xref: /aosp_15_r20/external/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
12 
13 namespace Eigen {
14 
15 // MakePointer class is used as a container of the address space of the pointer
16 // on the host and on the device. From the host side it generates the T* pointer
17 // and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to
18 // T* m_data on the host. It is always called on the device.
19 // Specialisation of MakePointer class for creating the sycl buffer with
20 // map_allocator.
21 template<typename T> struct MakePointer {
22   typedef T* Type;
23   typedef const T* ConstType;
24 };
25 
26 template <typename T>
constCast(const T * data)27 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T* constCast(const T* data) {
28   return const_cast<T*>(data);
29 }
30 
31 // The StorageMemory class is a container of the device specific pointer
32 // used for refering to a Pointer on TensorEvaluator class. While the TensorExpression
33 // is a device-agnostic type and need MakePointer class for type conversion,
34 // the TensorEvaluator class can be specialized for a device, hence it is possible
35 // to construct different types of temproray storage memory in TensorEvaluator
36 // for different devices by specializing the following StorageMemory class.
37 template<typename T, typename device> struct StorageMemory: MakePointer <T> {};
38 
39 namespace internal{
40 template<typename A, typename B> struct Pointer_type_promotion {
41   static const bool val=false;
42 };
43 template<typename A> struct Pointer_type_promotion<A, A> {
44   static const bool val = true;
45 };
46 template<typename A, typename B> struct TypeConversion {
47   typedef A* type;
48 };
49 }
50 
51 
52 template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap;
53 template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor;
54 template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize;
55 template<typename PlainObjectType> class TensorRef;
56 template<typename Derived, int AccessLevel> class TensorBase;
57 
58 template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp;
59 template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
60 template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
61 template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp;
62 template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
63 template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp;
64 template<typename XprType> class TensorIndexTupleOp;
65 template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
66 template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
67 template<typename Dimensions, typename LeftXprType, typename RightXprType, typename OutputKernelType> class TensorContractionOp;
68 template<typename TargetType, typename XprType> class TensorConversionOp;
69 template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
70 template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
71 template<typename PatchDim, typename XprType> class TensorPatchOp;
72 template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
73 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp;
74 template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
75 template<DenseIndex DimId, typename XprType> class TensorChippingOp;
76 template<typename NewDimensions, typename XprType> class TensorReshapingOp;
77 template<typename XprType> class TensorLayoutSwapOp;
78 template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
79 template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
80 template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
81 template<typename Shuffle, typename XprType> class TensorShufflingOp;
82 template<typename Strides, typename XprType> class TensorStridingOp;
83 template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
84 template<typename Strides, typename XprType> class TensorInflationOp;
85 template<typename Generator, typename XprType> class TensorGeneratorOp;
86 template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
87 template<typename Op, typename XprType> class TensorScanOp;
88 template<typename Dims, typename XprType> class TensorTraceOp;
89 
90 template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp;
91 template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp;
92 
93 template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp;
94 template<typename XprType> class TensorForcedEvalOp;
95 
96 template<typename ExpressionType, typename DeviceType> class TensorDevice;
97 template<typename ExpressionType, typename DeviceType, typename DoneCallback> class TensorAsyncDevice;
98 template<typename Derived, typename Device> struct TensorEvaluator;
99 
100 struct NoOpOutputKernel;
101 
102 struct DefaultDevice;
103 struct ThreadPoolDevice;
104 struct GpuDevice;
105 struct SyclDevice;
106 
107 #ifdef EIGEN_USE_SYCL
108 
109 template <typename T> struct MakeSYCLPointer {
110   typedef Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T> Type;
111 };
112 
113 template <typename T>
114 EIGEN_STRONG_INLINE const Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T>&
115 constCast(const Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T>& data) {
116   return data;
117 }
118 
119 template <typename T>
120 struct StorageMemory<T, SyclDevice> : MakeSYCLPointer<T> {};
121 template <typename T>
122 struct StorageMemory<T, const SyclDevice> : StorageMemory<T, SyclDevice> {};
123 
124 namespace TensorSycl {
125 namespace internal{
126 template <typename Evaluator, typename Op> class GenericNondeterministicReducer;
127 }
128 }
129 #endif
130 
131 
132 enum FFTResultType {
133   RealPart = 0,
134   ImagPart = 1,
135   BothParts = 2
136 };
137 
138 enum FFTDirection {
139     FFT_FORWARD = 0,
140     FFT_REVERSE = 1
141 };
142 
143 
144 namespace internal {
145 
146 template <typename Device, typename Expression>
147 struct IsVectorizable {
148   static const bool value = TensorEvaluator<Expression, Device>::PacketAccess;
149 };
150 
151 template <typename Expression>
152 struct IsVectorizable<GpuDevice, Expression> {
153   static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess &&
154                             TensorEvaluator<Expression, GpuDevice>::IsAligned;
155 };
156 
157 // Tiled evaluation strategy.
158 enum TiledEvaluation {
159   Off = 0,    // tiled evaluation is not supported
160   On = 1,     // still work in progress (see TensorBlock.h)
161 };
162 
163 template <typename Device, typename Expression>
164 struct IsTileable {
165   // Check that block evaluation is supported and it's a preferred option (at
166   // least one sub-expression has much faster block evaluation, e.g.
167   // broadcasting).
168   static const bool BlockAccess =
169       TensorEvaluator<Expression, Device>::BlockAccess &&
170       TensorEvaluator<Expression, Device>::PreferBlockAccess;
171 
172   static const TiledEvaluation value =
173       BlockAccess ? TiledEvaluation::On : TiledEvaluation::Off;
174 };
175 
176 template <typename Expression, typename Device,
177           bool Vectorizable      = IsVectorizable<Device, Expression>::value,
178           TiledEvaluation Tiling = IsTileable<Device, Expression>::value>
179 class TensorExecutor;
180 
181 template <typename Expression, typename Device, typename DoneCallback,
182           bool Vectorizable = IsVectorizable<Device, Expression>::value,
183           TiledEvaluation Tiling = IsTileable<Device, Expression>::value>
184 class TensorAsyncExecutor;
185 
186 
187 }  // end namespace internal
188 
189 }  // end namespace Eigen
190 
191 #endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
192