1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 // An implementation of a 3-band FIR filter-bank with DCT modulation, similar to
12 // the proposed in "Multirate Signal Processing for Communication Systems" by
13 // Fredric J Harris.
14 //
15 // The idea is to take a heterodyne system and change the order of the
16 // components to get something which is efficient to implement digitally.
17 //
18 // It is possible to separate the filter using the noble identity as follows:
19 //
20 // H(z) = H0(z^3) + z^-1 * H1(z^3) + z^-2 * H2(z^3)
21 //
22 // This is used in the analysis stage to first downsample serial to parallel
23 // and then filter each branch with one of these polyphase decompositions of the
24 // lowpass prototype. Because each filter is only a modulation of the prototype,
25 // it is enough to multiply each coefficient by the respective cosine value to
26 // shift it to the desired band. But because the cosine period is 12 samples,
27 // it requires separating the prototype even further using the noble identity.
28 // After filtering and modulating for each band, the output of all filters is
29 // accumulated to get the downsampled bands.
30 //
31 // A similar logic can be applied to the synthesis stage.
32
33 #include "modules/audio_processing/three_band_filter_bank.h"
34
35 #include <array>
36
37 #include "rtc_base/checks.h"
38
39 namespace webrtc {
40 namespace {
41
42 // Factors to take into account when choosing `kFilterSize`:
43 // 1. Higher `kFilterSize`, means faster transition, which ensures less
44 // aliasing. This is especially important when there is non-linear
45 // processing between the splitting and merging.
46 // 2. The delay that this filter bank introduces is
47 // `kNumBands` * `kSparsity` * `kFilterSize` / 2, so it increases linearly
48 // with `kFilterSize`.
49 // 3. The computation complexity also increases linearly with `kFilterSize`.
50
51 // The Matlab code to generate these `kFilterCoeffs` is:
52 //
53 // N = kNumBands * kSparsity * kFilterSize - 1;
54 // h = fir1(N, 1 / (2 * kNumBands), kaiser(N + 1, 3.5));
55 // reshape(h, kNumBands * kSparsity, kFilterSize);
56 //
57 // The code below uses the values of kFilterSize, kNumBands and kSparsity
58 // specified in the header.
59
60 // Because the total bandwidth of the lower and higher band is double the middle
61 // one (because of the spectrum parity), the low-pass prototype is half the
62 // bandwidth of 1 / (2 * `kNumBands`) and is then shifted with cosine modulation
63 // to the right places.
64 // A Kaiser window is used because of its flexibility and the alpha is set to
65 // 3.5, since that sets a stop band attenuation of 40dB ensuring a fast
66 // transition.
67
68 constexpr int kSubSampling = ThreeBandFilterBank::kNumBands;
69 constexpr int kDctSize = ThreeBandFilterBank::kNumBands;
70 static_assert(ThreeBandFilterBank::kNumBands *
71 ThreeBandFilterBank::kSplitBandSize ==
72 ThreeBandFilterBank::kFullBandSize,
73 "The full band must be split in equally sized subbands");
74
75 const float
76 kFilterCoeffs[ThreeBandFilterBank::kNumNonZeroFilters][kFilterSize] = {
77 {-0.00047749f, -0.00496888f, +0.16547118f, +0.00425496f},
78 {-0.00173287f, -0.01585778f, +0.14989004f, +0.00994113f},
79 {-0.00304815f, -0.02536082f, +0.12154542f, +0.01157993f},
80 {-0.00346946f, -0.02587886f, +0.04760441f, +0.00607594f},
81 {-0.00154717f, -0.01136076f, +0.01387458f, +0.00186353f},
82 {+0.00186353f, +0.01387458f, -0.01136076f, -0.00154717f},
83 {+0.00607594f, +0.04760441f, -0.02587886f, -0.00346946f},
84 {+0.00983212f, +0.08543175f, -0.02982767f, -0.00383509f},
85 {+0.00994113f, +0.14989004f, -0.01585778f, -0.00173287f},
86 {+0.00425496f, +0.16547118f, -0.00496888f, -0.00047749f}};
87
88 constexpr int kZeroFilterIndex1 = 3;
89 constexpr int kZeroFilterIndex2 = 9;
90
91 const float kDctModulation[ThreeBandFilterBank::kNumNonZeroFilters][kDctSize] =
92 {{2.f, 2.f, 2.f},
93 {1.73205077f, 0.f, -1.73205077f},
94 {1.f, -2.f, 1.f},
95 {-1.f, 2.f, -1.f},
96 {-1.73205077f, 0.f, 1.73205077f},
97 {-2.f, -2.f, -2.f},
98 {-1.73205077f, 0.f, 1.73205077f},
99 {-1.f, 2.f, -1.f},
100 {1.f, -2.f, 1.f},
101 {1.73205077f, 0.f, -1.73205077f}};
102
103 // Filters the input signal `in` with the filter `filter` using a shift by
104 // `in_shift`, taking into account the previous state.
FilterCore(rtc::ArrayView<const float,kFilterSize> filter,rtc::ArrayView<const float,ThreeBandFilterBank::kSplitBandSize> in,const int in_shift,rtc::ArrayView<float,ThreeBandFilterBank::kSplitBandSize> out,rtc::ArrayView<float,kMemorySize> state)105 void FilterCore(
106 rtc::ArrayView<const float, kFilterSize> filter,
107 rtc::ArrayView<const float, ThreeBandFilterBank::kSplitBandSize> in,
108 const int in_shift,
109 rtc::ArrayView<float, ThreeBandFilterBank::kSplitBandSize> out,
110 rtc::ArrayView<float, kMemorySize> state) {
111 constexpr int kMaxInShift = (kStride - 1);
112 RTC_DCHECK_GE(in_shift, 0);
113 RTC_DCHECK_LE(in_shift, kMaxInShift);
114 std::fill(out.begin(), out.end(), 0.f);
115
116 for (int k = 0; k < in_shift; ++k) {
117 for (int i = 0, j = kMemorySize + k - in_shift; i < kFilterSize;
118 ++i, j -= kStride) {
119 out[k] += state[j] * filter[i];
120 }
121 }
122
123 for (int k = in_shift, shift = 0; k < kFilterSize * kStride; ++k, ++shift) {
124 RTC_DCHECK_GE(shift, 0);
125 const int loop_limit = std::min(kFilterSize, 1 + (shift >> kStrideLog2));
126 for (int i = 0, j = shift; i < loop_limit; ++i, j -= kStride) {
127 out[k] += in[j] * filter[i];
128 }
129 for (int i = loop_limit, j = kMemorySize + shift - loop_limit * kStride;
130 i < kFilterSize; ++i, j -= kStride) {
131 out[k] += state[j] * filter[i];
132 }
133 }
134
135 for (int k = kFilterSize * kStride, shift = kFilterSize * kStride - in_shift;
136 k < ThreeBandFilterBank::kSplitBandSize; ++k, ++shift) {
137 for (int i = 0, j = shift; i < kFilterSize; ++i, j -= kStride) {
138 out[k] += in[j] * filter[i];
139 }
140 }
141
142 // Update current state.
143 std::copy(in.begin() + ThreeBandFilterBank::kSplitBandSize - kMemorySize,
144 in.end(), state.begin());
145 }
146
147 } // namespace
148
149 // Because the low-pass filter prototype has half bandwidth it is possible to
150 // use a DCT to shift it in both directions at the same time, to the center
151 // frequencies [1 / 12, 3 / 12, 5 / 12].
ThreeBandFilterBank()152 ThreeBandFilterBank::ThreeBandFilterBank() {
153 RTC_DCHECK_EQ(state_analysis_.size(), kNumNonZeroFilters);
154 RTC_DCHECK_EQ(state_synthesis_.size(), kNumNonZeroFilters);
155 for (int k = 0; k < kNumNonZeroFilters; ++k) {
156 RTC_DCHECK_EQ(state_analysis_[k].size(), kMemorySize);
157 RTC_DCHECK_EQ(state_synthesis_[k].size(), kMemorySize);
158
159 state_analysis_[k].fill(0.f);
160 state_synthesis_[k].fill(0.f);
161 }
162 }
163
164 ThreeBandFilterBank::~ThreeBandFilterBank() = default;
165
166 // The analysis can be separated in these steps:
167 // 1. Serial to parallel downsampling by a factor of `kNumBands`.
168 // 2. Filtering of `kSparsity` different delayed signals with polyphase
169 // decomposition of the low-pass prototype filter and upsampled by a factor
170 // of `kSparsity`.
171 // 3. Modulating with cosines and accumulating to get the desired band.
Analysis(rtc::ArrayView<const float,kFullBandSize> in,rtc::ArrayView<const rtc::ArrayView<float>,ThreeBandFilterBank::kNumBands> out)172 void ThreeBandFilterBank::Analysis(
173 rtc::ArrayView<const float, kFullBandSize> in,
174 rtc::ArrayView<const rtc::ArrayView<float>, ThreeBandFilterBank::kNumBands>
175 out) {
176 // Initialize the output to zero.
177 for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
178 RTC_DCHECK_EQ(out[band].size(), kSplitBandSize);
179 std::fill(out[band].begin(), out[band].end(), 0);
180 }
181
182 for (int downsampling_index = 0; downsampling_index < kSubSampling;
183 ++downsampling_index) {
184 // Downsample to form the filter input.
185 std::array<float, kSplitBandSize> in_subsampled;
186 for (int k = 0; k < kSplitBandSize; ++k) {
187 in_subsampled[k] =
188 in[(kSubSampling - 1) - downsampling_index + kSubSampling * k];
189 }
190
191 for (int in_shift = 0; in_shift < kStride; ++in_shift) {
192 // Choose filter, skip zero filters.
193 const int index = downsampling_index + in_shift * kSubSampling;
194 if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) {
195 continue;
196 }
197 const int filter_index =
198 index < kZeroFilterIndex1
199 ? index
200 : (index < kZeroFilterIndex2 ? index - 1 : index - 2);
201
202 rtc::ArrayView<const float, kFilterSize> filter(
203 kFilterCoeffs[filter_index]);
204 rtc::ArrayView<const float, kDctSize> dct_modulation(
205 kDctModulation[filter_index]);
206 rtc::ArrayView<float, kMemorySize> state(state_analysis_[filter_index]);
207
208 // Filter.
209 std::array<float, kSplitBandSize> out_subsampled;
210 FilterCore(filter, in_subsampled, in_shift, out_subsampled, state);
211
212 // Band and modulate the output.
213 for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
214 float* out_band = out[band].data();
215 for (int n = 0; n < kSplitBandSize; ++n) {
216 out_band[n] += dct_modulation[band] * out_subsampled[n];
217 }
218 }
219 }
220 }
221 }
222
223 // The synthesis can be separated in these steps:
224 // 1. Modulating with cosines.
225 // 2. Filtering each one with a polyphase decomposition of the low-pass
226 // prototype filter upsampled by a factor of `kSparsity` and accumulating
227 // `kSparsity` signals with different delays.
228 // 3. Parallel to serial upsampling by a factor of `kNumBands`.
Synthesis(rtc::ArrayView<const rtc::ArrayView<float>,ThreeBandFilterBank::kNumBands> in,rtc::ArrayView<float,kFullBandSize> out)229 void ThreeBandFilterBank::Synthesis(
230 rtc::ArrayView<const rtc::ArrayView<float>, ThreeBandFilterBank::kNumBands>
231 in,
232 rtc::ArrayView<float, kFullBandSize> out) {
233 std::fill(out.begin(), out.end(), 0);
234 for (int upsampling_index = 0; upsampling_index < kSubSampling;
235 ++upsampling_index) {
236 for (int in_shift = 0; in_shift < kStride; ++in_shift) {
237 // Choose filter, skip zero filters.
238 const int index = upsampling_index + in_shift * kSubSampling;
239 if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) {
240 continue;
241 }
242 const int filter_index =
243 index < kZeroFilterIndex1
244 ? index
245 : (index < kZeroFilterIndex2 ? index - 1 : index - 2);
246
247 rtc::ArrayView<const float, kFilterSize> filter(
248 kFilterCoeffs[filter_index]);
249 rtc::ArrayView<const float, kDctSize> dct_modulation(
250 kDctModulation[filter_index]);
251 rtc::ArrayView<float, kMemorySize> state(state_synthesis_[filter_index]);
252
253 // Prepare filter input by modulating the banded input.
254 std::array<float, kSplitBandSize> in_subsampled;
255 std::fill(in_subsampled.begin(), in_subsampled.end(), 0.f);
256 for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
257 RTC_DCHECK_EQ(in[band].size(), kSplitBandSize);
258 const float* in_band = in[band].data();
259 for (int n = 0; n < kSplitBandSize; ++n) {
260 in_subsampled[n] += dct_modulation[band] * in_band[n];
261 }
262 }
263
264 // Filter.
265 std::array<float, kSplitBandSize> out_subsampled;
266 FilterCore(filter, in_subsampled, in_shift, out_subsampled, state);
267
268 // Upsample.
269 constexpr float kUpsamplingScaling = kSubSampling;
270 for (int k = 0; k < kSplitBandSize; ++k) {
271 out[upsampling_index + kSubSampling * k] +=
272 kUpsamplingScaling * out_subsampled[k];
273 }
274 }
275 }
276 }
277
278 } // namespace webrtc
279