1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package pprof writes runtime profiling data in the format expected
6// by the pprof visualization tool.
7//
8// # Profiling a Go program
9//
10// The first step to profiling a Go program is to enable profiling.
11// Support for profiling benchmarks built with the standard testing
12// package is built into go test. For example, the following command
13// runs benchmarks in the current directory and writes the CPU and
14// memory profiles to cpu.prof and mem.prof:
15//
16//	go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
17//
18// To add equivalent profiling support to a standalone program, add
19// code like the following to your main function:
20//
21//	var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
22//	var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
23//
24//	func main() {
25//	    flag.Parse()
26//	    if *cpuprofile != "" {
27//	        f, err := os.Create(*cpuprofile)
28//	        if err != nil {
29//	            log.Fatal("could not create CPU profile: ", err)
30//	        }
31//	        defer f.Close() // error handling omitted for example
32//	        if err := pprof.StartCPUProfile(f); err != nil {
33//	            log.Fatal("could not start CPU profile: ", err)
34//	        }
35//	        defer pprof.StopCPUProfile()
36//	    }
37//
38//	    // ... rest of the program ...
39//
40//	    if *memprofile != "" {
41//	        f, err := os.Create(*memprofile)
42//	        if err != nil {
43//	            log.Fatal("could not create memory profile: ", err)
44//	        }
45//	        defer f.Close() // error handling omitted for example
46//	        runtime.GC() // get up-to-date statistics
47//	        if err := pprof.WriteHeapProfile(f); err != nil {
48//	            log.Fatal("could not write memory profile: ", err)
49//	        }
50//	    }
51//	}
52//
53// There is also a standard HTTP interface to profiling data. Adding
54// the following line will install handlers under the /debug/pprof/
55// URL to download live profiles:
56//
57//	import _ "net/http/pprof"
58//
59// See the net/http/pprof package for more details.
60//
61// Profiles can then be visualized with the pprof tool:
62//
63//	go tool pprof cpu.prof
64//
65// There are many commands available from the pprof command line.
66// Commonly used commands include "top", which prints a summary of the
67// top program hot-spots, and "web", which opens an interactive graph
68// of hot-spots and their call graphs. Use "help" for information on
69// all pprof commands.
70//
71// For more information about pprof, see
72// https://github.com/google/pprof/blob/main/doc/README.md.
73package pprof
74
75import (
76	"bufio"
77	"cmp"
78	"fmt"
79	"internal/abi"
80	"internal/profilerecord"
81	"io"
82	"runtime"
83	"slices"
84	"sort"
85	"strings"
86	"sync"
87	"text/tabwriter"
88	"time"
89	"unsafe"
90)
91
92// BUG(rsc): Profiles are only as good as the kernel support used to generate them.
93// See https://golang.org/issue/13841 for details about known problems.
94
95// A Profile is a collection of stack traces showing the call sequences
96// that led to instances of a particular event, such as allocation.
97// Packages can create and maintain their own profiles; the most common
98// use is for tracking resources that must be explicitly closed, such as files
99// or network connections.
100//
101// A Profile's methods can be called from multiple goroutines simultaneously.
102//
103// Each Profile has a unique name. A few profiles are predefined:
104//
105//	goroutine    - stack traces of all current goroutines
106//	heap         - a sampling of memory allocations of live objects
107//	allocs       - a sampling of all past memory allocations
108//	threadcreate - stack traces that led to the creation of new OS threads
109//	block        - stack traces that led to blocking on synchronization primitives
110//	mutex        - stack traces of holders of contended mutexes
111//
112// These predefined profiles maintain themselves and panic on an explicit
113// [Profile.Add] or [Profile.Remove] method call.
114//
115// The CPU profile is not available as a Profile. It has a special API,
116// the [StartCPUProfile] and [StopCPUProfile] functions, because it streams
117// output to a writer during profiling.
118//
119// # Heap profile
120//
121// The heap profile reports statistics as of the most recently completed
122// garbage collection; it elides more recent allocation to avoid skewing
123// the profile away from live data and toward garbage.
124// If there has been no garbage collection at all, the heap profile reports
125// all known allocations. This exception helps mainly in programs running
126// without garbage collection enabled, usually for debugging purposes.
127//
128// The heap profile tracks both the allocation sites for all live objects in
129// the application memory and for all objects allocated since the program start.
130// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects
131// flags select which to display, defaulting to -inuse_space (live objects,
132// scaled by size).
133//
134// # Allocs profile
135//
136// The allocs profile is the same as the heap profile but changes the default
137// pprof display to -alloc_space, the total number of bytes allocated since
138// the program began (including garbage-collected bytes).
139//
140// # Block profile
141//
142// The block profile tracks time spent blocked on synchronization primitives,
143// such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and
144// channel send/receive/select.
145//
146// Stack traces correspond to the location that blocked (for example,
147// [sync.Mutex.Lock]).
148//
149// Sample values correspond to cumulative time spent blocked at that stack
150// trace, subject to time-based sampling specified by
151// [runtime.SetBlockProfileRate].
152//
153// # Mutex profile
154//
155// The mutex profile tracks contention on mutexes, such as [sync.Mutex],
156// [sync.RWMutex], and runtime-internal locks.
157//
158// Stack traces correspond to the end of the critical section causing
159// contention. For example, a lock held for a long time while other goroutines
160// are waiting to acquire the lock will report contention when the lock is
161// finally unlocked (that is, at [sync.Mutex.Unlock]).
162//
163// Sample values correspond to the approximate cumulative time other goroutines
164// spent blocked waiting for the lock, subject to event-based sampling
165// specified by [runtime.SetMutexProfileFraction]. For example, if a caller
166// holds a lock for 1s while 5 other goroutines are waiting for the entire
167// second to acquire the lock, its unlock call stack will report 5s of
168// contention.
169//
170// Runtime-internal locks are always reported at the location
171// "runtime._LostContendedRuntimeLock". More detailed stack traces for
172// runtime-internal locks can be obtained by setting
173// `GODEBUG=runtimecontentionstacks=1` (see package [runtime] docs for
174// caveats).
175type Profile struct {
176	name  string
177	mu    sync.Mutex
178	m     map[any][]uintptr
179	count func() int
180	write func(io.Writer, int) error
181}
182
183// profiles records all registered profiles.
184var profiles struct {
185	mu sync.Mutex
186	m  map[string]*Profile
187}
188
189var goroutineProfile = &Profile{
190	name:  "goroutine",
191	count: countGoroutine,
192	write: writeGoroutine,
193}
194
195var threadcreateProfile = &Profile{
196	name:  "threadcreate",
197	count: countThreadCreate,
198	write: writeThreadCreate,
199}
200
201var heapProfile = &Profile{
202	name:  "heap",
203	count: countHeap,
204	write: writeHeap,
205}
206
207var allocsProfile = &Profile{
208	name:  "allocs",
209	count: countHeap, // identical to heap profile
210	write: writeAlloc,
211}
212
213var blockProfile = &Profile{
214	name:  "block",
215	count: countBlock,
216	write: writeBlock,
217}
218
219var mutexProfile = &Profile{
220	name:  "mutex",
221	count: countMutex,
222	write: writeMutex,
223}
224
225func lockProfiles() {
226	profiles.mu.Lock()
227	if profiles.m == nil {
228		// Initial built-in profiles.
229		profiles.m = map[string]*Profile{
230			"goroutine":    goroutineProfile,
231			"threadcreate": threadcreateProfile,
232			"heap":         heapProfile,
233			"allocs":       allocsProfile,
234			"block":        blockProfile,
235			"mutex":        mutexProfile,
236		}
237	}
238}
239
240func unlockProfiles() {
241	profiles.mu.Unlock()
242}
243
244// NewProfile creates a new profile with the given name.
245// If a profile with that name already exists, NewProfile panics.
246// The convention is to use a 'import/path.' prefix to create
247// separate name spaces for each package.
248// For compatibility with various tools that read pprof data,
249// profile names should not contain spaces.
250func NewProfile(name string) *Profile {
251	lockProfiles()
252	defer unlockProfiles()
253	if name == "" {
254		panic("pprof: NewProfile with empty name")
255	}
256	if profiles.m[name] != nil {
257		panic("pprof: NewProfile name already in use: " + name)
258	}
259	p := &Profile{
260		name: name,
261		m:    map[any][]uintptr{},
262	}
263	profiles.m[name] = p
264	return p
265}
266
267// Lookup returns the profile with the given name, or nil if no such profile exists.
268func Lookup(name string) *Profile {
269	lockProfiles()
270	defer unlockProfiles()
271	return profiles.m[name]
272}
273
274// Profiles returns a slice of all the known profiles, sorted by name.
275func Profiles() []*Profile {
276	lockProfiles()
277	defer unlockProfiles()
278
279	all := make([]*Profile, 0, len(profiles.m))
280	for _, p := range profiles.m {
281		all = append(all, p)
282	}
283
284	slices.SortFunc(all, func(a, b *Profile) int {
285		return strings.Compare(a.name, b.name)
286	})
287	return all
288}
289
290// Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile.
291func (p *Profile) Name() string {
292	return p.name
293}
294
295// Count returns the number of execution stacks currently in the profile.
296func (p *Profile) Count() int {
297	p.mu.Lock()
298	defer p.mu.Unlock()
299	if p.count != nil {
300		return p.count()
301	}
302	return len(p.m)
303}
304
305// Add adds the current execution stack to the profile, associated with value.
306// Add stores value in an internal map, so value must be suitable for use as
307// a map key and will not be garbage collected until the corresponding
308// call to [Profile.Remove]. Add panics if the profile already contains a stack for value.
309//
310// The skip parameter has the same meaning as [runtime.Caller]'s skip
311// and controls where the stack trace begins. Passing skip=0 begins the
312// trace in the function calling Add. For example, given this
313// execution stack:
314//
315//	Add
316//	called from rpc.NewClient
317//	called from mypkg.Run
318//	called from main.main
319//
320// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
321// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
322func (p *Profile) Add(value any, skip int) {
323	if p.name == "" {
324		panic("pprof: use of uninitialized Profile")
325	}
326	if p.write != nil {
327		panic("pprof: Add called on built-in Profile " + p.name)
328	}
329
330	stk := make([]uintptr, 32)
331	n := runtime.Callers(skip+1, stk[:])
332	stk = stk[:n]
333	if len(stk) == 0 {
334		// The value for skip is too large, and there's no stack trace to record.
335		stk = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)}
336	}
337
338	p.mu.Lock()
339	defer p.mu.Unlock()
340	if p.m[value] != nil {
341		panic("pprof: Profile.Add of duplicate value")
342	}
343	p.m[value] = stk
344}
345
346// Remove removes the execution stack associated with value from the profile.
347// It is a no-op if the value is not in the profile.
348func (p *Profile) Remove(value any) {
349	p.mu.Lock()
350	defer p.mu.Unlock()
351	delete(p.m, value)
352}
353
354// WriteTo writes a pprof-formatted snapshot of the profile to w.
355// If a write to w returns an error, WriteTo returns that error.
356// Otherwise, WriteTo returns nil.
357//
358// The debug parameter enables additional output.
359// Passing debug=0 writes the gzip-compressed protocol buffer described
360// in https://github.com/google/pprof/tree/main/proto#overview.
361// Passing debug=1 writes the legacy text format with comments
362// translating addresses to function names and line numbers, so that a
363// programmer can read the profile without tools.
364//
365// The predefined profiles may assign meaning to other debug values;
366// for example, when printing the "goroutine" profile, debug=2 means to
367// print the goroutine stacks in the same form that a Go program uses
368// when dying due to an unrecovered panic.
369func (p *Profile) WriteTo(w io.Writer, debug int) error {
370	if p.name == "" {
371		panic("pprof: use of zero Profile")
372	}
373	if p.write != nil {
374		return p.write(w, debug)
375	}
376
377	// Obtain consistent snapshot under lock; then process without lock.
378	p.mu.Lock()
379	all := make([][]uintptr, 0, len(p.m))
380	for _, stk := range p.m {
381		all = append(all, stk)
382	}
383	p.mu.Unlock()
384
385	// Map order is non-deterministic; make output deterministic.
386	slices.SortFunc(all, slices.Compare)
387
388	return printCountProfile(w, debug, p.name, stackProfile(all))
389}
390
391type stackProfile [][]uintptr
392
393func (x stackProfile) Len() int              { return len(x) }
394func (x stackProfile) Stack(i int) []uintptr { return x[i] }
395func (x stackProfile) Label(i int) *labelMap { return nil }
396
397// A countProfile is a set of stack traces to be printed as counts
398// grouped by stack trace. There are multiple implementations:
399// all that matters is that we can find out how many traces there are
400// and obtain each trace in turn.
401type countProfile interface {
402	Len() int
403	Stack(i int) []uintptr
404	Label(i int) *labelMap
405}
406
407// expandInlinedFrames copies the call stack from pcs into dst, expanding any
408// PCs corresponding to inlined calls into the corresponding PCs for the inlined
409// functions. Returns the number of frames copied to dst.
410func expandInlinedFrames(dst, pcs []uintptr) int {
411	cf := runtime.CallersFrames(pcs)
412	var n int
413	for n < len(dst) {
414		f, more := cf.Next()
415		// f.PC is a "call PC", but later consumers will expect
416		// "return PCs"
417		dst[n] = f.PC + 1
418		n++
419		if !more {
420			break
421		}
422	}
423	return n
424}
425
426// printCountCycleProfile outputs block profile records (for block or mutex profiles)
427// as the pprof-proto format output. Translations from cycle count to time duration
428// are done because The proto expects count and time (nanoseconds) instead of count
429// and the number of cycles for block, contention profiles.
430func printCountCycleProfile(w io.Writer, countName, cycleName string, records []profilerecord.BlockProfileRecord) error {
431	// Output profile in protobuf form.
432	b := newProfileBuilder(w)
433	b.pbValueType(tagProfile_PeriodType, countName, "count")
434	b.pb.int64Opt(tagProfile_Period, 1)
435	b.pbValueType(tagProfile_SampleType, countName, "count")
436	b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds")
437
438	cpuGHz := float64(pprof_cyclesPerSecond()) / 1e9
439
440	values := []int64{0, 0}
441	var locs []uint64
442	expandedStack := pprof_makeProfStack()
443	for _, r := range records {
444		values[0] = r.Count
445		values[1] = int64(float64(r.Cycles) / cpuGHz)
446		// For count profiles, all stack addresses are
447		// return PCs, which is what appendLocsForStack expects.
448		n := expandInlinedFrames(expandedStack, r.Stack)
449		locs = b.appendLocsForStack(locs[:0], expandedStack[:n])
450		b.pbSample(values, locs, nil)
451	}
452	b.build()
453	return nil
454}
455
456// printCountProfile prints a countProfile at the specified debug level.
457// The profile will be in compressed proto format unless debug is nonzero.
458func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
459	// Build count of each stack.
460	var buf strings.Builder
461	key := func(stk []uintptr, lbls *labelMap) string {
462		buf.Reset()
463		fmt.Fprintf(&buf, "@")
464		for _, pc := range stk {
465			fmt.Fprintf(&buf, " %#x", pc)
466		}
467		if lbls != nil {
468			buf.WriteString("\n# labels: ")
469			buf.WriteString(lbls.String())
470		}
471		return buf.String()
472	}
473	count := map[string]int{}
474	index := map[string]int{}
475	var keys []string
476	n := p.Len()
477	for i := 0; i < n; i++ {
478		k := key(p.Stack(i), p.Label(i))
479		if count[k] == 0 {
480			index[k] = i
481			keys = append(keys, k)
482		}
483		count[k]++
484	}
485
486	sort.Sort(&keysByCount{keys, count})
487
488	if debug > 0 {
489		// Print debug profile in legacy format
490		tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
491		fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len())
492		for _, k := range keys {
493			fmt.Fprintf(tw, "%d %s\n", count[k], k)
494			printStackRecord(tw, p.Stack(index[k]), false)
495		}
496		return tw.Flush()
497	}
498
499	// Output profile in protobuf form.
500	b := newProfileBuilder(w)
501	b.pbValueType(tagProfile_PeriodType, name, "count")
502	b.pb.int64Opt(tagProfile_Period, 1)
503	b.pbValueType(tagProfile_SampleType, name, "count")
504
505	values := []int64{0}
506	var locs []uint64
507	for _, k := range keys {
508		values[0] = int64(count[k])
509		// For count profiles, all stack addresses are
510		// return PCs, which is what appendLocsForStack expects.
511		locs = b.appendLocsForStack(locs[:0], p.Stack(index[k]))
512		idx := index[k]
513		var labels func()
514		if p.Label(idx) != nil {
515			labels = func() {
516				for k, v := range *p.Label(idx) {
517					b.pbLabel(tagSample_Label, k, v, 0)
518				}
519			}
520		}
521		b.pbSample(values, locs, labels)
522	}
523	b.build()
524	return nil
525}
526
527// keysByCount sorts keys with higher counts first, breaking ties by key string order.
528type keysByCount struct {
529	keys  []string
530	count map[string]int
531}
532
533func (x *keysByCount) Len() int      { return len(x.keys) }
534func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] }
535func (x *keysByCount) Less(i, j int) bool {
536	ki, kj := x.keys[i], x.keys[j]
537	ci, cj := x.count[ki], x.count[kj]
538	if ci != cj {
539		return ci > cj
540	}
541	return ki < kj
542}
543
544// printStackRecord prints the function + source line information
545// for a single stack trace.
546func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
547	show := allFrames
548	frames := runtime.CallersFrames(stk)
549	for {
550		frame, more := frames.Next()
551		name := frame.Function
552		if name == "" {
553			show = true
554			fmt.Fprintf(w, "#\t%#x\n", frame.PC)
555		} else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) {
556			// Hide runtime.goexit and any runtime functions at the beginning.
557			// This is useful mainly for allocation traces.
558			show = true
559			fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line)
560		}
561		if !more {
562			break
563		}
564	}
565	if !show {
566		// We didn't print anything; do it again,
567		// and this time include runtime functions.
568		printStackRecord(w, stk, true)
569		return
570	}
571	fmt.Fprintf(w, "\n")
572}
573
574// Interface to system profiles.
575
576// WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0).
577// It is preserved for backwards compatibility.
578func WriteHeapProfile(w io.Writer) error {
579	return writeHeap(w, 0)
580}
581
582// countHeap returns the number of records in the heap profile.
583func countHeap() int {
584	n, _ := runtime.MemProfile(nil, true)
585	return n
586}
587
588// writeHeap writes the current runtime heap profile to w.
589func writeHeap(w io.Writer, debug int) error {
590	return writeHeapInternal(w, debug, "")
591}
592
593// writeAlloc writes the current runtime heap profile to w
594// with the total allocation space as the default sample type.
595func writeAlloc(w io.Writer, debug int) error {
596	return writeHeapInternal(w, debug, "alloc_space")
597}
598
599func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error {
600	var memStats *runtime.MemStats
601	if debug != 0 {
602		// Read mem stats first, so that our other allocations
603		// do not appear in the statistics.
604		memStats = new(runtime.MemStats)
605		runtime.ReadMemStats(memStats)
606	}
607
608	// Find out how many records there are (the call
609	// pprof_memProfileInternal(nil, true) below),
610	// allocate that many records, and get the data.
611	// There's a race—more records might be added between
612	// the two calls—so allocate a few extra records for safety
613	// and also try again if we're very unlucky.
614	// The loop should only execute one iteration in the common case.
615	var p []profilerecord.MemProfileRecord
616	n, ok := pprof_memProfileInternal(nil, true)
617	for {
618		// Allocate room for a slightly bigger profile,
619		// in case a few more entries have been added
620		// since the call to MemProfile.
621		p = make([]profilerecord.MemProfileRecord, n+50)
622		n, ok = pprof_memProfileInternal(p, true)
623		if ok {
624			p = p[0:n]
625			break
626		}
627		// Profile grew; try again.
628	}
629
630	if debug == 0 {
631		return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType)
632	}
633
634	slices.SortFunc(p, func(a, b profilerecord.MemProfileRecord) int {
635		return cmp.Compare(a.InUseBytes(), b.InUseBytes())
636	})
637
638	b := bufio.NewWriter(w)
639	tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0)
640	w = tw
641
642	var total runtime.MemProfileRecord
643	for i := range p {
644		r := &p[i]
645		total.AllocBytes += r.AllocBytes
646		total.AllocObjects += r.AllocObjects
647		total.FreeBytes += r.FreeBytes
648		total.FreeObjects += r.FreeObjects
649	}
650
651	// Technically the rate is MemProfileRate not 2*MemProfileRate,
652	// but early versions of the C++ heap profiler reported 2*MemProfileRate,
653	// so that's what pprof has come to expect.
654	rate := 2 * runtime.MemProfileRate
655
656	// pprof reads a profile with alloc == inuse as being a "2-column" profile
657	// (objects and bytes, not distinguishing alloc from inuse),
658	// but then such a profile can't be merged using pprof *.prof with
659	// other 4-column profiles where alloc != inuse.
660	// The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes.
661	// pprof doesn't use these header values anymore except for checking equality.
662	inUseBytes := total.InUseBytes()
663	allocBytes := total.AllocBytes
664	if inUseBytes == allocBytes {
665		allocBytes++
666	}
667
668	fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
669		total.InUseObjects(), inUseBytes,
670		total.AllocObjects, allocBytes,
671		rate)
672
673	for i := range p {
674		r := &p[i]
675		fmt.Fprintf(w, "%d: %d [%d: %d] @",
676			r.InUseObjects(), r.InUseBytes(),
677			r.AllocObjects, r.AllocBytes)
678		for _, pc := range r.Stack {
679			fmt.Fprintf(w, " %#x", pc)
680		}
681		fmt.Fprintf(w, "\n")
682		printStackRecord(w, r.Stack, false)
683	}
684
685	// Print memstats information too.
686	// Pprof will ignore, but useful for people
687	s := memStats
688	fmt.Fprintf(w, "\n# runtime.MemStats\n")
689	fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
690	fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
691	fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
692	fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
693	fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
694	fmt.Fprintf(w, "# Frees = %d\n", s.Frees)
695
696	fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
697	fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
698	fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
699	fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
700	fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
701	fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)
702
703	fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
704	fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
705	fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
706	fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
707	fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys)
708	fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys)
709
710	fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
711	fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC)
712	fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
713	fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd)
714	fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
715	fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC)
716	fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction)
717	fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
718
719	// Also flush out MaxRSS on supported platforms.
720	addMaxRSS(w)
721
722	tw.Flush()
723	return b.Flush()
724}
725
726// countThreadCreate returns the size of the current ThreadCreateProfile.
727func countThreadCreate() int {
728	n, _ := runtime.ThreadCreateProfile(nil)
729	return n
730}
731
732// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
733func writeThreadCreate(w io.Writer, debug int) error {
734	// Until https://golang.org/issues/6104 is addressed, wrap
735	// ThreadCreateProfile because there's no point in tracking labels when we
736	// don't get any stack-traces.
737	return writeRuntimeProfile(w, debug, "threadcreate", func(p []profilerecord.StackRecord, _ []unsafe.Pointer) (n int, ok bool) {
738		return pprof_threadCreateInternal(p)
739	})
740}
741
742// countGoroutine returns the number of goroutines.
743func countGoroutine() int {
744	return runtime.NumGoroutine()
745}
746
747// writeGoroutine writes the current runtime GoroutineProfile to w.
748func writeGoroutine(w io.Writer, debug int) error {
749	if debug >= 2 {
750		return writeGoroutineStacks(w)
751	}
752	return writeRuntimeProfile(w, debug, "goroutine", pprof_goroutineProfileWithLabels)
753}
754
755func writeGoroutineStacks(w io.Writer) error {
756	// We don't know how big the buffer needs to be to collect
757	// all the goroutines. Start with 1 MB and try a few times, doubling each time.
758	// Give up and use a truncated trace if 64 MB is not enough.
759	buf := make([]byte, 1<<20)
760	for i := 0; ; i++ {
761		n := runtime.Stack(buf, true)
762		if n < len(buf) {
763			buf = buf[:n]
764			break
765		}
766		if len(buf) >= 64<<20 {
767			// Filled 64 MB - stop there.
768			break
769		}
770		buf = make([]byte, 2*len(buf))
771	}
772	_, err := w.Write(buf)
773	return err
774}
775
776func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]profilerecord.StackRecord, []unsafe.Pointer) (int, bool)) error {
777	// Find out how many records there are (fetch(nil)),
778	// allocate that many records, and get the data.
779	// There's a race—more records might be added between
780	// the two calls—so allocate a few extra records for safety
781	// and also try again if we're very unlucky.
782	// The loop should only execute one iteration in the common case.
783	var p []profilerecord.StackRecord
784	var labels []unsafe.Pointer
785	n, ok := fetch(nil, nil)
786
787	for {
788		// Allocate room for a slightly bigger profile,
789		// in case a few more entries have been added
790		// since the call to ThreadProfile.
791		p = make([]profilerecord.StackRecord, n+10)
792		labels = make([]unsafe.Pointer, n+10)
793		n, ok = fetch(p, labels)
794		if ok {
795			p = p[0:n]
796			break
797		}
798		// Profile grew; try again.
799	}
800
801	return printCountProfile(w, debug, name, &runtimeProfile{p, labels})
802}
803
804type runtimeProfile struct {
805	stk    []profilerecord.StackRecord
806	labels []unsafe.Pointer
807}
808
809func (p *runtimeProfile) Len() int              { return len(p.stk) }
810func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack }
811func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) }
812
813var cpu struct {
814	sync.Mutex
815	profiling bool
816	done      chan bool
817}
818
819// StartCPUProfile enables CPU profiling for the current process.
820// While profiling, the profile will be buffered and written to w.
821// StartCPUProfile returns an error if profiling is already enabled.
822//
823// On Unix-like systems, StartCPUProfile does not work by default for
824// Go code built with -buildmode=c-archive or -buildmode=c-shared.
825// StartCPUProfile relies on the SIGPROF signal, but that signal will
826// be delivered to the main program's SIGPROF signal handler (if any)
827// not to the one used by Go. To make it work, call [os/signal.Notify]
828// for [syscall.SIGPROF], but note that doing so may break any profiling
829// being done by the main program.
830func StartCPUProfile(w io.Writer) error {
831	// The runtime routines allow a variable profiling rate,
832	// but in practice operating systems cannot trigger signals
833	// at more than about 500 Hz, and our processing of the
834	// signal is not cheap (mostly getting the stack trace).
835	// 100 Hz is a reasonable choice: it is frequent enough to
836	// produce useful data, rare enough not to bog down the
837	// system, and a nice round number to make it easy to
838	// convert sample counts to seconds. Instead of requiring
839	// each client to specify the frequency, we hard code it.
840	const hz = 100
841
842	cpu.Lock()
843	defer cpu.Unlock()
844	if cpu.done == nil {
845		cpu.done = make(chan bool)
846	}
847	// Double-check.
848	if cpu.profiling {
849		return fmt.Errorf("cpu profiling already in use")
850	}
851	cpu.profiling = true
852	runtime.SetCPUProfileRate(hz)
853	go profileWriter(w)
854	return nil
855}
856
857// readProfile, provided by the runtime, returns the next chunk of
858// binary CPU profiling stack trace data, blocking until data is available.
859// If profiling is turned off and all the profile data accumulated while it was
860// on has been returned, readProfile returns eof=true.
861// The caller must save the returned data and tags before calling readProfile again.
862func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool)
863
864func profileWriter(w io.Writer) {
865	b := newProfileBuilder(w)
866	var err error
867	for {
868		time.Sleep(100 * time.Millisecond)
869		data, tags, eof := readProfile()
870		if e := b.addCPUData(data, tags); e != nil && err == nil {
871			err = e
872		}
873		if eof {
874			break
875		}
876	}
877	if err != nil {
878		// The runtime should never produce an invalid or truncated profile.
879		// It drops records that can't fit into its log buffers.
880		panic("runtime/pprof: converting profile: " + err.Error())
881	}
882	b.build()
883	cpu.done <- true
884}
885
886// StopCPUProfile stops the current CPU profile, if any.
887// StopCPUProfile only returns after all the writes for the
888// profile have completed.
889func StopCPUProfile() {
890	cpu.Lock()
891	defer cpu.Unlock()
892
893	if !cpu.profiling {
894		return
895	}
896	cpu.profiling = false
897	runtime.SetCPUProfileRate(0)
898	<-cpu.done
899}
900
901// countBlock returns the number of records in the blocking profile.
902func countBlock() int {
903	n, _ := runtime.BlockProfile(nil)
904	return n
905}
906
907// countMutex returns the number of records in the mutex profile.
908func countMutex() int {
909	n, _ := runtime.MutexProfile(nil)
910	return n
911}
912
913// writeBlock writes the current blocking profile to w.
914func writeBlock(w io.Writer, debug int) error {
915	return writeProfileInternal(w, debug, "contention", pprof_blockProfileInternal)
916}
917
918// writeMutex writes the current mutex profile to w.
919func writeMutex(w io.Writer, debug int) error {
920	return writeProfileInternal(w, debug, "mutex", pprof_mutexProfileInternal)
921}
922
923// writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters.
924func writeProfileInternal(w io.Writer, debug int, name string, runtimeProfile func([]profilerecord.BlockProfileRecord) (int, bool)) error {
925	var p []profilerecord.BlockProfileRecord
926	n, ok := runtimeProfile(nil)
927	for {
928		p = make([]profilerecord.BlockProfileRecord, n+50)
929		n, ok = runtimeProfile(p)
930		if ok {
931			p = p[:n]
932			break
933		}
934	}
935
936	slices.SortFunc(p, func(a, b profilerecord.BlockProfileRecord) int {
937		return cmp.Compare(b.Cycles, a.Cycles)
938	})
939
940	if debug <= 0 {
941		return printCountCycleProfile(w, "contentions", "delay", p)
942	}
943
944	b := bufio.NewWriter(w)
945	tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
946	w = tw
947
948	fmt.Fprintf(w, "--- %v:\n", name)
949	fmt.Fprintf(w, "cycles/second=%v\n", pprof_cyclesPerSecond())
950	if name == "mutex" {
951		fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
952	}
953	expandedStack := pprof_makeProfStack()
954	for i := range p {
955		r := &p[i]
956		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
957		n := expandInlinedFrames(expandedStack, r.Stack)
958		stack := expandedStack[:n]
959		for _, pc := range stack {
960			fmt.Fprintf(w, " %#x", pc)
961		}
962		fmt.Fprint(w, "\n")
963		if debug > 0 {
964			printStackRecord(w, stack, true)
965		}
966	}
967
968	if tw != nil {
969		tw.Flush()
970	}
971	return b.Flush()
972}
973
974//go:linkname pprof_goroutineProfileWithLabels runtime.pprof_goroutineProfileWithLabels
975func pprof_goroutineProfileWithLabels(p []profilerecord.StackRecord, labels []unsafe.Pointer) (n int, ok bool)
976
977//go:linkname pprof_cyclesPerSecond runtime/pprof.runtime_cyclesPerSecond
978func pprof_cyclesPerSecond() int64
979
980//go:linkname pprof_memProfileInternal runtime.pprof_memProfileInternal
981func pprof_memProfileInternal(p []profilerecord.MemProfileRecord, inuseZero bool) (n int, ok bool)
982
983//go:linkname pprof_blockProfileInternal runtime.pprof_blockProfileInternal
984func pprof_blockProfileInternal(p []profilerecord.BlockProfileRecord) (n int, ok bool)
985
986//go:linkname pprof_mutexProfileInternal runtime.pprof_mutexProfileInternal
987func pprof_mutexProfileInternal(p []profilerecord.BlockProfileRecord) (n int, ok bool)
988
989//go:linkname pprof_threadCreateInternal runtime.pprof_threadCreateInternal
990func pprof_threadCreateInternal(p []profilerecord.StackRecord) (n int, ok bool)
991
992//go:linkname pprof_fpunwindExpand runtime.pprof_fpunwindExpand
993func pprof_fpunwindExpand(dst, src []uintptr) int
994
995//go:linkname pprof_makeProfStack runtime.pprof_makeProfStack
996func pprof_makeProfStack() []uintptr
997