xref: /aosp_15_r20/external/libaom/aom_dsp/pyramid.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2022, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "aom_dsp/pyramid.h"
13 #include "aom_mem/aom_mem.h"
14 #include "aom_ports/bitops.h"
15 #include "aom_util/aom_pthread.h"
16 
17 // TODO(rachelbarker): Move needed code from av1/ to aom_dsp/
18 #include "av1/common/resize.h"
19 
20 #include <assert.h>
21 #include <string.h>
22 
23 // Lifecycle:
24 // * Frame buffer alloc code calls aom_get_pyramid_alloc_size()
25 //   to work out how much space is needed for a given number of pyramid
26 //   levels. This is counted in the size checked against the max allocation
27 //   limit
28 // * Then calls aom_alloc_pyramid() to actually create the pyramid
29 // * Pyramid is initially marked as containing no valid data
30 // * Each pyramid layer is computed on-demand, the first time it is requested
31 // * Whenever frame buffer is reused, reset the counter of filled levels.
32 //   This invalidates all of the existing pyramid levels.
33 // * Whenever frame buffer is resized, reallocate pyramid
34 
aom_get_pyramid_alloc_size(int width,int height,bool image_is_16bit)35 size_t aom_get_pyramid_alloc_size(int width, int height, bool image_is_16bit) {
36   // Allocate the maximum possible number of layers for this width and height
37   const int msb = get_msb(AOMMIN(width, height));
38   const int n_levels = AOMMAX(msb - MIN_PYRAMID_SIZE_LOG2, 1);
39 
40   size_t alloc_size = 0;
41   alloc_size += sizeof(ImagePyramid);
42   alloc_size += n_levels * sizeof(PyramidLayer);
43 
44   // Calculate how much memory is needed for downscaled frame buffers
45   size_t buffer_size = 0;
46 
47   // Work out if we need to allocate a few extra bytes for alignment.
48   // aom_memalign() will ensure that the start of the allocation is aligned
49   // to a multiple of PYRAMID_ALIGNMENT. But we want the first image pixel
50   // to be aligned, not the first byte of the allocation.
51   //
52   // In the loop below, we ensure that the stride of every image is a multiple
53   // of PYRAMID_ALIGNMENT. Thus the allocated size of each pyramid level will
54   // also be a multiple of PYRAMID_ALIGNMENT. Thus, as long as we can get the
55   // first pixel in the first pyramid layer aligned properly, that will
56   // automatically mean that the first pixel of every row of every layer is
57   // properly aligned too.
58   //
59   // Thus all we need to consider is the first pixel in the first layer.
60   // This is located at offset
61   //   extra_bytes + level_stride * PYRAMID_PADDING + PYRAMID_PADDING
62   // bytes into the buffer. Since level_stride is a multiple of
63   // PYRAMID_ALIGNMENT, we can ignore that. So we need
64   //   extra_bytes + PYRAMID_PADDING = multiple of PYRAMID_ALIGNMENT
65   //
66   // To solve this, we can round PYRAMID_PADDING up to the next multiple
67   // of PYRAMID_ALIGNMENT, then subtract the orginal value to calculate
68   // how many extra bytes are needed.
69   size_t first_px_offset =
70       (PYRAMID_PADDING + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
71   size_t extra_bytes = first_px_offset - PYRAMID_PADDING;
72   buffer_size += extra_bytes;
73 
74   // If the original image is stored in an 8-bit buffer, then we can point the
75   // lowest pyramid level at that buffer rather than allocating a new one.
76   int first_allocated_level = image_is_16bit ? 0 : 1;
77 
78   for (int level = first_allocated_level; level < n_levels; level++) {
79     int level_width = width >> level;
80     int level_height = height >> level;
81 
82     // Allocate padding for each layer
83     int padded_width = level_width + 2 * PYRAMID_PADDING;
84     int padded_height = level_height + 2 * PYRAMID_PADDING;
85 
86     // Align the layer stride to be a multiple of PYRAMID_ALIGNMENT
87     // This ensures that, as long as the top-left pixel in this pyramid level is
88     // properly aligned, then so will the leftmost pixel in every row of the
89     // pyramid level.
90     int level_stride =
91         (padded_width + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
92 
93     buffer_size += level_stride * padded_height;
94   }
95 
96   alloc_size += buffer_size;
97 
98   return alloc_size;
99 }
100 
aom_alloc_pyramid(int width,int height,bool image_is_16bit)101 ImagePyramid *aom_alloc_pyramid(int width, int height, bool image_is_16bit) {
102   // Allocate the maximum possible number of layers for this width and height
103   const int msb = get_msb(AOMMIN(width, height));
104   const int n_levels = AOMMAX(msb - MIN_PYRAMID_SIZE_LOG2, 1);
105 
106   ImagePyramid *pyr = aom_calloc(1, sizeof(*pyr));
107   if (!pyr) {
108     return NULL;
109   }
110 
111   pyr->layers = aom_calloc(n_levels, sizeof(*pyr->layers));
112   if (!pyr->layers) {
113     aom_free(pyr);
114     return NULL;
115   }
116 
117   pyr->max_levels = n_levels;
118   pyr->filled_levels = 0;
119 
120   // Compute sizes and offsets for each pyramid level
121   // These are gathered up first, so that we can allocate all pyramid levels
122   // in a single buffer
123   size_t buffer_size = 0;
124   size_t *layer_offsets = aom_calloc(n_levels, sizeof(*layer_offsets));
125   if (!layer_offsets) {
126     aom_free(pyr->layers);
127     aom_free(pyr);
128     return NULL;
129   }
130 
131   // Work out if we need to allocate a few extra bytes for alignment.
132   // aom_memalign() will ensure that the start of the allocation is aligned
133   // to a multiple of PYRAMID_ALIGNMENT. But we want the first image pixel
134   // to be aligned, not the first byte of the allocation.
135   //
136   // In the loop below, we ensure that the stride of every image is a multiple
137   // of PYRAMID_ALIGNMENT. Thus the allocated size of each pyramid level will
138   // also be a multiple of PYRAMID_ALIGNMENT. Thus, as long as we can get the
139   // first pixel in the first pyramid layer aligned properly, that will
140   // automatically mean that the first pixel of every row of every layer is
141   // properly aligned too.
142   //
143   // Thus all we need to consider is the first pixel in the first layer.
144   // This is located at offset
145   //   extra_bytes + level_stride * PYRAMID_PADDING + PYRAMID_PADDING
146   // bytes into the buffer. Since level_stride is a multiple of
147   // PYRAMID_ALIGNMENT, we can ignore that. So we need
148   //   extra_bytes + PYRAMID_PADDING = multiple of PYRAMID_ALIGNMENT
149   //
150   // To solve this, we can round PYRAMID_PADDING up to the next multiple
151   // of PYRAMID_ALIGNMENT, then subtract the orginal value to calculate
152   // how many extra bytes are needed.
153   size_t first_px_offset =
154       (PYRAMID_PADDING + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
155   size_t extra_bytes = first_px_offset - PYRAMID_PADDING;
156   buffer_size += extra_bytes;
157 
158   // If the original image is stored in an 8-bit buffer, then we can point the
159   // lowest pyramid level at that buffer rather than allocating a new one.
160   int first_allocated_level = image_is_16bit ? 0 : 1;
161 
162   for (int level = first_allocated_level; level < n_levels; level++) {
163     PyramidLayer *layer = &pyr->layers[level];
164 
165     int level_width = width >> level;
166     int level_height = height >> level;
167 
168     // Allocate padding for each layer
169     int padded_width = level_width + 2 * PYRAMID_PADDING;
170     int padded_height = level_height + 2 * PYRAMID_PADDING;
171 
172     // Align the layer stride to be a multiple of PYRAMID_ALIGNMENT
173     // This ensures that, as long as the top-left pixel in this pyramid level is
174     // properly aligned, then so will the leftmost pixel in every row of the
175     // pyramid level.
176     int level_stride =
177         (padded_width + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
178 
179     size_t level_alloc_start = buffer_size;
180     size_t level_start =
181         level_alloc_start + PYRAMID_PADDING * level_stride + PYRAMID_PADDING;
182 
183     buffer_size += level_stride * padded_height;
184 
185     layer_offsets[level] = level_start;
186     layer->width = level_width;
187     layer->height = level_height;
188     layer->stride = level_stride;
189   }
190 
191   pyr->buffer_alloc =
192       aom_memalign(PYRAMID_ALIGNMENT, buffer_size * sizeof(*pyr->buffer_alloc));
193   if (!pyr->buffer_alloc) {
194     aom_free(pyr->layers);
195     aom_free(pyr);
196     aom_free(layer_offsets);
197     return NULL;
198   }
199 
200   // Fill in pointers for each level
201   // If image is 8-bit, then the lowest level is left unconfigured for now,
202   // and will be set up properly when the pyramid is filled in
203   for (int level = first_allocated_level; level < n_levels; level++) {
204     PyramidLayer *layer = &pyr->layers[level];
205     layer->buffer = pyr->buffer_alloc + layer_offsets[level];
206   }
207 
208 #if CONFIG_MULTITHREAD
209   pthread_mutex_init(&pyr->mutex, NULL);
210 #endif  // CONFIG_MULTITHREAD
211 
212   aom_free(layer_offsets);
213   return pyr;
214 }
215 
216 // Fill the border region of a pyramid frame.
217 // This must be called after the main image area is filled out.
218 // `img_buf` should point to the first pixel in the image area,
219 // ie. it should be pyr->level_buffer + pyr->level_loc[level].
fill_border(uint8_t * img_buf,const int width,const int height,const int stride)220 static inline void fill_border(uint8_t *img_buf, const int width,
221                                const int height, const int stride) {
222   // Fill left and right areas
223   for (int row = 0; row < height; row++) {
224     uint8_t *row_start = &img_buf[row * stride];
225     uint8_t left_pixel = row_start[0];
226     memset(row_start - PYRAMID_PADDING, left_pixel, PYRAMID_PADDING);
227     uint8_t right_pixel = row_start[width - 1];
228     memset(row_start + width, right_pixel, PYRAMID_PADDING);
229   }
230 
231   // Fill top area
232   for (int row = -PYRAMID_PADDING; row < 0; row++) {
233     uint8_t *row_start = &img_buf[row * stride];
234     memcpy(row_start - PYRAMID_PADDING, img_buf - PYRAMID_PADDING,
235            width + 2 * PYRAMID_PADDING);
236   }
237 
238   // Fill bottom area
239   uint8_t *last_row_start = &img_buf[(height - 1) * stride];
240   for (int row = height; row < height + PYRAMID_PADDING; row++) {
241     uint8_t *row_start = &img_buf[row * stride];
242     memcpy(row_start - PYRAMID_PADDING, last_row_start - PYRAMID_PADDING,
243            width + 2 * PYRAMID_PADDING);
244   }
245 }
246 
247 // Compute downsampling pyramid for a frame
248 //
249 // This function will ensure that the first `n_levels` levels of the pyramid
250 // are filled, unless the frame is too small to have this many levels.
251 // In that case, we will fill all available levels and then stop.
252 //
253 // Returns the actual number of levels filled, capped at n_levels,
254 // or -1 on error.
255 //
256 // This must only be called while holding frame_pyr->mutex
fill_pyramid(const YV12_BUFFER_CONFIG * frame,int bit_depth,int n_levels,ImagePyramid * frame_pyr)257 static inline int fill_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth,
258                                int n_levels, ImagePyramid *frame_pyr) {
259   int already_filled_levels = frame_pyr->filled_levels;
260 
261   // This condition should already be enforced by aom_compute_pyramid
262   assert(n_levels <= frame_pyr->max_levels);
263 
264   if (already_filled_levels >= n_levels) {
265     return n_levels;
266   }
267 
268   const int frame_width = frame->y_crop_width;
269   const int frame_height = frame->y_crop_height;
270   const int frame_stride = frame->y_stride;
271   assert((frame_width >> n_levels) >= 0);
272   assert((frame_height >> n_levels) >= 0);
273 
274   if (already_filled_levels == 0) {
275     // Fill in largest level from the original image
276     PyramidLayer *first_layer = &frame_pyr->layers[0];
277     if (frame->flags & YV12_FLAG_HIGHBITDEPTH) {
278       // For frames stored in a 16-bit buffer, we need to downconvert to 8 bits
279       assert(first_layer->width == frame_width);
280       assert(first_layer->height == frame_height);
281 
282       uint16_t *frame_buffer = CONVERT_TO_SHORTPTR(frame->y_buffer);
283       uint8_t *pyr_buffer = first_layer->buffer;
284       int pyr_stride = first_layer->stride;
285       for (int y = 0; y < frame_height; y++) {
286         uint16_t *frame_row = frame_buffer + y * frame_stride;
287         uint8_t *pyr_row = pyr_buffer + y * pyr_stride;
288         for (int x = 0; x < frame_width; x++) {
289           pyr_row[x] = frame_row[x] >> (bit_depth - 8);
290         }
291       }
292 
293       fill_border(pyr_buffer, frame_width, frame_height, pyr_stride);
294     } else {
295       // For frames stored in an 8-bit buffer, we don't need to copy anything -
296       // we can just reference the original image buffer
297       first_layer->buffer = frame->y_buffer;
298       first_layer->width = frame_width;
299       first_layer->height = frame_height;
300       first_layer->stride = frame_stride;
301     }
302 
303     already_filled_levels = 1;
304   }
305 
306   // Fill in the remaining levels through progressive downsampling
307   for (int level = already_filled_levels; level < n_levels; ++level) {
308     bool mem_status = false;
309     PyramidLayer *prev_layer = &frame_pyr->layers[level - 1];
310     uint8_t *prev_buffer = prev_layer->buffer;
311     int prev_stride = prev_layer->stride;
312 
313     PyramidLayer *this_layer = &frame_pyr->layers[level];
314     uint8_t *this_buffer = this_layer->buffer;
315     int this_width = this_layer->width;
316     int this_height = this_layer->height;
317     int this_stride = this_layer->stride;
318 
319     // The width and height of the previous layer that needs to be considered to
320     // derive the current layer frame.
321     const int input_layer_width = this_width << 1;
322     const int input_layer_height = this_height << 1;
323 
324     // Compute the this pyramid level by downsampling the current level.
325     //
326     // We downsample by a factor of exactly 2, clipping the rightmost and
327     // bottommost pixel off of the current level if needed. We do this for
328     // two main reasons:
329     //
330     // 1) In the disflow code, when stepping from a higher pyramid level to a
331     //    lower pyramid level, we need to not just interpolate the flow field
332     //    but also to scale each flow vector by the upsampling ratio.
333     //    So it is much more convenient if this ratio is simply 2.
334     //
335     // 2) Up/downsampling by a factor of 2 can be implemented much more
336     //    efficiently than up/downsampling by a generic ratio.
337     //    TODO(rachelbarker): Use optimized downsample-by-2 function
338 
339     // SIMD support has been added specifically for cases where the downsample
340     // factor is exactly 2. In such instances, horizontal and vertical resizing
341     // is performed utilizing the down2_symeven() function, which considers the
342     // even dimensions of the input layer.
343     if (should_resize_by_half(input_layer_height, input_layer_width,
344                               this_height, this_width)) {
345       assert(input_layer_height % 2 == 0 && input_layer_width % 2 == 0 &&
346              "Input width or height cannot be odd.");
347       mem_status = av1_resize_plane_to_half(
348           prev_buffer, input_layer_height, input_layer_width, prev_stride,
349           this_buffer, this_height, this_width, this_stride);
350     } else {
351       mem_status = av1_resize_plane(prev_buffer, input_layer_height,
352                                     input_layer_width, prev_stride, this_buffer,
353                                     this_height, this_width, this_stride);
354     }
355 
356     // Terminate early in cases of memory allocation failure.
357     if (!mem_status) {
358       frame_pyr->filled_levels = n_levels;
359       return -1;
360     }
361 
362     fill_border(this_buffer, this_width, this_height, this_stride);
363   }
364 
365   frame_pyr->filled_levels = n_levels;
366   return n_levels;
367 }
368 
369 // Fill out a downsampling pyramid for a given frame.
370 //
371 // The top level (index 0) will always be an 8-bit copy of the input frame,
372 // regardless of the input bit depth. Additional levels are then downscaled
373 // by powers of 2.
374 //
375 // This function will ensure that the first `n_levels` levels of the pyramid
376 // are filled, unless the frame is too small to have this many levels.
377 // In that case, we will fill all available levels and then stop.
378 // No matter how small the frame is, at least one level is guaranteed
379 // to be filled.
380 //
381 // Returns the actual number of levels filled, capped at n_levels,
382 // or -1 on error.
aom_compute_pyramid(const YV12_BUFFER_CONFIG * frame,int bit_depth,int n_levels,ImagePyramid * pyr)383 int aom_compute_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth,
384                         int n_levels, ImagePyramid *pyr) {
385   assert(pyr);
386 
387   // Per the comments in the ImagePyramid struct, we must take this mutex
388   // before reading or writing the filled_levels field, and hold it while
389   // computing any additional pyramid levels, to ensure proper behaviour
390   // when multithreading is used
391 #if CONFIG_MULTITHREAD
392   pthread_mutex_lock(&pyr->mutex);
393 #endif  // CONFIG_MULTITHREAD
394 
395   n_levels = AOMMIN(n_levels, pyr->max_levels);
396   int result = n_levels;
397   if (pyr->filled_levels < n_levels) {
398     // Compute any missing levels that we need
399     result = fill_pyramid(frame, bit_depth, n_levels, pyr);
400   }
401 
402   // At this point, as long as result >= 0, the requested number of pyramid
403   // levels are guaranteed to be valid, and can be safely read from without
404   // holding the mutex any further
405   assert(IMPLIES(result >= 0, pyr->filled_levels >= n_levels));
406 #if CONFIG_MULTITHREAD
407   pthread_mutex_unlock(&pyr->mutex);
408 #endif  // CONFIG_MULTITHREAD
409   return result;
410 }
411 
412 #ifndef NDEBUG
413 // Check if a pyramid has already been computed to at least n levels
414 // This is mostly a debug helper - as it is necessary to hold pyr->mutex
415 // while reading the number of already-computed levels, we cannot just write:
416 //   assert(pyr->filled_levels >= n_levels);
417 // This function allows the check to be correctly written as:
418 //   assert(aom_is_pyramid_valid(pyr, n_levels));
419 //
420 // Note: This deliberately does not restrict n_levels based on the maximum
421 // number of permitted levels for the frame size. This allows the check to
422 // catch cases where the caller forgets to handle the case where
423 // max_levels is less than the requested number of levels
aom_is_pyramid_valid(ImagePyramid * pyr,int n_levels)424 bool aom_is_pyramid_valid(ImagePyramid *pyr, int n_levels) {
425   assert(pyr);
426 
427   // Per the comments in the ImagePyramid struct, we must take this mutex
428   // before reading or writing the filled_levels field, to ensure proper
429   // behaviour when multithreading is used
430 #if CONFIG_MULTITHREAD
431   pthread_mutex_lock(&pyr->mutex);
432 #endif  // CONFIG_MULTITHREAD
433 
434   bool result = (pyr->filled_levels >= n_levels);
435 
436 #if CONFIG_MULTITHREAD
437   pthread_mutex_unlock(&pyr->mutex);
438 #endif  // CONFIG_MULTITHREAD
439 
440   return result;
441 }
442 #endif
443 
444 // Mark a pyramid as no longer containing valid data.
445 // This must be done whenever the corresponding frame buffer is reused
aom_invalidate_pyramid(ImagePyramid * pyr)446 void aom_invalidate_pyramid(ImagePyramid *pyr) {
447   if (pyr) {
448 #if CONFIG_MULTITHREAD
449     pthread_mutex_lock(&pyr->mutex);
450 #endif  // CONFIG_MULTITHREAD
451     pyr->filled_levels = 0;
452 #if CONFIG_MULTITHREAD
453     pthread_mutex_unlock(&pyr->mutex);
454 #endif  // CONFIG_MULTITHREAD
455   }
456 }
457 
458 // Release the memory associated with a pyramid
aom_free_pyramid(ImagePyramid * pyr)459 void aom_free_pyramid(ImagePyramid *pyr) {
460   if (pyr) {
461 #if CONFIG_MULTITHREAD
462     pthread_mutex_destroy(&pyr->mutex);
463 #endif  // CONFIG_MULTITHREAD
464     aom_free(pyr->buffer_alloc);
465     aom_free(pyr->layers);
466     aom_free(pyr);
467   }
468 }
469