xref: /aosp_15_r20/external/google-breakpad/src/processor/stackwalker_x86.cc (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1 // Copyright 2010 Google LLC
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 //     * Neither the name of Google LLC nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 
29 // stackwalker_x86.cc: x86-specific stackwalker.
30 //
31 // See stackwalker_x86.h for documentation.
32 //
33 // Author: Mark Mentovai
34 
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>  // Must come first
37 #endif
38 
39 #include <assert.h>
40 #include <string>
41 
42 #include "common/scoped_ptr.h"
43 #include "google_breakpad/processor/call_stack.h"
44 #include "google_breakpad/processor/code_modules.h"
45 #include "google_breakpad/processor/memory_region.h"
46 #include "google_breakpad/processor/source_line_resolver_interface.h"
47 #include "google_breakpad/processor/stack_frame_cpu.h"
48 #include "processor/logging.h"
49 #include "processor/postfix_evaluator-inl.h"
50 #include "processor/stackwalker_x86.h"
51 #include "processor/windows_frame_info.h"
52 #include "processor/cfi_frame_info.h"
53 
54 namespace google_breakpad {
55 
56 // Max reasonable size for a single x86 frame is 128 KB.  This value is used in
57 // a heuristic for recovering of the EBP chain after a scan for return address.
58 // This value is based on a stack frame size histogram built for a set of
59 // popular third party libraries which suggests that 99.5% of all frames are
60 // smaller than 128 KB.
61 static const uint32_t kMaxReasonableGapBetweenFrames = 128 * 1024;
62 
63 const StackwalkerX86::CFIWalker::RegisterSet
64 StackwalkerX86::cfi_register_map_[] = {
65   // It may seem like $eip and $esp are callee-saves, because (with Unix or
66   // cdecl calling conventions) the callee is responsible for having them
67   // restored upon return. But the callee_saves flags here really means
68   // that the walker should assume they're unchanged if the CFI doesn't
69   // mention them, which is clearly wrong for $eip and $esp.
70   { "$eip", ".ra",  false,
71     StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip },
72   { "$esp", ".cfa", false,
73     StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp },
74   { "$ebp", NULL,   true,
75     StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp },
76   { "$eax", NULL,   false,
77     StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax },
78   { "$ebx", NULL,   true,
79     StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx },
80   { "$ecx", NULL,   false,
81     StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx },
82   { "$edx", NULL,   false,
83     StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx },
84   { "$esi", NULL,   true,
85     StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi },
86   { "$edi", NULL,   true,
87     StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi },
88 };
89 
StackwalkerX86(const SystemInfo * system_info,const MDRawContextX86 * context,MemoryRegion * memory,const CodeModules * modules,StackFrameSymbolizer * resolver_helper)90 StackwalkerX86::StackwalkerX86(const SystemInfo* system_info,
91                                const MDRawContextX86* context,
92                                MemoryRegion* memory,
93                                const CodeModules* modules,
94                                StackFrameSymbolizer* resolver_helper)
95     : Stackwalker(system_info, memory, modules, resolver_helper),
96       context_(context),
97       cfi_walker_(cfi_register_map_,
98                   (sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) {
99   if (memory_ && memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) {
100     // The x86 is a 32-bit CPU, the limits of the supplied stack are invalid.
101     // Mark memory_ = NULL, which will cause stackwalking to fail.
102     BPLOG(ERROR) << "Memory out of range for stackwalking: " <<
103                     HexString(memory_->GetBase()) << "+" <<
104                     HexString(memory_->GetSize());
105     memory_ = NULL;
106   }
107 }
108 
~StackFrameX86()109 StackFrameX86::~StackFrameX86() {
110   if (windows_frame_info)
111     delete windows_frame_info;
112   windows_frame_info = NULL;
113   if (cfi_frame_info)
114     delete cfi_frame_info;
115   cfi_frame_info = NULL;
116 }
117 
ReturnAddress() const118 uint64_t StackFrameX86::ReturnAddress() const {
119   assert(context_validity & StackFrameX86::CONTEXT_VALID_EIP);
120   return context.eip;
121 }
122 
GetContextFrame()123 StackFrame* StackwalkerX86::GetContextFrame() {
124   if (!context_) {
125     BPLOG(ERROR) << "Can't get context frame without context";
126     return NULL;
127   }
128 
129   StackFrameX86* frame = new StackFrameX86();
130 
131   // The instruction pointer is stored directly in a register, so pull it
132   // straight out of the CPU context structure.
133   frame->context = *context_;
134   frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL;
135   frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
136   frame->instruction = frame->context.eip;
137 
138   return frame;
139 }
140 
GetCallerByWindowsFrameInfo(const vector<StackFrame * > & frames,WindowsFrameInfo * last_frame_info,bool stack_scan_allowed)141 StackFrameX86* StackwalkerX86::GetCallerByWindowsFrameInfo(
142     const vector<StackFrame*>& frames,
143     WindowsFrameInfo* last_frame_info,
144     bool stack_scan_allowed) {
145   StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE;
146 
147   // The last frame can never be inline. A sequence of inline frames always
148   // finishes with a conventional frame.
149   assert(frames.back()->trust != StackFrame::FRAME_TRUST_INLINE);
150   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
151 
152   // Save the stack walking info we found, in case we need it later to
153   // find the callee of the frame we're constructing now.
154   last_frame->windows_frame_info = last_frame_info;
155 
156   // This function only covers the full STACK WIN case. If
157   // last_frame_info is VALID_PARAMETER_SIZE-only, then we should
158   // assume the traditional frame format or use some other strategy.
159   if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL)
160     return NULL;
161 
162   // This stackwalker sets each frame's %esp to its value immediately prior
163   // to the CALL into the callee.  This means that %esp points to the last
164   // callee argument pushed onto the stack, which may not be where %esp points
165   // after the callee returns.  Specifically, the value is correct for the
166   // cdecl calling convention, but not other conventions.  The cdecl
167   // convention requires a caller to pop its callee's arguments from the
168   // stack after the callee returns.  This is usually accomplished by adding
169   // the known size of the arguments to %esp.  Other calling conventions,
170   // including stdcall, thiscall, and fastcall, require the callee to pop any
171   // parameters stored on the stack before returning.  This is usually
172   // accomplished by using the RET n instruction, which pops n bytes off
173   // the stack after popping the return address.
174   //
175   // Because each frame's %esp will point to a location on the stack after
176   // callee arguments have been PUSHed, when locating things in a stack frame
177   // relative to %esp, the size of the arguments to the callee need to be
178   // taken into account.  This seems a little bit unclean, but it's better
179   // than the alternative, which would need to take these same things into
180   // account, but only for cdecl functions.  With this implementation, we get
181   // to be agnostic about each function's calling convention.  Furthermore,
182   // this is how Windows debugging tools work, so it means that the %esp
183   // values produced by this stackwalker directly correspond to the %esp
184   // values you'll see there.
185   //
186   // If the last frame has no callee (because it's the context frame), just
187   // set the callee parameter size to 0: the stack pointer can't point to
188   // callee arguments because there's no callee.  This is correct as long
189   // as the context wasn't captured while arguments were being pushed for
190   // a function call.  Note that there may be functions whose parameter sizes
191   // are unknown, 0 is also used in that case.  When that happens, it should
192   // be possible to walk to the next frame without reference to %esp.
193 
194   uint32_t last_frame_callee_parameter_size = 0;
195   int frames_already_walked = frames.size();
196   for (int last_frame_callee_id = frames_already_walked - 2;
197        last_frame_callee_id >= 0; last_frame_callee_id--) {
198     // Searching for a real callee frame. Skipping inline frames since they
199     // cannot be downcasted to StackFrameX86.
200     if (frames[last_frame_callee_id]->trust == StackFrame::FRAME_TRUST_INLINE) {
201       continue;
202     }
203     const StackFrameX86* last_frame_callee
204         = static_cast<StackFrameX86*>(frames[last_frame_callee_id]);
205     WindowsFrameInfo* last_frame_callee_info
206         = last_frame_callee->windows_frame_info;
207     if (last_frame_callee_info &&
208         (last_frame_callee_info->valid
209          & WindowsFrameInfo::VALID_PARAMETER_SIZE)) {
210       last_frame_callee_parameter_size =
211           last_frame_callee_info->parameter_size;
212     }
213   }
214 
215   // Set up the dictionary for the PostfixEvaluator.  %ebp, %esp, and sometimes
216   // %ebx are used in program strings, and their previous values are known, so
217   // set them here.
218   PostfixEvaluator<uint32_t>::DictionaryType dictionary;
219   // Provide the current register values.
220   dictionary["$ebp"] = last_frame->context.ebp;
221   dictionary["$esp"] = last_frame->context.esp;
222   if (last_frame->context_validity & StackFrameX86::CONTEXT_VALID_EBX)
223     dictionary["$ebx"] = last_frame->context.ebx;
224   // Provide constants from the debug info for last_frame and its callee.
225   // .cbCalleeParams is a Breakpad extension that allows us to use the
226   // PostfixEvaluator engine when certain types of debugging information
227   // are present without having to write the constants into the program
228   // string as literals.
229   dictionary[".cbCalleeParams"] = last_frame_callee_parameter_size;
230   dictionary[".cbSavedRegs"] = last_frame_info->saved_register_size;
231   dictionary[".cbLocals"] = last_frame_info->local_size;
232 
233   uint32_t raSearchStart = last_frame->context.esp +
234                            last_frame_callee_parameter_size +
235                            last_frame_info->local_size +
236                            last_frame_info->saved_register_size;
237 
238   uint32_t raSearchStartOld = raSearchStart;
239   uint32_t found = 0;  // dummy value
240   // Scan up to three words above the calculated search value, in case
241   // the stack was aligned to a quadword boundary.
242   //
243   // TODO(ivan.penkov): Consider cleaning up the scan for return address that
244   // follows.  The purpose of this scan is to adjust the .raSearchStart
245   // calculation (which is based on register %esp) in the cases where register
246   // %esp may have been aligned (up to a quadword).  There are two problems
247   // with this approach:
248   //  1) In practice, 64 byte boundary alignment is seen which clearly can not
249   //     be handled by a three word scan.
250   //  2) A search for a return address is "guesswork" by definition because
251   //     the results will be different depending on what is left on the stack
252   //     from previous executions.
253   // So, basically, the results from this scan should be ignored if other means
254   // for calculation of the value of .raSearchStart are available.
255   if (ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3) &&
256       last_frame->trust == StackFrame::FRAME_TRUST_CONTEXT &&
257       last_frame->windows_frame_info != NULL &&
258       last_frame_info->type_ == WindowsFrameInfo::STACK_INFO_FPO &&
259       raSearchStartOld == raSearchStart &&
260       found == last_frame->context.eip) {
261     // The context frame represents an FPO-optimized Windows system call.
262     // On the top of the stack we have a pointer to the current instruction.
263     // This means that the callee has returned but the return address is still
264     // on the top of the stack which is very atypical situaltion.
265     // Skip one slot from the stack and do another scan in order to get the
266     // actual return address.
267     raSearchStart += 4;
268     ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3);
269   }
270 
271   dictionary[".cbParams"] = last_frame_info->parameter_size;
272 
273   // Decide what type of program string to use. The program string is in
274   // postfix notation and will be passed to PostfixEvaluator::Evaluate.
275   // Given the dictionary and the program string, it is possible to compute
276   // the return address and the values of other registers in the calling
277   // function. Because of bugs described below, the stack may need to be
278   // scanned for these values. The results of program string evaluation
279   // will be used to determine whether to scan for better values.
280   string program_string;
281   bool recover_ebp = true;
282 
283   trust = StackFrame::FRAME_TRUST_CFI;
284   if (!last_frame_info->program_string.empty()) {
285     // The FPO data has its own program string, which will tell us how to
286     // get to the caller frame, and may even fill in the values of
287     // nonvolatile registers and provide pointers to local variables and
288     // parameters.  In some cases, particularly with program strings that use
289     // .raSearchStart, the stack may need to be scanned afterward.
290     program_string = last_frame_info->program_string;
291   } else if (last_frame_info->allocates_base_pointer) {
292     // The function corresponding to the last frame doesn't use the frame
293     // pointer for conventional purposes, but it does allocate a new
294     // frame pointer and use it for its own purposes.  Its callee's
295     // information is still accessed relative to %esp, and the previous
296     // value of %ebp can be recovered from a location in its stack frame,
297     // within the saved-register area.
298     //
299     // Functions that fall into this category use the %ebp register for
300     // a purpose other than the frame pointer.  They restore the caller's
301     // %ebp before returning.  These functions create their stack frame
302     // after a CALL by decrementing the stack pointer in an amount
303     // sufficient to store local variables, and then PUSHing saved
304     // registers onto the stack.  Arguments to a callee function, if any,
305     // are PUSHed after that.  Walking up to the caller, therefore,
306     // can be done solely with calculations relative to the stack pointer
307     // (%esp).  The return address is recovered from the memory location
308     // above the known sizes of the callee's parameters, saved registers,
309     // and locals.  The caller's stack pointer (the value of %esp when
310     // the caller executed CALL) is the location immediately above the
311     // saved return address.  The saved value of %ebp to be restored for
312     // the caller is at a known location in the saved-register area of
313     // the stack frame.
314     //
315     // For this type of frame, MSVC 14 (from Visual Studio 8/2005) in
316     // link-time code generation mode (/LTCG and /GL) can generate erroneous
317     // debugging data.  The reported size of saved registers can be 0,
318     // which is clearly an error because these frames must, at the very
319     // least, save %ebp.  For this reason, in addition to those given above
320     // about the use of .raSearchStart, the stack may need to be scanned
321     // for a better return address and a better frame pointer after the
322     // program string is evaluated.
323     //
324     // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
325     // %ebp_new = *(%esp_old + callee_params + saved_regs - 8)
326     // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
327     program_string = "$eip .raSearchStart ^ = "
328         "$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = "
329         "$esp .raSearchStart 4 + =";
330   } else {
331     // The function corresponding to the last frame doesn't use %ebp at
332     // all.  The callee frame is located relative to %esp.
333     //
334     // The called procedure's instruction pointer and stack pointer are
335     // recovered in the same way as the case above, except that no
336     // frame pointer (%ebp) is used at all, so it is not saved anywhere
337     // in the callee's stack frame and does not need to be recovered.
338     // Because %ebp wasn't used in the callee, whatever value it has
339     // is the value that it had in the caller, so it can be carried
340     // straight through without bringing its validity into question.
341     //
342     // Because of the use of .raSearchStart, the stack will possibly be
343     // examined to locate a better return address after program string
344     // evaluation.  The stack will not be examined to locate a saved
345     // %ebp value, because these frames do not save (or use) %ebp.
346     //
347     // We also propagate %ebx through, as it is commonly unmodifed after
348     // calling simple forwarding functions in ntdll (that are this non-EBP
349     // using type). It's not clear that this is always correct, but it is
350     // important for some functions to get a correct walk.
351     //
352     // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
353     // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
354     // %ebp_new = %ebp_old
355     // %ebx_new = %ebx_old  // If available.
356     program_string = "$eip .raSearchStart ^ = "
357                      "$esp .raSearchStart 4 + =";
358     if (last_frame->context_validity & StackFrameX86::CONTEXT_VALID_EBX)
359       program_string += " $ebx $ebx =";
360     recover_ebp = false;
361   }
362 
363   // Check for alignment operators in the program string.  If alignment
364   // operators are found, then current %ebp must be valid and it is the only
365   // reliable data point that can be used for getting to the previous frame.
366   // E.g. the .raSearchStart calculation (above) is based on %esp and since
367   // %esp was aligned in the current frame (which is a lossy operation) the
368   // calculated value of .raSearchStart cannot be correct and should not be
369   // used.  Instead .raSearchStart must be calculated based on %ebp.
370   // The code that follows assumes that .raSearchStart is supposed to point
371   // at the saved return address (ebp + 4).
372   // For some more details on this topic, take a look at the following thread:
373   // https://groups.google.com/forum/#!topic/google-breakpad-dev/ZP1FA9B1JjM
374   if ((StackFrameX86::CONTEXT_VALID_EBP & last_frame->context_validity) != 0 &&
375       program_string.find('@') != string::npos) {
376     raSearchStart = last_frame->context.ebp + 4;
377   }
378 
379   // The difference between raSearch and raSearchStart is unknown,
380   // but making them the same seems to work well in practice.
381   dictionary[".raSearchStart"] = raSearchStart;
382   dictionary[".raSearch"] = raSearchStart;
383 
384   // Now crank it out, making sure that the program string set at least the
385   // two required variables.
386   PostfixEvaluator<uint32_t> evaluator =
387       PostfixEvaluator<uint32_t>(&dictionary, memory_);
388   PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity;
389   if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
390       dictionary_validity.find("$eip") == dictionary_validity.end() ||
391       dictionary_validity.find("$esp") == dictionary_validity.end()) {
392     // Program string evaluation failed. It may be that %eip is not somewhere
393     // with stack frame info, and %ebp is pointing to non-stack memory, so
394     // our evaluation couldn't succeed. We'll scan the stack for a return
395     // address. This can happen if the stack is in a module for which
396     // we don't have symbols, and that module is compiled without a
397     // frame pointer.
398     uint32_t location_start = last_frame->context.esp;
399     uint32_t location, eip;
400     if (!stack_scan_allowed ||
401         !ScanForReturnAddress(location_start, &location, &eip,
402                               /*is_context_frame=*/last_frame->trust ==
403                                   StackFrame::FRAME_TRUST_CONTEXT)) {
404       // if we can't find an instruction pointer even with stack scanning,
405       // give up.
406       return NULL;
407     }
408 
409     // This seems like a reasonable return address. Since program string
410     // evaluation failed, use it and set %esp to the location above the
411     // one where the return address was found.
412     dictionary["$eip"] = eip;
413     dictionary["$esp"] = location + 4;
414     trust = StackFrame::FRAME_TRUST_SCAN;
415   }
416 
417   // Since this stack frame did not use %ebp in a traditional way,
418   // locating the return address isn't entirely deterministic. In that
419   // case, the stack can be scanned to locate the return address.
420   //
421   // However, if program string evaluation resulted in both %eip and
422   // %ebp values of 0, trust that the end of the stack has been
423   // reached and don't scan for anything else.
424   if (dictionary["$eip"] != 0 || dictionary["$ebp"] != 0) {
425     int offset = 0;
426 
427     // This scan can only be done if a CodeModules object is available, to
428     // check that candidate return addresses are in fact inside a module.
429     //
430     // TODO(mmentovai): This ignores dynamically-generated code.  One possible
431     // solution is to check the minidump's memory map to see if the candidate
432     // %eip value comes from a mapped executable page, although this would
433     // require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
434     // client doesn't currently write (it would need to call MiniDumpWriteDump
435     // with the MiniDumpWithFullMemoryInfo type bit set).  Even given this
436     // ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
437     // an independent execute privilege on memory pages.
438 
439     uint32_t eip = dictionary["$eip"];
440     if (modules_ && !modules_->GetModuleForAddress(eip)) {
441       // The instruction pointer at .raSearchStart was invalid, so start
442       // looking one 32-bit word above that location.
443       uint32_t location_start = dictionary[".raSearchStart"] + 4;
444       uint32_t location;
445       if (stack_scan_allowed &&
446           ScanForReturnAddress(location_start, &location, &eip,
447                                /*is_context_frame=*/last_frame->trust ==
448                                    StackFrame::FRAME_TRUST_CONTEXT)) {
449         // This is a better return address that what program string
450         // evaluation found.  Use it, and set %esp to the location above the
451         // one where the return address was found.
452         dictionary["$eip"] = eip;
453         dictionary["$esp"] = location + 4;
454         offset = location - location_start;
455         trust = StackFrame::FRAME_TRUST_CFI_SCAN;
456       }
457     }
458 
459     if (recover_ebp) {
460       // When trying to recover the previous value of the frame pointer (%ebp),
461       // start looking at the lowest possible address in the saved-register
462       // area, and look at the entire saved register area, increased by the
463       // size of |offset| to account for additional data that may be on the
464       // stack.  The scan is performed from the highest possible address to
465       // the lowest, because the expectation is that the function's prolog
466       // would have saved %ebp early.
467       uint32_t ebp = dictionary["$ebp"];
468 
469       // When a scan for return address is used, it is possible to skip one or
470       // more frames (when return address is not in a known module).  One
471       // indication for skipped frames is when the value of %ebp is lower than
472       // the location of the return address on the stack
473       bool has_skipped_frames =
474         (trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset);
475 
476       uint32_t value;  // throwaway variable to check pointer validity
477       if (has_skipped_frames || !memory_->GetMemoryAtAddress(ebp, &value)) {
478         int fp_search_bytes = last_frame_info->saved_register_size + offset;
479         uint32_t location_end = last_frame->context.esp +
480                                  last_frame_callee_parameter_size;
481 
482         for (uint32_t location = location_end + fp_search_bytes;
483              location >= location_end;
484              location -= 4) {
485           if (!memory_->GetMemoryAtAddress(location, &ebp))
486             break;
487 
488           if (memory_->GetMemoryAtAddress(ebp, &value)) {
489             // The candidate value is a pointer to the same memory region
490             // (the stack).  Prefer it as a recovered %ebp result.
491             dictionary["$ebp"] = ebp;
492             break;
493           }
494         }
495       }
496     }
497   }
498 
499   // Create a new stack frame (ownership will be transferred to the caller)
500   // and fill it in.
501   StackFrameX86* frame = new StackFrameX86();
502 
503   frame->trust = trust;
504   frame->context = last_frame->context;
505   frame->context.eip = dictionary["$eip"];
506   frame->context.esp = dictionary["$esp"];
507   frame->context.ebp = dictionary["$ebp"];
508   frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
509                                 StackFrameX86::CONTEXT_VALID_ESP |
510                                 StackFrameX86::CONTEXT_VALID_EBP;
511 
512   // These are nonvolatile (callee-save) registers, and the program string
513   // may have filled them in.
514   if (dictionary_validity.find("$ebx") != dictionary_validity.end()) {
515     frame->context.ebx = dictionary["$ebx"];
516     frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
517   }
518   if (dictionary_validity.find("$esi") != dictionary_validity.end()) {
519     frame->context.esi = dictionary["$esi"];
520     frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
521   }
522   if (dictionary_validity.find("$edi") != dictionary_validity.end()) {
523     frame->context.edi = dictionary["$edi"];
524     frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
525   }
526 
527   return frame;
528 }
529 
GetCallerByCFIFrameInfo(const vector<StackFrame * > & frames,CFIFrameInfo * cfi_frame_info)530 StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo(
531     const vector<StackFrame*>& frames,
532     CFIFrameInfo* cfi_frame_info) {
533   // The last frame can never be inline. A sequence of inline frames always
534   // finishes with a conventional frame.
535   assert(frames.back()->trust != StackFrame::FRAME_TRUST_INLINE);
536   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
537   last_frame->cfi_frame_info = cfi_frame_info;
538 
539   scoped_ptr<StackFrameX86> frame(new StackFrameX86());
540   if (!cfi_walker_
541       .FindCallerRegisters(*memory_, *cfi_frame_info,
542                            last_frame->context, last_frame->context_validity,
543                            &frame->context, &frame->context_validity))
544     return NULL;
545 
546   // Make sure we recovered all the essentials.
547   static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP
548                                  | StackFrameX86::CONTEXT_VALID_ESP
549                                  | StackFrameX86::CONTEXT_VALID_EBP);
550   if ((frame->context_validity & essentials) != essentials)
551     return NULL;
552 
553   frame->trust = StackFrame::FRAME_TRUST_CFI;
554 
555   return frame.release();
556 }
557 
GetCallerByEBPAtBase(const vector<StackFrame * > & frames,bool stack_scan_allowed)558 StackFrameX86* StackwalkerX86::GetCallerByEBPAtBase(
559     const vector<StackFrame*>& frames,
560     bool stack_scan_allowed) {
561   StackFrame::FrameTrust trust;
562   // The last frame can never be inline. A sequence of inline frames always
563   // finishes with a conventional frame.
564   assert(frames.back()->trust != StackFrame::FRAME_TRUST_INLINE);
565   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
566   uint32_t last_esp = last_frame->context.esp;
567   uint32_t last_ebp = last_frame->context.ebp;
568 
569   // Assume that the standard %ebp-using x86 calling convention is in
570   // use.
571   //
572   // The typical x86 calling convention, when frame pointers are present,
573   // is for the calling procedure to use CALL, which pushes the return
574   // address onto the stack and sets the instruction pointer (%eip) to
575   // the entry point of the called routine.  The called routine then
576   // PUSHes the calling routine's frame pointer (%ebp) onto the stack
577   // before copying the stack pointer (%esp) to the frame pointer (%ebp).
578   // Therefore, the calling procedure's frame pointer is always available
579   // by dereferencing the called procedure's frame pointer, and the return
580   // address is always available at the memory location immediately above
581   // the address pointed to by the called procedure's frame pointer.  The
582   // calling procedure's stack pointer (%esp) is 8 higher than the value
583   // of the called procedure's frame pointer at the time the calling
584   // procedure made the CALL: 4 bytes for the return address pushed by the
585   // CALL itself, and 4 bytes for the callee's PUSH of the caller's frame
586   // pointer.
587   //
588   // %eip_new = *(%ebp_old + 4)
589   // %esp_new = %ebp_old + 8
590   // %ebp_new = *(%ebp_old)
591 
592   uint32_t caller_eip, caller_esp, caller_ebp;
593 
594   if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) &&
595       memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) {
596     caller_esp = last_ebp + 8;
597     trust = StackFrame::FRAME_TRUST_FP;
598   } else {
599     // We couldn't read the memory %ebp refers to. It may be that %ebp
600     // is pointing to non-stack memory. We'll scan the stack for a
601     // return address. This can happen if last_frame is executing code
602     // for a module for which we don't have symbols, and that module
603     // is compiled without a frame pointer.
604     if (!stack_scan_allowed ||
605         !ScanForReturnAddress(last_esp, &caller_esp, &caller_eip,
606                               /*is_context_frame=*/last_frame->trust ==
607                                   StackFrame::FRAME_TRUST_CONTEXT)) {
608       // if we can't find an instruction pointer even with stack scanning,
609       // give up.
610       return NULL;
611     }
612 
613     // ScanForReturnAddress found a reasonable return address. Advance %esp to
614     // the location immediately above the one where the return address was
615     // found.
616     caller_esp += 4;
617     // Try to restore the %ebp chain.  The caller %ebp should be stored at a
618     // location immediately below the one where the return address was found.
619     // A valid caller %ebp must be greater than the address where it is stored
620     // and the gap between the two adjacent frames should be reasonable.
621     uint32_t restored_ebp_chain = caller_esp - 8;
622     if (!memory_->GetMemoryAtAddress(restored_ebp_chain, &caller_ebp) ||
623         caller_ebp <= restored_ebp_chain ||
624         caller_ebp - restored_ebp_chain > kMaxReasonableGapBetweenFrames) {
625       // The restored %ebp chain doesn't appear to be valid.
626       // Assume that %ebp is unchanged.
627       caller_ebp = last_ebp;
628     }
629 
630     trust = StackFrame::FRAME_TRUST_SCAN;
631   }
632 
633   // Create a new stack frame (ownership will be transferred to the caller)
634   // and fill it in.
635   StackFrameX86* frame = new StackFrameX86();
636 
637   frame->trust = trust;
638   frame->context = last_frame->context;
639   frame->context.eip = caller_eip;
640   frame->context.esp = caller_esp;
641   frame->context.ebp = caller_ebp;
642   frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
643                             StackFrameX86::CONTEXT_VALID_ESP |
644                             StackFrameX86::CONTEXT_VALID_EBP;
645 
646   return frame;
647 }
648 
GetCallerFrame(const CallStack * stack,bool stack_scan_allowed)649 StackFrame* StackwalkerX86::GetCallerFrame(const CallStack* stack,
650                                            bool stack_scan_allowed) {
651   if (!memory_ || !stack) {
652     BPLOG(ERROR) << "Can't get caller frame without memory or stack";
653     return NULL;
654   }
655 
656   const vector<StackFrame*>& frames = *stack->frames();
657   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
658   // The last frame can never be inline. A sequence of inline frames always
659   // finishes with a conventional frame.
660   assert(last_frame->trust != StackFrame::FRAME_TRUST_INLINE);
661   scoped_ptr<StackFrameX86> new_frame;
662 
663   // If the resolver has Windows stack walking information, use that.
664   WindowsFrameInfo* windows_frame_info
665       = frame_symbolizer_->FindWindowsFrameInfo(last_frame);
666   if (windows_frame_info)
667     new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info,
668                                                 stack_scan_allowed));
669 
670   // If the resolver has DWARF CFI information, use that.
671   if (!new_frame.get()) {
672     CFIFrameInfo* cfi_frame_info =
673         frame_symbolizer_->FindCFIFrameInfo(last_frame);
674     if (cfi_frame_info)
675       new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info));
676   }
677 
678   // Otherwise, hope that the program was using a traditional frame structure.
679   if (!new_frame.get())
680     new_frame.reset(GetCallerByEBPAtBase(frames, stack_scan_allowed));
681 
682   // If nothing worked, tell the caller.
683   if (!new_frame.get())
684     return NULL;
685 
686   // Should we terminate the stack walk? (end-of-stack or broken invariant)
687   if (TerminateWalk(new_frame->context.eip, new_frame->context.esp,
688                     last_frame->context.esp,
689                     /*first_unwind=*/last_frame->trust ==
690                         StackFrame::FRAME_TRUST_CONTEXT)) {
691     return NULL;
692   }
693 
694   // new_frame->context.eip is the return address, which is the instruction
695   // after the CALL that caused us to arrive at the callee. Set
696   // new_frame->instruction to one less than that, so it points within the
697   // CALL instruction. See StackFrame::instruction for details, and
698   // StackFrameAMD64::ReturnAddress.
699   new_frame->instruction = new_frame->context.eip - 1;
700 
701   return new_frame.release();
702 }
703 
704 }  // namespace google_breakpad
705