xref: /aosp_15_r20/external/libaom/aom_dsp/noise_util.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2017, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <math.h>
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include "aom_dsp/noise_util.h"
19 #include "aom_dsp/fft_common.h"
20 #include "aom_mem/aom_mem.h"
21 #include "config/aom_dsp_rtcd.h"
22 
aom_noise_psd_get_default_value(int block_size,float factor)23 float aom_noise_psd_get_default_value(int block_size, float factor) {
24   return (factor * factor / 10000) * block_size * block_size / 8;
25 }
26 
27 // Internal representation of noise transform. It keeps track of the
28 // transformed data and a temporary working buffer to use during the
29 // transform.
30 struct aom_noise_tx_t {
31   float *tx_block;
32   float *temp;
33   int block_size;
34   void (*fft)(const float *, float *, float *);
35   void (*ifft)(const float *, float *, float *);
36 };
37 
aom_noise_tx_malloc(int block_size)38 struct aom_noise_tx_t *aom_noise_tx_malloc(int block_size) {
39   struct aom_noise_tx_t *noise_tx =
40       (struct aom_noise_tx_t *)aom_malloc(sizeof(struct aom_noise_tx_t));
41   if (!noise_tx) return NULL;
42   memset(noise_tx, 0, sizeof(*noise_tx));
43   switch (block_size) {
44     case 2:
45       noise_tx->fft = aom_fft2x2_float;
46       noise_tx->ifft = aom_ifft2x2_float;
47       break;
48     case 4:
49       noise_tx->fft = aom_fft4x4_float;
50       noise_tx->ifft = aom_ifft4x4_float;
51       break;
52     case 8:
53       noise_tx->fft = aom_fft8x8_float;
54       noise_tx->ifft = aom_ifft8x8_float;
55       break;
56     case 16:
57       noise_tx->fft = aom_fft16x16_float;
58       noise_tx->ifft = aom_ifft16x16_float;
59       break;
60     case 32:
61       noise_tx->fft = aom_fft32x32_float;
62       noise_tx->ifft = aom_ifft32x32_float;
63       break;
64     default:
65       aom_free(noise_tx);
66       fprintf(stderr, "Unsupported block size %d\n", block_size);
67       return NULL;
68   }
69   noise_tx->block_size = block_size;
70   noise_tx->tx_block = (float *)aom_memalign(
71       32, 2 * sizeof(*noise_tx->tx_block) * block_size * block_size);
72   noise_tx->temp = (float *)aom_memalign(
73       32, 2 * sizeof(*noise_tx->temp) * block_size * block_size);
74   if (!noise_tx->tx_block || !noise_tx->temp) {
75     aom_noise_tx_free(noise_tx);
76     return NULL;
77   }
78   // Clear the buffers up front. Some outputs of the forward transform are
79   // real only (the imaginary component will never be touched)
80   memset(noise_tx->tx_block, 0,
81          2 * sizeof(*noise_tx->tx_block) * block_size * block_size);
82   memset(noise_tx->temp, 0,
83          2 * sizeof(*noise_tx->temp) * block_size * block_size);
84   return noise_tx;
85 }
86 
aom_noise_tx_forward(struct aom_noise_tx_t * noise_tx,const float * data)87 void aom_noise_tx_forward(struct aom_noise_tx_t *noise_tx, const float *data) {
88   noise_tx->fft(data, noise_tx->temp, noise_tx->tx_block);
89 }
90 
aom_noise_tx_filter(struct aom_noise_tx_t * noise_tx,const float * psd)91 void aom_noise_tx_filter(struct aom_noise_tx_t *noise_tx, const float *psd) {
92   const int block_size = noise_tx->block_size;
93   const float kBeta = 1.1f;
94   const float kEps = 1e-6f;
95   for (int y = 0; y < block_size; ++y) {
96     for (int x = 0; x < block_size; ++x) {
97       int i = y * block_size + x;
98       float *c = noise_tx->tx_block + 2 * i;
99       const float c0 = AOMMAX((float)fabs(c[0]), 1e-8f);
100       const float c1 = AOMMAX((float)fabs(c[1]), 1e-8f);
101       const float p = c0 * c0 + c1 * c1;
102       if (p > kBeta * psd[i] && p > 1e-6) {
103         noise_tx->tx_block[2 * i + 0] *= (p - psd[i]) / AOMMAX(p, kEps);
104         noise_tx->tx_block[2 * i + 1] *= (p - psd[i]) / AOMMAX(p, kEps);
105       } else {
106         noise_tx->tx_block[2 * i + 0] *= (kBeta - 1.0f) / kBeta;
107         noise_tx->tx_block[2 * i + 1] *= (kBeta - 1.0f) / kBeta;
108       }
109     }
110   }
111 }
112 
aom_noise_tx_inverse(struct aom_noise_tx_t * noise_tx,float * data)113 void aom_noise_tx_inverse(struct aom_noise_tx_t *noise_tx, float *data) {
114   const int n = noise_tx->block_size * noise_tx->block_size;
115   noise_tx->ifft(noise_tx->tx_block, noise_tx->temp, data);
116   for (int i = 0; i < n; ++i) {
117     data[i] /= n;
118   }
119 }
120 
aom_noise_tx_add_energy(const struct aom_noise_tx_t * noise_tx,float * psd)121 void aom_noise_tx_add_energy(const struct aom_noise_tx_t *noise_tx,
122                              float *psd) {
123   const int block_size = noise_tx->block_size;
124   for (int yb = 0; yb < block_size; ++yb) {
125     for (int xb = 0; xb <= block_size / 2; ++xb) {
126       float *c = noise_tx->tx_block + 2 * (yb * block_size + xb);
127       psd[yb * block_size + xb] += c[0] * c[0] + c[1] * c[1];
128     }
129   }
130 }
131 
aom_noise_tx_free(struct aom_noise_tx_t * noise_tx)132 void aom_noise_tx_free(struct aom_noise_tx_t *noise_tx) {
133   if (!noise_tx) return;
134   aom_free(noise_tx->tx_block);
135   aom_free(noise_tx->temp);
136   aom_free(noise_tx);
137 }
138 
aom_normalized_cross_correlation(const double * a,const double * b,int n)139 double aom_normalized_cross_correlation(const double *a, const double *b,
140                                         int n) {
141   double c = 0;
142   double a_len = 0;
143   double b_len = 0;
144   for (int i = 0; i < n; ++i) {
145     a_len += a[i] * a[i];
146     b_len += b[i] * b[i];
147     c += a[i] * b[i];
148   }
149   return c / (sqrt(a_len) * sqrt(b_len));
150 }
151 
aom_noise_data_validate(const double * data,int w,int h)152 int aom_noise_data_validate(const double *data, int w, int h) {
153   const double kVarianceThreshold = 2;
154   const double kMeanThreshold = 2;
155 
156   int x = 0, y = 0;
157   int ret_value = 1;
158   double var = 0, mean = 0;
159   double *mean_x, *mean_y, *var_x, *var_y;
160 
161   // Check that noise variance is not increasing in x or y
162   // and that the data is zero mean.
163   mean_x = (double *)aom_calloc(w, sizeof(*mean_x));
164   var_x = (double *)aom_calloc(w, sizeof(*var_x));
165   mean_y = (double *)aom_calloc(h, sizeof(*mean_x));
166   var_y = (double *)aom_calloc(h, sizeof(*var_y));
167   if (!(mean_x && var_x && mean_y && var_y)) {
168     aom_free(mean_x);
169     aom_free(mean_y);
170     aom_free(var_x);
171     aom_free(var_y);
172     return 0;
173   }
174 
175   for (y = 0; y < h; ++y) {
176     for (x = 0; x < w; ++x) {
177       const double d = data[y * w + x];
178       var_x[x] += d * d;
179       var_y[y] += d * d;
180       mean_x[x] += d;
181       mean_y[y] += d;
182       var += d * d;
183       mean += d;
184     }
185   }
186   mean /= (w * h);
187   var = var / (w * h) - mean * mean;
188 
189   for (y = 0; y < h; ++y) {
190     mean_y[y] /= h;
191     var_y[y] = var_y[y] / h - mean_y[y] * mean_y[y];
192     if (fabs(var_y[y] - var) >= kVarianceThreshold) {
193       fprintf(stderr, "Variance distance too large %f %f\n", var_y[y], var);
194       ret_value = 0;
195       break;
196     }
197     if (fabs(mean_y[y] - mean) >= kMeanThreshold) {
198       fprintf(stderr, "Mean distance too large %f %f\n", mean_y[y], mean);
199       ret_value = 0;
200       break;
201     }
202   }
203 
204   for (x = 0; x < w; ++x) {
205     mean_x[x] /= w;
206     var_x[x] = var_x[x] / w - mean_x[x] * mean_x[x];
207     if (fabs(var_x[x] - var) >= kVarianceThreshold) {
208       fprintf(stderr, "Variance distance too large %f %f\n", var_x[x], var);
209       ret_value = 0;
210       break;
211     }
212     if (fabs(mean_x[x] - mean) >= kMeanThreshold) {
213       fprintf(stderr, "Mean distance too large %f %f\n", mean_x[x], mean);
214       ret_value = 0;
215       break;
216     }
217   }
218 
219   aom_free(mean_x);
220   aom_free(mean_y);
221   aom_free(var_x);
222   aom_free(var_y);
223 
224   return ret_value;
225 }
226