add an identifying hash value for the loader
2190   result += ">";
2191   return result;
2192 }
2193 
GetAccessFlagsDCheck()2194 template<VerifyObjectFlags kVerifyFlags> void Class::GetAccessFlagsDCheck() {
2195   // Check class is loaded/retired or this is java.lang.String that has a
2196   // circularity issue during loading the names of its members
2197   DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() ||
2198          IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() ||
2199          this == GetClassRoot<String>())
2200               << "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>()
2201               << " IsRetired=" << IsRetired<kVerifyFlags>()
2202               << " IsErroneous=" <<
2203               IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()
2204               << " IsString=" << (this == GetClassRoot<String>())
2205               << " status= " << GetStatus<kVerifyFlags>()
2206               << " descriptor=" << PrettyDescriptor();
2207 }
2208 // Instantiate the common cases.
2209 template void Class::GetAccessFlagsDCheck<kVerifyNone>();
2210 template void Class::GetAccessFlagsDCheck<kVerifyThis>();
2211 template void Class::GetAccessFlagsDCheck<kVerifyReads>();
2212 template void Class::GetAccessFlagsDCheck<kVerifyWrites>();
2213 template void Class::GetAccessFlagsDCheck<kVerifyAll>();
2214 
GetMethodIds()2215 ObjPtr<Object> Class::GetMethodIds() {
2216   ObjPtr<ClassExt> ext(GetExtData());
2217   if (ext.IsNull()) {
2218     return nullptr;
2219   } else {
2220     return ext->GetJMethodIDs();
2221   }
2222 }
EnsureMethodIds(Handle<Class> h_this)2223 bool Class::EnsureMethodIds(Handle<Class> h_this) {
2224   DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2225   Thread* self = Thread::Current();
2226   ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2227   if (ext.IsNull()) {
2228     self->AssertPendingOOMException();
2229     return false;
2230   }
2231   return ext->EnsureJMethodIDsArrayPresent(h_this->NumMethods());
2232 }
2233 
GetStaticFieldIds()2234 ObjPtr<Object> Class::GetStaticFieldIds() {
2235   ObjPtr<ClassExt> ext(GetExtData());
2236   if (ext.IsNull()) {
2237     return nullptr;
2238   } else {
2239     return ext->GetStaticJFieldIDs();
2240   }
2241 }
EnsureStaticFieldIds(Handle<Class> h_this)2242 bool Class::EnsureStaticFieldIds(Handle<Class> h_this) {
2243   DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2244   Thread* self = Thread::Current();
2245   ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2246   if (ext.IsNull()) {
2247     self->AssertPendingOOMException();
2248     return false;
2249   }
2250   return ext->EnsureStaticJFieldIDsArrayPresent(h_this->NumStaticFields());
2251 }
GetInstanceFieldIds()2252 ObjPtr<Object> Class::GetInstanceFieldIds() {
2253   ObjPtr<ClassExt> ext(GetExtData());
2254   if (ext.IsNull()) {
2255     return nullptr;
2256   } else {
2257     return ext->GetInstanceJFieldIDs();
2258   }
2259 }
EnsureInstanceFieldIds(Handle<Class> h_this)2260 bool Class::EnsureInstanceFieldIds(Handle<Class> h_this) {
2261   DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2262   Thread* self = Thread::Current();
2263   ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2264   if (ext.IsNull()) {
2265     self->AssertPendingOOMException();
2266     return false;
2267   }
2268   return ext->EnsureInstanceJFieldIDsArrayPresent(h_this->NumInstanceFields());
2269 }
2270 
GetStaticFieldIdOffset(ArtField * field)2271 size_t Class::GetStaticFieldIdOffset(ArtField* field) {
2272   DCHECK_LT(reinterpret_cast<uintptr_t>(field),
2273             reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->end()))
2274       << "field not part of the current class. " << field->PrettyField() << " class is "
2275       << PrettyClass();
2276   DCHECK_GE(reinterpret_cast<uintptr_t>(field),
2277             reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->begin()))
2278       << "field not part of the current class. " << field->PrettyField() << " class is "
2279       << PrettyClass();
2280   uintptr_t start = reinterpret_cast<uintptr_t>(&GetSFieldsPtr()->At(0));
2281   uintptr_t fld = reinterpret_cast<uintptr_t>(field);
2282   size_t res = (fld - start) / sizeof(ArtField);
2283   DCHECK_EQ(&GetSFieldsPtr()->At(res), field)
2284       << "Incorrect field computation expected: " << field->PrettyField()
2285       << " got: " << GetSFieldsPtr()->At(res).PrettyField();
2286   return res;
2287 }
2288 
GetInstanceFieldIdOffset(ArtField * field)2289 size_t Class::GetInstanceFieldIdOffset(ArtField* field) {
2290   DCHECK_LT(reinterpret_cast<uintptr_t>(field),
2291             reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->end()))
2292       << "field not part of the current class. " << field->PrettyField() << " class is "
2293       << PrettyClass();
2294   DCHECK_GE(reinterpret_cast<uintptr_t>(field),
2295             reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->begin()))
2296       << "field not part of the current class. " << field->PrettyField() << " class is "
2297       << PrettyClass();
2298   uintptr_t start = reinterpret_cast<uintptr_t>(&GetIFieldsPtr()->At(0));
2299   uintptr_t fld = reinterpret_cast<uintptr_t>(field);
2300   size_t res = (fld - start) / sizeof(ArtField);
2301   DCHECK_EQ(&GetIFieldsPtr()->At(res), field)
2302       << "Incorrect field computation expected: " << field->PrettyField()
2303       << " got: " << GetIFieldsPtr()->At(res).PrettyField();
2304   return res;
2305 }
2306 
GetMethodIdOffset(ArtMethod * method,PointerSize pointer_size)2307 size_t Class::GetMethodIdOffset(ArtMethod* method, PointerSize pointer_size) {
2308   DCHECK(GetMethodsSlice(kRuntimePointerSize).Contains(method))
2309       << "method not part of the current class. " << method->PrettyMethod() << "( " << reinterpret_cast<void*>(method) << ")" << " class is "
2310       << PrettyClass() << [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
2311         std::ostringstream os;
2312         os << " Methods are [";
2313         for (ArtMethod& m : GetMethodsSlice(kRuntimePointerSize)) {
2314           os << m.PrettyMethod() << "( " << reinterpret_cast<void*>(&m) << "), ";
2315         }
2316         os << "]";
2317         return os.str();
2318       }();
2319   uintptr_t start = reinterpret_cast<uintptr_t>(&*GetMethodsSlice(pointer_size).begin());
2320   uintptr_t fld = reinterpret_cast<uintptr_t>(method);
2321   size_t art_method_size = ArtMethod::Size(pointer_size);
2322   size_t art_method_align = ArtMethod::Alignment(pointer_size);
2323   size_t res = (fld - start) / art_method_size;
2324   DCHECK_EQ(&GetMethodsPtr()->At(res, art_method_size, art_method_align), method)
2325       << "Incorrect method computation expected: " << method->PrettyMethod()
2326       << " got: " << GetMethodsPtr()->At(res, art_method_size, art_method_align).PrettyMethod();
2327   return res;
2328 }
2329 
CheckIsVisibleWithTargetSdk(Thread * self)2330 bool Class::CheckIsVisibleWithTargetSdk(Thread* self) {
2331   uint32_t targetSdkVersion = Runtime::Current()->GetTargetSdkVersion();
2332   if (IsSdkVersionSetAndAtMost(targetSdkVersion, SdkVersion::kT)) {
2333     ObjPtr<mirror::Class> java_lang_ClassValue =
2334         WellKnownClasses::ToClass(WellKnownClasses::java_lang_ClassValue);
2335     if (this == java_lang_ClassValue.Ptr()) {
2336       self->ThrowNewException("Ljava/lang/ClassNotFoundException;", "java.lang.ClassValue");
2337       return false;
2338     }
2339   }
2340   return true;
2341 }
2342 
2343 ALWAYS_INLINE
IsInterfaceMethodAccessible(ArtMethod * interface_method)2344 static bool IsInterfaceMethodAccessible(ArtMethod* interface_method)
2345     REQUIRES_SHARED(Locks::mutator_lock_) {
2346   // If the interface method is part of the public SDK, return it.
2347   if ((hiddenapi::GetRuntimeFlags(interface_method) & kAccPublicApi) != 0) {
2348     hiddenapi::ApiList api_list(hiddenapi::detail::GetDexFlags(interface_method));
2349     // The kAccPublicApi flag is also used as an optimization to avoid
2350     // other hiddenapi checks to always go on the slow path. Therefore, we
2351     // need to check here if the method is in the SDK list.
2352     if (api_list.IsSdkApi()) {
2353       return true;
2354     }
2355   }
2356   return false;
2357 }
2358 
FindAccessibleInterfaceMethod(ArtMethod * implementation_method,PointerSize pointer_size)2359 ArtMethod* Class::FindAccessibleInterfaceMethod(ArtMethod* implementation_method,
2360                                                 PointerSize pointer_size)
2361     REQUIRES_SHARED(Locks::mutator_lock_) {
2362   ObjPtr<mirror::IfTable> iftable = GetIfTable();
2363   if (IsInterface()) {  // Interface class doesn't resolve methods into the iftable.
2364     for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) {
2365       ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
2366       for (ArtMethod& interface_method : iface->GetVirtualMethodsSlice(pointer_size)) {
2367         if (implementation_method->HasSameNameAndSignature(&interface_method) &&
2368             IsInterfaceMethodAccessible(&interface_method)) {
2369           return &interface_method;
2370         }
2371       }
2372     }
2373   } else {
2374     for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) {
2375       ObjPtr<mirror::PointerArray> methods = iftable->GetMethodArrayOrNull(i);
2376       if (methods == nullptr) {
2377         continue;
2378       }
2379       for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
2380         if (implementation_method == methods->GetElementPtrSize<ArtMethod*>(j, pointer_size)) {
2381           ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
2382           ArtMethod* interface_method = &iface->GetVirtualMethodsSlice(pointer_size)[j];
2383           if (IsInterfaceMethodAccessible(interface_method)) {
2384             return interface_method;
2385           }
2386         }
2387       }
2388     }
2389   }
2390   return nullptr;
2391 }
2392 
2393 
2394 }  // namespace mirror
2395 }  // namespace art
2396