xref: /aosp_15_r20/external/skia/src/codec/SkRawCodec.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/codec/SkRawCodec.h"
9 
10 #include "include/codec/SkCodec.h"
11 #include "include/codec/SkRawDecoder.h"
12 #include "include/core/SkColorSpace.h"
13 #include "include/core/SkData.h"
14 #include "include/core/SkImageInfo.h"
15 #include "include/core/SkRefCnt.h"
16 #include "include/core/SkStream.h"
17 #include "include/core/SkTypes.h"
18 #include "include/private/SkEncodedInfo.h"
19 #include "include/private/base/SkDebug.h"
20 #include "include/private/base/SkMutex.h"
21 #include "include/private/base/SkTArray.h"
22 #include "include/private/base/SkTemplates.h"
23 #include "modules/skcms/skcms.h"
24 #include "src/codec/SkCodecPriv.h"
25 #include "src/codec/SkJpegCodec.h"
26 #include "src/core/SkStreamPriv.h"
27 #include "src/core/SkTaskGroup.h"
28 
29 #include <algorithm>
30 #include <cmath>
31 #include <cstdint>
32 #include <functional>
33 #include <limits>
34 #include <memory>
35 #include <type_traits>
36 #include <utility>
37 #include <vector>
38 
39 #include "dng_area_task.h"  // NO_G3_REWRITE
40 #include "dng_color_space.h"  // NO_G3_REWRITE
41 #include "dng_errors.h"  // NO_G3_REWRITE
42 #include "dng_exceptions.h"  // NO_G3_REWRITE
43 #include "dng_host.h"  // NO_G3_REWRITE
44 #include "dng_image.h"  // NO_G3_REWRITE
45 #include "dng_info.h"  // NO_G3_REWRITE
46 #include "dng_memory.h"  // NO_G3_REWRITE
47 #include "dng_mosaic_info.h"  // NO_G3_REWRITE
48 #include "dng_negative.h"  // NO_G3_REWRITE
49 #include "dng_pixel_buffer.h"  // NO_G3_REWRITE
50 #include "dng_point.h"  // NO_G3_REWRITE
51 #include "dng_rational.h"  // NO_G3_REWRITE
52 #include "dng_rect.h"  // NO_G3_REWRITE
53 #include "dng_render.h"  // NO_G3_REWRITE
54 #include "dng_sdk_limits.h"  // NO_G3_REWRITE
55 #include "dng_stream.h"  // NO_G3_REWRITE
56 #include "dng_tag_types.h"  // NO_G3_REWRITE
57 #include "dng_types.h"  // NO_G3_REWRITE
58 #include "dng_utils.h"  // NO_G3_REWRITE
59 
60 #include "src/piex.h"  // NO_G3_REWRITE
61 #include "src/piex_types.h"  // NO_G3_REWRITE
62 
63 using namespace skia_private;
64 
65 template <typename T> struct sk_is_trivially_relocatable;
66 template <> struct sk_is_trivially_relocatable<dng_exception> : std::true_type {};
67 
68 namespace {
69 
70 // Calculates the number of tiles of tile_size that fit into the area in vertical and horizontal
71 // directions.
num_tiles_in_area(const dng_point & areaSize,const dng_point_real64 & tileSize)72 dng_point num_tiles_in_area(const dng_point &areaSize,
73                             const dng_point_real64 &tileSize) {
74   // FIXME: Add a ceil_div() helper in SkCodecPriv.h
75   return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
76                    static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
77 }
78 
num_tasks_required(const dng_point & tilesInTask,const dng_point & tilesInArea)79 int num_tasks_required(const dng_point& tilesInTask,
80                          const dng_point& tilesInArea) {
81   return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
82          ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
83 }
84 
85 // Calculate the number of tiles to process per task, taking into account the maximum number of
86 // tasks. It prefers to increase horizontally for better locality of reference.
num_tiles_per_task(const int maxTasks,const dng_point & tilesInArea)87 dng_point num_tiles_per_task(const int maxTasks,
88                              const dng_point &tilesInArea) {
89   dng_point tilesInTask = {1, 1};
90   while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
91       if (tilesInTask.h < tilesInArea.h) {
92           ++tilesInTask.h;
93       } else if (tilesInTask.v < tilesInArea.v) {
94           ++tilesInTask.v;
95       } else {
96           ThrowProgramError("num_tiles_per_task calculation is wrong.");
97       }
98   }
99   return tilesInTask;
100 }
101 
compute_task_areas(const int maxTasks,const dng_rect & area,const dng_point & tileSize)102 std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
103                                          const dng_point& tileSize) {
104   std::vector<dng_rect> taskAreas;
105   const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
106   const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
107   const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
108                                     tilesPerTask.h * tileSize.h};
109   for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
110     for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
111       dng_rect taskArea;
112       taskArea.t = area.t + v * tileSize.v;
113       taskArea.l = area.l + h * tileSize.h;
114       taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
115       taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
116 
117       taskAreas.push_back(taskArea);
118     }
119   }
120   return taskAreas;
121 }
122 
123 class SkDngHost : public dng_host {
124 public:
SkDngHost(dng_memory_allocator * allocater)125     explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
126 
PerformAreaTask(dng_area_task & task,const dng_rect & area)127     void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
128         SkTaskGroup taskGroup;
129 
130         // tileSize is typically 256x256
131         const dng_point tileSize(task.FindTileSize(area));
132         const std::vector<dng_rect> taskAreas = compute_task_areas(this->PerformAreaTaskThreads(),
133                                                                    area, tileSize);
134         const int numTasks = static_cast<int>(taskAreas.size());
135 
136         SkMutex mutex;
137         TArray<dng_exception> exceptions;
138         task.Start(numTasks, tileSize, &Allocator(), Sniffer());
139         for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
140             taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
141                 try {
142                     task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
143                 } catch (dng_exception& exception) {
144                     SkAutoMutexExclusive lock(mutex);
145                     exceptions.push_back(exception);
146                 } catch (...) {
147                     SkAutoMutexExclusive lock(mutex);
148                     exceptions.push_back(dng_exception(dng_error_unknown));
149                 }
150             });
151         }
152 
153         taskGroup.wait();
154         task.Finish(numTasks);
155 
156         // We only re-throw the first exception.
157         if (!exceptions.empty()) {
158             Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
159         }
160     }
161 
PerformAreaTaskThreads()162     uint32 PerformAreaTaskThreads() override {
163 #ifdef SK_BUILD_FOR_ANDROID
164         // Only use 1 thread. DNGs with the warp effect require a lot of memory,
165         // and the amount of memory required scales linearly with the number of
166         // threads. The sample used in CTS requires over 500 MB, so even two
167         // threads is significantly expensive. There is no good way to tell
168         // whether the image has the warp effect.
169         return 1;
170 #else
171         return kMaxMPThreads;
172 #endif
173     }
174 
175 private:
176     using INHERITED = dng_host;
177 };
178 
179 // T must be unsigned type.
180 template <class T>
safe_add_to_size_t(T arg1,T arg2,size_t * result)181 bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
182     SkASSERT(arg1 >= 0);
183     SkASSERT(arg2 >= 0);
184     if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
185         T sum = arg1 + arg2;
186         if (sum <= std::numeric_limits<size_t>::max()) {
187             *result = static_cast<size_t>(sum);
188             return true;
189         }
190     }
191     return false;
192 }
193 
is_asset_stream(const SkStream & stream)194 bool is_asset_stream(const SkStream& stream) {
195     return stream.hasLength() && stream.hasPosition();
196 }
197 
198 }  // namespace
199 
200 class SkRawStream {
201 public:
~SkRawStream()202     virtual ~SkRawStream() {}
203 
204    /*
205     * Gets the length of the stream. Depending on the type of stream, this may require reading to
206     * the end of the stream.
207     */
208    virtual uint64 getLength() = 0;
209 
210    virtual bool read(void* data, size_t offset, size_t length) = 0;
211 
212     /*
213      * Creates an SkMemoryStream from the offset with size.
214      * Note: for performance reason, this function is destructive to the SkRawStream. One should
215      *       abandon current object after the function call.
216      */
217    virtual std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) = 0;
218 };
219 
220 class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
221 public:
~SkRawLimitedDynamicMemoryWStream()222     ~SkRawLimitedDynamicMemoryWStream() override {}
223 
write(const void * buffer,size_t size)224     bool write(const void* buffer, size_t size) override {
225         size_t newSize;
226         if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
227             newSize > kMaxStreamSize)
228         {
229             SkCodecPrintf("Error: Stream size exceeds the limit.\n");
230             return false;
231         }
232         return this->INHERITED::write(buffer, size);
233     }
234 
235 private:
236     // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
237     // streaming too large data chunk. We can always adjust the limit here if we need.
238     const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB
239 
240     using INHERITED = SkDynamicMemoryWStream;
241 };
242 
243 // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
244 class SkRawBufferedStream : public SkRawStream {
245 public:
SkRawBufferedStream(std::unique_ptr<SkStream> stream)246     explicit SkRawBufferedStream(std::unique_ptr<SkStream> stream)
247         : fStream(std::move(stream))
248         , fWholeStreamRead(false)
249     {
250         // Only use SkRawBufferedStream when the stream is not an asset stream.
251         SkASSERT(!is_asset_stream(*fStream));
252     }
253 
~SkRawBufferedStream()254     ~SkRawBufferedStream() override {}
255 
getLength()256     uint64 getLength() override {
257         if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
258             ThrowReadFile();
259         }
260         return fStreamBuffer.bytesWritten();
261     }
262 
read(void * data,size_t offset,size_t length)263     bool read(void* data, size_t offset, size_t length) override {
264         if (length == 0) {
265             return true;
266         }
267 
268         size_t sum;
269         if (!safe_add_to_size_t(offset, length, &sum)) {
270             return false;
271         }
272 
273         return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
274     }
275 
transferBuffer(size_t offset,size_t size)276     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override {
277         sk_sp<SkData> data(SkData::MakeUninitialized(size));
278         if (offset > fStreamBuffer.bytesWritten()) {
279             // If the offset is not buffered, read from fStream directly and skip the buffering.
280             const size_t skipLength = offset - fStreamBuffer.bytesWritten();
281             if (fStream->skip(skipLength) != skipLength) {
282                 return nullptr;
283             }
284             const size_t bytesRead = fStream->read(data->writable_data(), size);
285             if (bytesRead < size) {
286                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
287             }
288         } else {
289             const size_t alreadyBuffered = std::min(fStreamBuffer.bytesWritten() - offset, size);
290             if (alreadyBuffered > 0 &&
291                 !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
292                 return nullptr;
293             }
294 
295             const size_t remaining = size - alreadyBuffered;
296             if (remaining) {
297                 auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
298                 const size_t bytesRead = fStream->read(dst, remaining);
299                 size_t newSize;
300                 if (bytesRead < remaining) {
301                     if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
302                         return nullptr;
303                     }
304                     data = SkData::MakeSubset(data.get(), 0, newSize);
305                 }
306             }
307         }
308         return SkMemoryStream::Make(data);
309     }
310 
311 private:
312     // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
bufferMoreData(size_t newSize)313     bool bufferMoreData(size_t newSize) {
314         if (newSize == kReadToEnd) {
315             if (fWholeStreamRead) {  // already read-to-end.
316                 return true;
317             }
318 
319             // TODO: optimize for the special case when the input is SkMemoryStream.
320             return SkStreamCopy(&fStreamBuffer, fStream.get());
321         }
322 
323         if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
324             return true;
325         }
326         if (fWholeStreamRead) {  // newSize is larger than the whole stream.
327             return false;
328         }
329 
330         // Try to read at least 8192 bytes to avoid to many small reads.
331         const size_t kMinSizeToRead = 8192;
332         const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
333         const size_t sizeToRead = std::max(kMinSizeToRead, sizeRequested);
334         AutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
335         const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
336         if (bytesRead < sizeRequested) {
337             return false;
338         }
339         return fStreamBuffer.write(tempBuffer.get(), bytesRead);
340     }
341 
342     std::unique_ptr<SkStream> fStream;
343     bool fWholeStreamRead;
344 
345     // Use a size-limited stream to avoid holding too huge buffer.
346     SkRawLimitedDynamicMemoryWStream fStreamBuffer;
347 
348     const size_t kReadToEnd = 0;
349 };
350 
351 class SkRawAssetStream : public SkRawStream {
352 public:
SkRawAssetStream(std::unique_ptr<SkStream> stream)353     explicit SkRawAssetStream(std::unique_ptr<SkStream> stream)
354         : fStream(std::move(stream))
355     {
356         // Only use SkRawAssetStream when the stream is an asset stream.
357         SkASSERT(is_asset_stream(*fStream));
358     }
359 
~SkRawAssetStream()360     ~SkRawAssetStream() override {}
361 
getLength()362     uint64 getLength() override {
363         return fStream->getLength();
364     }
365 
366 
read(void * data,size_t offset,size_t length)367     bool read(void* data, size_t offset, size_t length) override {
368         if (length == 0) {
369             return true;
370         }
371 
372         size_t sum;
373         if (!safe_add_to_size_t(offset, length, &sum)) {
374             return false;
375         }
376 
377         return fStream->seek(offset) && (fStream->read(data, length) == length);
378     }
379 
transferBuffer(size_t offset,size_t size)380     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override {
381         if (fStream->getLength() < offset) {
382             return nullptr;
383         }
384 
385         size_t sum;
386         if (!safe_add_to_size_t(offset, size, &sum)) {
387             return nullptr;
388         }
389 
390         // This will allow read less than the requested "size", because the JPEG codec wants to
391         // handle also a partial JPEG file.
392         const size_t bytesToRead = std::min(sum, fStream->getLength()) - offset;
393         if (bytesToRead == 0) {
394             return nullptr;
395         }
396 
397         if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available.
398             sk_sp<SkData> data(SkData::MakeWithCopy(
399                 static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
400             fStream.reset();
401             return SkMemoryStream::Make(data);
402         } else {
403             sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead));
404             if (!fStream->seek(offset)) {
405                 return nullptr;
406             }
407             const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
408             if (bytesRead < bytesToRead) {
409                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
410             }
411             return SkMemoryStream::Make(data);
412         }
413     }
414 private:
415     std::unique_ptr<SkStream> fStream;
416 };
417 
418 class SkPiexStream : public ::piex::StreamInterface {
419 public:
420     // Will NOT take the ownership of the stream.
SkPiexStream(SkRawStream * stream)421     explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
422 
~SkPiexStream()423     ~SkPiexStream() override {}
424 
GetData(const size_t offset,const size_t length,uint8 * data)425     ::piex::Error GetData(const size_t offset, const size_t length,
426                           uint8* data) override {
427         return fStream->read(static_cast<void*>(data), offset, length) ?
428             ::piex::Error::kOk : ::piex::Error::kFail;
429     }
430 
431 private:
432     SkRawStream* fStream;
433 };
434 
435 class SkDngStream : public dng_stream {
436 public:
437     // Will NOT take the ownership of the stream.
SkDngStream(SkRawStream * stream)438     SkDngStream(SkRawStream* stream) : fStream(stream) {}
439 
~SkDngStream()440     ~SkDngStream() override {}
441 
DoGetLength()442     uint64 DoGetLength() override { return fStream->getLength(); }
443 
DoRead(void * data,uint32 count,uint64 offset)444     void DoRead(void* data, uint32 count, uint64 offset) override {
445         size_t sum;
446         if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
447             !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
448             ThrowReadFile();
449         }
450     }
451 
452 private:
453     SkRawStream* fStream;
454 };
455 
456 class SkDngImage {
457 public:
458     /*
459      * Initializes the object with the information from Piex in a first attempt. This way it can
460      * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
461      * which is essential for the demosaicing of the sensor image.
462      * Note: this will take the ownership of the stream.
463      */
NewFromStream(SkRawStream * stream)464     static SkDngImage* NewFromStream(SkRawStream* stream) {
465         std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream));
466 #if defined(SK_BUILD_FOR_LIBFUZZER)
467         // Libfuzzer easily runs out of memory after here. To avoid that
468         // We just pretend all streams are invalid. Our AFL-fuzzer
469         // should still exercise this code; it's more resistant to OOM.
470         return nullptr;
471 #else
472         if (!dngImage->initFromPiex() && !dngImage->readDng()) {
473             return nullptr;
474         }
475 
476         return dngImage.release();
477 #endif
478     }
479 
480     /*
481      * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
482      * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
483      * but there is no guarantee that any of the edges will match the requested size. E.g.
484      *   100% size:              4000 x 3000
485      *   requested size:         1600 x 1200
486      *   returned size could be: 2000 x 1500
487      */
render(int width,int height)488     dng_image* render(int width, int height) {
489         if (!fHost || !fInfo || !fNegative || !fDngStream) {
490             if (!this->readDng()) {
491                 return nullptr;
492             }
493         }
494 
495         // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
496         const int preferredSize = std::max(width, height);
497         try {
498             // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
499             std::unique_ptr<dng_host> host(fHost.release());
500             std::unique_ptr<dng_info> info(fInfo.release());
501             std::unique_ptr<dng_negative> negative(fNegative.release());
502             std::unique_ptr<dng_stream> dngStream(fDngStream.release());
503 
504             host->SetPreferredSize(preferredSize);
505             host->ValidateSizes();
506 
507             negative->ReadStage1Image(*host, *dngStream, *info);
508 
509             if (info->fMaskIndex != -1) {
510                 negative->ReadTransparencyMask(*host, *dngStream, *info);
511             }
512 
513             negative->ValidateRawImageDigest(*host);
514             if (negative->IsDamaged()) {
515                 return nullptr;
516             }
517 
518             const int32 kMosaicPlane = -1;
519             negative->BuildStage2Image(*host);
520             negative->BuildStage3Image(*host, kMosaicPlane);
521 
522             dng_render render(*host, *negative);
523             render.SetFinalSpace(dng_space_sRGB::Get());
524             render.SetFinalPixelType(ttByte);
525 
526             dng_point stage3_size = negative->Stage3Image()->Size();
527             render.SetMaximumSize(std::max(stage3_size.h, stage3_size.v));
528 
529             return render.Render();
530         } catch (...) {
531             return nullptr;
532         }
533     }
534 
width() const535     int width() const {
536         return fWidth;
537     }
538 
height() const539     int height() const {
540         return fHeight;
541     }
542 
isScalable() const543     bool isScalable() const {
544         return fIsScalable;
545     }
546 
isXtransImage() const547     bool isXtransImage() const {
548         return fIsXtransImage;
549     }
550 
551     // Quick check if the image contains a valid TIFF header as requested by DNG format.
552     // Does not affect ownership of stream.
IsTiffHeaderValid(SkRawStream * stream)553     static bool IsTiffHeaderValid(SkRawStream* stream) {
554         const size_t kHeaderSize = 4;
555         unsigned char header[kHeaderSize];
556         if (!stream->read(header, 0 /* offset */, kHeaderSize)) {
557             return false;
558         }
559 
560         // Check if the header is valid (endian info and magic number "42").
561         bool littleEndian;
562         if (!is_valid_endian_marker(header, &littleEndian)) {
563             return false;
564         }
565 
566         return 0x2A == get_endian_short(header + 2, littleEndian);
567     }
568 
569 private:
init(int width,int height,const dng_point & cfaPatternSize)570     bool init(int width, int height, const dng_point& cfaPatternSize) {
571         fWidth = width;
572         fHeight = height;
573 
574         // The DNG SDK scales only during demosaicing, so scaling is only possible when
575         // a mosaic info is available.
576         fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
577         fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
578 
579         return width > 0 && height > 0;
580     }
581 
initFromPiex()582     bool initFromPiex() {
583         // Does not take the ownership of rawStream.
584         SkPiexStream piexStream(fStream.get());
585         ::piex::PreviewImageData imageData;
586         if (::piex::IsRaw(&piexStream)
587             && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
588         {
589             dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
590             return this->init(static_cast<int>(imageData.full_width),
591                               static_cast<int>(imageData.full_height), cfaPatternSize);
592         }
593         return false;
594     }
595 
readDng()596     bool readDng() {
597         try {
598             // Due to the limit of DNG SDK, we need to reset host and info.
599             fHost = std::make_unique<SkDngHost>(&fAllocator);
600             fInfo = std::make_unique<dng_info>();
601             fDngStream = std::make_unique<SkDngStream>(fStream.get());
602 
603             fHost->ValidateSizes();
604             fInfo->Parse(*fHost, *fDngStream);
605             fInfo->PostParse(*fHost);
606             if (!fInfo->IsValidDNG()) {
607                 return false;
608             }
609 
610             fNegative.reset(fHost->Make_dng_negative());
611             fNegative->Parse(*fHost, *fDngStream, *fInfo);
612             fNegative->PostParse(*fHost, *fDngStream, *fInfo);
613             fNegative->SynchronizeMetadata();
614 
615             dng_point cfaPatternSize(0, 0);
616             if (fNegative->GetMosaicInfo() != nullptr) {
617                 cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
618             }
619             return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
620                               static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
621                               cfaPatternSize);
622         } catch (...) {
623             return false;
624         }
625     }
626 
SkDngImage(SkRawStream * stream)627     SkDngImage(SkRawStream* stream)
628         : fStream(stream)
629     {}
630 
631     dng_memory_allocator fAllocator;
632     std::unique_ptr<SkRawStream> fStream;
633     std::unique_ptr<dng_host> fHost;
634     std::unique_ptr<dng_info> fInfo;
635     std::unique_ptr<dng_negative> fNegative;
636     std::unique_ptr<dng_stream> fDngStream;
637 
638     int fWidth;
639     int fHeight;
640     bool fIsScalable;
641     bool fIsXtransImage;
642 };
643 
644 /*
645  * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
646  * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
647  * fallback to create SkRawCodec for DNG images.
648  */
MakeFromStream(std::unique_ptr<SkStream> stream,Result * result)649 std::unique_ptr<SkCodec> SkRawCodec::MakeFromStream(std::unique_ptr<SkStream> stream,
650                                                     Result* result) {
651     SkASSERT(result);
652     if (!stream) {
653         *result = SkCodec::kInvalidInput;
654         return nullptr;
655     }
656     std::unique_ptr<SkRawStream> rawStream;
657     if (is_asset_stream(*stream)) {
658         rawStream = std::make_unique<SkRawAssetStream>(std::move(stream));
659     } else {
660         rawStream = std::make_unique<SkRawBufferedStream>(std::move(stream));
661     }
662 
663     // Does not take the ownership of rawStream.
664     SkPiexStream piexStream(rawStream.get());
665     ::piex::PreviewImageData imageData;
666     if (::piex::IsRaw(&piexStream)) {
667         ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
668         if (error == ::piex::Error::kFail) {
669             *result = kInvalidInput;
670             return nullptr;
671         }
672 
673         std::unique_ptr<SkEncodedInfo::ICCProfile> profile;
674         if (imageData.color_space == ::piex::PreviewImageData::kAdobeRgb) {
675             skcms_ICCProfile skcmsProfile;
676             skcms_Init(&skcmsProfile);
677             skcms_SetTransferFunction(&skcmsProfile, &SkNamedTransferFn::k2Dot2);
678             skcms_SetXYZD50(&skcmsProfile, &SkNamedGamut::kAdobeRGB);
679             profile = SkEncodedInfo::ICCProfile::Make(skcmsProfile);
680         }
681 
682         //  Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
683         //  handle the JPEG compressed preview image here.
684         if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
685             imageData.preview.format == ::piex::Image::kJpegCompressed)
686         {
687             // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
688             // function call.
689             // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
690             auto memoryStream = rawStream->transferBuffer(imageData.preview.offset,
691                                                           imageData.preview.length);
692             if (!memoryStream) {
693                 *result = kInvalidInput;
694                 return nullptr;
695             }
696             return SkJpegCodec::MakeFromStream(std::move(memoryStream), result,
697                                                std::move(profile));
698         }
699     }
700 
701     if (!SkDngImage::IsTiffHeaderValid(rawStream.get())) {
702         *result = kUnimplemented;
703         return nullptr;
704     }
705 
706     // Takes the ownership of the rawStream.
707     std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
708     if (!dngImage) {
709         *result = kInvalidInput;
710         return nullptr;
711     }
712 
713     *result = kSuccess;
714     return std::unique_ptr<SkCodec>(new SkRawCodec(dngImage.release()));
715 }
716 
onGetPixels(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes,const Options & options,int * rowsDecoded)717 SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst,
718                                         size_t dstRowBytes, const Options& options,
719                                         int* rowsDecoded) {
720     const int width = dstInfo.width();
721     const int height = dstInfo.height();
722     std::unique_ptr<dng_image> image(fDngImage->render(width, height));
723     if (!image) {
724         return kInvalidInput;
725     }
726 
727     // Because the DNG SDK can not guarantee to render to requested size, we allow a small
728     // difference. Only the overlapping region will be converted.
729     const float maxDiffRatio = 1.03f;
730     const dng_point& imageSize = image->Size();
731     if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width ||
732         imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) {
733         return SkCodec::kInvalidScale;
734     }
735 
736     void* dstRow = dst;
737     AutoTMalloc<uint8_t> srcRow(width * 3);
738 
739     dng_pixel_buffer buffer;
740     buffer.fData = &srcRow[0];
741     buffer.fPlane = 0;
742     buffer.fPlanes = 3;
743     buffer.fColStep = buffer.fPlanes;
744     buffer.fPlaneStep = 1;
745     buffer.fPixelType = ttByte;
746     buffer.fPixelSize = sizeof(uint8_t);
747     buffer.fRowStep = width * 3;
748 
749     constexpr auto srcFormat = skcms_PixelFormat_RGB_888;
750     skcms_PixelFormat dstFormat;
751     if (!sk_select_xform_format(dstInfo.colorType(), false, &dstFormat)) {
752         return kInvalidConversion;
753     }
754 
755     const skcms_ICCProfile* const srcProfile = this->getEncodedInfo().profile();
756     skcms_ICCProfile dstProfileStorage;
757     const skcms_ICCProfile* dstProfile = nullptr;
758     if (auto cs = dstInfo.colorSpace()) {
759         cs->toProfile(&dstProfileStorage);
760         dstProfile = &dstProfileStorage;
761     }
762 
763     for (int i = 0; i < height; ++i) {
764         buffer.fArea = dng_rect(i, 0, i + 1, width);
765 
766         try {
767             image->Get(buffer, dng_image::edge_zero);
768         } catch (...) {
769             *rowsDecoded = i;
770             return kIncompleteInput;
771         }
772 
773         if (!skcms_Transform(&srcRow[0], srcFormat, skcms_AlphaFormat_Unpremul, srcProfile,
774                              dstRow,     dstFormat, skcms_AlphaFormat_Unpremul, dstProfile,
775                              dstInfo.width())) {
776             SkDebugf("failed to transform\n");
777             *rowsDecoded = i;
778             return kInternalError;
779         }
780 
781         dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
782     }
783     return kSuccess;
784 }
785 
onGetScaledDimensions(float desiredScale) const786 SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
787     SkASSERT(desiredScale <= 1.f);
788 
789     const SkISize dim = this->dimensions();
790     SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
791 
792     if (!fDngImage->isScalable()) {
793         return dim;
794     }
795 
796     // Limits the minimum size to be 80 on the short edge.
797     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight));
798     if (desiredScale < 80.f / shortEdge) {
799         desiredScale = 80.f / shortEdge;
800     }
801 
802     // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
803     // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
804     if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
805         desiredScale = 1.f / 3.f;
806     }
807 
808     // Round to integer-factors.
809     const float finalScale = std::floor(1.f/ desiredScale);
810     return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
811                          static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
812 }
813 
onDimensionsSupported(const SkISize & dim)814 bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
815     const SkISize fullDim = this->dimensions();
816     const float fullShortEdge = static_cast<float>(std::min(fullDim.fWidth, fullDim.fHeight));
817     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight));
818 
819     SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
820     SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
821     return sizeFloor == dim || sizeCeil == dim;
822 }
823 
~SkRawCodec()824 SkRawCodec::~SkRawCodec() {}
825 
SkRawCodec(SkDngImage * dngImage)826 SkRawCodec::SkRawCodec(SkDngImage* dngImage)
827     : INHERITED(SkEncodedInfo::Make(dngImage->width(), dngImage->height(),
828                                     SkEncodedInfo::kRGB_Color,
829                                     SkEncodedInfo::kOpaque_Alpha, 8),
830                 skcms_PixelFormat_RGBA_8888, nullptr)
831     , fDngImage(dngImage) {}
832 
833 namespace SkRawDecoder {
834 
Decode(std::unique_ptr<SkStream> stream,SkCodec::Result * outResult,SkCodecs::DecodeContext)835 std::unique_ptr<SkCodec> Decode(std::unique_ptr<SkStream> stream,
836                                 SkCodec::Result* outResult,
837                                 SkCodecs::DecodeContext) {
838     SkCodec::Result resultStorage;
839     if (!outResult) {
840         outResult = &resultStorage;
841     }
842     return SkRawCodec::MakeFromStream(std::move(stream), outResult);
843 }
844 
Decode(sk_sp<SkData> data,SkCodec::Result * outResult,SkCodecs::DecodeContext)845 std::unique_ptr<SkCodec> Decode(sk_sp<SkData> data,
846                                 SkCodec::Result* outResult,
847                                 SkCodecs::DecodeContext) {
848     if (!data) {
849         if (outResult) {
850             *outResult = SkCodec::kInvalidInput;
851         }
852         return nullptr;
853     }
854     return Decode(SkMemoryStream::Make(std::move(data)), outResult, nullptr);
855 }
856 }  // namespace SkRawDecoder
857