xref: /aosp_15_r20/external/mesa3d/src/mesa/math/m_matrix.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file m_matrix.c
28  * Matrix operations.
29  *
30  * \note
31  * -# 4x4 transformation matrices are stored in memory in column major order.
32  * -# Points/vertices are to be thought of as column vectors.
33  * -# Transformation of a point p by a matrix M is: p' = M * p
34  */
35 
36 #include <stddef.h>
37 #include <math.h>
38 
39 #include "main/errors.h"
40 #include "util/glheader.h"
41 #include "main/macros.h"
42 
43 #include "m_matrix.h"
44 
45 #include "util/u_memory.h"
46 
47 
48 /**
49  * \defgroup MatFlags MAT_FLAG_XXX-flags
50  *
51  * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
52  */
53 /*@{*/
54 #define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
55                                        *   (Not actually used - the identity
56                                        *   matrix is identified by the absence
57                                        *   of all other flags.)
58                                        */
59 #define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
60 #define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
61 #define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
62 #define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
63 #define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
64 #define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
65 #define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
66 #define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
67 #define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
68 #define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
69 #define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
70 
71 /** angle preserving matrix flags mask */
72 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
73                                     MAT_FLAG_TRANSLATION | \
74                                     MAT_FLAG_UNIFORM_SCALE)
75 
76 /** geometry related matrix flags mask */
77 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
78                             MAT_FLAG_ROTATION | \
79                             MAT_FLAG_TRANSLATION | \
80                             MAT_FLAG_UNIFORM_SCALE | \
81                             MAT_FLAG_GENERAL_SCALE | \
82                             MAT_FLAG_GENERAL_3D | \
83                             MAT_FLAG_PERSPECTIVE | \
84                             MAT_FLAG_SINGULAR)
85 
86 /** length preserving matrix flags mask */
87 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
88                                      MAT_FLAG_TRANSLATION)
89 
90 
91 /** 3D (non-perspective) matrix flags mask */
92 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
93                       MAT_FLAG_TRANSLATION | \
94                       MAT_FLAG_UNIFORM_SCALE | \
95                       MAT_FLAG_GENERAL_SCALE | \
96                       MAT_FLAG_GENERAL_3D)
97 
98 /** dirty matrix flags mask */
99 #define MAT_DIRTY          (MAT_DIRTY_TYPE | \
100                             MAT_DIRTY_FLAGS | \
101                             MAT_DIRTY_INVERSE)
102 
103 /*@}*/
104 
105 
106 /**
107  * Test geometry related matrix flags.
108  *
109  * \param mat a pointer to a GLmatrix structure.
110  * \param a flags mask.
111  *
112  * \returns non-zero if all geometry related matrix flags are contained within
113  * the mask, or zero otherwise.
114  */
115 #define TEST_MAT_FLAGS(mat, a)  \
116     ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
117 
118 
119 /**********************************************************************/
120 /** \name Matrix multiplication */
121 /*@{*/
122 
123 #define A(row,col)  a[(col<<2)+row]
124 #define B(row,col)  b[(col<<2)+row]
125 #define P(row,col)  product[(col<<2)+row]
126 
127 /**
128  * Perform a full 4x4 matrix multiplication.
129  *
130  * \param a matrix.
131  * \param b matrix.
132  * \param product will receive the product of \p a and \p b.
133  *
134  * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
135  *
136  * \note KW: 4*16 = 64 multiplications
137  *
138  * \author This \c matmul was contributed by Thomas Malik
139  */
matmul4(GLfloat * product,const GLfloat * a,const GLfloat * b)140 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
141 {
142    GLint i;
143    for (i = 0; i < 4; i++) {
144       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
145       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
146       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
147       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
148       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
149    }
150 }
151 
152 /**
153  * Multiply two matrices known to occupy only the top three rows, such
154  * as typical model matrices, and orthogonal matrices.
155  *
156  * \param a matrix.
157  * \param b matrix.
158  * \param product will receive the product of \p a and \p b.
159  */
matmul34(GLfloat * product,const GLfloat * a,const GLfloat * b)160 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
161 {
162    GLint i;
163    for (i = 0; i < 3; i++) {
164       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
165       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
166       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
167       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
168       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
169    }
170    P(3,0) = 0;
171    P(3,1) = 0;
172    P(3,2) = 0;
173    P(3,3) = 1;
174 }
175 
176 #undef A
177 #undef B
178 #undef P
179 
180 /* "m" must be a 4x4 matrix. Set it to the identity matrix. */
181 static void
matrix_set_identity(GLfloat * m)182 matrix_set_identity(GLfloat *m)
183 {
184    m[0] = m[5] = m[10] = m[15] = 1;
185    m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = 0;
186    m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0;
187 }
188 
189 /**
190  * Multiply a matrix by an array of floats with known properties.
191  *
192  * \param mat pointer to a GLmatrix structure containing the left multiplication
193  * matrix, and that will receive the product result.
194  * \param m right multiplication matrix array.
195  * \param flags flags of the matrix \p m.
196  *
197  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
198  * if both matrices are 3D, or matmul4() otherwise.
199  */
matrix_multf(GLmatrix * mat,const GLfloat * m,GLuint flags)200 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
201 {
202    mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
203 
204    if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
205       matmul34( mat->m, mat->m, m );
206    else
207       matmul4( mat->m, mat->m, m );
208 }
209 
210 /**
211  * Matrix multiplication.
212  *
213  * \param dest destination matrix.
214  * \param a left matrix.
215  * \param b right matrix.
216  *
217  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
218  * if both matrices are 3D, or matmul4() otherwise.
219  */
220 void
_math_matrix_mul_matrix(GLmatrix * dest,const GLmatrix * a,const GLmatrix * b)221 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
222 {
223    dest->flags = (a->flags |
224                   b->flags |
225                   MAT_DIRTY_TYPE |
226                   MAT_DIRTY_INVERSE);
227 
228    if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
229       matmul34( dest->m, a->m, b->m );
230    else
231       matmul4( dest->m, a->m, b->m );
232 }
233 
234 /**
235  * Matrix multiplication.
236  *
237  * \param dest left and destination matrix.
238  * \param m right matrix array.
239  *
240  * Marks the matrix flags with general flag, and type and inverse dirty flags.
241  * Calls matmul4() for the multiplication.
242  */
243 void
_math_matrix_mul_floats(GLmatrix * dest,const GLfloat * m)244 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
245 {
246    dest->flags |= (MAT_FLAG_GENERAL |
247                    MAT_DIRTY_TYPE |
248                    MAT_DIRTY_INVERSE |
249                    MAT_DIRTY_FLAGS);
250 
251    matmul4( dest->m, dest->m, m );
252 }
253 
254 /*@}*/
255 
256 /**
257  * References an element of 4x4 matrix.
258  *
259  * \param m matrix array.
260  * \param c column of the desired element.
261  * \param r row of the desired element.
262  *
263  * \return value of the desired element.
264  *
265  * Calculate the linear storage index of the element and references it.
266  */
267 #define MAT(m,r,c) (m)[(c)*4+(r)]
268 
269 
270 /**********************************************************************/
271 /** \name Matrix inversion */
272 /*@{*/
273 
274 /**
275  * Compute inverse of 4x4 transformation matrix.
276  *
277  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
278  * stored in the GLmatrix::inv attribute.
279  *
280  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
281  *
282  * \author
283  * Code contributed by Jacques Leroy [email protected]
284  *
285  * Calculates the inverse matrix by performing the gaussian matrix reduction
286  * with partial pivoting followed by back/substitution with the loops manually
287  * unrolled.
288  */
invert_matrix_general(GLmatrix * mat)289 static GLboolean invert_matrix_general( GLmatrix *mat )
290 {
291    return util_invert_mat4x4(mat->inv, mat->m);
292 }
293 
294 /**
295  * Compute inverse of a general 3d transformation matrix.
296  *
297  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
298  * stored in the GLmatrix::inv attribute.
299  *
300  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
301  *
302  * \author Adapted from graphics gems II.
303  *
304  * Calculates the inverse of the upper left by first calculating its
305  * determinant and multiplying it to the symmetric adjust matrix of each
306  * element. Finally deals with the translation part by transforming the
307  * original translation vector using by the calculated submatrix inverse.
308  */
invert_matrix_3d_general(GLmatrix * mat)309 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
310 {
311    const GLfloat *in = mat->m;
312    GLfloat *out = mat->inv;
313    GLfloat pos, neg, t;
314    GLfloat det;
315 
316    /* Calculate the determinant of upper left 3x3 submatrix and
317     * determine if the matrix is singular.
318     */
319    pos = neg = 0.0;
320    t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
321    if (t >= 0.0F) pos += t; else neg += t;
322 
323    t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
324    if (t >= 0.0F) pos += t; else neg += t;
325 
326    t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
327    if (t >= 0.0F) pos += t; else neg += t;
328 
329    t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
330    if (t >= 0.0F) pos += t; else neg += t;
331 
332    t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
333    if (t >= 0.0F) pos += t; else neg += t;
334 
335    t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
336    if (t >= 0.0F) pos += t; else neg += t;
337 
338    det = pos + neg;
339 
340    if (fabsf(det) < 1e-25F)
341       return GL_FALSE;
342 
343    det = 1.0F / det;
344    MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
345    MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
346    MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
347    MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
348    MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
349    MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
350    MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
351    MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
352    MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
353 
354    /* Do the translation part */
355    MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
356                      MAT(in,1,3) * MAT(out,0,1) +
357                      MAT(in,2,3) * MAT(out,0,2) );
358    MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
359                      MAT(in,1,3) * MAT(out,1,1) +
360                      MAT(in,2,3) * MAT(out,1,2) );
361    MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
362                      MAT(in,1,3) * MAT(out,2,1) +
363                      MAT(in,2,3) * MAT(out,2,2) );
364 
365    return GL_TRUE;
366 }
367 
368 /**
369  * Compute inverse of a 3d transformation matrix.
370  *
371  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
372  * stored in the GLmatrix::inv attribute.
373  *
374  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
375  *
376  * If the matrix is not an angle preserving matrix then calls
377  * invert_matrix_3d_general for the actual calculation. Otherwise calculates
378  * the inverse matrix analyzing and inverting each of the scaling, rotation and
379  * translation parts.
380  */
invert_matrix_3d(GLmatrix * mat)381 static GLboolean invert_matrix_3d( GLmatrix *mat )
382 {
383    const GLfloat *in = mat->m;
384    GLfloat *out = mat->inv;
385 
386    if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
387       return invert_matrix_3d_general( mat );
388    }
389 
390    if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
391       GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
392                        MAT(in,0,1) * MAT(in,0,1) +
393                        MAT(in,0,2) * MAT(in,0,2));
394 
395       if (scale == 0.0F)
396          return GL_FALSE;
397 
398       scale = 1.0F / scale;
399 
400       /* Transpose and scale the 3 by 3 upper-left submatrix. */
401       MAT(out,0,0) = scale * MAT(in,0,0);
402       MAT(out,1,0) = scale * MAT(in,0,1);
403       MAT(out,2,0) = scale * MAT(in,0,2);
404       MAT(out,0,1) = scale * MAT(in,1,0);
405       MAT(out,1,1) = scale * MAT(in,1,1);
406       MAT(out,2,1) = scale * MAT(in,1,2);
407       MAT(out,0,2) = scale * MAT(in,2,0);
408       MAT(out,1,2) = scale * MAT(in,2,1);
409       MAT(out,2,2) = scale * MAT(in,2,2);
410    }
411    else if (mat->flags & MAT_FLAG_ROTATION) {
412       /* Transpose the 3 by 3 upper-left submatrix. */
413       MAT(out,0,0) = MAT(in,0,0);
414       MAT(out,1,0) = MAT(in,0,1);
415       MAT(out,2,0) = MAT(in,0,2);
416       MAT(out,0,1) = MAT(in,1,0);
417       MAT(out,1,1) = MAT(in,1,1);
418       MAT(out,2,1) = MAT(in,1,2);
419       MAT(out,0,2) = MAT(in,2,0);
420       MAT(out,1,2) = MAT(in,2,1);
421       MAT(out,2,2) = MAT(in,2,2);
422    }
423    else {
424       /* pure translation */
425       matrix_set_identity(out);
426       MAT(out,0,3) = - MAT(in,0,3);
427       MAT(out,1,3) = - MAT(in,1,3);
428       MAT(out,2,3) = - MAT(in,2,3);
429       return GL_TRUE;
430    }
431 
432    if (mat->flags & MAT_FLAG_TRANSLATION) {
433       /* Do the translation part */
434       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
435                         MAT(in,1,3) * MAT(out,0,1) +
436                         MAT(in,2,3) * MAT(out,0,2) );
437       MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
438                         MAT(in,1,3) * MAT(out,1,1) +
439                         MAT(in,2,3) * MAT(out,1,2) );
440       MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
441                         MAT(in,1,3) * MAT(out,2,1) +
442                         MAT(in,2,3) * MAT(out,2,2) );
443    }
444    else {
445       MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
446    }
447 
448    return GL_TRUE;
449 }
450 
451 /**
452  * Compute inverse of an identity transformation matrix.
453  *
454  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
455  * stored in the GLmatrix::inv attribute.
456  *
457  * \return always GL_TRUE.
458  *
459  * Simply copies Identity into GLmatrix::inv.
460  */
invert_matrix_identity(GLmatrix * mat)461 static GLboolean invert_matrix_identity( GLmatrix *mat )
462 {
463    matrix_set_identity(mat->inv);
464    return GL_TRUE;
465 }
466 
467 /**
468  * Compute inverse of a no-rotation 3d transformation matrix.
469  *
470  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
471  * stored in the GLmatrix::inv attribute.
472  *
473  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
474  *
475  * Calculates the
476  */
invert_matrix_3d_no_rot(GLmatrix * mat)477 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
478 {
479    const GLfloat *in = mat->m;
480    GLfloat *out = mat->inv;
481 
482    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
483       return GL_FALSE;
484 
485    matrix_set_identity(out);
486    MAT(out,0,0) = 1.0F / MAT(in,0,0);
487    MAT(out,1,1) = 1.0F / MAT(in,1,1);
488    MAT(out,2,2) = 1.0F / MAT(in,2,2);
489 
490    if (mat->flags & MAT_FLAG_TRANSLATION) {
491       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
492       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
493       MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
494    }
495 
496    return GL_TRUE;
497 }
498 
499 /**
500  * Compute inverse of a no-rotation 2d transformation matrix.
501  *
502  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
503  * stored in the GLmatrix::inv attribute.
504  *
505  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
506  *
507  * Calculates the inverse matrix by applying the inverse scaling and
508  * translation to the identity matrix.
509  */
invert_matrix_2d_no_rot(GLmatrix * mat)510 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
511 {
512    const GLfloat *in = mat->m;
513    GLfloat *out = mat->inv;
514 
515    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
516       return GL_FALSE;
517 
518    matrix_set_identity(out);
519    MAT(out,0,0) = 1.0F / MAT(in,0,0);
520    MAT(out,1,1) = 1.0F / MAT(in,1,1);
521 
522    if (mat->flags & MAT_FLAG_TRANSLATION) {
523       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
524       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
525    }
526 
527    return GL_TRUE;
528 }
529 
530 /**
531  * Matrix inversion function pointer type.
532  */
533 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
534 
535 /**
536  * Table of the matrix inversion functions according to the matrix type.
537  */
538 static inv_mat_func inv_mat_tab[7] = {
539    invert_matrix_general,
540    invert_matrix_identity,
541    invert_matrix_3d_no_rot,
542    invert_matrix_general,
543    invert_matrix_3d,        /* lazy! */
544    invert_matrix_2d_no_rot,
545    invert_matrix_3d
546 };
547 
548 /**
549  * Compute inverse of a transformation matrix.
550  *
551  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
552  * stored in the GLmatrix::inv attribute.
553  *
554  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
555  *
556  * Calls the matrix inversion function in inv_mat_tab corresponding to the
557  * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
558  * and copies the identity matrix into GLmatrix::inv.
559  */
matrix_invert(GLmatrix * mat)560 static GLboolean matrix_invert( GLmatrix *mat )
561 {
562    if (inv_mat_tab[mat->type](mat)) {
563       mat->flags &= ~MAT_FLAG_SINGULAR;
564       return GL_TRUE;
565    } else {
566       mat->flags |= MAT_FLAG_SINGULAR;
567       matrix_set_identity(mat->inv);
568       return GL_FALSE;
569    }
570 }
571 
572 /*@}*/
573 
574 
575 /**********************************************************************/
576 /** \name Matrix generation */
577 /*@{*/
578 
579 /**
580  * Generate a 4x4 transformation matrix from glRotate parameters, and
581  * post-multiply the input matrix by it.
582  *
583  * \author
584  * This function was contributed by Erich Boleyn ([email protected]).
585  * Optimizations contributed by Rudolf Opalla ([email protected]).
586  */
587 void
_math_matrix_rotate(GLmatrix * mat,GLfloat angle,GLfloat x,GLfloat y,GLfloat z)588 _math_matrix_rotate( GLmatrix *mat,
589                      GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
590 {
591    GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
592    GLfloat m[16];
593    GLboolean optimized;
594 
595    s = sinf( angle * M_PI / 180.0 );
596    c = cosf( angle * M_PI / 180.0 );
597 
598    matrix_set_identity(m);
599    optimized = GL_FALSE;
600 
601 #define M(row,col)  m[col*4+row]
602 
603    if (x == 0.0F) {
604       if (y == 0.0F) {
605          if (z != 0.0F) {
606             optimized = GL_TRUE;
607             /* rotate only around z-axis */
608             M(0,0) = c;
609             M(1,1) = c;
610             if (z < 0.0F) {
611                M(0,1) = s;
612                M(1,0) = -s;
613             }
614             else {
615                M(0,1) = -s;
616                M(1,0) = s;
617             }
618          }
619       }
620       else if (z == 0.0F) {
621          optimized = GL_TRUE;
622          /* rotate only around y-axis */
623          M(0,0) = c;
624          M(2,2) = c;
625          if (y < 0.0F) {
626             M(0,2) = -s;
627             M(2,0) = s;
628          }
629          else {
630             M(0,2) = s;
631             M(2,0) = -s;
632          }
633       }
634    }
635    else if (y == 0.0F) {
636       if (z == 0.0F) {
637          optimized = GL_TRUE;
638          /* rotate only around x-axis */
639          M(1,1) = c;
640          M(2,2) = c;
641          if (x < 0.0F) {
642             M(1,2) = s;
643             M(2,1) = -s;
644          }
645          else {
646             M(1,2) = -s;
647             M(2,1) = s;
648          }
649       }
650    }
651 
652    if (!optimized) {
653       const GLfloat mag = sqrtf(x * x + y * y + z * z);
654 
655       if (mag <= 1.0e-4F) {
656          /* no rotation, leave mat as-is */
657          return;
658       }
659 
660       x /= mag;
661       y /= mag;
662       z /= mag;
663 
664 
665       /*
666        *     Arbitrary axis rotation matrix.
667        *
668        *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
669        *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
670        *  (which is about the X-axis), and the two composite transforms
671        *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
672        *  from the arbitrary axis to the X-axis then back.  They are
673        *  all elementary rotations.
674        *
675        *  Rz' is a rotation about the Z-axis, to bring the axis vector
676        *  into the x-z plane.  Then Ry' is applied, rotating about the
677        *  Y-axis to bring the axis vector parallel with the X-axis.  The
678        *  rotation about the X-axis is then performed.  Ry and Rz are
679        *  simply the respective inverse transforms to bring the arbitrary
680        *  axis back to its original orientation.  The first transforms
681        *  Rz' and Ry' are considered inverses, since the data from the
682        *  arbitrary axis gives you info on how to get to it, not how
683        *  to get away from it, and an inverse must be applied.
684        *
685        *  The basic calculation used is to recognize that the arbitrary
686        *  axis vector (x, y, z), since it is of unit length, actually
687        *  represents the sines and cosines of the angles to rotate the
688        *  X-axis to the same orientation, with theta being the angle about
689        *  Z and phi the angle about Y (in the order described above)
690        *  as follows:
691        *
692        *  cos ( theta ) = x / sqrt ( 1 - z^2 )
693        *  sin ( theta ) = y / sqrt ( 1 - z^2 )
694        *
695        *  cos ( phi ) = sqrt ( 1 - z^2 )
696        *  sin ( phi ) = z
697        *
698        *  Note that cos ( phi ) can further be inserted to the above
699        *  formulas:
700        *
701        *  cos ( theta ) = x / cos ( phi )
702        *  sin ( theta ) = y / sin ( phi )
703        *
704        *  ...etc.  Because of those relations and the standard trigonometric
705        *  relations, it is pssible to reduce the transforms down to what
706        *  is used below.  It may be that any primary axis chosen will give the
707        *  same results (modulo a sign convention) using thie method.
708        *
709        *  Particularly nice is to notice that all divisions that might
710        *  have caused trouble when parallel to certain planes or
711        *  axis go away with care paid to reducing the expressions.
712        *  After checking, it does perform correctly under all cases, since
713        *  in all the cases of division where the denominator would have
714        *  been zero, the numerator would have been zero as well, giving
715        *  the expected result.
716        */
717 
718       xx = x * x;
719       yy = y * y;
720       zz = z * z;
721       xy = x * y;
722       yz = y * z;
723       zx = z * x;
724       xs = x * s;
725       ys = y * s;
726       zs = z * s;
727       one_c = 1.0F - c;
728 
729       /* We already hold the identity-matrix so we can skip some statements */
730       M(0,0) = (one_c * xx) + c;
731       M(0,1) = (one_c * xy) - zs;
732       M(0,2) = (one_c * zx) + ys;
733 /*    M(0,3) = 0.0F; */
734 
735       M(1,0) = (one_c * xy) + zs;
736       M(1,1) = (one_c * yy) + c;
737       M(1,2) = (one_c * yz) - xs;
738 /*    M(1,3) = 0.0F; */
739 
740       M(2,0) = (one_c * zx) - ys;
741       M(2,1) = (one_c * yz) + xs;
742       M(2,2) = (one_c * zz) + c;
743 /*    M(2,3) = 0.0F; */
744 
745 /*
746       M(3,0) = 0.0F;
747       M(3,1) = 0.0F;
748       M(3,2) = 0.0F;
749       M(3,3) = 1.0F;
750 */
751    }
752 #undef M
753 
754    matrix_multf( mat, m, MAT_FLAG_ROTATION );
755 }
756 
757 /**
758  * Apply a perspective projection matrix.
759  *
760  * \param mat matrix to apply the projection.
761  * \param left left clipping plane coordinate.
762  * \param right right clipping plane coordinate.
763  * \param bottom bottom clipping plane coordinate.
764  * \param top top clipping plane coordinate.
765  * \param nearval distance to the near clipping plane.
766  * \param farval distance to the far clipping plane.
767  *
768  * Creates the projection matrix and multiplies it with \p mat, marking the
769  * MAT_FLAG_PERSPECTIVE flag.
770  */
771 void
_math_matrix_frustum(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)772 _math_matrix_frustum( GLmatrix *mat,
773                       GLfloat left, GLfloat right,
774                       GLfloat bottom, GLfloat top,
775                       GLfloat nearval, GLfloat farval )
776 {
777    GLfloat x, y, a, b, c, d;
778    GLfloat m[16];
779 
780    x = (2.0F*nearval) / (right-left);
781    y = (2.0F*nearval) / (top-bottom);
782    a = (right+left) / (right-left);
783    b = (top+bottom) / (top-bottom);
784    c = -(farval+nearval) / ( farval-nearval);
785    d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
786 
787 #define M(row,col)  m[col*4+row]
788    M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
789    M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
790    M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
791    M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
792 #undef M
793 
794    matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
795 }
796 
797 /**
798  * Create an orthographic projection matrix.
799  *
800  * \param m float array in which to store the project matrix
801  * \param left left clipping plane coordinate.
802  * \param right right clipping plane coordinate.
803  * \param bottom bottom clipping plane coordinate.
804  * \param top top clipping plane coordinate.
805  * \param nearval distance to the near clipping plane.
806  * \param farval distance to the far clipping plane.
807  *
808  * Creates the projection matrix and stored the values in \p m.  As with other
809  * OpenGL matrices, the data is stored in column-major ordering.
810  */
811 void
_math_float_ortho(float * m,float left,float right,float bottom,float top,float nearval,float farval)812 _math_float_ortho(float *m,
813                   float left, float right,
814                   float bottom, float top,
815                   float nearval, float farval)
816 {
817 #define M(row,col)  m[col*4+row]
818    M(0,0) = 2.0F / (right-left);
819    M(0,1) = 0.0F;
820    M(0,2) = 0.0F;
821    M(0,3) = -(right+left) / (right-left);
822 
823    M(1,0) = 0.0F;
824    M(1,1) = 2.0F / (top-bottom);
825    M(1,2) = 0.0F;
826    M(1,3) = -(top+bottom) / (top-bottom);
827 
828    M(2,0) = 0.0F;
829    M(2,1) = 0.0F;
830    M(2,2) = -2.0F / (farval-nearval);
831    M(2,3) = -(farval+nearval) / (farval-nearval);
832 
833    M(3,0) = 0.0F;
834    M(3,1) = 0.0F;
835    M(3,2) = 0.0F;
836    M(3,3) = 1.0F;
837 #undef M
838 }
839 
840 /**
841  * Apply an orthographic projection matrix.
842  *
843  * \param mat matrix to apply the projection.
844  * \param left left clipping plane coordinate.
845  * \param right right clipping plane coordinate.
846  * \param bottom bottom clipping plane coordinate.
847  * \param top top clipping plane coordinate.
848  * \param nearval distance to the near clipping plane.
849  * \param farval distance to the far clipping plane.
850  *
851  * Creates the projection matrix and multiplies it with \p mat, marking the
852  * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
853  */
854 void
_math_matrix_ortho(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)855 _math_matrix_ortho( GLmatrix *mat,
856                     GLfloat left, GLfloat right,
857                     GLfloat bottom, GLfloat top,
858                     GLfloat nearval, GLfloat farval )
859 {
860    GLfloat m[16];
861 
862    _math_float_ortho(m, left, right, bottom, top, nearval, farval);
863    matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
864 }
865 
866 /**
867  * Multiply a matrix with a general scaling matrix.
868  *
869  * \param mat matrix.
870  * \param x x axis scale factor.
871  * \param y y axis scale factor.
872  * \param z z axis scale factor.
873  *
874  * Multiplies in-place the elements of \p mat by the scale factors. Checks if
875  * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
876  * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
877  * MAT_DIRTY_INVERSE dirty flags.
878  */
879 void
_math_matrix_scale(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)880 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
881 {
882    GLfloat *m = mat->m;
883    m[0] *= x;   m[4] *= y;   m[8]  *= z;
884    m[1] *= x;   m[5] *= y;   m[9]  *= z;
885    m[2] *= x;   m[6] *= y;   m[10] *= z;
886    m[3] *= x;   m[7] *= y;   m[11] *= z;
887 
888    if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
889       mat->flags |= MAT_FLAG_UNIFORM_SCALE;
890    else
891       mat->flags |= MAT_FLAG_GENERAL_SCALE;
892 
893    mat->flags |= (MAT_DIRTY_TYPE |
894                   MAT_DIRTY_INVERSE);
895 }
896 
897 /**
898  * Multiply a matrix with a translation matrix.
899  *
900  * \param mat matrix.
901  * \param x translation vector x coordinate.
902  * \param y translation vector y coordinate.
903  * \param z translation vector z coordinate.
904  *
905  * Adds the translation coordinates to the elements of \p mat in-place.  Marks
906  * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
907  * dirty flags.
908  */
909 void
_math_matrix_translate(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)910 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
911 {
912    GLfloat *m = mat->m;
913    m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
914    m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
915    m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
916    m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
917 
918    mat->flags |= (MAT_FLAG_TRANSLATION |
919                   MAT_DIRTY_TYPE |
920                   MAT_DIRTY_INVERSE);
921 }
922 
923 
924 /**
925  * Set matrix to do viewport and depthrange mapping.
926  * Transforms Normalized Device Coords to window/Z values.
927  */
928 void
_math_matrix_viewport(GLmatrix * m,const float scale[3],const float translate[3],double depthMax)929 _math_matrix_viewport(GLmatrix *m, const float scale[3],
930                       const float translate[3], double depthMax)
931 {
932    m->m[0] = scale[0];
933    m->m[5] = scale[1];
934    m->m[10] = depthMax*scale[2];
935    m->m[12] = translate[0];
936    m->m[13] = translate[1];
937    m->m[14] = depthMax*translate[2];
938    m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
939    m->type = MATRIX_3D_NO_ROT;
940 }
941 
942 
943 /**
944  * Set a matrix to the identity matrix.
945  *
946  * \param mat matrix.
947  *
948  * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
949  * Sets the matrix type to identity, and clear the dirty flags.
950  */
951 void
_math_matrix_set_identity(GLmatrix * mat)952 _math_matrix_set_identity( GLmatrix *mat )
953 {
954    matrix_set_identity(mat->m);
955    matrix_set_identity(mat->inv);
956 
957    mat->type = MATRIX_IDENTITY;
958    mat->flags &= ~(MAT_DIRTY_FLAGS|
959                    MAT_DIRTY_TYPE|
960                    MAT_DIRTY_INVERSE);
961 }
962 
963 /*@}*/
964 
965 
966 /**********************************************************************/
967 /** \name Matrix analysis */
968 /*@{*/
969 
970 #define ZERO(x) (1<<x)
971 #define ONE(x)  (1<<(x+16))
972 
973 #define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
974 #define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
975 
976 #define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
977                           ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
978                           ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
979                           ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
980 
981 #define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
982                           ZERO(1)  |            ZERO(9)  |           \
983                           ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
984                           ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
985 
986 #define MASK_2D          (                      ZERO(8)  |           \
987                                                 ZERO(9)  |           \
988                           ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
989                           ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
990 
991 
992 #define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
993                           ZERO(1)  |            ZERO(9)  |           \
994                           ZERO(2)  | ZERO(6)  |                      \
995                           ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
996 
997 #define MASK_3D          (                                           \
998                                                                      \
999                                                                      \
1000                           ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1001 
1002 
1003 #define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1004                           ZERO(1)  |                       ZERO(13) |\
1005                           ZERO(2)  | ZERO(6)  |                      \
1006                           ZERO(3)  | ZERO(7)  |            ZERO(15) )
1007 
1008 #define SQ(x) ((x)*(x))
1009 
1010 /**
1011  * Determine type and flags from scratch.
1012  *
1013  * \param mat matrix.
1014  *
1015  * This is expensive enough to only want to do it once.
1016  */
analyse_from_scratch(GLmatrix * mat)1017 static void analyse_from_scratch( GLmatrix *mat )
1018 {
1019    const GLfloat *m = mat->m;
1020    GLuint mask = 0;
1021    GLuint i;
1022 
1023    for (i = 0 ; i < 16 ; i++) {
1024       if (m[i] == 0.0F) mask |= (1<<i);
1025    }
1026 
1027    if (m[0] == 1.0F) mask |= (1<<16);
1028    if (m[5] == 1.0F) mask |= (1<<21);
1029    if (m[10] == 1.0F) mask |= (1<<26);
1030    if (m[15] == 1.0F) mask |= (1<<31);
1031 
1032    mat->flags &= ~MAT_FLAGS_GEOMETRY;
1033 
1034    /* Check for translation - no-one really cares
1035     */
1036    if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1037       mat->flags |= MAT_FLAG_TRANSLATION;
1038 
1039    /* Do the real work
1040     */
1041    if (mask == (GLuint) MASK_IDENTITY) {
1042       mat->type = MATRIX_IDENTITY;
1043    }
1044    else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1045       mat->type = MATRIX_2D_NO_ROT;
1046 
1047       if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1048          mat->flags |= MAT_FLAG_GENERAL_SCALE;
1049    }
1050    else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1051       GLfloat mm = DOT2(m, m);
1052       GLfloat m4m4 = DOT2(m+4,m+4);
1053       GLfloat mm4 = DOT2(m,m+4);
1054 
1055       mat->type = MATRIX_2D;
1056 
1057       /* Check for scale */
1058       if (SQ(mm-1) > SQ(1e-6F) ||
1059           SQ(m4m4-1) > SQ(1e-6F))
1060          mat->flags |= MAT_FLAG_GENERAL_SCALE;
1061 
1062       /* Check for rotation */
1063       if (SQ(mm4) > SQ(1e-6F))
1064          mat->flags |= MAT_FLAG_GENERAL_3D;
1065       else
1066          mat->flags |= MAT_FLAG_ROTATION;
1067 
1068    }
1069    else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1070       mat->type = MATRIX_3D_NO_ROT;
1071 
1072       /* Check for scale */
1073       if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1074           SQ(m[0]-m[10]) < SQ(1e-6F)) {
1075          if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1076             mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1077          }
1078       }
1079       else {
1080          mat->flags |= MAT_FLAG_GENERAL_SCALE;
1081       }
1082    }
1083    else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1084       GLfloat c1 = DOT3(m,m);
1085       GLfloat c2 = DOT3(m+4,m+4);
1086       GLfloat c3 = DOT3(m+8,m+8);
1087       GLfloat d1 = DOT3(m, m+4);
1088       GLfloat cp[3];
1089 
1090       mat->type = MATRIX_3D;
1091 
1092       /* Check for scale */
1093       if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1094          if (SQ(c1-1.0F) > SQ(1e-6F))
1095             mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1096          /* else no scale at all */
1097       }
1098       else {
1099          mat->flags |= MAT_FLAG_GENERAL_SCALE;
1100       }
1101 
1102       /* Check for rotation */
1103       if (SQ(d1) < SQ(1e-6F)) {
1104          CROSS3( cp, m, m+4 );
1105          SUB_3V( cp, cp, (m+8) );
1106          if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1107             mat->flags |= MAT_FLAG_ROTATION;
1108          else
1109             mat->flags |= MAT_FLAG_GENERAL_3D;
1110       }
1111       else {
1112          mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1113       }
1114    }
1115    else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1116       mat->type = MATRIX_PERSPECTIVE;
1117       mat->flags |= MAT_FLAG_GENERAL;
1118    }
1119    else {
1120       mat->type = MATRIX_GENERAL;
1121       mat->flags |= MAT_FLAG_GENERAL;
1122    }
1123 }
1124 
1125 /**
1126  * Analyze a matrix given that its flags are accurate.
1127  *
1128  * This is the more common operation, hopefully.
1129  */
analyse_from_flags(GLmatrix * mat)1130 static void analyse_from_flags( GLmatrix *mat )
1131 {
1132    const GLfloat *m = mat->m;
1133 
1134    if (TEST_MAT_FLAGS(mat, 0)) {
1135       mat->type = MATRIX_IDENTITY;
1136    }
1137    else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1138                                  MAT_FLAG_UNIFORM_SCALE |
1139                                  MAT_FLAG_GENERAL_SCALE))) {
1140       if ( m[10]==1.0F && m[14]==0.0F ) {
1141          mat->type = MATRIX_2D_NO_ROT;
1142       }
1143       else {
1144          mat->type = MATRIX_3D_NO_ROT;
1145       }
1146    }
1147    else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1148       if (                                 m[ 8]==0.0F
1149             &&                             m[ 9]==0.0F
1150             && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1151          mat->type = MATRIX_2D;
1152       }
1153       else {
1154          mat->type = MATRIX_3D;
1155       }
1156    }
1157    else if (                 m[4]==0.0F                 && m[12]==0.0F
1158             && m[1]==0.0F                               && m[13]==0.0F
1159             && m[2]==0.0F && m[6]==0.0F
1160             && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1161       mat->type = MATRIX_PERSPECTIVE;
1162    }
1163    else {
1164       mat->type = MATRIX_GENERAL;
1165    }
1166 }
1167 
1168 /**
1169  * Analyze and update a matrix.
1170  *
1171  * \param mat matrix.
1172  *
1173  * If the matrix type is dirty then calls either analyse_from_scratch() or
1174  * analyse_from_flags() to determine its type, according to whether the flags
1175  * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1176  * then calls matrix_invert(). Finally clears the dirty flags.
1177  */
1178 void
_math_matrix_analyse(GLmatrix * mat)1179 _math_matrix_analyse( GLmatrix *mat )
1180 {
1181    if (mat->flags & MAT_DIRTY_TYPE) {
1182       if (mat->flags & MAT_DIRTY_FLAGS)
1183          analyse_from_scratch( mat );
1184       else
1185          analyse_from_flags( mat );
1186    }
1187 
1188    if (mat->flags & MAT_DIRTY_INVERSE) {
1189       matrix_invert( mat );
1190       mat->flags &= ~MAT_DIRTY_INVERSE;
1191    }
1192 
1193    mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1194 }
1195 
1196 /*@}*/
1197 
1198 
1199 /**
1200  * Test if the given matrix preserves vector lengths.
1201  */
1202 GLboolean
_math_matrix_is_length_preserving(const GLmatrix * m)1203 _math_matrix_is_length_preserving( const GLmatrix *m )
1204 {
1205    return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1206 }
1207 
1208 GLboolean
_math_matrix_is_dirty(const GLmatrix * m)1209 _math_matrix_is_dirty( const GLmatrix *m )
1210 {
1211    return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1212 }
1213 
1214 
1215 /**********************************************************************/
1216 /** \name Matrix setup */
1217 /*@{*/
1218 
1219 /**
1220  * Copy a matrix.
1221  *
1222  * \param to destination matrix.
1223  * \param from source matrix.
1224  *
1225  * Copies all fields in GLmatrix, creating an inverse array if necessary.
1226  */
1227 void
_math_matrix_copy(GLmatrix * to,const GLmatrix * from)1228 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1229 {
1230    memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1231    memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1232    to->flags = from->flags;
1233    to->type = from->type;
1234 }
1235 
1236 /**
1237  * Copy a matrix as part of glPushMatrix.
1238  *
1239  * The makes the source matrix canonical (inverse and flags are up-to-date),
1240  * so that later glPopMatrix is evaluated as a no-op if there is no state
1241  * change.
1242  *
1243  * It this wasn't done, a draw call would canonicalize the matrix, which
1244  * would make it different from the pushed one and so glPopMatrix wouldn't be
1245  * recognized as a no-op.
1246  */
1247 void
_math_matrix_push_copy(GLmatrix * to,GLmatrix * from)1248 _math_matrix_push_copy(GLmatrix *to, GLmatrix *from)
1249 {
1250    if (from->flags & MAT_DIRTY)
1251       _math_matrix_analyse(from);
1252 
1253    _math_matrix_copy(to, from);
1254 }
1255 
1256 /**
1257  * Loads a matrix array into GLmatrix.
1258  *
1259  * \param m matrix array.
1260  * \param mat matrix.
1261  *
1262  * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1263  * flags.
1264  */
1265 void
_math_matrix_loadf(GLmatrix * mat,const GLfloat * m)1266 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1267 {
1268    memcpy( mat->m, m, 16*sizeof(GLfloat) );
1269    mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1270 }
1271 
1272 /**
1273  * Matrix constructor.
1274  *
1275  * \param m matrix.
1276  *
1277  * Initialize the GLmatrix fields.
1278  */
1279 void
_math_matrix_ctr(GLmatrix * m)1280 _math_matrix_ctr( GLmatrix *m )
1281 {
1282    memset(m, 0, sizeof(*m));
1283    matrix_set_identity(m->m);
1284    matrix_set_identity(m->inv);
1285    m->type = MATRIX_IDENTITY;
1286    m->flags = 0;
1287 }
1288 
1289 /*@}*/
1290 
1291 
1292 /**********************************************************************/
1293 /** \name Matrix transpose */
1294 /*@{*/
1295 
1296 /**
1297  * Transpose a GLfloat matrix.
1298  *
1299  * \param to destination array.
1300  * \param from source array.
1301  */
1302 void
_math_transposef(GLfloat to[16],const GLfloat from[16])1303 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1304 {
1305    to[0] = from[0];
1306    to[1] = from[4];
1307    to[2] = from[8];
1308    to[3] = from[12];
1309    to[4] = from[1];
1310    to[5] = from[5];
1311    to[6] = from[9];
1312    to[7] = from[13];
1313    to[8] = from[2];
1314    to[9] = from[6];
1315    to[10] = from[10];
1316    to[11] = from[14];
1317    to[12] = from[3];
1318    to[13] = from[7];
1319    to[14] = from[11];
1320    to[15] = from[15];
1321 }
1322 
1323 /**
1324  * Transpose a GLdouble matrix.
1325  *
1326  * \param to destination array.
1327  * \param from source array.
1328  */
1329 void
_math_transposed(GLdouble to[16],const GLdouble from[16])1330 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1331 {
1332    to[0] = from[0];
1333    to[1] = from[4];
1334    to[2] = from[8];
1335    to[3] = from[12];
1336    to[4] = from[1];
1337    to[5] = from[5];
1338    to[6] = from[9];
1339    to[7] = from[13];
1340    to[8] = from[2];
1341    to[9] = from[6];
1342    to[10] = from[10];
1343    to[11] = from[14];
1344    to[12] = from[3];
1345    to[13] = from[7];
1346    to[14] = from[11];
1347    to[15] = from[15];
1348 }
1349 
1350 /**
1351  * Transpose a GLdouble matrix and convert to GLfloat.
1352  *
1353  * \param to destination array.
1354  * \param from source array.
1355  */
1356 void
_math_transposefd(GLfloat to[16],const GLdouble from[16])1357 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1358 {
1359    to[0] = (GLfloat) from[0];
1360    to[1] = (GLfloat) from[4];
1361    to[2] = (GLfloat) from[8];
1362    to[3] = (GLfloat) from[12];
1363    to[4] = (GLfloat) from[1];
1364    to[5] = (GLfloat) from[5];
1365    to[6] = (GLfloat) from[9];
1366    to[7] = (GLfloat) from[13];
1367    to[8] = (GLfloat) from[2];
1368    to[9] = (GLfloat) from[6];
1369    to[10] = (GLfloat) from[10];
1370    to[11] = (GLfloat) from[14];
1371    to[12] = (GLfloat) from[3];
1372    to[13] = (GLfloat) from[7];
1373    to[14] = (GLfloat) from[11];
1374    to[15] = (GLfloat) from[15];
1375 }
1376 
1377 /*@}*/
1378 
1379 
1380 /**
1381  * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1382  * function is used for transforming clipping plane equations and spotlight
1383  * directions.
1384  * Mathematically,  u = v * m.
1385  * Input:  v - input vector
1386  *         m - transformation matrix
1387  * Output:  u - transformed vector
1388  */
1389 void
_mesa_transform_vector(GLfloat u[4],const GLfloat v[4],const GLfloat m[16])1390 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1391 {
1392    const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1393 #define M(row,col)  m[row + col*4]
1394    u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1395    u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1396    u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1397    u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1398 #undef M
1399 }
1400