1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2023 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26
27 #include "lcms2_internal.h"
28
29
30 //----------------------------------------------------------------------------------
31
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34
35 cmsContext ContextID;
36
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43 } Prelin8Data;
44
45
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48
49 cmsContext ContextID;
50
51 // Number of channels
52 cmsUInt32Number nInputs;
53 cmsUInt32Number nOutputs;
54
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66 } Prelin16Data;
67
68
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75 typedef struct {
76
77 cmsContext ContextID;
78
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
82
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
85
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
89
90 } MatShaper8Data;
91
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94
95 cmsContext ContextID;
96
97 cmsUInt32Number nCurves; // Number of curves
98 cmsUInt32Number nElements; // Elements in curves
99 cmsUInt16Number** Curves; // Points to a dynamically allocated array
100
101 } Curves16Data;
102
103 // A simple adapter to prevent _cmsPipelineEval16Fn vs. _cmsInterpFn16
104 // confusion, which trips up UBSAN.
105 static
Lerp16Adapter(CMSREGISTER const cmsUInt16Number in[],CMSREGISTER cmsUInt16Number out[],const void * data)106 void Lerp16Adapter(CMSREGISTER const cmsUInt16Number in[],
107 CMSREGISTER cmsUInt16Number out[],
108 const void* data) {
109 cmsInterpParams* params = (cmsInterpParams*)data;
110 params->Interpolation.Lerp16(in, out, params);
111 }
112
113 // Simple optimizations ----------------------------------------------------------------------------------------------------------
114
115
116 // Clamp a fixed point integer to signed 28 bits to avoid overflow in
117 // calculations. Clamp is intended for use with colorants, requiring one bit
118 // for a colorant and another two bits to avoid overflow when combining the
119 // colors.
_FixedClamp(cmsS1Fixed14Number n)120 cmsINLINE cmsS1Fixed14Number _FixedClamp(cmsS1Fixed14Number n) {
121 const cmsS1Fixed14Number max_positive = 268435455; // 0x0FFFFFFF;
122 const cmsS1Fixed14Number max_negative = -268435456; // 0xF0000000;
123 // Normally expect the provided number to be in the range [0..1] (but in
124 // fixed 1.14 format), so can perform a quick check for this typical case
125 // to reduce number of compares.
126 const cmsS1Fixed14Number typical_range_mask = 0xFFFF8000;
127
128 if (!(n & typical_range_mask))
129 return n;
130 if (n < max_negative)
131 return max_negative;
132 if (n > max_positive)
133 return max_positive;
134 return n;
135 }
136
137 // Perform one row of matrix multiply with translation for MatShaperEval16().
_MatShaperEvaluateRow(cmsS1Fixed14Number * mat,cmsS1Fixed14Number off,cmsS1Fixed14Number r,cmsS1Fixed14Number g,cmsS1Fixed14Number b)138 cmsINLINE cmsInt64Number _MatShaperEvaluateRow(cmsS1Fixed14Number* mat,
139 cmsS1Fixed14Number off,
140 cmsS1Fixed14Number r,
141 cmsS1Fixed14Number g,
142 cmsS1Fixed14Number b) {
143 return ((cmsInt64Number)mat[0] * r +
144 (cmsInt64Number)mat[1] * g +
145 (cmsInt64Number)mat[2] * b +
146 off + 0x2000) >> 14;
147 }
148
149 // Remove an element in linked chain
150 static
_RemoveElement(cmsStage ** head)151 void _RemoveElement(cmsStage** head)
152 {
153 cmsStage* mpe = *head;
154 cmsStage* next = mpe ->Next;
155 *head = next;
156 cmsStageFree(mpe);
157 }
158
159 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
160 static
_Remove1Op(cmsPipeline * Lut,cmsStageSignature UnaryOp)161 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
162 {
163 cmsStage** pt = &Lut ->Elements;
164 cmsBool AnyOpt = FALSE;
165
166 while (*pt != NULL) {
167
168 if ((*pt) ->Implements == UnaryOp) {
169 _RemoveElement(pt);
170 AnyOpt = TRUE;
171 }
172 else
173 pt = &((*pt) -> Next);
174 }
175
176 return AnyOpt;
177 }
178
179 // Same, but only if two adjacent elements are found
180 static
_Remove2Op(cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)181 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
182 {
183 cmsStage** pt1;
184 cmsStage** pt2;
185 cmsBool AnyOpt = FALSE;
186
187 pt1 = &Lut ->Elements;
188 if (*pt1 == NULL) return AnyOpt;
189
190 while (*pt1 != NULL) {
191
192 pt2 = &((*pt1) -> Next);
193 if (*pt2 == NULL) return AnyOpt;
194
195 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
196 _RemoveElement(pt2);
197 _RemoveElement(pt1);
198 AnyOpt = TRUE;
199 }
200 else
201 pt1 = &((*pt1) -> Next);
202 }
203
204 return AnyOpt;
205 }
206
207
208 static
CloseEnoughFloat(cmsFloat64Number a,cmsFloat64Number b)209 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
210 {
211 return fabs(b - a) < 0.00001f;
212 }
213
214 static
isFloatMatrixIdentity(const cmsMAT3 * a)215 cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
216 {
217 cmsMAT3 Identity;
218 int i, j;
219
220 _cmsMAT3identity(&Identity);
221
222 for (i = 0; i < 3; i++)
223 for (j = 0; j < 3; j++)
224 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
225
226 return TRUE;
227 }
228 // if two adjacent matrices are found, multiply them.
229 static
_MultiplyMatrix(cmsPipeline * Lut)230 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
231 {
232 cmsStage** pt1;
233 cmsStage** pt2;
234 cmsStage* chain;
235 cmsBool AnyOpt = FALSE;
236
237 pt1 = &Lut->Elements;
238 if (*pt1 == NULL) return AnyOpt;
239
240 while (*pt1 != NULL) {
241
242 pt2 = &((*pt1)->Next);
243 if (*pt2 == NULL) return AnyOpt;
244
245 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
246
247 // Get both matrices
248 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
249 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
250 cmsMAT3 res;
251
252 // Input offset and output offset should be zero to use this optimization
253 if (m1->Offset != NULL || m2 ->Offset != NULL ||
254 cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
255 cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
256 return FALSE;
257
258 // Multiply both matrices to get the result
259 _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
260
261 // Get the next in chain after the matrices
262 chain = (*pt2)->Next;
263
264 // Remove both matrices
265 _RemoveElement(pt2);
266 _RemoveElement(pt1);
267
268 // Now what if the result is a plain identity?
269 if (!isFloatMatrixIdentity(&res)) {
270
271 // We can not get rid of full matrix
272 cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
273 if (Multmat == NULL) return FALSE; // Should never happen
274
275 // Recover the chain
276 Multmat->Next = chain;
277 *pt1 = Multmat;
278 }
279
280 AnyOpt = TRUE;
281 }
282 else
283 pt1 = &((*pt1)->Next);
284 }
285
286 return AnyOpt;
287 }
288
289
290 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
291 // by a v4 to v2 and vice-versa. The elements are then discarded.
292 static
PreOptimize(cmsPipeline * Lut)293 cmsBool PreOptimize(cmsPipeline* Lut)
294 {
295 cmsBool AnyOpt = FALSE, Opt;
296
297 do {
298
299 Opt = FALSE;
300
301 // Remove all identities
302 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
303
304 // Remove XYZ2Lab followed by Lab2XYZ
305 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
306
307 // Remove Lab2XYZ followed by XYZ2Lab
308 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
309
310 // Remove V4 to V2 followed by V2 to V4
311 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
312
313 // Remove V2 to V4 followed by V4 to V2
314 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
315
316 // Remove float pcs Lab conversions
317 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
318
319 // Remove float pcs Lab conversions
320 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
321
322 // Simplify matrix.
323 Opt |= _MultiplyMatrix(Lut);
324
325 if (Opt) AnyOpt = TRUE;
326
327 } while (Opt);
328
329 return AnyOpt;
330 }
331
332 static
Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],CMSREGISTER cmsUInt16Number Output[],CMSREGISTER const struct _cms_interp_struc * p)333 void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
334 CMSREGISTER cmsUInt16Number Output[],
335 CMSREGISTER const struct _cms_interp_struc* p)
336 {
337 Output[0] = Input[0];
338
339 cmsUNUSED_PARAMETER(p);
340 }
341
342 static
PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],CMSREGISTER cmsUInt16Number Output[],CMSREGISTER const void * D)343 void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
344 CMSREGISTER cmsUInt16Number Output[],
345 CMSREGISTER const void* D)
346 {
347 Prelin16Data* p16 = (Prelin16Data*) D;
348 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
349 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
350 cmsUInt32Number i;
351
352 for (i=0; i < p16 ->nInputs; i++) {
353
354 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
355 }
356
357 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
358
359 for (i=0; i < p16 ->nOutputs; i++) {
360
361 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
362 }
363 }
364
365
366 static
PrelinOpt16free(cmsContext ContextID,void * ptr)367 void PrelinOpt16free(cmsContext ContextID, void* ptr)
368 {
369 Prelin16Data* p16 = (Prelin16Data*) ptr;
370
371 _cmsFree(ContextID, p16 ->EvalCurveOut16);
372 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
373
374 _cmsFree(ContextID, p16);
375 }
376
377 static
Prelin16dup(cmsContext ContextID,const void * ptr)378 void* Prelin16dup(cmsContext ContextID, const void* ptr)
379 {
380 Prelin16Data* p16 = (Prelin16Data*) ptr;
381 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
382
383 if (Duped == NULL) return NULL;
384
385 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
386 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
387
388 return Duped;
389 }
390
391
392 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,cmsUInt32Number nInputs,cmsToneCurve ** In,cmsUInt32Number nOutputs,cmsToneCurve ** Out)393 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
394 const cmsInterpParams* ColorMap,
395 cmsUInt32Number nInputs, cmsToneCurve** In,
396 cmsUInt32Number nOutputs, cmsToneCurve** Out )
397 {
398 cmsUInt32Number i;
399 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
400 if (p16 == NULL) return NULL;
401
402 p16 ->nInputs = nInputs;
403 p16 ->nOutputs = nOutputs;
404
405
406 for (i=0; i < nInputs; i++) {
407
408 if (In == NULL) {
409 p16 -> ParamsCurveIn16[i] = NULL;
410 p16 -> EvalCurveIn16[i] = Eval16nop1D;
411
412 }
413 else {
414 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
415 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
416 }
417 }
418
419 p16 ->CLUTparams = ColorMap;
420 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
421
422
423 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
424 if (p16->EvalCurveOut16 == NULL)
425 {
426 _cmsFree(ContextID, p16);
427 return NULL;
428 }
429
430 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
431 if (p16->ParamsCurveOut16 == NULL)
432 {
433
434 _cmsFree(ContextID, p16->EvalCurveOut16);
435 _cmsFree(ContextID, p16);
436 return NULL;
437 }
438
439 for (i=0; i < nOutputs; i++) {
440
441 if (Out == NULL) {
442 p16 ->ParamsCurveOut16[i] = NULL;
443 p16 -> EvalCurveOut16[i] = Eval16nop1D;
444 }
445 else {
446
447 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
448 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
449 }
450 }
451
452 return p16;
453 }
454
455
456
457 // Resampling ---------------------------------------------------------------------------------
458
459 #define PRELINEARIZATION_POINTS 4096
460
461 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
462 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
463 static
XFormSampler16(CMSREGISTER const cmsUInt16Number In[],CMSREGISTER cmsUInt16Number Out[],CMSREGISTER void * Cargo)464 cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
465 CMSREGISTER cmsUInt16Number Out[],
466 CMSREGISTER void* Cargo)
467 {
468 cmsPipeline* Lut = (cmsPipeline*) Cargo;
469 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
470 cmsUInt32Number i;
471
472 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
473 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
474
475 // From 16 bit to floating point
476 for (i=0; i < Lut ->InputChannels; i++)
477 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
478
479 // Evaluate in floating point
480 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
481
482 // Back to 16 bits representation
483 for (i=0; i < Lut ->OutputChannels; i++)
484 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
485
486 // Always succeed
487 return TRUE;
488 }
489
490 // Try to see if the curves of a given MPE are linear
491 static
AllCurvesAreLinear(cmsStage * mpe)492 cmsBool AllCurvesAreLinear(cmsStage* mpe)
493 {
494 cmsToneCurve** Curves;
495 cmsUInt32Number i, n;
496
497 Curves = _cmsStageGetPtrToCurveSet(mpe);
498 if (Curves == NULL) return FALSE;
499
500 n = cmsStageOutputChannels(mpe);
501
502 for (i=0; i < n; i++) {
503 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
504 }
505
506 return TRUE;
507 }
508
509 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
510 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
511 static
PatchLUT(cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],cmsUInt32Number nChannelsOut,cmsUInt32Number nChannelsIn)512 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
513 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
514 {
515 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
516 cmsInterpParams* p16 = Grid ->Params;
517 cmsFloat64Number px, py, pz, pw;
518 int x0, y0, z0, w0;
519 int i, index;
520
521 if (CLUT -> Type != cmsSigCLutElemType) {
522 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
523 return FALSE;
524 }
525
526 if (nChannelsIn == 4) {
527
528 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
529 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
530 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
531 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
532
533 x0 = (int) floor(px);
534 y0 = (int) floor(py);
535 z0 = (int) floor(pz);
536 w0 = (int) floor(pw);
537
538 if (((px - x0) != 0) ||
539 ((py - y0) != 0) ||
540 ((pz - z0) != 0) ||
541 ((pw - w0) != 0)) return FALSE; // Not on exact node
542
543 index = (int) p16 -> opta[3] * x0 +
544 (int) p16 -> opta[2] * y0 +
545 (int) p16 -> opta[1] * z0 +
546 (int) p16 -> opta[0] * w0;
547 }
548 else
549 if (nChannelsIn == 3) {
550
551 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
552 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
553 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
554
555 x0 = (int) floor(px);
556 y0 = (int) floor(py);
557 z0 = (int) floor(pz);
558
559 if (((px - x0) != 0) ||
560 ((py - y0) != 0) ||
561 ((pz - z0) != 0)) return FALSE; // Not on exact node
562
563 index = (int) p16 -> opta[2] * x0 +
564 (int) p16 -> opta[1] * y0 +
565 (int) p16 -> opta[0] * z0;
566 }
567 else
568 if (nChannelsIn == 1) {
569
570 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
571
572 x0 = (int) floor(px);
573
574 if (((px - x0) != 0)) return FALSE; // Not on exact node
575
576 index = (int) p16 -> opta[0] * x0;
577 }
578 else {
579 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
580 return FALSE;
581 }
582
583 for (i = 0; i < (int) nChannelsOut; i++)
584 Grid->Tab.T[index + i] = Value[i];
585
586 return TRUE;
587 }
588
589 // Auxiliary, to see if two values are equal or very different
590 static
WhitesAreEqual(cmsUInt32Number n,cmsUInt16Number White1[],cmsUInt16Number White2[])591 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
592 {
593 cmsUInt32Number i;
594
595 for (i=0; i < n; i++) {
596
597 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
598 if (White1[i] != White2[i]) return FALSE;
599 }
600 return TRUE;
601 }
602
603
604 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
605 static
FixWhiteMisalignment(cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)606 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
607 {
608 cmsUInt16Number *WhitePointIn, *WhitePointOut;
609 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
610 cmsUInt32Number i, nOuts, nIns;
611 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
612
613 if (!_cmsEndPointsBySpace(EntryColorSpace,
614 &WhitePointIn, NULL, &nIns)) return FALSE;
615
616 if (!_cmsEndPointsBySpace(ExitColorSpace,
617 &WhitePointOut, NULL, &nOuts)) return FALSE;
618
619 // It needs to be fixed?
620 if (Lut ->InputChannels != nIns) return FALSE;
621 if (Lut ->OutputChannels != nOuts) return FALSE;
622
623 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
624
625 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
626
627 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
628 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
629 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
630 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
631 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
632 return FALSE;
633
634 // We need to interpolate white points of both, pre and post curves
635 if (PreLin) {
636
637 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
638
639 for (i=0; i < nIns; i++) {
640 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
641 }
642 }
643 else {
644 for (i=0; i < nIns; i++)
645 WhiteIn[i] = WhitePointIn[i];
646 }
647
648 // If any post-linearization, we need to find how is represented white before the curve, do
649 // a reverse interpolation in this case.
650 if (PostLin) {
651
652 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
653
654 for (i=0; i < nOuts; i++) {
655
656 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
657 if (InversePostLin == NULL) {
658 WhiteOut[i] = WhitePointOut[i];
659
660 } else {
661
662 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
663 cmsFreeToneCurve(InversePostLin);
664 }
665 }
666 }
667 else {
668 for (i=0; i < nOuts; i++)
669 WhiteOut[i] = WhitePointOut[i];
670 }
671
672 // Ok, proceed with patching. May fail and we don't care if it fails
673 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
674
675 return TRUE;
676 }
677
678 // -----------------------------------------------------------------------------------------------------------------------------------------------
679 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
680 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
681 // These curves have to exist in the original LUT in order to be used in the simplified output.
682 // Caller may also use the flags to allow this feature.
683 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
684 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
685 // -----------------------------------------------------------------------------------------------------------------------------------------------
686
687 static
OptimizeByResampling(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)688 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
689 {
690 cmsPipeline* Src = NULL;
691 cmsPipeline* Dest = NULL;
692 cmsStage* CLUT;
693 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
694 cmsUInt32Number nGridPoints;
695 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
696 cmsStage *NewPreLin = NULL;
697 cmsStage *NewPostLin = NULL;
698 _cmsStageCLutData* DataCLUT;
699 cmsToneCurve** DataSetIn;
700 cmsToneCurve** DataSetOut;
701 Prelin16Data* p16;
702
703 // This is a lossy optimization! does not apply in floating-point cases
704 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
705
706 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
707 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
708
709 // Color space must be specified
710 if (ColorSpace == (cmsColorSpaceSignature)0 ||
711 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
712
713 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
714
715 // For empty LUTs, 2 points are enough
716 if (cmsPipelineStageCount(*Lut) == 0)
717 nGridPoints = 2;
718
719 Src = *Lut;
720
721 // Allocate an empty LUT
722 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
723 if (!Dest) return FALSE;
724
725 // Prelinearization tables are kept unless indicated by flags
726 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
727
728 // Get a pointer to the prelinearization element
729 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
730
731 // Check if suitable
732 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
733
734 // Maybe this is a linear tram, so we can avoid the whole stuff
735 if (!AllCurvesAreLinear(PreLin)) {
736
737 // All seems ok, proceed.
738 NewPreLin = cmsStageDup(PreLin);
739 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
740 goto Error;
741
742 // Remove prelinearization. Since we have duplicated the curve
743 // in destination LUT, the sampling should be applied after this stage.
744 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
745 }
746 }
747 }
748
749 // Allocate the CLUT
750 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
751 if (CLUT == NULL) goto Error;
752
753 // Add the CLUT to the destination LUT
754 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
755 goto Error;
756 }
757
758 // Postlinearization tables are kept unless indicated by flags
759 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
760
761 // Get a pointer to the postlinearization if present
762 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
763
764 // Check if suitable
765 if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
766
767 // Maybe this is a linear tram, so we can avoid the whole stuff
768 if (!AllCurvesAreLinear(PostLin)) {
769
770 // All seems ok, proceed.
771 NewPostLin = cmsStageDup(PostLin);
772 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
773 goto Error;
774
775 // In destination LUT, the sampling should be applied after this stage.
776 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
777 }
778 }
779 }
780
781 // Now its time to do the sampling. We have to ignore pre/post linearization
782 // The source LUT without pre/post curves is passed as parameter.
783 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
784 Error:
785 // Ops, something went wrong, Restore stages
786 if (KeepPreLin != NULL) {
787 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
788 _cmsAssert(0); // This never happens
789 }
790 }
791 if (KeepPostLin != NULL) {
792 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
793 _cmsAssert(0); // This never happens
794 }
795 }
796 cmsPipelineFree(Dest);
797 return FALSE;
798 }
799
800 // Done.
801
802 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
803 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
804 cmsPipelineFree(Src);
805
806 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
807
808 if (NewPreLin == NULL) DataSetIn = NULL;
809 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
810
811 if (NewPostLin == NULL) DataSetOut = NULL;
812 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
813
814
815 if (DataSetIn == NULL && DataSetOut == NULL) {
816
817 _cmsPipelineSetOptimizationParameters(Dest, Lerp16Adapter, DataCLUT->Params, NULL, NULL);
818 }
819 else {
820
821 p16 = PrelinOpt16alloc(Dest ->ContextID,
822 DataCLUT ->Params,
823 Dest ->InputChannels,
824 DataSetIn,
825 Dest ->OutputChannels,
826 DataSetOut);
827
828 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
829 }
830
831
832 // Don't fix white on absolute colorimetric
833 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
834 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
835
836 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
837
838 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
839 }
840
841 *Lut = Dest;
842 return TRUE;
843
844 cmsUNUSED_PARAMETER(Intent);
845 }
846
847
848 // -----------------------------------------------------------------------------------------------------------------------------------------------
849 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
850 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
851 // for RGB transforms. See the paper for more details
852 // -----------------------------------------------------------------------------------------------------------------------------------------------
853
854
855 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
856 // Descending curves are handled as well.
857 static
SlopeLimiting(cmsToneCurve * g)858 void SlopeLimiting(cmsToneCurve* g)
859 {
860 int BeginVal, EndVal;
861 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
862 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
863 cmsFloat64Number Val, Slope, beta;
864 int i;
865
866 if (cmsIsToneCurveDescending(g)) {
867 BeginVal = 0xffff; EndVal = 0;
868 }
869 else {
870 BeginVal = 0; EndVal = 0xffff;
871 }
872
873 // Compute slope and offset for begin of curve
874 Val = g ->Table16[AtBegin];
875 Slope = (Val - BeginVal) / AtBegin;
876 beta = Val - Slope * AtBegin;
877
878 for (i=0; i < AtBegin; i++)
879 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
880
881 // Compute slope and offset for the end
882 Val = g ->Table16[AtEnd];
883 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
884 beta = Val - Slope * AtEnd;
885
886 for (i = AtEnd; i < (int) g ->nEntries; i++)
887 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
888 }
889
890
891 // Precomputes tables for 8-bit on input devicelink.
892 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])893 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
894 {
895 int i;
896 cmsUInt16Number Input[3];
897 cmsS15Fixed16Number v1, v2, v3;
898 Prelin8Data* p8;
899
900 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
901 if (p8 == NULL) return NULL;
902
903 // Since this only works for 8 bit input, values comes always as x * 257,
904 // we can safely take msb byte (x << 8 + x)
905
906 for (i=0; i < 256; i++) {
907
908 if (G != NULL) {
909
910 // Get 16-bit representation
911 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
912 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
913 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
914 }
915 else {
916 Input[0] = FROM_8_TO_16(i);
917 Input[1] = FROM_8_TO_16(i);
918 Input[2] = FROM_8_TO_16(i);
919 }
920
921
922 // Move to 0..1.0 in fixed domain
923 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
924 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
925 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
926
927 // Store the precalculated table of nodes
928 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
929 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
930 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
931
932 // Store the precalculated table of offsets
933 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
934 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
935 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
936 }
937
938 p8 ->ContextID = ContextID;
939 p8 ->p = p;
940
941 return p8;
942 }
943
944 static
Prelin8free(cmsContext ContextID,void * ptr)945 void Prelin8free(cmsContext ContextID, void* ptr)
946 {
947 _cmsFree(ContextID, ptr);
948 }
949
950 static
Prelin8dup(cmsContext ContextID,const void * ptr)951 void* Prelin8dup(cmsContext ContextID, const void* ptr)
952 {
953 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
954 }
955
956
957
958 // A optimized interpolation for 8-bit input.
959 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
960 static CMS_NO_SANITIZE
PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],CMSREGISTER cmsUInt16Number Output[],CMSREGISTER const void * D)961 void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
962 CMSREGISTER cmsUInt16Number Output[],
963 CMSREGISTER const void* D)
964 {
965
966 cmsUInt8Number r, g, b;
967 cmsS15Fixed16Number rx, ry, rz;
968 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
969 int OutChan;
970 CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
971 Prelin8Data* p8 = (Prelin8Data*) D;
972 CMSREGISTER const cmsInterpParams* p = p8 ->p;
973 int TotalOut = (int) p -> nOutputs;
974 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
975
976 r = (cmsUInt8Number) (Input[0] >> 8);
977 g = (cmsUInt8Number) (Input[1] >> 8);
978 b = (cmsUInt8Number) (Input[2] >> 8);
979
980 X0 = (cmsS15Fixed16Number) p8->X0[r];
981 Y0 = (cmsS15Fixed16Number) p8->Y0[g];
982 Z0 = (cmsS15Fixed16Number) p8->Z0[b];
983
984 rx = p8 ->rx[r];
985 ry = p8 ->ry[g];
986 rz = p8 ->rz[b];
987
988 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
989 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
990 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
991
992
993 // These are the 6 Tetrahedral
994 for (OutChan=0; OutChan < TotalOut; OutChan++) {
995
996 c0 = DENS(X0, Y0, Z0);
997
998 if (rx >= ry && ry >= rz)
999 {
1000 c1 = DENS(X1, Y0, Z0) - c0;
1001 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
1002 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1003 }
1004 else
1005 if (rx >= rz && rz >= ry)
1006 {
1007 c1 = DENS(X1, Y0, Z0) - c0;
1008 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1009 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
1010 }
1011 else
1012 if (rz >= rx && rx >= ry)
1013 {
1014 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
1015 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1016 c3 = DENS(X0, Y0, Z1) - c0;
1017 }
1018 else
1019 if (ry >= rx && rx >= rz)
1020 {
1021 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1022 c2 = DENS(X0, Y1, Z0) - c0;
1023 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1024 }
1025 else
1026 if (ry >= rz && rz >= rx)
1027 {
1028 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1029 c2 = DENS(X0, Y1, Z0) - c0;
1030 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1031 }
1032 else
1033 if (rz >= ry && ry >= rx)
1034 {
1035 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1036 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1037 c3 = DENS(X0, Y0, Z1) - c0;
1038 }
1039 else {
1040 c1 = c2 = c3 = 0;
1041 }
1042
1043 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1044 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1045
1046 }
1047 }
1048
1049 #undef DENS
1050
1051
1052 // Curves that contain wide empty areas are not optimizeable
1053 static
IsDegenerated(const cmsToneCurve * g)1054 cmsBool IsDegenerated(const cmsToneCurve* g)
1055 {
1056 cmsUInt32Number i, Zeros = 0, Poles = 0;
1057 cmsUInt32Number nEntries = g ->nEntries;
1058
1059 for (i=0; i < nEntries; i++) {
1060
1061 if (g ->Table16[i] == 0x0000) Zeros++;
1062 if (g ->Table16[i] == 0xffff) Poles++;
1063 }
1064
1065 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1066 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1067 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1068
1069 return FALSE;
1070 }
1071
1072 // --------------------------------------------------------------------------------------------------------------
1073 // We need xput over here
1074
1075 static
OptimizeByComputingLinearization(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1076 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1077 {
1078 cmsPipeline* OriginalLut;
1079 cmsUInt32Number nGridPoints;
1080 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1081 cmsUInt32Number t, i;
1082 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1083 cmsBool lIsSuitable, lIsLinear;
1084 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1085 cmsStage* OptimizedCLUTmpe;
1086 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1087 cmsStage* OptimizedPrelinMpe;
1088 cmsToneCurve** OptimizedPrelinCurves;
1089 _cmsStageCLutData* OptimizedPrelinCLUT;
1090
1091
1092 // This is a lossy optimization! does not apply in floating-point cases
1093 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1094
1095 // Only on chunky RGB
1096 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1097 if (T_PLANAR(*InputFormat)) return FALSE;
1098
1099 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1100 if (T_PLANAR(*OutputFormat)) return FALSE;
1101
1102 // On 16 bits, user has to specify the feature
1103 if (!_cmsFormatterIs8bit(*InputFormat)) {
1104 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1105 }
1106
1107 OriginalLut = *Lut;
1108
1109 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1110 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1111
1112 // Color space must be specified
1113 if (ColorSpace == (cmsColorSpaceSignature)0 ||
1114 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1115
1116 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1117
1118 // Empty gamma containers
1119 memset(Trans, 0, sizeof(Trans));
1120 memset(TransReverse, 0, sizeof(TransReverse));
1121
1122 // If the last stage of the original lut are curves, and those curves are
1123 // degenerated, it is likely the transform is squeezing and clipping
1124 // the output from previous CLUT. We cannot optimize this case
1125 {
1126 cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1127
1128 if (last == NULL) goto Error;
1129 if (cmsStageType(last) == cmsSigCurveSetElemType) {
1130
1131 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1132 for (i = 0; i < Data->nCurves; i++) {
1133 if (IsDegenerated(Data->TheCurves[i]))
1134 goto Error;
1135 }
1136 }
1137 }
1138
1139 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1140 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1141 if (Trans[t] == NULL) goto Error;
1142 }
1143
1144 // Populate the curves
1145 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1146
1147 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1148
1149 // Feed input with a gray ramp
1150 for (t=0; t < OriginalLut ->InputChannels; t++)
1151 In[t] = v;
1152
1153 // Evaluate the gray value
1154 cmsPipelineEvalFloat(In, Out, OriginalLut);
1155
1156 // Store result in curve
1157 for (t=0; t < OriginalLut ->InputChannels; t++)
1158 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1159 }
1160
1161 // Slope-limit the obtained curves
1162 for (t = 0; t < OriginalLut ->InputChannels; t++)
1163 SlopeLimiting(Trans[t]);
1164
1165 // Check for validity
1166 lIsSuitable = TRUE;
1167 lIsLinear = TRUE;
1168 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1169
1170 // Exclude if already linear
1171 if (!cmsIsToneCurveLinear(Trans[t]))
1172 lIsLinear = FALSE;
1173
1174 // Exclude if non-monotonic
1175 if (!cmsIsToneCurveMonotonic(Trans[t]))
1176 lIsSuitable = FALSE;
1177
1178 if (IsDegenerated(Trans[t]))
1179 lIsSuitable = FALSE;
1180 }
1181
1182 // If it is not suitable, just quit
1183 if (!lIsSuitable) goto Error;
1184
1185 // Invert curves if possible
1186 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1187 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1188 if (TransReverse[t] == NULL) goto Error;
1189 }
1190
1191 // Now inset the reversed curves at the begin of transform
1192 LutPlusCurves = cmsPipelineDup(OriginalLut);
1193 if (LutPlusCurves == NULL) goto Error;
1194
1195 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1196 goto Error;
1197
1198 // Create the result LUT
1199 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1200 if (OptimizedLUT == NULL) goto Error;
1201
1202 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1203
1204 // Create and insert the curves at the beginning
1205 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1206 goto Error;
1207
1208 // Allocate the CLUT for result
1209 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1210
1211 // Add the CLUT to the destination LUT
1212 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1213 goto Error;
1214
1215 // Resample the LUT
1216 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1217
1218 // Free resources
1219 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1220
1221 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1222 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1223 }
1224
1225 cmsPipelineFree(LutPlusCurves);
1226
1227
1228 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1229 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1230
1231 // Set the evaluator if 8-bit
1232 if (_cmsFormatterIs8bit(*InputFormat)) {
1233
1234 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1235 OptimizedPrelinCLUT ->Params,
1236 OptimizedPrelinCurves);
1237 if (p8 == NULL) return FALSE;
1238
1239 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1240
1241 }
1242 else
1243 {
1244 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1245 OptimizedPrelinCLUT ->Params,
1246 3, OptimizedPrelinCurves, 3, NULL);
1247 if (p16 == NULL) return FALSE;
1248
1249 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1250
1251 }
1252
1253 // Don't fix white on absolute colorimetric
1254 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1255 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1256
1257 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1258
1259 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1260
1261 return FALSE;
1262 }
1263 }
1264
1265 // And return the obtained LUT
1266
1267 cmsPipelineFree(OriginalLut);
1268 *Lut = OptimizedLUT;
1269 return TRUE;
1270
1271 Error:
1272
1273 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1274
1275 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1276 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1277 }
1278
1279 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1280 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1281
1282 return FALSE;
1283
1284 cmsUNUSED_PARAMETER(Intent);
1285 cmsUNUSED_PARAMETER(lIsLinear);
1286 }
1287
1288
1289 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1290
1291 static
CurvesFree(cmsContext ContextID,void * ptr)1292 void CurvesFree(cmsContext ContextID, void* ptr)
1293 {
1294 Curves16Data* Data = (Curves16Data*) ptr;
1295 cmsUInt32Number i;
1296
1297 for (i=0; i < Data -> nCurves; i++) {
1298
1299 _cmsFree(ContextID, Data ->Curves[i]);
1300 }
1301
1302 _cmsFree(ContextID, Data ->Curves);
1303 _cmsFree(ContextID, ptr);
1304 }
1305
1306 static
CurvesDup(cmsContext ContextID,const void * ptr)1307 void* CurvesDup(cmsContext ContextID, const void* ptr)
1308 {
1309 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1310 cmsUInt32Number i;
1311
1312 if (Data == NULL) return NULL;
1313
1314 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1315
1316 for (i=0; i < Data -> nCurves; i++) {
1317 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1318 }
1319
1320 return (void*) Data;
1321 }
1322
1323 // Precomputes tables for 8-bit on input devicelink.
1324 static
CurvesAlloc(cmsContext ContextID,cmsUInt32Number nCurves,cmsUInt32Number nElements,cmsToneCurve ** G)1325 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1326 {
1327 cmsUInt32Number i, j;
1328 Curves16Data* c16;
1329
1330 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1331 if (c16 == NULL) return NULL;
1332
1333 c16 ->nCurves = nCurves;
1334 c16 ->nElements = nElements;
1335
1336 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1337 if (c16->Curves == NULL) {
1338 _cmsFree(ContextID, c16);
1339 return NULL;
1340 }
1341
1342 for (i=0; i < nCurves; i++) {
1343
1344 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1345
1346 if (c16->Curves[i] == NULL) {
1347
1348 for (j=0; j < i; j++) {
1349 _cmsFree(ContextID, c16->Curves[j]);
1350 }
1351 _cmsFree(ContextID, c16->Curves);
1352 _cmsFree(ContextID, c16);
1353 return NULL;
1354 }
1355
1356 if (nElements == 256U) {
1357
1358 for (j=0; j < nElements; j++) {
1359
1360 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1361 }
1362 }
1363 else {
1364
1365 for (j=0; j < nElements; j++) {
1366 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1367 }
1368 }
1369 }
1370
1371 return c16;
1372 }
1373
1374 static
FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],CMSREGISTER cmsUInt16Number Out[],CMSREGISTER const void * D)1375 void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1376 CMSREGISTER cmsUInt16Number Out[],
1377 CMSREGISTER const void* D)
1378 {
1379 Curves16Data* Data = (Curves16Data*) D;
1380 int x;
1381 cmsUInt32Number i;
1382
1383 for (i=0; i < Data ->nCurves; i++) {
1384
1385 x = (In[i] >> 8);
1386 Out[i] = Data -> Curves[i][x];
1387 }
1388 }
1389
1390
1391 static
FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],CMSREGISTER cmsUInt16Number Out[],CMSREGISTER const void * D)1392 void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1393 CMSREGISTER cmsUInt16Number Out[],
1394 CMSREGISTER const void* D)
1395 {
1396 Curves16Data* Data = (Curves16Data*) D;
1397 cmsUInt32Number i;
1398
1399 for (i=0; i < Data ->nCurves; i++) {
1400 Out[i] = Data -> Curves[i][In[i]];
1401 }
1402 }
1403
1404
1405 static
FastIdentity16(CMSREGISTER const cmsUInt16Number In[],CMSREGISTER cmsUInt16Number Out[],CMSREGISTER const void * D)1406 void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1407 CMSREGISTER cmsUInt16Number Out[],
1408 CMSREGISTER const void* D)
1409 {
1410 cmsPipeline* Lut = (cmsPipeline*) D;
1411 cmsUInt32Number i;
1412
1413 for (i=0; i < Lut ->InputChannels; i++) {
1414 Out[i] = In[i];
1415 }
1416 }
1417
1418
1419 // If the target LUT holds only curves, the optimization procedure is to join all those
1420 // curves together. That only works on curves and does not work on matrices.
1421 static
OptimizeByJoiningCurves(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1422 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1423 {
1424 cmsToneCurve** GammaTables = NULL;
1425 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1426 cmsUInt32Number i, j;
1427 cmsPipeline* Src = *Lut;
1428 cmsPipeline* Dest = NULL;
1429 cmsStage* mpe;
1430 cmsStage* ObtainedCurves = NULL;
1431
1432
1433 // This is a lossy optimization! does not apply in floating-point cases
1434 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1435
1436 // Only curves in this LUT?
1437 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1438 mpe != NULL;
1439 mpe = cmsStageNext(mpe)) {
1440 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1441 }
1442
1443 // Allocate an empty LUT
1444 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1445 if (Dest == NULL) return FALSE;
1446
1447 // Create target curves
1448 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1449 if (GammaTables == NULL) goto Error;
1450
1451 for (i=0; i < Src ->InputChannels; i++) {
1452 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1453 if (GammaTables[i] == NULL) goto Error;
1454 }
1455
1456 // Compute 16 bit result by using floating point
1457 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1458
1459 for (j=0; j < Src ->InputChannels; j++)
1460 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1461
1462 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1463
1464 for (j=0; j < Src ->InputChannels; j++)
1465 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1466 }
1467
1468 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1469 if (ObtainedCurves == NULL) goto Error;
1470
1471 for (i=0; i < Src ->InputChannels; i++) {
1472 cmsFreeToneCurve(GammaTables[i]);
1473 GammaTables[i] = NULL;
1474 }
1475
1476 if (GammaTables != NULL) {
1477 _cmsFree(Src->ContextID, GammaTables);
1478 GammaTables = NULL;
1479 }
1480
1481 // Maybe the curves are linear at the end
1482 if (!AllCurvesAreLinear(ObtainedCurves)) {
1483 _cmsStageToneCurvesData* Data;
1484
1485 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1486 goto Error;
1487 Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1488 ObtainedCurves = NULL;
1489
1490 // If the curves are to be applied in 8 bits, we can save memory
1491 if (_cmsFormatterIs8bit(*InputFormat)) {
1492 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1493
1494 if (c16 == NULL) goto Error;
1495 *dwFlags |= cmsFLAGS_NOCACHE;
1496 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1497
1498 }
1499 else {
1500 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1501
1502 if (c16 == NULL) goto Error;
1503 *dwFlags |= cmsFLAGS_NOCACHE;
1504 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1505 }
1506 }
1507 else {
1508
1509 // LUT optimizes to nothing. Set the identity LUT
1510 cmsStageFree(ObtainedCurves);
1511 ObtainedCurves = NULL;
1512
1513 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1514 goto Error;
1515
1516 *dwFlags |= cmsFLAGS_NOCACHE;
1517 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1518 }
1519
1520 // We are done.
1521 cmsPipelineFree(Src);
1522 *Lut = Dest;
1523 return TRUE;
1524
1525 Error:
1526
1527 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1528 if (GammaTables != NULL) {
1529 for (i=0; i < Src ->InputChannels; i++) {
1530 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1531 }
1532
1533 _cmsFree(Src ->ContextID, GammaTables);
1534 }
1535
1536 if (Dest != NULL) cmsPipelineFree(Dest);
1537 return FALSE;
1538
1539 cmsUNUSED_PARAMETER(Intent);
1540 cmsUNUSED_PARAMETER(InputFormat);
1541 cmsUNUSED_PARAMETER(OutputFormat);
1542 cmsUNUSED_PARAMETER(dwFlags);
1543 }
1544
1545 // -------------------------------------------------------------------------------------------------------------------------------------
1546 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1547
1548
1549 static
FreeMatShaper(cmsContext ContextID,void * Data)1550 void FreeMatShaper(cmsContext ContextID, void* Data)
1551 {
1552 if (Data != NULL) _cmsFree(ContextID, Data);
1553 }
1554
1555 static
DupMatShaper(cmsContext ContextID,const void * Data)1556 void* DupMatShaper(cmsContext ContextID, const void* Data)
1557 {
1558 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1559 }
1560
1561
1562 // A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
1563 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1564 // in total about 50K, and the performance boost is huge!
1565 static CMS_NO_SANITIZE
MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],CMSREGISTER cmsUInt16Number Out[],CMSREGISTER const void * D)1566 void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1567 CMSREGISTER cmsUInt16Number Out[],
1568 CMSREGISTER const void* D)
1569 {
1570 MatShaper8Data* p = (MatShaper8Data*) D;
1571 cmsS1Fixed14Number r, g, b;
1572 cmsInt64Number l1, l2, l3;
1573 cmsUInt32Number ri, gi, bi;
1574
1575 // In this case (and only in this case!) we can use this simplification since
1576 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1577 ri = In[0] & 0xFFU;
1578 gi = In[1] & 0xFFU;
1579 bi = In[2] & 0xFFU;
1580
1581 // Across first shaper, which also converts to 1.14 fixed point
1582 r = _FixedClamp(p->Shaper1R[ri]);
1583 g = _FixedClamp(p->Shaper1G[gi]);
1584 b = _FixedClamp(p->Shaper1B[bi]);
1585
1586 // Evaluate the matrix in 1.14 fixed point
1587 l1 = _MatShaperEvaluateRow(p->Mat[0], p->Off[0], r, g, b);
1588 l2 = _MatShaperEvaluateRow(p->Mat[1], p->Off[1], r, g, b);
1589 l3 = _MatShaperEvaluateRow(p->Mat[2], p->Off[2], r, g, b);
1590
1591 // Now we have to clip to 0..1.0 range
1592 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1593 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1594 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1595
1596 // And across second shaper,
1597 Out[0] = p->Shaper2R[ri];
1598 Out[1] = p->Shaper2G[gi];
1599 Out[2] = p->Shaper2B[bi];
1600
1601 }
1602
1603 // This table converts from 8 bits to 1.14 after applying the curve
1604 static
FillFirstShaper(cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1605 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1606 {
1607 int i;
1608 cmsFloat32Number R, y;
1609
1610 for (i=0; i < 256; i++) {
1611
1612 R = (cmsFloat32Number) (i / 255.0);
1613 y = cmsEvalToneCurveFloat(Curve, R);
1614
1615 if (y < 131072.0)
1616 Table[i] = DOUBLE_TO_1FIXED14(y);
1617 else
1618 Table[i] = 0x7fffffff;
1619 }
1620 }
1621
1622 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1623 static
FillSecondShaper(cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1624 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1625 {
1626 int i;
1627 cmsFloat32Number R, Val;
1628
1629 for (i=0; i < 16385; i++) {
1630
1631 R = (cmsFloat32Number) (i / 16384.0);
1632 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1633
1634 if (Val < 0)
1635 Val = 0;
1636
1637 if (Val > 1.0)
1638 Val = 1.0;
1639
1640 if (Is8BitsOutput) {
1641
1642 // If 8 bits output, we can optimize further by computing the / 257 part.
1643 // first we compute the resulting byte and then we store the byte times
1644 // 257. This quantization allows to round very quick by doing a >> 8, but
1645 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1646 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1647 cmsUInt8Number b = FROM_16_TO_8(w);
1648
1649 Table[i] = FROM_8_TO_16(b);
1650 }
1651 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1652 }
1653 }
1654
1655 // Compute the matrix-shaper structure
1656 static
SetMatShaper(cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1657 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1658 {
1659 MatShaper8Data* p;
1660 int i, j;
1661 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1662
1663 // Allocate a big chuck of memory to store precomputed tables
1664 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1665 if (p == NULL) return FALSE;
1666
1667 p -> ContextID = Dest -> ContextID;
1668
1669 // Precompute tables
1670 FillFirstShaper(p ->Shaper1R, Curve1[0]);
1671 FillFirstShaper(p ->Shaper1G, Curve1[1]);
1672 FillFirstShaper(p ->Shaper1B, Curve1[2]);
1673
1674 FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1675 FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1676 FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1677
1678 // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1679 for (i=0; i < 3; i++) {
1680 for (j=0; j < 3; j++) {
1681 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1682 }
1683 }
1684
1685 for (i=0; i < 3; i++) {
1686
1687 if (Off == NULL) {
1688 p ->Off[i] = 0;
1689 }
1690 else {
1691 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1692 }
1693 }
1694
1695 // Mark as optimized for faster formatter
1696 if (Is8Bits)
1697 *OutputFormat |= OPTIMIZED_SH(1);
1698
1699 // Fill function pointers
1700 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1701 return TRUE;
1702 }
1703
1704 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1705 static
OptimizeMatrixShaper(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1706 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1707 {
1708 cmsStage* Curve1, *Curve2;
1709 cmsStage* Matrix1, *Matrix2;
1710 cmsMAT3 res;
1711 cmsBool IdentityMat;
1712 cmsPipeline* Dest, *Src;
1713 cmsFloat64Number* Offset;
1714
1715 // Only works on RGB to RGB
1716 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1717
1718 // Only works on 8 bit input
1719 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1720
1721 // Seems suitable, proceed
1722 Src = *Lut;
1723
1724 // Check for:
1725 //
1726 // shaper-matrix-matrix-shaper
1727 // shaper-matrix-shaper
1728 //
1729 // Both of those constructs are possible (first because abs. colorimetric).
1730 // additionally, In the first case, the input matrix offset should be zero.
1731
1732 IdentityMat = FALSE;
1733 if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1734 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1735 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1736
1737 // Get both matrices
1738 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1739 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1740
1741 // Only RGB to RGB
1742 if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
1743 Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
1744
1745 // Input offset should be zero
1746 if (Data1->Offset != NULL) return FALSE;
1747
1748 // Multiply both matrices to get the result
1749 _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1750
1751 // Only 2nd matrix has offset, or it is zero
1752 Offset = Data2->Offset;
1753
1754 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1755 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1756
1757 // We can get rid of full matrix
1758 IdentityMat = TRUE;
1759 }
1760
1761 }
1762 else {
1763
1764 if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1765 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1766 &Curve1, &Matrix1, &Curve2)) {
1767
1768 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1769
1770 // Copy the matrix to our result
1771 memcpy(&res, Data->Double, sizeof(res));
1772
1773 // Preserve the Odffset (may be NULL as a zero offset)
1774 Offset = Data->Offset;
1775
1776 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1777
1778 // We can get rid of full matrix
1779 IdentityMat = TRUE;
1780 }
1781 }
1782 else
1783 return FALSE; // Not optimizeable this time
1784
1785 }
1786
1787 // Allocate an empty LUT
1788 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1789 if (!Dest) return FALSE;
1790
1791 // Assamble the new LUT
1792 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1793 goto Error;
1794
1795 if (!IdentityMat) {
1796
1797 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1798 goto Error;
1799 }
1800
1801 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1802 goto Error;
1803
1804 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1805 if (IdentityMat) {
1806
1807 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1808 }
1809 else {
1810 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1811 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1812
1813 // In this particular optimization, cache does not help as it takes more time to deal with
1814 // the cache that with the pixel handling
1815 *dwFlags |= cmsFLAGS_NOCACHE;
1816
1817 // Setup the optimizarion routines
1818 SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1819 }
1820
1821 cmsPipelineFree(Src);
1822 *Lut = Dest;
1823 return TRUE;
1824 Error:
1825 // Leave Src unchanged
1826 cmsPipelineFree(Dest);
1827 return FALSE;
1828 }
1829
1830
1831 // -------------------------------------------------------------------------------------------------------------------------------------
1832 // Optimization plug-ins
1833
1834 // List of optimizations
1835 typedef struct _cmsOptimizationCollection_st {
1836
1837 _cmsOPToptimizeFn OptimizePtr;
1838
1839 struct _cmsOptimizationCollection_st *Next;
1840
1841 } _cmsOptimizationCollection;
1842
1843
1844 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1845 static _cmsOptimizationCollection DefaultOptimization[] = {
1846
1847 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1848 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1849 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1850 { OptimizeByResampling, NULL }
1851 };
1852
1853 // The linked list head
1854 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1855
1856
1857 // Duplicates the zone of memory used by the plug-in in the new context
1858 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1859 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1860 const struct _cmsContext_struct* src)
1861 {
1862 _cmsOptimizationPluginChunkType newHead = { NULL };
1863 _cmsOptimizationCollection* entry;
1864 _cmsOptimizationCollection* Anterior = NULL;
1865 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1866
1867 _cmsAssert(ctx != NULL);
1868 _cmsAssert(head != NULL);
1869
1870 // Walk the list copying all nodes
1871 for (entry = head->OptimizationCollection;
1872 entry != NULL;
1873 entry = entry ->Next) {
1874
1875 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1876
1877 if (newEntry == NULL)
1878 return;
1879
1880 // We want to keep the linked list order, so this is a little bit tricky
1881 newEntry -> Next = NULL;
1882 if (Anterior)
1883 Anterior -> Next = newEntry;
1884
1885 Anterior = newEntry;
1886
1887 if (newHead.OptimizationCollection == NULL)
1888 newHead.OptimizationCollection = newEntry;
1889 }
1890
1891 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1892 }
1893
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1894 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1895 const struct _cmsContext_struct* src)
1896 {
1897 if (src != NULL) {
1898
1899 // Copy all linked list
1900 DupPluginOptimizationList(ctx, src);
1901 }
1902 else {
1903 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1904 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1905 }
1906 }
1907
1908
1909 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1910 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1911 {
1912 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1913 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1914 _cmsOptimizationCollection* fl;
1915
1916 if (Data == NULL) {
1917
1918 ctx->OptimizationCollection = NULL;
1919 return TRUE;
1920 }
1921
1922 // Optimizer callback is required
1923 if (Plugin ->OptimizePtr == NULL) return FALSE;
1924
1925 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1926 if (fl == NULL) return FALSE;
1927
1928 // Copy the parameters
1929 fl ->OptimizePtr = Plugin ->OptimizePtr;
1930
1931 // Keep linked list
1932 fl ->Next = ctx->OptimizationCollection;
1933
1934 // Set the head
1935 ctx ->OptimizationCollection = fl;
1936
1937 // All is ok
1938 return TRUE;
1939 }
1940
1941 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1942 cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1943 cmsPipeline** PtrLut,
1944 cmsUInt32Number Intent,
1945 cmsUInt32Number* InputFormat,
1946 cmsUInt32Number* OutputFormat,
1947 cmsUInt32Number* dwFlags)
1948 {
1949 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1950 _cmsOptimizationCollection* Opts;
1951 cmsBool AnySuccess = FALSE;
1952 cmsStage* mpe;
1953
1954 // A CLUT is being asked, so force this specific optimization
1955 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1956
1957 PreOptimize(*PtrLut);
1958 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1959 }
1960
1961 // Anything to optimize?
1962 if ((*PtrLut) ->Elements == NULL) {
1963 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1964 return TRUE;
1965 }
1966
1967 // Named color pipelines cannot be optimized
1968 for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
1969 mpe != NULL;
1970 mpe = cmsStageNext(mpe)) {
1971 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1972 }
1973
1974 // Try to get rid of identities and trivial conversions.
1975 AnySuccess = PreOptimize(*PtrLut);
1976
1977 // After removal do we end with an identity?
1978 if ((*PtrLut) ->Elements == NULL) {
1979 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1980 return TRUE;
1981 }
1982
1983 // Do not optimize, keep all precision
1984 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1985 return FALSE;
1986
1987 // Try plug-in optimizations
1988 for (Opts = ctx->OptimizationCollection;
1989 Opts != NULL;
1990 Opts = Opts ->Next) {
1991
1992 // If one schema succeeded, we are done
1993 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1994
1995 return TRUE; // Optimized!
1996 }
1997 }
1998
1999 // Try built-in optimizations
2000 for (Opts = DefaultOptimization;
2001 Opts != NULL;
2002 Opts = Opts ->Next) {
2003
2004 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
2005
2006 return TRUE;
2007 }
2008 }
2009
2010 // Only simple optimizations succeeded
2011 return AnySuccess;
2012 }
2013
2014
2015
2016