1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.math3.stat.regression;
18 
19 import org.apache.commons.math3.exception.MathIllegalArgumentException;
20 import org.apache.commons.math3.exception.NoDataException;
21 
22 /**
23  * An interface for regression models allowing for dynamic updating of the data.
24  * That is, the entire data set need not be loaded into memory. As observations
25  * become available, they can be added to the regression  model and an updated
26  * estimate regression statistics can be calculated.
27  *
28  * @since 3.0
29  */
30 public interface UpdatingMultipleLinearRegression {
31 
32     /**
33      * Returns true if a constant has been included false otherwise.
34      *
35      * @return true if constant exists, false otherwise
36      */
hasIntercept()37     boolean hasIntercept();
38 
39     /**
40      * Returns the number of observations added to the regression model.
41      *
42      * @return Number of observations
43      */
getN()44     long getN();
45 
46     /**
47      * Adds one observation to the regression model.
48      *
49      * @param x the independent variables which form the design matrix
50      * @param y the dependent or response variable
51      * @throws ModelSpecificationException if the length of {@code x} does not equal
52      * the number of independent variables in the model
53      */
addObservation(double[] x, double y)54     void addObservation(double[] x, double y) throws ModelSpecificationException;
55 
56     /**
57      * Adds a series of observations to the regression model. The lengths of
58      * x and y must be the same and x must be rectangular.
59      *
60      * @param x a series of observations on the independent variables
61      * @param y a series of observations on the dependent variable
62      * The length of x and y must be the same
63      * @throws ModelSpecificationException if {@code x} is not rectangular, does not match
64      * the length of {@code y} or does not contain sufficient data to estimate the model
65      */
addObservations(double[][] x, double[] y)66     void addObservations(double[][] x, double[] y) throws ModelSpecificationException;
67 
68     /**
69      * Clears internal buffers and resets the regression model. This means all
70      * data and derived values are initialized
71      */
clear()72     void clear();
73 
74 
75     /**
76      * Performs a regression on data present in buffers and outputs a RegressionResults object
77      * @return RegressionResults acts as a container of regression output
78      * @throws ModelSpecificationException if the model is not correctly specified
79      * @throws NoDataException if there is not sufficient data in the model to
80      * estimate the regression parameters
81      */
regress()82     RegressionResults regress() throws ModelSpecificationException, NoDataException;
83 
84     /**
85      * Performs a regression on data present in buffers including only regressors
86      * indexed in variablesToInclude and outputs a RegressionResults object
87      * @param variablesToInclude an array of indices of regressors to include
88      * @return RegressionResults acts as a container of regression output
89      * @throws ModelSpecificationException if the model is not correctly specified
90      * @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length
91      */
regress(int[] variablesToInclude)92     RegressionResults regress(int[] variablesToInclude) throws ModelSpecificationException, MathIllegalArgumentException;
93 }
94