xref: /aosp_15_r20/external/pytorch/test/jit/test_graph_rewrite_passes.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# Owner(s): ["oncall: jit"]
2
3import torch
4import torch._C
5from torch.testing import FileCheck
6from torch.testing._internal.jit_utils import JitTestCase
7
8
9class TestGraphRewritePasses(JitTestCase):
10    def test_fuse_linear(self):
11        class FunctionalLinear(torch.nn.Module):
12            def __init__(self, weight, bias):
13                super().__init__()
14                self.weight = weight
15                self.bias = bias
16
17            def forward(self, x):
18                res = torch.matmul(x, self.weight.t())
19                if self.bias is not None:
20                    res.add_(self.bias)
21                return res
22
23        x1 = torch.rand(3)
24        w1 = torch.rand(5, 3)
25        b1 = torch.rand(5)
26        for has_bias in [True, False]:
27            bias = b1 if has_bias else None
28            model = torch.jit.trace(FunctionalLinear(w1, bias), [x1])
29            for node in model.graph.nodes():
30                if node.kind() == "aten::matmul":
31                    source_range_1 = node.sourceRange()
32            torch._C._jit_pass_fuse_linear(model.graph)
33            for node in model.graph.nodes():
34                if node.kind() == "aten::linear":
35                    source_range_2 = node.sourceRange()
36            FileCheck().check("aten::linear").run(model.graph)
37            check_not = ["aten::matmul", "aten::addmm", "aten::add_", "aten::t("]
38            for cn in check_not:
39                FileCheck().check_not(cn).run(model.graph)
40            self.assertTrue(source_range_1 == source_range_2)
41            # make sure it runs
42            model(x1)
43
44        # check matmuls are not fused
45        class Matmul(torch.nn.Module):
46            def __init__(self, weight):
47                super().__init__()
48                self.weight = weight
49
50            def forward(self, x):
51                return torch.matmul(x, self.weight)
52
53        x = torch.rand(5, 6, 5)
54        w = torch.rand(5, 5, 100)
55        model = torch.jit.trace(Matmul(w), [x])
56        torch._C._jit_pass_fuse_linear(model.graph)
57        # check 3d matmul is not fused
58        FileCheck().check("aten::matmul").run(model.graph)
59        FileCheck().check_not("aten::linear").run(model.graph)
60        # make sure it runs
61        model(x)
62