xref: /aosp_15_r20/external/swiftshader/src/Reactor/Nucleus.hpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef rr_Nucleus_hpp
16 #define rr_Nucleus_hpp
17 
18 #include <atomic>
19 #include <cassert>
20 #include <cstdarg>
21 #include <cstdint>
22 #include <functional>
23 #include <memory>
24 #include <string>
25 #include <vector>
26 
27 #ifdef None
28 #	undef None  // TODO(b/127920555)
29 #endif
30 
31 static_assert(sizeof(short) == 2, "Reactor's 'Short' type is 16-bit, and requires the C++ 'short' to match that.");
32 static_assert(sizeof(int) == 4, "Reactor's 'Int' type is 32-bit, and requires the C++ 'int' to match that.");
33 
34 namespace rr {
35 
36 class Type;
37 class Value;
38 class SwitchCases;
39 class BasicBlock;
40 class Routine;
41 
42 class Nucleus
43 {
44 public:
45 	Nucleus();
46 
47 	virtual ~Nucleus();
48 
49 	std::shared_ptr<Routine> acquireRoutine(const char *name);
50 
51 	static Value *allocateStackVariable(Type *type, int arraySize = 0);
52 	static BasicBlock *createBasicBlock();
53 	static BasicBlock *getInsertBlock();
54 	static void setInsertBlock(BasicBlock *basicBlock);
55 
56 	static void createFunction(Type *returnType, const std::vector<Type *> &paramTypes);
57 	static Value *getArgument(unsigned int index);
58 
59 	// Coroutines
60 	using CoroutineHandle = void *;
61 
62 	template<typename... ARGS>
63 	using CoroutineBegin = CoroutineHandle(ARGS...);
64 	using CoroutineAwait = bool(CoroutineHandle, void *yieldValue);
65 	using CoroutineDestroy = void(CoroutineHandle);
66 
67 	enum CoroutineEntries
68 	{
69 		CoroutineEntryBegin = 0,
70 		CoroutineEntryAwait,
71 		CoroutineEntryDestroy,
72 		CoroutineEntryCount
73 	};
74 
75 	// Begins the generation of the three coroutine functions: CoroutineBegin, CoroutineAwait, and CoroutineDestroy,
76 	// which will be returned by Routine::getEntry() with arg CoroutineEntryBegin, CoroutineEntryAwait, and CoroutineEntryDestroy
77 	// respectively. Called by Coroutine constructor.
78 	// Params are used to generate the params to CoroutineBegin, while ReturnType is used as the YieldType for the coroutine,
79 	// returned via CoroutineAwait..
80 	static void createCoroutine(Type *returnType, const std::vector<Type *> &params);
81 	// Generates code to store the passed in value, and to suspend execution of the coroutine, such that the next call to
82 	// CoroutineAwait can set the output yieldValue and resume execution of the coroutine.
83 	static void yield(Value *val);
84 	// Called to finalize coroutine creation. After this call, Routine::getEntry can be called to retrieve the entry point to any
85 	// of the three coroutine functions. Called by Coroutine::finalize.
86 	std::shared_ptr<Routine> acquireCoroutine(const char *name);
87 	// Called by Coroutine::operator() to execute CoroutineEntryBegin wrapped up in func. This is needed in case
88 	// the call must be run on a separate thread of execution (e.g. on a fiber).
89 	static CoroutineHandle invokeCoroutineBegin(Routine &routine, std::function<CoroutineHandle()> func);
90 
91 	// Terminators
92 	static void createRetVoid();
93 	static void createRet(Value *V);
94 	static void createBr(BasicBlock *dest);
95 	static void createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse);
96 
97 	// Binary operators
98 	static Value *createAdd(Value *lhs, Value *rhs);
99 	static Value *createSub(Value *lhs, Value *rhs);
100 	static Value *createMul(Value *lhs, Value *rhs);
101 	static Value *createUDiv(Value *lhs, Value *rhs);
102 	static Value *createSDiv(Value *lhs, Value *rhs);
103 	static Value *createFAdd(Value *lhs, Value *rhs);
104 	static Value *createFSub(Value *lhs, Value *rhs);
105 	static Value *createFMul(Value *lhs, Value *rhs);
106 	static Value *createFDiv(Value *lhs, Value *rhs);
107 	static Value *createURem(Value *lhs, Value *rhs);
108 	static Value *createSRem(Value *lhs, Value *rhs);
109 	static Value *createFRem(Value *lhs, Value *rhs);
110 	static Value *createShl(Value *lhs, Value *rhs);
111 	static Value *createLShr(Value *lhs, Value *rhs);
112 	static Value *createAShr(Value *lhs, Value *rhs);
113 	static Value *createAnd(Value *lhs, Value *rhs);
114 	static Value *createOr(Value *lhs, Value *rhs);
115 	static Value *createXor(Value *lhs, Value *rhs);
116 
117 	// Unary operators
118 	static Value *createNeg(Value *V);
119 	static Value *createFNeg(Value *V);
120 	static Value *createNot(Value *V);
121 
122 	// Memory instructions
123 	static Value *createLoad(Value *ptr, Type *type, bool isVolatile = false, unsigned int alignment = 0, bool atomic = false, std::memory_order memoryOrder = std::memory_order_relaxed);
124 	static Value *createStore(Value *value, Value *ptr, Type *type, bool isVolatile = false, unsigned int aligment = 0, bool atomic = false, std::memory_order memoryOrder = std::memory_order_relaxed);
125 	static Value *createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex);
126 
127 	// Masked Load / Store instructions
128 	static Value *createMaskedLoad(Value *base, Type *elementType, Value *mask, unsigned int alignment, bool zeroMaskedLanes);
129 	static void createMaskedStore(Value *base, Value *value, Value *mask, unsigned int alignment);
130 
131 	// Barrier instructions
132 	static void createFence(std::memory_order memoryOrder);
133 
134 	// Atomic instructions
135 	static Value *createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
136 	static Value *createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
137 	static Value *createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
138 	static Value *createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
139 	static Value *createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
140 	static Value *createAtomicMin(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
141 	static Value *createAtomicMax(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
142 	static Value *createAtomicUMin(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
143 	static Value *createAtomicUMax(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
144 	static Value *createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder = std::memory_order_relaxed);
145 	static Value *createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal);
146 
147 	// Cast/Conversion Operators
148 	static Value *createTrunc(Value *V, Type *destType);
149 	static Value *createZExt(Value *V, Type *destType);
150 	static Value *createSExt(Value *V, Type *destType);
151 	static Value *createFPToUI(Value *V, Type *destType);
152 	static Value *createFPToSI(Value *V, Type *destType);
153 	static Value *createSIToFP(Value *V, Type *destType);
154 	static Value *createFPTrunc(Value *V, Type *destType);
155 	static Value *createFPExt(Value *V, Type *destType);
156 	static Value *createBitCast(Value *V, Type *destType);
157 
158 	// Compare instructions
159 	static Value *createICmpEQ(Value *lhs, Value *rhs);
160 	static Value *createICmpNE(Value *lhs, Value *rhs);
161 	static Value *createICmpUGT(Value *lhs, Value *rhs);
162 	static Value *createICmpUGE(Value *lhs, Value *rhs);
163 	static Value *createICmpULT(Value *lhs, Value *rhs);
164 	static Value *createICmpULE(Value *lhs, Value *rhs);
165 	static Value *createICmpSGT(Value *lhs, Value *rhs);
166 	static Value *createICmpSGE(Value *lhs, Value *rhs);
167 	static Value *createICmpSLT(Value *lhs, Value *rhs);
168 	static Value *createICmpSLE(Value *lhs, Value *rhs);
169 	static Value *createFCmpOEQ(Value *lhs, Value *rhs);
170 	static Value *createFCmpOGT(Value *lhs, Value *rhs);
171 	static Value *createFCmpOGE(Value *lhs, Value *rhs);
172 	static Value *createFCmpOLT(Value *lhs, Value *rhs);
173 	static Value *createFCmpOLE(Value *lhs, Value *rhs);
174 	static Value *createFCmpONE(Value *lhs, Value *rhs);
175 	static Value *createFCmpORD(Value *lhs, Value *rhs);
176 	static Value *createFCmpUNO(Value *lhs, Value *rhs);
177 	static Value *createFCmpUEQ(Value *lhs, Value *rhs);
178 	static Value *createFCmpUGT(Value *lhs, Value *rhs);
179 	static Value *createFCmpUGE(Value *lhs, Value *rhs);
180 	static Value *createFCmpULT(Value *lhs, Value *rhs);
181 	static Value *createFCmpULE(Value *lhs, Value *rhs);
182 	static Value *createFCmpUNE(Value *lhs, Value *rhs);
183 
184 	// Vector instructions
185 	static Value *createExtractElement(Value *vector, Type *type, int index);
186 	static Value *createInsertElement(Value *vector, Value *element, int index);
187 	static Value *createShuffleVector(Value *V1, Value *V2, std::vector<int> select);
188 
189 	// Other instructions
190 	static Value *createSelect(Value *C, Value *ifTrue, Value *ifFalse);
191 	static SwitchCases *createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases);
192 	static void addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch);
193 	static void createUnreachable();
194 
195 	// Constant values
196 	static Value *createNullValue(Type *type);
197 	static Value *createConstantLong(int64_t i);
198 	static Value *createConstantInt(int i);
199 	static Value *createConstantInt(unsigned int i);
200 	static Value *createConstantBool(bool b);
201 	static Value *createConstantByte(signed char i);
202 	static Value *createConstantByte(unsigned char i);
203 	static Value *createConstantShort(short i);
204 	static Value *createConstantShort(unsigned short i);
205 	static Value *createConstantFloat(float x);
206 	static Value *createNullPointer(Type *type);
207 	static Value *createConstantVector(std::vector<int64_t> constants, Type *type);
208 	static Value *createConstantVector(std::vector<double> constants, Type *type);
209 	static Value *createConstantString(const char *v);
createConstantString(const std::string & v)210 	static Value *createConstantString(const std::string &v) { return createConstantString(v.c_str()); }
211 
212 	static Type *getType(Value *value);
213 	static Type *getContainedType(Type *vectorType);
214 	static Type *getPointerType(Type *elementType);
215 	static Type *getPrintfStorageType(Type *valueType);
216 
217 	// Diagnostic utilities
218 	struct OptimizerReport
219 	{
220 		int allocas = 0;
221 		int loads = 0;
222 		int stores = 0;
223 	};
224 
225 	using OptimizerCallback = void(const OptimizerReport *report);
226 
227 	// Sets the callback to be used by the next optimizer invocation (during acquireRoutine),
228 	// for reporting stats about the resulting IR code. For testing only.
229 	static void setOptimizerCallback(OptimizerCallback *callback);
230 };
231 
232 }  // namespace rr
233 
234 #endif  // rr_Nucleus_hpp
235