xref: /aosp_15_r20/external/skia/src/core/SkImageFilterTypes.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2019 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkImageFilterTypes_DEFINED
9 #define SkImageFilterTypes_DEFINED
10 
11 #include "include/core/SkColorFilter.h"
12 #include "include/core/SkColorSpace.h"
13 #include "include/core/SkMatrix.h"
14 #include "include/core/SkPoint.h"
15 #include "include/core/SkRect.h"
16 #include "include/core/SkRefCnt.h"
17 #include "include/core/SkSamplingOptions.h"
18 #include "include/core/SkScalar.h"
19 #include "include/core/SkSize.h"
20 #include "include/core/SkSpan.h"
21 #include "include/core/SkSurfaceProps.h"
22 #include "include/core/SkTileMode.h"
23 #include "include/core/SkTypes.h"
24 #include "include/private/base/SkFloatingPoint.h"
25 #include "include/private/base/SkTArray.h"
26 #include "include/private/base/SkTPin.h"
27 #include "include/private/base/SkTo.h"
28 #include "src/base/SkEnumBitMask.h"
29 #include "src/core/SkSpecialImage.h"
30 
31 #include <cstdint>
32 #include <optional>
33 #include <utility>
34 
35 class FilterResultTestAccess;  // for testing
36 class SkBitmap;
37 class SkBlender;
38 class SkBlurEngine;
39 class SkDevice;
40 class SkImage;
41 class SkImageFilter;
42 class SkImageFilterCache;
43 class SkPicture;
44 class SkShader;
45 enum SkColorType : int;
46 
47 // The skif (SKI[mage]F[ilter]) namespace contains types that are used for filter implementations.
48 // The defined types come in two groups: users of internal Skia types, and templates to help with
49 // readability. Image filters cannot be implemented without access to key internal types, such as
50 // SkSpecialImage. It is possible to avoid the use of the readability templates, although they are
51 // strongly encouraged.
52 namespace skif {
53 
54 // Rounds in/out but with a tolerance.
55 SkIRect RoundOut(SkRect);
56 SkIRect RoundIn(SkRect);
57 
58 // skif::IVector and skif::Vector represent plain-old-data types for storing direction vectors, so
59 // that the coordinate-space templating system defined below can have a separate type id for
60 // directions vs. points, and specialize appropriately. As such, all operations with direction
61 // vectors are defined on the LayerSpace specialization, since that is the intended point of use.
62 struct IVector {
63     int32_t fX;
64     int32_t fY;
65 
66     IVector() = default;
IVectorIVector67     IVector(int32_t x, int32_t y) : fX(x), fY(y) {}
IVectorIVector68     explicit IVector(const SkIVector& v) : fX(v.fX), fY(v.fY) {}
69 };
70 
71 struct Vector {
72     SkScalar fX;
73     SkScalar fY;
74 
75     Vector() = default;
VectorVector76     Vector(SkScalar x, SkScalar y) : fX(x), fY(y) {}
VectorVector77     explicit Vector(const SkVector& v) : fX(v.fX), fY(v.fY) {}
78 
isFiniteVector79     bool isFinite() const { return SkIsFinite(fX, fY); }
80 };
81 
82 ///////////////////////////////////////////////////////////////////////////////////////////////////
83 // Coordinate Space Tagging
84 // - In order to enforce correct coordinate spaces in image filter implementations and use,
85 //   geometry is wrapped by templated structs to declare in the type system what coordinate space
86 //   the coordinates are defined in.
87 // - Currently there is ParameterSpace and DeviceSpace that are data-only wrappers around
88 //   coordinates, and the primary LayerSpace that provides all operative functionality for image
89 //   filters. It is intended that all logic about image bounds and access be conducted in the shared
90 //   layer space.
91 // - The LayerSpace struct has type-safe specializations for SkIRect, SkRect, SkIPoint, SkPoint,
92 //   skif::IVector (to distinguish SkIVector from SkIPoint), skif::Vector, SkISize, and SkSize.
93 // - A Mapping object provides type safe coordinate conversions between these spaces, and
94 //   automatically does the "right thing" for each geometric type.
95 ///////////////////////////////////////////////////////////////////////////////////////////////////
96 
97 // ParameterSpace is a data-only wrapper around Skia's geometric types such as SkIPoint, and SkRect.
98 // Parameter space is the same as the local coordinate space of an SkShader, or the coordinates
99 // passed into SkCanvas::drawX calls, but "local" is avoided due to the alliteration with layer
100 // space. SkImageFilters are defined in terms of ParameterSpace<T> geometry and must use the Mapping
101 // on Context to transform the parameters into LayerSpace to evaluate the filter in the shared
102 // coordinate space of the entire filter DAG.
103 //
104 // A value of ParameterSpace<SkIRect> implies that its wrapped SkIRect is defined in the local
105 // parameter space.
106 template<typename T>
107 class ParameterSpace {
108 public:
109     ParameterSpace() = default;
ParameterSpace(const T & data)110     explicit ParameterSpace(const T& data) : fData(data) {}
ParameterSpace(T && data)111     explicit ParameterSpace(T&& data) : fData(std::move(data)) {}
112 
113     explicit operator const T&() const { return fData; }
114 
115 private:
116     T fData;
117 };
118 
119 // DeviceSpace is a data-only wrapper around Skia's geometric types. It is similar to
120 // 'ParameterSpace' except that it is used to represent geometry that has been transformed or
121 // defined in the root device space (i.e. the final pixels of drawn content). Much of what SkCanvas
122 // tracks, such as its clip bounds are defined in this space and DeviceSpace provides a
123 // type-enforced mechanism for the canvas to pass that information into the image filtering system,
124 // using the Mapping of the filtering context.
125 template<typename T>
126 class DeviceSpace {
127 public:
128     DeviceSpace() = default;
DeviceSpace(const T & data)129     explicit DeviceSpace(const T& data) : fData(data) {}
DeviceSpace(T && data)130     explicit DeviceSpace(T&& data) : fData(std::move(data)) {}
131 
132     explicit operator const T&() const { return fData; }
133 
134 private:
135     T fData;
136 };
137 
138 // LayerSpace is a geometric wrapper that specifies the geometry is defined in the shared layer
139 // space where image filters are evaluated. For a given Context (and its Mapping), the image filter
140 // DAG operates in the same coordinate space. This space may be different from the local coordinate
141 // space that defined the image filter parameters (such as blur sigma), and it may be different
142 // from the total CTM of the SkCanvas.
143 //
144 // To encourage correct filter use and implementation, the bulk of filter logic should be performed
145 // in layer space (e.g. determining what portion of an input image to read, or what the output
146 // region is). LayerSpace specializations for the six common Skia math types (Sk[I]Rect, Sk[I]Point,
147 // and Sk[I]Size), and skif::[I]Vector (to allow vectors to be specialized separately from points))
148 // are provided that mimic their APIs but preserve the coordinate space and enforce type semantics.
149 template<typename T>
150 class LayerSpace {};
151 
152 // Layer-space specialization for integerized direction vectors.
153 template<>
154 class LayerSpace<IVector> {
155 public:
156     LayerSpace() = default;
LayerSpace(const IVector & geometry)157     explicit LayerSpace(const IVector& geometry) : fData(geometry) {}
LayerSpace(IVector && geometry)158     explicit LayerSpace(IVector&& geometry) : fData(std::move(geometry)) {}
159     explicit operator const IVector&() const { return fData; }
160 
SkIVector()161     explicit operator SkIVector() const { return SkIVector::Make(fData.fX, fData.fY); }
162 
x()163     int32_t x() const { return fData.fX; }
y()164     int32_t y() const { return fData.fY; }
165 
166     LayerSpace<IVector> operator-() const { return LayerSpace<IVector>({-fData.fX, -fData.fY}); }
167 
168     LayerSpace<IVector> operator+(const LayerSpace<IVector>& v) const {
169         LayerSpace<IVector> sum = *this;
170         sum += v;
171         return sum;
172     }
173     LayerSpace<IVector> operator-(const LayerSpace<IVector>& v) const {
174         LayerSpace<IVector> diff = *this;
175         diff -= v;
176         return diff;
177     }
178 
179     void operator+=(const LayerSpace<IVector>& v) {
180         fData.fX += v.fData.fX;
181         fData.fY += v.fData.fY;
182     }
183     void operator-=(const LayerSpace<IVector>& v) {
184         fData.fX -= v.fData.fX;
185         fData.fY -= v.fData.fY;
186     }
187 
188 private:
189     IVector fData;
190 };
191 
192 // Layer-space specialization for floating point direction vectors.
193 template<>
194 class LayerSpace<Vector> {
195 public:
196     LayerSpace() = default;
LayerSpace(const Vector & geometry)197     explicit LayerSpace(const Vector& geometry) : fData(geometry) {}
LayerSpace(Vector && geometry)198     explicit LayerSpace(Vector&& geometry) : fData(std::move(geometry)) {}
199     explicit operator const Vector&() const { return fData; }
200 
SkVector()201     explicit operator SkVector() const { return SkVector::Make(fData.fX, fData.fY); }
202 
x()203     SkScalar x() const { return fData.fX; }
y()204     SkScalar y() const { return fData.fY; }
205 
length()206     SkScalar length() const { return SkVector::Length(fData.fX, fData.fY); }
207 
208     LayerSpace<Vector> operator-() const { return LayerSpace<Vector>({-fData.fX, -fData.fY}); }
209 
210     LayerSpace<Vector> operator*(SkScalar s) const {
211         LayerSpace<Vector> scaled = *this;
212         scaled *= s;
213         return scaled;
214     }
215 
216     LayerSpace<Vector> operator+(const LayerSpace<Vector>& v) const {
217         LayerSpace<Vector> sum = *this;
218         sum += v;
219         return sum;
220     }
221     LayerSpace<Vector> operator-(const LayerSpace<Vector>& v) const {
222         LayerSpace<Vector> diff = *this;
223         diff -= v;
224         return diff;
225     }
226 
227     void operator*=(SkScalar s) {
228         fData.fX *= s;
229         fData.fY *= s;
230     }
231     void operator+=(const LayerSpace<Vector>& v) {
232         fData.fX += v.fData.fX;
233         fData.fY += v.fData.fY;
234     }
235     void operator-=(const LayerSpace<Vector>& v) {
236         fData.fX -= v.fData.fX;
237         fData.fY -= v.fData.fY;
238     }
239 
240     friend LayerSpace<Vector> operator*(SkScalar s, const LayerSpace<Vector>& b) {
241         return b * s;
242     }
243 
244 private:
245     Vector fData;
246 };
247 
248 // Layer-space specialization for integer 2D coordinates (treated as positions, not directions).
249 template<>
250 class LayerSpace<SkIPoint> {
251 public:
252     LayerSpace() = default;
LayerSpace(const SkIPoint & geometry)253     explicit LayerSpace(const SkIPoint& geometry)  : fData(geometry) {}
LayerSpace(SkIPoint && geometry)254     explicit LayerSpace(SkIPoint&& geometry) : fData(std::move(geometry)) {}
255     explicit operator const SkIPoint&() const { return fData; }
256 
257     // Parrot the SkIPoint API while preserving coordinate space.
x()258     int32_t x() const { return fData.fX; }
y()259     int32_t y() const { return fData.fY; }
260 
261     // Offsetting by direction vectors produce more points
262     LayerSpace<SkIPoint> operator+(const LayerSpace<IVector>& v) {
263         return LayerSpace<SkIPoint>(fData + SkIVector(v));
264     }
265     LayerSpace<SkIPoint> operator-(const LayerSpace<IVector>& v) {
266         return LayerSpace<SkIPoint>(fData - SkIVector(v));
267     }
268 
269     void operator+=(const LayerSpace<IVector>& v) {
270         fData += SkIVector(v);
271     }
272     void operator-=(const LayerSpace<IVector>& v) {
273         fData -= SkIVector(v);
274     }
275 
276     // Subtracting another point makes a direction between them
277     LayerSpace<IVector> operator-(const LayerSpace<SkIPoint>& p) {
278         return LayerSpace<IVector>(IVector(fData - p.fData));
279     }
280 
281     LayerSpace<IVector> operator-() const { return LayerSpace<IVector>({-fData.fX, -fData.fY}); }
282 
283 private:
284     SkIPoint fData;
285 };
286 
287 // Layer-space specialization for floating point 2D coordinates (treated as positions)
288 template<>
289 class LayerSpace<SkPoint> {
290 public:
291     LayerSpace() = default;
LayerSpace(const SkPoint & geometry)292     explicit LayerSpace(const SkPoint& geometry) : fData(geometry) {}
LayerSpace(SkPoint && geometry)293     explicit LayerSpace(SkPoint&& geometry) : fData(std::move(geometry)) {}
294     explicit operator const SkPoint&() const { return fData; }
295 
296     // Parrot the SkPoint API while preserving coordinate space.
x()297     SkScalar x() const { return fData.fX; }
y()298     SkScalar y() const { return fData.fY; }
299 
distanceToOrigin()300     SkScalar distanceToOrigin() const { return fData.distanceToOrigin(); }
301 
302     // Offsetting by direction vectors produce more points
303     LayerSpace<SkPoint> operator+(const LayerSpace<Vector>& v) {
304         return LayerSpace<SkPoint>(fData + SkVector(v));
305     }
306     LayerSpace<SkPoint> operator-(const LayerSpace<Vector>& v) {
307         return LayerSpace<SkPoint>(fData - SkVector(v));
308     }
309 
310     void operator+=(const LayerSpace<Vector>& v) {
311         fData += SkVector(v);
312     }
313     void operator-=(const LayerSpace<Vector>& v) {
314         fData -= SkVector(v);
315     }
316 
317     // Subtracting another point makes a direction between them
318     LayerSpace<Vector> operator-(const LayerSpace<SkPoint>& p) {
319         return LayerSpace<Vector>(Vector(fData - p.fData));
320     }
321 
322     LayerSpace<Vector> operator-() const { return LayerSpace<Vector>({-fData.fX, -fData.fY}); }
323 
324 private:
325     SkPoint fData;
326 };
327 
328 // Layer-space specialization for integer dimensions
329 template<>
330 class LayerSpace<SkISize> {
331 public:
332     LayerSpace() = default;
LayerSpace(const SkISize & geometry)333     explicit LayerSpace(const SkISize& geometry) : fData(geometry) {}
LayerSpace(SkISize && geometry)334     explicit LayerSpace(SkISize&& geometry) : fData(std::move(geometry)) {}
335     explicit operator const SkISize&() const { return fData; }
336 
width()337     int32_t width() const { return fData.width(); }
height()338     int32_t height() const { return fData.height(); }
339 
isEmpty()340     bool isEmpty() const { return fData.isEmpty(); }
341 
342 private:
343     SkISize fData;
344 };
345 
346 // Layer-space specialization for floating point dimensions
347 template<>
348 class LayerSpace<SkSize> {
349 public:
350     LayerSpace() = default;
LayerSpace(const SkSize & geometry)351     explicit LayerSpace(const SkSize& geometry) : fData(geometry) {}
LayerSpace(SkSize && geometry)352     explicit LayerSpace(SkSize&& geometry) : fData(std::move(geometry)) {}
353     explicit operator const SkSize&() const { return fData; }
354 
width()355     SkScalar width() const { return fData.width(); }
height()356     SkScalar height() const { return fData.height(); }
357 
isEmpty()358     bool isEmpty() const { return fData.isEmpty(); }
isZero()359     bool isZero() const { return fData.isZero(); }
360 
361     LayerSpace<SkISize> round() const;
362     LayerSpace<SkISize> ceil() const;
363     LayerSpace<SkISize> floor() const;
364 
365 private:
366     SkSize fData;
367 };
368 
369 // Layer-space specialization for axis-aligned integer bounding boxes.
370 template<>
371 class LayerSpace<SkIRect> {
372 public:
373     LayerSpace() = default;
LayerSpace(const SkIRect & geometry)374     explicit LayerSpace(const SkIRect& geometry) : fData(geometry) {}
LayerSpace(SkIRect && geometry)375     explicit LayerSpace(SkIRect&& geometry) : fData(std::move(geometry)) {}
LayerSpace(const SkISize & size)376     explicit LayerSpace(const SkISize& size) : fData(SkIRect::MakeSize(size)) {}
377     explicit operator const SkIRect&() const { return fData; }
378 
Empty()379     static LayerSpace<SkIRect> Empty() { return LayerSpace<SkIRect>(SkIRect::MakeEmpty()); }
380 
Unbounded()381     static constexpr std::optional<LayerSpace<SkIRect>> Unbounded() { return {}; }
382 
383     // Utility function to iterate a collection of items that can map to LayerSpace<SkIRect> bounds
384     // and returns the union of those bounding boxes. 'boundsFn' will be invoked with i = 0 to
385     // boundsCount-1.
386     template<typename BoundsFn>
Union(int boundsCount,BoundsFn boundsFn)387     static LayerSpace<SkIRect> Union(int boundsCount, BoundsFn boundsFn) {
388         if (boundsCount <= 0) {
389             return LayerSpace<SkIRect>::Empty();
390         }
391         LayerSpace<SkIRect> output = boundsFn(0);
392         for (int i = 1; i < boundsCount; ++i) {
393             output.join(boundsFn(i));
394         }
395         return output;
396     }
397 
398     // Utility function to calculate the smallest relevant subset of this rect to fill `dstRect`
399     // given the provided tile mode.
400     LayerSpace<SkIRect> relevantSubset(const LayerSpace<SkIRect> dstRect, SkTileMode) const;
401 
402     // Parrot the SkIRect API while preserving coord space
isEmpty()403     bool isEmpty() const { return fData.isEmpty64(); }
contains(const LayerSpace<SkIRect> & r)404     bool contains(const LayerSpace<SkIRect>& r) const { return fData.contains(r.fData); }
405 
left()406     int32_t left() const { return fData.fLeft; }
top()407     int32_t top() const { return fData.fTop; }
right()408     int32_t right() const { return fData.fRight; }
bottom()409     int32_t bottom() const { return fData.fBottom; }
410 
width()411     int32_t width() const { return fData.width(); }
height()412     int32_t height() const { return fData.height(); }
413 
topLeft()414     LayerSpace<SkIPoint> topLeft() const { return LayerSpace<SkIPoint>(fData.topLeft()); }
size()415     LayerSpace<SkISize> size() const { return LayerSpace<SkISize>(fData.size()); }
416 
Intersects(const LayerSpace<SkIRect> & a,const LayerSpace<SkIRect> & b)417     static bool Intersects(const LayerSpace<SkIRect>& a, const LayerSpace<SkIRect>& b) {
418         return SkIRect::Intersects(a.fData, b.fData);
419     }
420 
intersect(const LayerSpace<SkIRect> & r)421     bool intersect(const LayerSpace<SkIRect>& r) { return fData.intersect(r.fData); }
join(const LayerSpace<SkIRect> & r)422     void join(const LayerSpace<SkIRect>& r) { fData.join(r.fData); }
offset(const LayerSpace<IVector> & v)423     void offset(const LayerSpace<IVector>& v) { fData.offset(SkIVector(v)); }
outset(const LayerSpace<SkISize> & delta)424     void outset(const LayerSpace<SkISize>& delta) { fData.outset(delta.width(), delta.height()); }
inset(const LayerSpace<SkISize> & delta)425     void inset(const LayerSpace<SkISize>& delta) { fData.inset(delta.width(), delta.height()); }
426 
427 private:
428     SkIRect fData;
429 };
430 
431 // Layer-space specialization for axis-aligned float bounding boxes.
432 template<>
433 class LayerSpace<SkRect> {
434 public:
435     LayerSpace() = default;
LayerSpace(const SkRect & geometry)436     explicit LayerSpace(const SkRect& geometry) : fData(geometry) {}
LayerSpace(SkRect && geometry)437     explicit LayerSpace(SkRect&& geometry) : fData(std::move(geometry)) {}
LayerSpace(const LayerSpace<SkIRect> & rect)438     explicit LayerSpace(const LayerSpace<SkIRect>& rect) : fData(SkRect::Make(SkIRect(rect))) {}
439     explicit operator const SkRect&() const { return fData; }
440 
Empty()441     static LayerSpace<SkRect> Empty() { return LayerSpace<SkRect>(SkRect::MakeEmpty()); }
442 
443     // Parrot the SkRect API while preserving coord space and usage
isEmpty()444     bool isEmpty() const { return fData.isEmpty(); }
contains(const LayerSpace<SkRect> & r)445     bool contains(const LayerSpace<SkRect>& r) const { return fData.contains(r.fData); }
446 
left()447     SkScalar left() const { return fData.fLeft; }
top()448     SkScalar top() const { return fData.fTop; }
right()449     SkScalar right() const { return fData.fRight; }
bottom()450     SkScalar bottom() const { return fData.fBottom; }
451 
width()452     SkScalar width() const { return fData.width(); }
height()453     SkScalar height() const { return fData.height(); }
454 
topLeft()455     LayerSpace<SkPoint> topLeft() const {
456         return LayerSpace<SkPoint>(SkPoint::Make(fData.fLeft, fData.fTop));
457     }
center()458     LayerSpace<SkPoint> center() const {
459         return LayerSpace<SkPoint>(fData.center());
460     }
size()461     LayerSpace<SkSize> size() const {
462         return LayerSpace<SkSize>(SkSize::Make(fData.width(), fData.height()));
463     }
464 
round()465     LayerSpace<SkIRect> round() const { return LayerSpace<SkIRect>(fData.round()); }
roundIn()466     LayerSpace<SkIRect> roundIn() const { return LayerSpace<SkIRect>(RoundIn(fData)); }
roundOut()467     LayerSpace<SkIRect> roundOut() const { return LayerSpace<SkIRect>(RoundOut(fData)); }
468 
intersect(const LayerSpace<SkRect> & r)469     bool intersect(const LayerSpace<SkRect>& r) { return fData.intersect(r.fData); }
join(const LayerSpace<SkRect> & r)470     void join(const LayerSpace<SkRect>& r) { fData.join(r.fData); }
offset(const LayerSpace<Vector> & v)471     void offset(const LayerSpace<Vector>& v) { fData.offset(SkVector(v)); }
outset(const LayerSpace<SkSize> & delta)472     void outset(const LayerSpace<SkSize>& delta) { fData.outset(delta.width(), delta.height()); }
inset(const LayerSpace<SkSize> & delta)473     void inset(const LayerSpace<SkSize>& delta) { fData.inset(delta.width(), delta.height()); }
474 
clamp(LayerSpace<SkPoint> pt)475     LayerSpace<SkPoint> clamp(LayerSpace<SkPoint> pt) const {
476         return LayerSpace<SkPoint>(SkPoint::Make(SkTPin(pt.x(), fData.fLeft, fData.fRight),
477                                                  SkTPin(pt.y(), fData.fTop, fData.fBottom)));
478     }
479 
480 private:
481     SkRect fData;
482 };
483 
484 // A transformation that manipulates geometry in the layer-space coordinate system. Mathematically
485 // there's little difference from these matrices compared to what's stored in a skif::Mapping, but
486 // the intent differs. skif::Mapping's matrices map geometry from one coordinate space to another
487 // while these transforms move geometry w/o changing the coordinate space semantics.
488 // TODO(michaelludwig): Will be replaced with an SkM44 version when skif::Mapping works with SkM44.
489 template<>
490 class LayerSpace<SkMatrix> {
491 public:
492     LayerSpace() = default;
LayerSpace(const SkMatrix & m)493     explicit LayerSpace(const SkMatrix& m) : fData(m) {}
LayerSpace(SkMatrix && m)494     explicit LayerSpace(SkMatrix&& m) : fData(std::move(m)) {}
495     explicit operator const SkMatrix&() const { return fData; }
496 
RectToRect(const LayerSpace<SkRect> & from,const LayerSpace<SkRect> & to)497     static LayerSpace<SkMatrix> RectToRect(const LayerSpace<SkRect>& from,
498                                            const LayerSpace<SkRect>& to) {
499         return LayerSpace<SkMatrix>(SkMatrix::RectToRect(SkRect(from), SkRect(to)));
500     }
501 
502     // Parrot a limited selection of the SkMatrix API while preserving coordinate space.
503     LayerSpace<SkRect> mapRect(const LayerSpace<SkRect>& r) const;
504 
505     // Effectively mapRect(SkRect).roundOut() but more accurate when the underlying matrix or
506     // SkIRect has large floating point values.
507     LayerSpace<SkIRect> mapRect(const LayerSpace<SkIRect>& r) const;
508 
509     LayerSpace<SkPoint> mapPoint(const LayerSpace<SkPoint>& p) const;
510 
511     LayerSpace<Vector> mapVector(const LayerSpace<Vector>& v) const;
512 
513     LayerSpace<SkSize> mapSize(const LayerSpace<SkSize>& s) const;
514 
preConcat(const LayerSpace<SkMatrix> & m)515     LayerSpace<SkMatrix>& preConcat(const LayerSpace<SkMatrix>& m) {
516         fData = SkMatrix::Concat(fData, m.fData);
517         return *this;
518     }
519 
postConcat(const LayerSpace<SkMatrix> & m)520     LayerSpace<SkMatrix>& postConcat(const LayerSpace<SkMatrix>& m) {
521         fData = SkMatrix::Concat(m.fData, fData);
522         return *this;
523     }
524 
invert(LayerSpace<SkMatrix> * inverse)525     bool invert(LayerSpace<SkMatrix>* inverse) const {
526         return fData.invert(&inverse->fData);
527     }
528 
529     // Transforms 'r' by the inverse of this matrix if it is invertible and stores it in 'out'.
530     // Returns false if not invertible, in which case 'out' is undefined.
531     bool inverseMapRect(const LayerSpace<SkRect>& r, LayerSpace<SkRect>* out) const;
532     bool inverseMapRect(const LayerSpace<SkIRect>& r, LayerSpace<SkIRect>* out) const;
533 
rc(int row,int col)534     float rc(int row, int col) const { return fData.rc(row, col); }
get(int i)535     float get(int i) const { return fData.get(i); }
536 
537 private:
538     SkMatrix fData;
539 };
540 
541 /**
542  * Most ImageFilters can natively handle scaling and translate components in the CTM. Only some of
543  * them can handle affine (or more complex) matrices. Some may only handle translation.
544  */
545 enum class MatrixCapability {
546     kTranslate,
547     kScaleTranslate,
548     kComplex,
549 };
550 
551 // Mapping is the primary definition of the shared layer space used when evaluating an image filter
552 // DAG. It encapsulates any needed decomposition of the total CTM into the parameter-to-layer matrix
553 // (that filters use to map their parameters to the layer space), and the layer-to-device matrix
554 // (that canvas uses to map the output layer-space image into its root device space). Mapping
555 // defines functions to transform ParameterSpace and DeviceSpace types to and from their LayerSpace
556 // variants, which can then be used and reasoned about by SkImageFilter implementations.
557 class Mapping {
558 public:
559     Mapping() = default;
560 
561     // Helper constructor that equates device and layer space to the same coordinate space.
Mapping(const SkMatrix & paramToLayer)562     explicit Mapping(const SkMatrix& paramToLayer)
563             : fLayerToDevMatrix(SkMatrix::I())
564             , fParamToLayerMatrix(paramToLayer)
565             , fDevToLayerMatrix(SkMatrix::I()) {}
566 
567     // This constructor allows the decomposition to be explicitly provided, assumes that
568     // 'layerToDev's inverse has already been calculated in 'devToLayer'
Mapping(const SkMatrix & layerToDev,const SkMatrix & devToLayer,const SkMatrix & paramToLayer)569     Mapping(const SkMatrix& layerToDev, const SkMatrix& devToLayer, const SkMatrix& paramToLayer)
570             : fLayerToDevMatrix(layerToDev)
571             , fParamToLayerMatrix(paramToLayer)
572             , fDevToLayerMatrix(devToLayer) {}
573 
574     // Sets this Mapping to the default decomposition of the canvas's total transform, given the
575     // requirements of the 'filter'. Returns false if the decomposition failed or would produce an
576     // invalid device matrix. Assumes 'ctm' is invertible.
577     [[nodiscard]] bool decomposeCTM(const SkMatrix& ctm,
578                                     const SkImageFilter* filter,
579                                     const skif::ParameterSpace<SkPoint>& representativePt);
580     [[nodiscard]] bool decomposeCTM(const SkMatrix& ctm,
581                                     MatrixCapability,
582                                     const skif::ParameterSpace<SkPoint>& representativePt);
583 
584     // Update the mapping's parameter-to-layer matrix to be pre-concatenated with the specified
585     // local space transformation. This changes the definition of parameter space, any
586     // skif::ParameterSpace<> values are interpreted anew. Layer space and device space are
587     // unchanged.
concatLocal(const SkMatrix & local)588     void concatLocal(const SkMatrix& local) { fParamToLayerMatrix.preConcat(local); }
589 
590     // Update the mapping's layer space coordinate system by post-concatenating the given matrix
591     // to it's parameter-to-layer transform, and pre-concatenating the inverse of the matrix with
592     // it's layer-to-device transform. The net effect is that neither the parameter nor device
593     // coordinate systems are changed, but skif::LayerSpace is adjusted.
594     //
595     // Returns false if the layer matrix cannot be inverted, and this mapping is left unmodified.
596     bool adjustLayerSpace(const SkMatrix& layer);
597 
598     // Update the mapping's layer space so that the point 'origin' in the current layer coordinate
599     // space maps to (0, 0) in the adjusted coordinate space.
applyOrigin(const LayerSpace<SkIPoint> & origin)600     void applyOrigin(const LayerSpace<SkIPoint>& origin) {
601         SkAssertResult(this->adjustLayerSpace(SkMatrix::Translate(-origin.x(), -origin.y())));
602     }
603 
layerToDevice()604     const SkMatrix& layerToDevice() const { return fLayerToDevMatrix; }
deviceToLayer()605     const SkMatrix& deviceToLayer() const { return fDevToLayerMatrix; }
layerMatrix()606     const SkMatrix& layerMatrix() const { return fParamToLayerMatrix; }
totalMatrix()607     SkMatrix totalMatrix() const {
608         return SkMatrix::Concat(fLayerToDevMatrix, fParamToLayerMatrix);
609     }
610 
611     template<typename T>
paramToLayer(const ParameterSpace<T> & paramGeometry)612     LayerSpace<T> paramToLayer(const ParameterSpace<T>& paramGeometry) const {
613         return LayerSpace<T>(map(static_cast<const T&>(paramGeometry), fParamToLayerMatrix));
614     }
615 
616     template<typename T>
deviceToLayer(const DeviceSpace<T> & devGeometry)617     LayerSpace<T> deviceToLayer(const DeviceSpace<T>& devGeometry) const {
618         return LayerSpace<T>(map(static_cast<const T&>(devGeometry), fDevToLayerMatrix));
619     }
620 
621     template<typename T>
layerToDevice(const LayerSpace<T> & layerGeometry)622     DeviceSpace<T> layerToDevice(const LayerSpace<T>& layerGeometry) const {
623         return DeviceSpace<T>(map(static_cast<const T&>(layerGeometry), fLayerToDevMatrix));
624     }
625 
626 private:
627     friend class LayerSpace<SkMatrix>; // for map()
628     friend class FilterResult;         // ""
629 
630     // The image filter process decomposes the total CTM into layerToDev * paramToLayer and uses the
631     // param-to-layer matrix to define the layer-space coordinate system. Depending on how it's
632     // decomposed, either the layer matrix or the device matrix could be the identity matrix (but
633     // sometimes neither).
634     SkMatrix fLayerToDevMatrix;
635     SkMatrix fParamToLayerMatrix;
636 
637     // Cached inverse of fLayerToDevMatrix
638     SkMatrix fDevToLayerMatrix;
639 
640     // Actual geometric mapping operations that work on coordinates and matrices w/o the type
641     // safety of the coordinate space wrappers (hence these are private).
642     template<typename T>
643     static T map(const T& geom, const SkMatrix& matrix);
644 };
645 
646 class Context; // Forward declare for FilterResult
647 
648 // A FilterResult represents a lazy image anchored in the "layer" coordinate space of the current
649 // image filtering context. It's named Filter*Result* since most instances represent the output of
650 // a specific image filter (even if that is then used as an input to the next filter). FilterResults
651 // are lazy to allow certain operations to combine analytically instead of producing an offscreen
652 // image for every node in a filter graph. Helper functions are provided to modify FilterResults
653 // that manage this internally.
654 //
655 // Even though FilterResult represents a lazy image, it is always backed by a non-lazy source image
656 // that is then transformed, sampled, cropped, tiled, and/or color-filtered to produce the resolved
657 // image of the FilterResult. It is these actions applied to the source image that can be combined
658 // without producing a new intermediate "source" if it's determined that the combined actions
659 // rendered once would create an image close enough to the canonical output of rendering each action
660 // separately. Eliding offscreen renders in this way can introduce visually imperceptible pixel
661 // differences due to avoiding casting down to a lower precision pixel format or performing fewer
662 // image sampling sequences.
663 //
664 // The resolved image of a FilterResult is the output of rendering:
665 //
666 //   SkMatrix netTransform = RectToRect(fSrcRect, fDstRect);
667 //   netTransform.postConcat(fTransform);
668 //
669 //   SkPaint paint;
670 //   paint.setShader(fImage->makeShader(fTileMode, fSamplingOptions, &netTransform));
671 //   paint.setColorFilter(fColorFilter);
672 //   paint.setBlendMode(kSrc);
673 //
674 //   canvas->drawRect(fLayerBounds, paint);
675 //
676 // A FilterResult may represent the output of multiple operations affecting the different meta
677 // properties defined above. The operations are applied in order:
678 //   1. Tile the image using configured SkTileMode on the source rect.
679 //   2. Transform and sample (with configured SkSamplingOptions) from source rect up to the dest
680 //      rect and then any additional transform.
681 //   3. Apply any SkColorFilter to all pixels from #2 (including transparent black pixels resulting
682 //      from decal sampling).
683 //   4. Restrict the result to the layer bounds.
684 //
685 // If a new operation applied to a FilterResult does not respect this order, or cannot be modified
686 // to be re-ordered in place (e.g. modify fSrcRect/fDstRect instead of fLayerBounds for a crop),
687 // then the FilterResult must be resolved and the new operation applied to a clean slate. If it can
688 // be applied while respecting the order of operations than the action is free and no new
689 // intermediate image is produced.
690 //
691 // NOTE: The above comment reflects the end goal of the in-progress FilterResult. Currently
692 // SkSpecialImage is used, which internally has a subset property (its fSrcRect) and always has an
693 // fDstRect equal to (0,0,subset WH). Tile modes haven't been implemented yet and kDecal
694 // is always assumed; Color filters have also not been implemented yet.
695 class FilterResult {
696 public:
FilterResult()697     FilterResult() : FilterResult(nullptr) {}
698 
FilterResult(sk_sp<SkSpecialImage> image)699     explicit FilterResult(sk_sp<SkSpecialImage> image)
700             : FilterResult(std::move(image), LayerSpace<SkIPoint>({0, 0})) {}
701 
FilterResult(sk_sp<SkSpecialImage> image,const LayerSpace<SkIPoint> & origin)702     FilterResult(sk_sp<SkSpecialImage> image, const LayerSpace<SkIPoint>& origin)
703             : FilterResult(std::move(image), origin, PixelBoundary::kUnknown) {}
704 
705     // Renders the 'pic', clipped by 'cullRect', into an optimally sized surface (depending on
706     // picture bounds and 'ctx's desired output). The picture is transformed by the context's
707     // layer matrix. 'pic' must not be null.
708     static FilterResult MakeFromPicture(const Context& ctx,
709                                         sk_sp<SkPicture> pic,
710                                         ParameterSpace<SkRect> cullRect);
711 
712     // Renders 'shader' into a surface that fills the context's desired output bounds, 'shader' must
713     // not be null.
714     // TODO: Update 'dither' to SkImageFilters::Dither, but that cannot be forward declared at the
715     // moment because SkImageFilters is a class and not a namespace.
716     static FilterResult MakeFromShader(const Context& ctx,
717                                        sk_sp<SkShader> shader,
718                                        bool dither);
719 
720     // Converts image to a FilterResult. If 'srcRect' is pixel-aligned it does so without rendering.
721     // Otherwise it draws the src->dst sampling of 'image' into an optimally sized surface based
722     // on the context's desired output. 'image' must not be null.
723     static FilterResult MakeFromImage(const Context& ctx,
724                                       sk_sp<SkImage> image,
725                                       SkRect srcRect,
726                                       ParameterSpace<SkRect> dstRect,
727                                       const SkSamplingOptions& sampling);
728 
729     // Bilinear is used as the default because it can be downgraded to nearest-neighbor when the
730     // final transform is pixel-aligned, and chaining multiple bilinear samples and transforms is
731     // assumed to be visually close enough to sampling once at highest quality and final transform.
732     static constexpr SkSamplingOptions kDefaultSampling{SkFilterMode::kLinear};
733 
734     explicit operator bool() const { return SkToBool(fImage); }
735 
736     // TODO(michaelludwig): Given the planned expansion of FilterResult state, it might be nice to
737     // pull this back and not expose anything other than its bounding box. This will be possible if
738     // all rendering can be handled by functions defined on FilterResult.
image()739     const SkSpecialImage* image() const { return fImage.get(); }
refImage()740     sk_sp<SkSpecialImage> refImage() const { return fImage; }
741 
742     // Get the layer-space bounds of the result. This will incorporate any layer-space transform.
layerBounds()743     LayerSpace<SkIRect> layerBounds() const { return fLayerBounds; }
tileMode()744     SkTileMode tileMode() const { return fTileMode; }
sampling()745     SkSamplingOptions sampling() const { return fSamplingOptions; }
746 
colorFilter()747     const SkColorFilter* colorFilter() const { return fColorFilter.get(); }
748 
749     // Produce a new FilterResult that has been cropped to 'crop', taking into account the context's
750     // desired output. When possible, the returned FilterResult will reuse the underlying image and
751     // adjust its metadata. This will depend on the current transform and tile mode as well as how
752     // the crop rect intersects this result's layer bounds.
753     FilterResult applyCrop(const Context& ctx,
754                            const LayerSpace<SkIRect>& crop,
755                            SkTileMode tileMode=SkTileMode::kDecal) const;
756 
757     // Produce a new FilterResult that is the transformation of this FilterResult. When this
758     // result's sampling and transform are compatible with the new transformation, the returned
759     // FilterResult can reuse the same image data and adjust just the metadata.
760     FilterResult applyTransform(const Context& ctx,
761                                 const LayerSpace<SkMatrix>& transform,
762                                 const SkSamplingOptions& sampling) const;
763 
764     // Produce a new FilterResult that is visually equivalent to the output of the SkColorFilter
765     // evaluating this FilterResult. If the color filter affects transparent black, the returned
766     // FilterResult can become non-empty even if the input were empty.
767     FilterResult applyColorFilter(const Context& ctx,
768                                   sk_sp<SkColorFilter> colorFilter) const;
769 
770     // Extract image and origin, safely when the image is null. If there are deferred operations
771     // on FilterResult (such as tiling or transforms) not representable as an image+origin pair,
772     // the returned image will be the resolution resulting from that metadata and not necessarily
773     // equal to the original 'image()'.
774     // TODO (michaelludwig) - This is intended for convenience until all call sites of
775     // SkImageFilter_Base::filterImage() have been updated to work in the new type system
776     // (which comes later as SkDevice, SkCanvas, etc. need to be modified, and coordinate space
777     // tagging needs to be added).
778     sk_sp<SkSpecialImage> imageAndOffset(const Context& ctx, SkIPoint* offset) const;
779     // TODO (michaelludwig) - This is a more type-safe version of the above imageAndOffset() and
780     // may need to remain to support SkBlurImageFilter calling out to the SkBlurEngine. An alternate
781     // option would be for FilterResult::Builder to have a blur() function that internally can
782     // resolve the input and pass to the skif::Context's blur engine. Then imageAndOffset() can go
783     // away entirely.
784     std::pair<sk_sp<SkSpecialImage>, LayerSpace<SkIPoint>> imageAndOffset(const Context& ctx) const;
785 
786      // Draw this FilterResult into 'target' by applying the remaining layer-to-device transform of
787      // 'mapping', using the provided 'blender' to composite the effective image on top of 'target'.
788      // If 'blender' is null, it's equivalent to kSrcOver blending.
789     void draw(const Context& ctx, SkDevice* target, const SkBlender* blender) const;
790 
791     // SkCanvas can prepare layer source images with transparent padding, similarly to AutoSurface.
792     // This adjusts the FilterResult metadata to be aware of that padding. This should only be
793     // called when it's externally known that the FilterResult has a 1px buffer of transparent
794     // black pixels and has had no further modifications.
795     FilterResult insetForSaveLayer() const;
796 
797     class Builder;
798 
799     enum class ShaderFlags : int {
800         kNone = 0,
801         // A hint that the input FilterResult will be sampled repeatedly per pixel. If there's
802         // colorspace conversions or deferred color filtering, it's worth resolving to a temporary
803         // image so that those calculations are performed once per pixel instead of N times.
804         kSampledRepeatedly = 1 << 0,
805         // Specifies that the shader performs non-trivial operations on its coordinates to determine
806         // how to sample any input FilterResults, so their sampling options should not be converted
807         // to nearest-neighbor even if they appeared pixel-aligned with the output surface.
808         kNonTrivialSampling = 1 << 1,
809         // TODO: Add option to convey that the output can carry input tiling forward to make a
810         // smaller backing surface somehow. May not be a flag and just args passed to eval().
811     };
812     SK_DECL_BITMASK_OPS_FRIENDS(ShaderFlags)
813 
814 private:
815     friend class ::FilterResultTestAccess; // For testing draw() and asShader()
816 
817     class AutoSurface;
818 
819     enum class PixelBoundary : int {
820         kUnknown,     // Pixels outside the image subset are of unknown value, possibly unitialized
821         kTransparent, // Pixels bordering the image subset are transparent black
822         kInitialized, // Pixels bordering the image are known to be initialized
823     };
824 
FilterResult(sk_sp<SkSpecialImage> image,const LayerSpace<SkIPoint> & origin,PixelBoundary boundary)825     FilterResult(sk_sp<SkSpecialImage> image,
826                  const LayerSpace<SkIPoint>& origin,
827                  PixelBoundary boundary)
828             : fImage(std::move(image))
829             , fBoundary(boundary)
830             , fSamplingOptions(kDefaultSampling)
831             , fTileMode(SkTileMode::kDecal)
832             , fTransform(SkMatrix::Translate(origin.x(), origin.y()))
833             , fColorFilter(nullptr)
834             , fLayerBounds(
835                     fTransform.mapRect(LayerSpace<SkIRect>(fImage ? fImage->dimensions()
836                                                                   : SkISize{0, 0}))) {}
837 
838     // Renders this FilterResult into a new, but visually equivalent, image that fills 'dstBounds',
839     // has default sampling, no color filter, and a transform that translates by only 'dstBounds's
840     // top-left corner. 'dstBounds' is intersected with 'fLayerBounds' unless 'preserveDstBounds'
841     // is true.
842     FilterResult resolve(const Context& ctx, LayerSpace<SkIRect> dstBounds,
843                          bool preserveDstBounds=false) const;
844     // Returns a decal-tiled subset view of this FilterResult, requiring that this has an integer
845     // translation equivalent to 'knownOrigin'. If 'clampSrcIfDisjoint' is true and the image bounds
846     // do not overlap with dstBounds, the closest edge/corner pixels of the image will be extracted,
847     // assuming it will be tiled with kClamp.
848     FilterResult subset(const LayerSpace<SkIPoint>& knownOrigin,
849                         const LayerSpace<SkIRect>& subsetBounds,
850                         bool clampSrcIfDisjoint=false) const;
851     // Convenient version of subset() that insets a single pixel.
852     FilterResult insetByPixel() const;
853 
854     enum class BoundsAnalysis : int {
855         // The image can be drawn directly, without needing to apply tiling, or handling how any
856         // color filter might affect transparent black.
857         kSimple = 0,
858         // The image does not directly cover the intersection of 'dstBounds' and the layer bounds.
859         // (ignoring tiling or color filters).
860         kDstBoundsNotCovered = 1 << 0,
861         // Added when kDstBoundsNotCovered is true, *and* there are non-decal tiling or transparency
862         // affecting color filters that would fill to the layer bounds, not covered by the image
863         // itself.
864         kHasLayerFillingEffect = 1 << 1,
865         // The crop boundary induced by `fLayerBounds` is visible when rendering to the 'dstBounds',
866         // although this could be either because it intersects the image's content or because
867         // kHasLayerFillingEffect is true.
868         kRequiresLayerCrop = 1 << 2,
869         // The image's sampling would access pixel data outside of its valid subset so shader-based
870         // tiling is necessary. This can be true even if kHasLayerFillingEffect is false due to the
871         // filter sampling radius; it can also be false when kHasLayerFillingEffect is true if the
872         // image can use HW tiling.
873         kRequiresShaderTiling = 1 << 3,
874         // The image's decal tiling/sampling would operate at the wrong resolution (e.g. drawImage
875         // vs. image-shader look different), so it has to be applied with a wrapping shader effect
876         kRequiresDecalInLayerSpace = 1 << 4,
877     };
878     SK_DECL_BITMASK_OPS_FRIENDS(BoundsAnalysis)
879 
880     enum class BoundsScope : int {
881         kDeferred,        // The bounds analysis won't be used for any rendering yet
882         kCanDrawDirectly, // The rendering may draw the image directly if analysis allows it
883         kShaderOnly,      // The rendering will always use a filling shader, e.g. drawPaint()
884         kRescale          // The rendering is controlled by rescaling logic, so ignores decal size
885     };
886 
887     // Determine what effects are visible based on the target 'dstBounds' and extra transform that
888     // will be applied when this FilterResult is drawn. These are not LayerSpace because the
889     // 'xtraTransform' may be either a within-layer transform, or a layer-to-device space transform.
890     // The 'dstBounds' should be in the same coordinate space that 'xtraTransform' maps to. When
891     // that is the identity matrix, 'dstBounds' is in layer space.
892     SkEnumBitMask<BoundsAnalysis> analyzeBounds(const SkMatrix& xtraTransform,
893                                                 const SkIRect& dstBounds,
894                                                 BoundsScope scope = BoundsScope::kDeferred) const;
895     SkEnumBitMask<BoundsAnalysis> analyzeBounds(const LayerSpace<SkIRect>& dstBounds,
896                                                 BoundsScope scope = BoundsScope::kDeferred) const {
897         return this->analyzeBounds(SkMatrix::I(), SkIRect(dstBounds), scope);
898     }
899 
900     // If true, the tile mode can be changed to kClamp to sample the transparent black pixels in
901     // the boundary. This will be visually equivalent to the decal tiling or anti-aliasing of a
902     // drawn image.
canClampToTransparentBoundary(SkEnumBitMask<BoundsAnalysis> analysis)903     bool canClampToTransparentBoundary(SkEnumBitMask<BoundsAnalysis> analysis) const {
904         return fTileMode == SkTileMode::kDecal &&
905                fBoundary == PixelBoundary::kTransparent &&
906                !(analysis & BoundsAnalysis::kRequiresDecalInLayerSpace);
907     }
908 
909     // Return an equivalent FilterResult such that its backing image dimensions have been reduced
910     // by the X and Y scale factors in 'scale' (assumed to be in [0, 1]). The returned FilterResult
911     // will have a transform that aligns it with the original FilterResult (i.e. a deferred upscale)
912     // and may also have a deferred tilemode. If 'enforceDecal' is true, the returned
913     // FilterResult will be kDecal sampled and any tiling will already be applied.
914     //
915     // All deferred effects, other than potentially tile mode, will be applied. The FilterResult
916     // will also be converted to the color type and color space of 'ctx' so the result is suitable
917     // to pass to the blur engine.
918     FilterResult rescale(const Context& ctx,
919                          const LayerSpace<SkSize>& scale,
920                          bool enforceDecal) const;
921     // Draw directly to the device, which draws the same image as produced by resolve() but can be
922     // useful if multiple operations need to be performed on the canvas.
923     //
924     // This assumes that the device's transform is set to match the current layer space coordinate
925     // system. This will concat any internal extra transform and apply clipping as necessary. If
926     // 'preserveDeviceState' is true it will undo any modifications. This can be set to false if the
927     // device is a one-off that will be snapped to an image after this returns.
928     //
929     // If 'blender' is null, the filter result is drawn with src-over blending. If it's not, it will
930     // be drawn using the given 'blender', filling the device's current clip when the blend
931     // modifies transparent black.
932     void draw(const Context& ctx,
933               SkDevice* device,
934               bool preserveDeviceState,
935               const SkBlender* blender=nullptr) const;
936 
937     // Returns the FilterResult as a shader, ideally without resolving to an axis-aligned image.
938     // 'xtraSampling' is the sampling that any parent shader applies to the FilterResult.
939     // 'sampleBounds' is the bounding box of coords the shader will be evaluated at by any parent.
940     //
941     // This variant may resolve to an intermediate image if needed. The returned shader encapsulates
942     // all deferred effects of the FilterResult.
943     sk_sp<SkShader> asShader(const Context& ctx,
944                              const SkSamplingOptions& xtraSampling,
945                              SkEnumBitMask<ShaderFlags> flags,
946                              const LayerSpace<SkIRect>& sampleBounds) const;
947 
948     // This variant should only be called after analysis and final sampling has been determined, and
949     // there's no need to resolve the FilterResult to an intermediate image. This version will
950     // never introduce a new image pass but is unable to handle the layer crop. If (analysis &
951     // kRequiresLayerCrop) is true, it must be accounted for outside of this shader.
952     sk_sp<SkShader> getAnalyzedShaderView(const Context& ctx,
953                                           const SkSamplingOptions& finalSampling,
954                                           SkEnumBitMask<BoundsAnalysis> analysis) const;
955 
956     // Safely updates fTileMode, doing nothing if the FilterResult is empty. Updates the layer
957     // bounds to the context's desired output if the tilemode is not decal.
958     void updateTileMode(const Context& ctx, SkTileMode tileMode);
959 
960     // The effective image of a FilterResult is 'fImage' sampled by 'fSamplingOptions' and
961     // respecting 'fTileMode' (on the SkSpecialImage's subset), transformed by 'fTransform',
962     // filtered by 'fColorFilter', and then clipped to 'fLayerBounds'.
963     sk_sp<SkSpecialImage> fImage;
964     PixelBoundary         fBoundary;
965 
966     SkSamplingOptions     fSamplingOptions;
967     SkTileMode            fTileMode;
968     // Typically this will be an integer translation that encodes the origin of the top left corner,
969     // but can become more complex when combined with applyTransform().
970     LayerSpace<SkMatrix>  fTransform;
971 
972     // A null color filter is the identity function. Since the output is clipped to fLayerBounds
973     // after color filtering, SkColorFilters that affect transparent black are not unbounded.
974     sk_sp<SkColorFilter>  fColorFilter;
975 
976     // The layer bounds are initially fImage's dimensions mapped by fTransform. As the filter result
977     // is processed by the image filter DAG, it can be further restricted by crop rects or the
978     // implicit desired output at each node.
979     LayerSpace<SkIRect>   fLayerBounds;
980 };
981 SK_MAKE_BITMASK_OPS(FilterResult::ShaderFlags)
SK_MAKE_BITMASK_OPS(FilterResult::BoundsAnalysis)982 SK_MAKE_BITMASK_OPS(FilterResult::BoundsAnalysis)
983 
984 // A FilterResult::Builder is used to render one or more FilterResults or other sources into
985 // a new FilterResult. It automatically aggregates the incoming bounds to minimize the output's
986 // layer bounds.
987 class FilterResult::Builder {
988 public:
989     Builder(const Context& context);
990     ~Builder();
991 
992     // If 'sampleBounds' is not provided, it defaults to the output bounds calculated for eval()
993     // (generally the Context's desired output but could be restricted based on the ShaderFlags).
994     //
995     // If it is provided, it represents the bounding box of possible coords 'input' will be sampled
996     // at by the shader created from eval(). This can be useful to provide when the shader does non
997     // trivial sampling since it may avoid having to resolve a FilterResult to an image.
998     //
999     // The 'inputFlags' are per-input flags that are OR'ed with the ShaderFlag mask passed to
1000     // eval() to control how 'input' is converted to an SkShader. 'inputSampling' specifies the
1001     // sampling options to use on the input's image when sampled by the final shader created in eval
1002     //
1003     // 'sampleBounds', 'inputFlags' and 'inputSampling' must not be used with merge() or blur().
1004     Builder& add(const FilterResult& input,
1005                  std::optional<LayerSpace<SkIRect>> sampleBounds = {},
1006                  SkEnumBitMask<ShaderFlags> inputFlags = ShaderFlags::kNone,
1007                  const SkSamplingOptions& inputSampling = kDefaultSampling) {
1008         fInputs.push_back({input, sampleBounds, inputFlags, inputSampling});
1009         return *this;
1010     }
1011 
1012     // Combine all added inputs by merging them with src-over blending into a single output.
1013     FilterResult merge();
1014 
1015     // Blur the single input with a Gaussian blur. The exact blur implementation is chosen based on
1016     // the skif::Context's backend. The sample bounds of the input and the final output bounds are
1017     // automatically derived from the sigma, input layer bounds, and desired output bounds of the
1018     // Builder's Context.
1019     FilterResult blur(const LayerSpace<SkSize>& sigma);
1020 
1021     // Combine all added inputs by transforming them into equivalent SkShaders and invoking the
1022     // shader factory that binds them together into a single shader that fills the output surface.
1023     //
1024     // 'ShaderFn' should be an invokable type with the signature
1025     //     (SkSpan<sk_sp<SkShader>>)->sk_sp<SkShader>
1026     // The length of the span will equal the number of FilterResults added to the builder. If an
1027     // input FilterResult was fully transparent, its corresponding shader will be null. 'ShaderFn'
1028     // should return a null shader its output would be fully transparent.
1029     //
1030     // By default, the returned FilterResult will fill the Context's desired image. If
1031     // 'explicitOutput' has a value, it is intersected with the Context's desired output bounds to
1032     // produce a possibly restricted output surface that the evaluated shader is rendered into.
1033     //
1034     // The shader created by `ShaderFn` will by default be invoked with coordinates in the layer
1035     // space of the Context. If `evaluateInParameterSpace` is true, the drawing matrix will be
1036     // adjusted so that the shader processes coordinates mapped back into parameter space (the
1037     // underlying output is still in layer space). In this case, it's assumed that the shaders for
1038     // the added FilterResult inputs will be evaluated with coordinates also in parameter space,
1039     // so they will be adjusted to map back to layer space before sampling their underlying images.
1040     template <typename ShaderFn>
1041     FilterResult eval(ShaderFn shaderFn,
1042                       std::optional<LayerSpace<SkIRect>> explicitOutput = {},
1043                       bool evaluateInParameterSpace=false) {
1044         auto outputBounds = this->outputBounds(explicitOutput);
1045         if (outputBounds.isEmpty()) {
1046             return {};
1047         }
1048 
1049         auto inputShaders = this->createInputShaders(outputBounds, evaluateInParameterSpace);
1050         return this->drawShader(shaderFn(inputShaders), outputBounds, evaluateInParameterSpace);
1051     }
1052 
1053 private:
1054     struct SampledFilterResult {
1055         FilterResult fImage;
1056         std::optional<LayerSpace<SkIRect>> fSampleBounds;
1057         SkEnumBitMask<ShaderFlags> fFlags;
1058         SkSamplingOptions fSampling;
1059     };
1060 
1061     SkSpan<sk_sp<SkShader>> createInputShaders(const LayerSpace<SkIRect>& outputBounds,
1062                                                bool evaluateInParameterSpace);
1063 
1064     LayerSpace<SkIRect> outputBounds(std::optional<LayerSpace<SkIRect>> explicitOutput) const;
1065 
1066     FilterResult drawShader(sk_sp<SkShader> shader,
1067                             const LayerSpace<SkIRect>& outputBounds,
1068                             bool evaluateInParameterSpace) const;
1069 
1070     const Context& fContext; // Must outlive the builder
1071     skia_private::STArray<1, SampledFilterResult> fInputs;
1072     // Lazily created once all inputs are collected, but parallels fInputs.
1073     skia_private::STArray<1, sk_sp<SkShader>> fInputShaders;
1074 };
1075 
1076 // The backend provides key functionality to the image filtering pipeline that must be implemented
1077 // by the Skia backend (e.g. raster or GPU). While a Context's state may change as the image filter
1078 // DAG is evaluated, a given filter invocation will always use one Backend.
1079 class Backend : public SkRefCnt {
1080 public:
1081     ~Backend() override;
1082 
1083     // For creating offscreen intermediate renderable images
1084     virtual sk_sp<SkDevice> makeDevice(SkISize size,
1085                                        sk_sp<SkColorSpace>,
1086                                        const SkSurfaceProps* props=nullptr) const = 0;
1087 
1088     // For input images to be processed by image filters
1089     virtual sk_sp<SkSpecialImage> makeImage(const SkIRect& subset, sk_sp<SkImage> image) const = 0;
1090 
1091     // For internal data to be accessed by filter implementations
1092     virtual sk_sp<SkImage> getCachedBitmap(const SkBitmap& data) const = 0;
1093 
1094     // TODO: Once all Backends provide a blur engine, maybe just have Backend extend it.
1095     virtual const SkBlurEngine* getBlurEngine() const = 0;
1096 
1097     // TODO: Can be removed once all blur engines rely on FilterResult::rescale and not their own
1098     // rescale implementations.
useLegacyFilterResultBlur()1099     virtual bool useLegacyFilterResultBlur() const { return true; }
1100 
1101     // Properties controlling the pixel data for offscreen surfaces rendered to during filtering.
surfaceProps()1102     const SkSurfaceProps& surfaceProps() const { return fSurfaceProps; }
colorType()1103     SkColorType colorType() const { return fColorType; }
1104 
cache()1105     SkImageFilterCache* cache() const { return fCache.get(); }
1106 
1107 protected:
1108     Backend(sk_sp<SkImageFilterCache> cache,
1109             const SkSurfaceProps& surfaceProps,
1110             const SkColorType colorType);
1111 
1112 private:
1113     sk_sp<SkImageFilterCache> fCache;
1114     SkSurfaceProps fSurfaceProps;
1115     SkColorType fColorType;
1116 };
1117 
1118 sk_sp<Backend> MakeRasterBackend(const SkSurfaceProps& surfaceProps, SkColorType colorType);
1119 
1120 // Stats for a single image filter evaluation
1121 struct Stats {
1122     int fNumVisitedImageFilters = 0; // size of the filter dag
1123     int fNumCacheHits = 0; // amount of reuse within the dag
1124     int fNumOffscreenSurfaces = 0; // difference to the # of visited filters shows deferred steps
1125     int fNumShaderClampedDraws = 0; // shader-emulated clamp is fairly cheap but HW tiling is best
1126     int fNumShaderBasedTilingDraws = 0; // shader-emulated decal, mirror, repeat are expensive
1127 
1128     void dumpStats() const;   // log to std out
1129     void reportStats() const; // trace event counters
1130 };
1131 
1132 // The context contains all necessary information to describe how the image filter should be
1133 // computed (i.e. the current layer matrix and clip), and the color information of the output of a
1134 // filter DAG. For now, this is just the color space (of the original requesting device). This is
1135 // used when constructing intermediate rendering surfaces, so that we ensure we land in a surface
1136 // that's similar/compatible to the final consumer of the DAG's output.
1137 class Context {
1138 public:
Context(sk_sp<Backend> backend,const Mapping & mapping,const LayerSpace<SkIRect> & desiredOutput,const FilterResult & source,const SkColorSpace * colorSpace,Stats * stats)1139     Context(sk_sp<Backend> backend,
1140             const Mapping& mapping,
1141             const LayerSpace<SkIRect>& desiredOutput,
1142             const FilterResult& source,
1143             const SkColorSpace* colorSpace,
1144             Stats* stats)
1145         : fBackend(std::move(backend))
1146         , fMapping(mapping)
1147         , fDesiredOutput(desiredOutput)
1148         , fSource(source)
1149         , fColorSpace(sk_ref_sp(colorSpace))
1150         , fStats(stats) {}
1151 
backend()1152     const Backend* backend() const { return fBackend.get(); }
1153 
1154     // The mapping that defines the transformation from local parameter space of the filters to the
1155     // layer space where the image filters are evaluated, as well as the remaining transformation
1156     // from the layer space to the final device space. The layer space defined by the returned
1157     // Mapping may be the same as the root device space, or be an intermediate space that is
1158     // supported by the image filter DAG (depending on what it returns from getCTMCapability()).
1159     // If a node returns something other than kComplex from getCTMCapability(), the layer matrix of
1160     // the mapping will respect that return value, and the remaining matrix will be appropriately
1161     // set to transform the layer space to the final device space (applied by the SkCanvas when
1162     // filtering is finished).
mapping()1163     const Mapping& mapping() const { return fMapping; }
1164 
1165     // The bounds, in the layer space, that the filtered image will be clipped to. The output
1166     // from filterImage() must cover these clip bounds, except in areas where it will just be
1167     // transparent black, in which case a smaller output image can be returned.
desiredOutput()1168     const LayerSpace<SkIRect>& desiredOutput() const { return fDesiredOutput; }
1169 
1170     // The output device's color space, so intermediate images can match, and so filtering can
1171     // be performed in the destination color space.
colorSpace()1172     SkColorSpace* colorSpace() const { return fColorSpace.get(); }
refColorSpace()1173     sk_sp<SkColorSpace> refColorSpace() const { return fColorSpace; }
1174 
1175     // This is the image to use whenever an expected input filter has been set to null. In the
1176     // majority of cases, this is the original source image for the image filter DAG so it comes
1177     // from the SkDevice that holds either the saveLayer or the temporary rendered result. The
1178     // exception is composing two image filters (via SkImageFilters::Compose), which must use
1179     // the output of the inner DAG as the "source" for the outer DAG.
source()1180     const FilterResult& source() const { return fSource; }
1181 
1182 
1183     // Create a new context that matches this context, but with an overridden layer space.
withNewMapping(const Mapping & mapping)1184     Context withNewMapping(const Mapping& mapping) const {
1185         Context c = *this;
1186         c.fMapping = mapping;
1187         return c;
1188     }
1189     // Create a new context that matches this context, but with an overridden desired output rect.
withNewDesiredOutput(const LayerSpace<SkIRect> & desiredOutput)1190     Context withNewDesiredOutput(const LayerSpace<SkIRect>& desiredOutput) const {
1191         Context c = *this;
1192         c.fDesiredOutput = desiredOutput;
1193         return c;
1194     }
1195     // Create a new context that matches this context, but with an overridden color space.
withNewColorSpace(SkColorSpace * cs)1196     Context withNewColorSpace(SkColorSpace* cs) const {
1197         Context c = *this;
1198         c.fColorSpace = sk_ref_sp(cs);
1199         return c;
1200     }
1201 
1202     // Create a new context that matches this context, but with an overridden source.
withNewSource(const FilterResult & source)1203     Context withNewSource(const FilterResult& source) const {
1204         Context c = *this;
1205         c.fSource = source;
1206         return c;
1207     }
1208 
1209 
1210     // Stats tracking
markVisitedImageFilter()1211     void markVisitedImageFilter() const {
1212         if (fStats) {
1213             fStats->fNumVisitedImageFilters++;
1214         }
1215     }
markCacheHit()1216     void markCacheHit() const {
1217         if (fStats) {
1218             fStats->fNumCacheHits++;
1219         }
1220     }
markNewSurface()1221     void markNewSurface() const {
1222         if (fStats) {
1223             fStats->fNumOffscreenSurfaces++;
1224         }
1225     }
markShaderBasedTilingRequired(SkTileMode tileMode)1226     void markShaderBasedTilingRequired(SkTileMode tileMode) const {
1227         if (fStats) {
1228             if (tileMode == SkTileMode::kClamp) {
1229                 fStats->fNumShaderClampedDraws++;
1230             } else {
1231                 fStats->fNumShaderBasedTilingDraws++;
1232             }
1233         }
1234     }
1235 
1236 private:
1237     friend class ::FilterResultTestAccess; // For controlling Stats
1238 
1239     sk_sp<Backend> fBackend;
1240 
1241     // Properties controlling the size and coordinate space of image filtering
1242     Mapping             fMapping;
1243     LayerSpace<SkIRect> fDesiredOutput;
1244     // Can contain a null image if the image filter DAG has no late-bound null inputs.
1245     FilterResult        fSource;
1246     // The color space the filters are evaluated in
1247     sk_sp<SkColorSpace> fColorSpace;
1248 
1249     Stats* fStats;
1250 };
1251 
1252 } // end namespace skif
1253 
1254 #endif // SkImageFilterTypes_DEFINED
1255