1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package color
6
7// RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
8func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
9	// The JFIF specification says:
10	//	Y' =  0.2990*R + 0.5870*G + 0.1140*B
11	//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
12	//	Cr =  0.5000*R - 0.4187*G - 0.0813*B + 128
13	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
14
15	r1 := int32(r)
16	g1 := int32(g)
17	b1 := int32(b)
18
19	// yy is in range [0,0xff].
20	//
21	// Note that 19595 + 38470 + 7471 equals 65536.
22	yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
23
24	// The bit twiddling below is equivalent to
25	//
26	// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
27	// if cb < 0 {
28	//     cb = 0
29	// } else if cb > 0xff {
30	//     cb = ^int32(0)
31	// }
32	//
33	// but uses fewer branches and is faster.
34	// Note that the uint8 type conversion in the return
35	// statement will convert ^int32(0) to 0xff.
36	// The code below to compute cr uses a similar pattern.
37	//
38	// Note that -11056 - 21712 + 32768 equals 0.
39	cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15
40	if uint32(cb)&0xff000000 == 0 {
41		cb >>= 16
42	} else {
43		cb = ^(cb >> 31)
44	}
45
46	// Note that 32768 - 27440 - 5328 equals 0.
47	cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15
48	if uint32(cr)&0xff000000 == 0 {
49		cr >>= 16
50	} else {
51		cr = ^(cr >> 31)
52	}
53
54	return uint8(yy), uint8(cb), uint8(cr)
55}
56
57// YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
58func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
59	// The JFIF specification says:
60	//	R = Y' + 1.40200*(Cr-128)
61	//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
62	//	B = Y' + 1.77200*(Cb-128)
63	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
64	//
65	// Those formulae use non-integer multiplication factors. When computing,
66	// integer math is generally faster than floating point math. We multiply
67	// all of those factors by 1<<16 and round to the nearest integer:
68	//	 91881 = roundToNearestInteger(1.40200 * 65536).
69	//	 22554 = roundToNearestInteger(0.34414 * 65536).
70	//	 46802 = roundToNearestInteger(0.71414 * 65536).
71	//	116130 = roundToNearestInteger(1.77200 * 65536).
72	//
73	// Adding a rounding adjustment in the range [0, 1<<16-1] and then shifting
74	// right by 16 gives us an integer math version of the original formulae.
75	//	R = (65536*Y' +  91881 *(Cr-128)                  + adjustment) >> 16
76	//	G = (65536*Y' -  22554 *(Cb-128) - 46802*(Cr-128) + adjustment) >> 16
77	//	B = (65536*Y' + 116130 *(Cb-128)                  + adjustment) >> 16
78	// A constant rounding adjustment of 1<<15, one half of 1<<16, would mean
79	// round-to-nearest when dividing by 65536 (shifting right by 16).
80	// Similarly, a constant rounding adjustment of 0 would mean round-down.
81	//
82	// Defining YY1 = 65536*Y' + adjustment simplifies the formulae and
83	// requires fewer CPU operations:
84	//	R = (YY1 +  91881 *(Cr-128)                 ) >> 16
85	//	G = (YY1 -  22554 *(Cb-128) - 46802*(Cr-128)) >> 16
86	//	B = (YY1 + 116130 *(Cb-128)                 ) >> 16
87	//
88	// The inputs (y, cb, cr) are 8 bit color, ranging in [0x00, 0xff]. In this
89	// function, the output is also 8 bit color, but in the related YCbCr.RGBA
90	// method, below, the output is 16 bit color, ranging in [0x0000, 0xffff].
91	// Outputting 16 bit color simply requires changing the 16 to 8 in the "R =
92	// etc >> 16" equation, and likewise for G and B.
93	//
94	// As mentioned above, a constant rounding adjustment of 1<<15 is a natural
95	// choice, but there is an additional constraint: if c0 := YCbCr{Y: y, Cb:
96	// 0x80, Cr: 0x80} and c1 := Gray{Y: y} then c0.RGBA() should equal
97	// c1.RGBA(). Specifically, if y == 0 then "R = etc >> 8" should yield
98	// 0x0000 and if y == 0xff then "R = etc >> 8" should yield 0xffff. If we
99	// used a constant rounding adjustment of 1<<15, then it would yield 0x0080
100	// and 0xff80 respectively.
101	//
102	// Note that when cb == 0x80 and cr == 0x80 then the formulae collapse to:
103	//	R = YY1 >> n
104	//	G = YY1 >> n
105	//	B = YY1 >> n
106	// where n is 16 for this function (8 bit color output) and 8 for the
107	// YCbCr.RGBA method (16 bit color output).
108	//
109	// The solution is to make the rounding adjustment non-constant, and equal
110	// to 257*Y', which ranges over [0, 1<<16-1] as Y' ranges over [0, 255].
111	// YY1 is then defined as:
112	//	YY1 = 65536*Y' + 257*Y'
113	// or equivalently:
114	//	YY1 = Y' * 0x10101
115	yy1 := int32(y) * 0x10101
116	cb1 := int32(cb) - 128
117	cr1 := int32(cr) - 128
118
119	// The bit twiddling below is equivalent to
120	//
121	// r := (yy1 + 91881*cr1) >> 16
122	// if r < 0 {
123	//     r = 0
124	// } else if r > 0xff {
125	//     r = ^int32(0)
126	// }
127	//
128	// but uses fewer branches and is faster.
129	// Note that the uint8 type conversion in the return
130	// statement will convert ^int32(0) to 0xff.
131	// The code below to compute g and b uses a similar pattern.
132	r := yy1 + 91881*cr1
133	if uint32(r)&0xff000000 == 0 {
134		r >>= 16
135	} else {
136		r = ^(r >> 31)
137	}
138
139	g := yy1 - 22554*cb1 - 46802*cr1
140	if uint32(g)&0xff000000 == 0 {
141		g >>= 16
142	} else {
143		g = ^(g >> 31)
144	}
145
146	b := yy1 + 116130*cb1
147	if uint32(b)&0xff000000 == 0 {
148		b >>= 16
149	} else {
150		b = ^(b >> 31)
151	}
152
153	return uint8(r), uint8(g), uint8(b)
154}
155
156// YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
157// one luma and two chroma components.
158//
159// JPEG, VP8, the MPEG family and other codecs use this color model. Such
160// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
161// speaking, the term YUV applies only to analog video signals, and Y' (luma)
162// is Y (luminance) after applying gamma correction.
163//
164// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
165// different formulae for converting between the two. This package follows
166// the JFIF specification at https://www.w3.org/Graphics/JPEG/jfif3.pdf.
167type YCbCr struct {
168	Y, Cb, Cr uint8
169}
170
171func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
172	// This code is a copy of the YCbCrToRGB function above, except that it
173	// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a
174	// subtle difference between doing this and having YCbCr satisfy the Color
175	// interface by first converting to an RGBA. The latter loses some
176	// information by going to and from 8 bits per channel.
177	//
178	// For example, this code:
179	//	const y, cb, cr = 0x7f, 0x7f, 0x7f
180	//	r, g, b := color.YCbCrToRGB(y, cb, cr)
181	//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA()
182	//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA()
183	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0)
184	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1)
185	// prints:
186	//	0x7e18 0x808d 0x7db9
187	//	0x7e7e 0x8080 0x7d7d
188
189	yy1 := int32(c.Y) * 0x10101
190	cb1 := int32(c.Cb) - 128
191	cr1 := int32(c.Cr) - 128
192
193	// The bit twiddling below is equivalent to
194	//
195	// r := (yy1 + 91881*cr1) >> 8
196	// if r < 0 {
197	//     r = 0
198	// } else if r > 0xff {
199	//     r = 0xffff
200	// }
201	//
202	// but uses fewer branches and is faster.
203	// The code below to compute g and b uses a similar pattern.
204	r := yy1 + 91881*cr1
205	if uint32(r)&0xff000000 == 0 {
206		r >>= 8
207	} else {
208		r = ^(r >> 31) & 0xffff
209	}
210
211	g := yy1 - 22554*cb1 - 46802*cr1
212	if uint32(g)&0xff000000 == 0 {
213		g >>= 8
214	} else {
215		g = ^(g >> 31) & 0xffff
216	}
217
218	b := yy1 + 116130*cb1
219	if uint32(b)&0xff000000 == 0 {
220		b >>= 8
221	} else {
222		b = ^(b >> 31) & 0xffff
223	}
224
225	return uint32(r), uint32(g), uint32(b), 0xffff
226}
227
228// YCbCrModel is the [Model] for Y'CbCr colors.
229var YCbCrModel Model = ModelFunc(yCbCrModel)
230
231func yCbCrModel(c Color) Color {
232	if _, ok := c.(YCbCr); ok {
233		return c
234	}
235	r, g, b, _ := c.RGBA()
236	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
237	return YCbCr{y, u, v}
238}
239
240// NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having
241// 8 bits each for one luma, two chroma and one alpha component.
242type NYCbCrA struct {
243	YCbCr
244	A uint8
245}
246
247func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) {
248	// The first part of this method is the same as YCbCr.RGBA.
249	yy1 := int32(c.Y) * 0x10101
250	cb1 := int32(c.Cb) - 128
251	cr1 := int32(c.Cr) - 128
252
253	// The bit twiddling below is equivalent to
254	//
255	// r := (yy1 + 91881*cr1) >> 8
256	// if r < 0 {
257	//     r = 0
258	// } else if r > 0xff {
259	//     r = 0xffff
260	// }
261	//
262	// but uses fewer branches and is faster.
263	// The code below to compute g and b uses a similar pattern.
264	r := yy1 + 91881*cr1
265	if uint32(r)&0xff000000 == 0 {
266		r >>= 8
267	} else {
268		r = ^(r >> 31) & 0xffff
269	}
270
271	g := yy1 - 22554*cb1 - 46802*cr1
272	if uint32(g)&0xff000000 == 0 {
273		g >>= 8
274	} else {
275		g = ^(g >> 31) & 0xffff
276	}
277
278	b := yy1 + 116130*cb1
279	if uint32(b)&0xff000000 == 0 {
280		b >>= 8
281	} else {
282		b = ^(b >> 31) & 0xffff
283	}
284
285	// The second part of this method applies the alpha.
286	a := uint32(c.A) * 0x101
287	return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a
288}
289
290// NYCbCrAModel is the [Model] for non-alpha-premultiplied Y'CbCr-with-alpha
291// colors.
292var NYCbCrAModel Model = ModelFunc(nYCbCrAModel)
293
294func nYCbCrAModel(c Color) Color {
295	switch c := c.(type) {
296	case NYCbCrA:
297		return c
298	case YCbCr:
299		return NYCbCrA{c, 0xff}
300	}
301	r, g, b, a := c.RGBA()
302
303	// Convert from alpha-premultiplied to non-alpha-premultiplied.
304	if a != 0 {
305		r = (r * 0xffff) / a
306		g = (g * 0xffff) / a
307		b = (b * 0xffff) / a
308	}
309
310	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
311	return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)}
312}
313
314// RGBToCMYK converts an RGB triple to a CMYK quadruple.
315func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
316	rr := uint32(r)
317	gg := uint32(g)
318	bb := uint32(b)
319	w := rr
320	if w < gg {
321		w = gg
322	}
323	if w < bb {
324		w = bb
325	}
326	if w == 0 {
327		return 0, 0, 0, 0xff
328	}
329	c := (w - rr) * 0xff / w
330	m := (w - gg) * 0xff / w
331	y := (w - bb) * 0xff / w
332	return uint8(c), uint8(m), uint8(y), uint8(0xff - w)
333}
334
335// CMYKToRGB converts a [CMYK] quadruple to an RGB triple.
336func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
337	w := 0xffff - uint32(k)*0x101
338	r := (0xffff - uint32(c)*0x101) * w / 0xffff
339	g := (0xffff - uint32(m)*0x101) * w / 0xffff
340	b := (0xffff - uint32(y)*0x101) * w / 0xffff
341	return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)
342}
343
344// CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
345// magenta, yellow and black.
346//
347// It is not associated with any particular color profile.
348type CMYK struct {
349	C, M, Y, K uint8
350}
351
352func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
353	// This code is a copy of the CMYKToRGB function above, except that it
354	// returns values in the range [0, 0xffff] instead of [0, 0xff].
355
356	w := 0xffff - uint32(c.K)*0x101
357	r := (0xffff - uint32(c.C)*0x101) * w / 0xffff
358	g := (0xffff - uint32(c.M)*0x101) * w / 0xffff
359	b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff
360	return r, g, b, 0xffff
361}
362
363// CMYKModel is the [Model] for CMYK colors.
364var CMYKModel Model = ModelFunc(cmykModel)
365
366func cmykModel(c Color) Color {
367	if _, ok := c.(CMYK); ok {
368		return c
369	}
370	r, g, b, _ := c.RGBA()
371	cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
372	return CMYK{cc, mm, yy, kk}
373}
374