1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/common_data.h"
13 #include "av1/common/quant_common.h"
14 #include "av1/common/reconintra.h"
15
16 #include "av1/encoder/encoder.h"
17 #include "av1/encoder/encodeframe_utils.h"
18 #include "av1/encoder/encoder_utils.h"
19 #include "av1/encoder/rdopt.h"
20
av1_set_ssim_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)21 void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
22 const BLOCK_SIZE bsize, const int mi_row,
23 const int mi_col, int *const rdmult) {
24 const AV1_COMMON *const cm = &cpi->common;
25
26 const BLOCK_SIZE bsize_base = BLOCK_16X16;
27 const int num_mi_w = mi_size_wide[bsize_base];
28 const int num_mi_h = mi_size_high[bsize_base];
29 const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
30 const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
31 const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
32 const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
33 int row, col;
34 double num_of_mi = 0.0;
35 double geom_mean_of_scale = 1.0;
36
37 // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least
38 // BLOCK_8X8.
39 //
40 // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would
41 // iterate 256 times. Considering the maximum value of
42 // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()),
43 // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX
44 // (maximum value a double data type can hold). If bsize_base is modified to
45 // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up
46 // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow.
47 assert(bsize_base >= BLOCK_8X8);
48 assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
49
50 for (row = mi_row / num_mi_w;
51 row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
52 for (col = mi_col / num_mi_h;
53 col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
54 const int index = row * num_cols + col;
55 assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0);
56 geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index];
57 num_of_mi += 1.0;
58 }
59 }
60 geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi));
61
62 *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
63 *rdmult = AOMMAX(*rdmult, 0);
64 av1_set_error_per_bit(errorperbit, *rdmult);
65 }
66
67 #if CONFIG_SALIENCY_MAP
av1_set_saliency_map_vmaf_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)68 void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
69 int *errorperbit, const BLOCK_SIZE bsize,
70 const int mi_row, const int mi_col,
71 int *const rdmult) {
72 const AV1_COMMON *const cm = &cpi->common;
73 const int num_mi_w = mi_size_wide[bsize];
74 const int num_mi_h = mi_size_high[bsize];
75 const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
76
77 *rdmult =
78 (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
79 (mi_col / num_mi_w)]);
80
81 *rdmult = AOMMAX(*rdmult, 0);
82 av1_set_error_per_bit(errorperbit, *rdmult);
83 }
84 #endif
85
86 // TODO(angiebird): Move this function to tpl_model.c
87 #if !CONFIG_REALTIME_ONLY
av1_get_cb_rdmult(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col)88 int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
89 const BLOCK_SIZE bsize, const int mi_row,
90 const int mi_col) {
91 const AV1_COMMON *const cm = &cpi->common;
92 assert(IMPLIES(cpi->ppi->gf_group.size > 0,
93 cpi->gf_frame_index < cpi->ppi->gf_group.size));
94 const int tpl_idx = cpi->gf_frame_index;
95 int deltaq_rdmult = set_rdmult(cpi, x, -1);
96 if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
97 if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
98 if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
99 if (x->rb == 0) return deltaq_rdmult;
100
101 TplParams *const tpl_data = &cpi->ppi->tpl_data;
102 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
103 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
104
105 const int mi_wide = mi_size_wide[bsize];
106 const int mi_high = mi_size_high[bsize];
107
108 int tpl_stride = tpl_frame->stride;
109 double intra_cost_base = 0;
110 double mc_dep_cost_base = 0;
111 double cbcmp_base = 0;
112 const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
113
114 for (int row = mi_row; row < mi_row + mi_high; row += step) {
115 for (int col = mi_col; col < mi_col + mi_wide; col += step) {
116 if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
117 continue;
118
119 TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
120 row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
121
122 double cbcmp = (double)this_stats->srcrf_dist;
123 int64_t mc_dep_delta =
124 RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
125 this_stats->mc_dep_dist);
126 double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
127 intra_cost_base += log(dist_scaled) * cbcmp;
128 mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
129 cbcmp_base += cbcmp;
130 }
131 }
132
133 if (cbcmp_base == 0) return deltaq_rdmult;
134
135 double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
136 deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));
137
138 return AOMMAX(deltaq_rdmult, 1);
139 }
140 #endif // !CONFIG_REALTIME_ONLY
141
update_filter_type_count(FRAME_COUNTS * counts,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)142 static inline void update_filter_type_count(FRAME_COUNTS *counts,
143 const MACROBLOCKD *xd,
144 const MB_MODE_INFO *mbmi) {
145 int dir;
146 for (dir = 0; dir < 2; ++dir) {
147 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
148 InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
149
150 // Only allow the 3 valid SWITCHABLE_FILTERS.
151 assert(filter < SWITCHABLE_FILTERS);
152 ++counts->switchable_interp[ctx][filter];
153 }
154 }
155
156 // This function will copy the best reference mode information from
157 // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
copy_mbmi_ext_frame_to_mbmi_ext(MB_MODE_INFO_EXT * mbmi_ext,const MB_MODE_INFO_EXT_FRAME * const mbmi_ext_best,uint8_t ref_frame_type)158 static inline void copy_mbmi_ext_frame_to_mbmi_ext(
159 MB_MODE_INFO_EXT *mbmi_ext,
160 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
161 memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
162 sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
163 memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
164 sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
165 mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
166 mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
167 memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
168 sizeof(mbmi_ext->global_mvs));
169 }
170
av1_update_state(const AV1_COMP * const cpi,ThreadData * td,const PICK_MODE_CONTEXT * const ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,RUN_TYPE dry_run)171 void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
172 const PICK_MODE_CONTEXT *const ctx, int mi_row,
173 int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
174 int i, x_idx, y;
175 const AV1_COMMON *const cm = &cpi->common;
176 const CommonModeInfoParams *const mi_params = &cm->mi_params;
177 const int num_planes = av1_num_planes(cm);
178 MACROBLOCK *const x = &td->mb;
179 MACROBLOCKD *const xd = &x->e_mbd;
180 struct macroblock_plane *const p = x->plane;
181 struct macroblockd_plane *const pd = xd->plane;
182 const MB_MODE_INFO *const mi = &ctx->mic;
183 MB_MODE_INFO *const mi_addr = xd->mi[0];
184 const struct segmentation *const seg = &cm->seg;
185 assert(bsize < BLOCK_SIZES_ALL);
186 const int bw = mi_size_wide[mi->bsize];
187 const int bh = mi_size_high[mi->bsize];
188 const int mis = mi_params->mi_stride;
189 const int mi_width = mi_size_wide[bsize];
190 const int mi_height = mi_size_high[bsize];
191 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
192
193 assert(mi->bsize == bsize);
194
195 *mi_addr = *mi;
196 copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
197 av1_ref_frame_type(ctx->mic.ref_frame));
198
199 memcpy(txfm_info->blk_skip, ctx->blk_skip,
200 sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
201
202 txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
203
204 xd->tx_type_map = ctx->tx_type_map;
205 xd->tx_type_map_stride = mi_size_wide[bsize];
206 // If not dry_run, copy the transform type data into the frame level buffer.
207 // Encoder will fetch tx types when writing bitstream.
208 if (!dry_run) {
209 const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
210 uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
211 const int mi_stride = mi_params->mi_stride;
212 for (int blk_row = 0; blk_row < bh; ++blk_row) {
213 av1_copy_array(tx_type_map + blk_row * mi_stride,
214 xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
215 }
216 xd->tx_type_map = tx_type_map;
217 xd->tx_type_map_stride = mi_stride;
218 }
219
220 // If segmentation in use
221 if (seg->enabled) {
222 // For in frame complexity AQ copy the segment id from the segment map.
223 if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
224 const uint8_t *const map =
225 seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
226 mi_addr->segment_id =
227 map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
228 }
229 // Else for cyclic refresh mode update the segment map, set the segment id
230 // and then update the quantizer.
231 if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
232 mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE &&
233 !cpi->rc.rtc_external_ratectrl) {
234 av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
235 ctx->rd_stats.rate, ctx->rd_stats.dist,
236 txfm_info->skip_txfm, dry_run);
237 }
238 if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
239 mi_addr->uv_mode = UV_DC_PRED;
240
241 if (!dry_run && !mi_addr->skip_txfm) {
242 int cdf_num;
243 const uint8_t spatial_pred = av1_get_spatial_seg_pred(
244 cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
245 const uint8_t coded_id = av1_neg_interleave(
246 mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1);
247 int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id];
248 td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost;
249
250 const int pred_segment_id =
251 cm->last_frame_seg_map
252 ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
253 mi_col)
254 : 0;
255 const int use_tmp_pred = pred_segment_id == mi_addr->segment_id;
256 const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd);
257 td->rd_counts.seg_tmp_pred_cost[1] +=
258 x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred];
259 if (!use_tmp_pred) {
260 td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost;
261 }
262 }
263 }
264
265 // Count zero motion vector.
266 if (!dry_run && !frame_is_intra_only(cm)) {
267 const MV mv = mi->mv[0].as_mv;
268 if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
269 abs(mv.row) < 8 && abs(mv.col) < 8) {
270 const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
271 // Accumulate low_content_frame.
272 for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
273 }
274 }
275
276 for (i = 0; i < num_planes; ++i) {
277 p[i].coeff = ctx->coeff[i];
278 p[i].qcoeff = ctx->qcoeff[i];
279 p[i].dqcoeff = ctx->dqcoeff[i];
280 p[i].eobs = ctx->eobs[i];
281 p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
282 }
283 for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
284 // Restore the coding context of the MB to that that was in place
285 // when the mode was picked for it
286
287 const int cols =
288 AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width);
289 const int rows = AOMMIN(
290 (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height);
291 for (y = 0; y < rows; y++) {
292 for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr;
293 }
294
295 if (cpi->oxcf.q_cfg.aq_mode)
296 av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0);
297
298 if (dry_run) return;
299
300 #if CONFIG_INTERNAL_STATS
301 {
302 unsigned int *const mode_chosen_counts =
303 (unsigned int *)cpi->mode_chosen_counts; // Cast const away.
304 if (frame_is_intra_only(cm)) {
305 static const int kf_mode_index[] = {
306 THR_DC /*DC_PRED*/,
307 THR_V_PRED /*V_PRED*/,
308 THR_H_PRED /*H_PRED*/,
309 THR_D45_PRED /*D45_PRED*/,
310 THR_D135_PRED /*D135_PRED*/,
311 THR_D113_PRED /*D113_PRED*/,
312 THR_D157_PRED /*D157_PRED*/,
313 THR_D203_PRED /*D203_PRED*/,
314 THR_D67_PRED /*D67_PRED*/,
315 THR_SMOOTH, /*SMOOTH_PRED*/
316 THR_SMOOTH_V, /*SMOOTH_V_PRED*/
317 THR_SMOOTH_H, /*SMOOTH_H_PRED*/
318 THR_PAETH /*PAETH_PRED*/,
319 };
320 ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
321 } else {
322 // Note how often each mode chosen as best
323 ++mode_chosen_counts[ctx->best_mode_index];
324 }
325 }
326 #endif
327 if (!frame_is_intra_only(cm)) {
328 if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) {
329 // When the frame interp filter is SWITCHABLE, several cases that always
330 // use the default type (EIGHTTAP_REGULAR) are described in
331 // av1_is_interp_needed(). Here, we should keep the counts for all
332 // applicable blocks, so the frame filter resetting decision in
333 // fix_interp_filter() is made correctly.
334 update_filter_type_count(td->counts, xd, mi_addr);
335 }
336 }
337
338 const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
339 const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
340 if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
341 av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
342 }
343
av1_update_inter_mode_stats(FRAME_CONTEXT * fc,FRAME_COUNTS * counts,PREDICTION_MODE mode,int16_t mode_context)344 void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
345 PREDICTION_MODE mode, int16_t mode_context) {
346 (void)counts;
347
348 int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
349 if (mode == NEWMV) {
350 #if CONFIG_ENTROPY_STATS
351 ++counts->newmv_mode[mode_ctx][0];
352 #endif
353 update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
354 return;
355 }
356
357 #if CONFIG_ENTROPY_STATS
358 ++counts->newmv_mode[mode_ctx][1];
359 #endif
360 update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
361
362 mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
363 if (mode == GLOBALMV) {
364 #if CONFIG_ENTROPY_STATS
365 ++counts->zeromv_mode[mode_ctx][0];
366 #endif
367 update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
368 return;
369 }
370
371 #if CONFIG_ENTROPY_STATS
372 ++counts->zeromv_mode[mode_ctx][1];
373 #endif
374 update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
375
376 mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
377 #if CONFIG_ENTROPY_STATS
378 ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
379 #endif
380 update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
381 }
382
update_palette_cdf(MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,FRAME_COUNTS * counts)383 static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
384 FRAME_COUNTS *counts) {
385 FRAME_CONTEXT *fc = xd->tile_ctx;
386 const BLOCK_SIZE bsize = mbmi->bsize;
387 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
388 const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
389
390 (void)counts;
391
392 if (mbmi->mode == DC_PRED) {
393 const int n = pmi->palette_size[0];
394 const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
395
396 #if CONFIG_ENTROPY_STATS
397 ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
398 #endif
399 update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
400 n > 0, 2);
401 if (n > 0) {
402 #if CONFIG_ENTROPY_STATS
403 ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
404 #endif
405 update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
406 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
407 }
408 }
409
410 if (mbmi->uv_mode == UV_DC_PRED) {
411 const int n = pmi->palette_size[1];
412 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
413
414 #if CONFIG_ENTROPY_STATS
415 ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
416 #endif
417 update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
418
419 if (n > 0) {
420 #if CONFIG_ENTROPY_STATS
421 ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
422 #endif
423 update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
424 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
425 }
426 }
427 }
428
av1_sum_intra_stats(const AV1_COMMON * const cm,FRAME_COUNTS * counts,MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,const int intraonly)429 void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
430 MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
431 const MB_MODE_INFO *above_mi,
432 const MB_MODE_INFO *left_mi, const int intraonly) {
433 FRAME_CONTEXT *fc = xd->tile_ctx;
434 const PREDICTION_MODE y_mode = mbmi->mode;
435 (void)counts;
436 const BLOCK_SIZE bsize = mbmi->bsize;
437
438 if (intraonly) {
439 #if CONFIG_ENTROPY_STATS
440 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
441 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
442 const int above_ctx = intra_mode_context[above];
443 const int left_ctx = intra_mode_context[left];
444 ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
445 #endif // CONFIG_ENTROPY_STATS
446 update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
447 } else {
448 #if CONFIG_ENTROPY_STATS
449 ++counts->y_mode[size_group_lookup[bsize]][y_mode];
450 #endif // CONFIG_ENTROPY_STATS
451 update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
452 }
453
454 if (av1_filter_intra_allowed(cm, mbmi)) {
455 const int use_filter_intra_mode =
456 mbmi->filter_intra_mode_info.use_filter_intra;
457 #if CONFIG_ENTROPY_STATS
458 ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
459 if (use_filter_intra_mode) {
460 ++counts
461 ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
462 }
463 #endif // CONFIG_ENTROPY_STATS
464 update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
465 if (use_filter_intra_mode) {
466 update_cdf(fc->filter_intra_mode_cdf,
467 mbmi->filter_intra_mode_info.filter_intra_mode,
468 FILTER_INTRA_MODES);
469 }
470 }
471 if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
472 #if CONFIG_ENTROPY_STATS
473 ++counts->angle_delta[mbmi->mode - V_PRED]
474 [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
475 #endif
476 update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
477 mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
478 2 * MAX_ANGLE_DELTA + 1);
479 }
480
481 if (!xd->is_chroma_ref) return;
482
483 const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
484 const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
485 #if CONFIG_ENTROPY_STATS
486 ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
487 #endif // CONFIG_ENTROPY_STATS
488 update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
489 UV_INTRA_MODES - !cfl_allowed);
490 if (uv_mode == UV_CFL_PRED) {
491 const int8_t joint_sign = mbmi->cfl_alpha_signs;
492 const uint8_t idx = mbmi->cfl_alpha_idx;
493
494 #if CONFIG_ENTROPY_STATS
495 ++counts->cfl_sign[joint_sign];
496 #endif
497 update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
498 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
499 aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
500
501 #if CONFIG_ENTROPY_STATS
502 ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
503 #endif
504 update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
505 }
506 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
507 aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
508
509 #if CONFIG_ENTROPY_STATS
510 ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
511 #endif
512 update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
513 }
514 }
515 const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
516 if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) {
517 #if CONFIG_ENTROPY_STATS
518 ++counts->angle_delta[intra_mode - V_PRED]
519 [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
520 #endif
521 update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED],
522 mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
523 2 * MAX_ANGLE_DELTA + 1);
524 }
525 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
526 update_palette_cdf(xd, mbmi, counts);
527 }
528 }
529
av1_restore_context(MACROBLOCK * x,const RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)530 void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
531 int mi_row, int mi_col, BLOCK_SIZE bsize,
532 const int num_planes) {
533 MACROBLOCKD *xd = &x->e_mbd;
534 int p;
535 const int num_4x4_blocks_wide = mi_size_wide[bsize];
536 const int num_4x4_blocks_high = mi_size_high[bsize];
537 int mi_width = mi_size_wide[bsize];
538 int mi_height = mi_size_high[bsize];
539 for (p = 0; p < num_planes; p++) {
540 int tx_col = mi_col;
541 int tx_row = mi_row & MAX_MIB_MASK;
542 memcpy(
543 xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
544 ctx->a + num_4x4_blocks_wide * p,
545 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
546 xd->plane[p].subsampling_x);
547 memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
548 ctx->l + num_4x4_blocks_high * p,
549 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
550 xd->plane[p].subsampling_y);
551 }
552 memcpy(xd->above_partition_context + mi_col, ctx->sa,
553 sizeof(*xd->above_partition_context) * mi_width);
554 memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
555 sizeof(xd->left_partition_context[0]) * mi_height);
556 xd->above_txfm_context = ctx->p_ta;
557 xd->left_txfm_context = ctx->p_tl;
558 memcpy(xd->above_txfm_context, ctx->ta,
559 sizeof(*xd->above_txfm_context) * mi_width);
560 memcpy(xd->left_txfm_context, ctx->tl,
561 sizeof(*xd->left_txfm_context) * mi_height);
562 }
563
av1_save_context(const MACROBLOCK * x,RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)564 void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
565 int mi_row, int mi_col, BLOCK_SIZE bsize,
566 const int num_planes) {
567 const MACROBLOCKD *xd = &x->e_mbd;
568 int p;
569 int mi_width = mi_size_wide[bsize];
570 int mi_height = mi_size_high[bsize];
571
572 // buffer the above/left context information of the block in search.
573 for (p = 0; p < num_planes; ++p) {
574 int tx_col = mi_col;
575 int tx_row = mi_row & MAX_MIB_MASK;
576 memcpy(
577 ctx->a + mi_width * p,
578 xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
579 (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
580 memcpy(ctx->l + mi_height * p,
581 xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
582 (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
583 }
584 memcpy(ctx->sa, xd->above_partition_context + mi_col,
585 sizeof(*xd->above_partition_context) * mi_width);
586 memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
587 sizeof(xd->left_partition_context[0]) * mi_height);
588 memcpy(ctx->ta, xd->above_txfm_context,
589 sizeof(*xd->above_txfm_context) * mi_width);
590 memcpy(ctx->tl, xd->left_txfm_context,
591 sizeof(*xd->left_txfm_context) * mi_height);
592 ctx->p_ta = xd->above_txfm_context;
593 ctx->p_tl = xd->left_txfm_context;
594 }
595
set_partial_sb_partition(const AV1_COMMON * const cm,MB_MODE_INFO * mi,int bh_in,int bw_in,int mi_rows_remaining,int mi_cols_remaining,BLOCK_SIZE bsize,MB_MODE_INFO ** mib)596 static void set_partial_sb_partition(const AV1_COMMON *const cm,
597 MB_MODE_INFO *mi, int bh_in, int bw_in,
598 int mi_rows_remaining,
599 int mi_cols_remaining, BLOCK_SIZE bsize,
600 MB_MODE_INFO **mib) {
601 int bh = bh_in;
602 int r, c;
603 for (r = 0; r < cm->seq_params->mib_size; r += bh) {
604 int bw = bw_in;
605 for (c = 0; c < cm->seq_params->mib_size; c += bw) {
606 const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
607 const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
608 mib[grid_index] = mi + mi_index;
609 mib[grid_index]->bsize = find_partition_size(
610 bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
611 }
612 }
613 }
614
615 // This function attempts to set all mode info entries in a given superblock
616 // to the same block partition size.
617 // However, at the bottom and right borders of the image the requested size
618 // may not be allowed in which case this code attempts to choose the largest
619 // allowable partition.
av1_set_fixed_partitioning(AV1_COMP * cpi,const TileInfo * const tile,MB_MODE_INFO ** mib,int mi_row,int mi_col,BLOCK_SIZE bsize)620 void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
621 MB_MODE_INFO **mib, int mi_row, int mi_col,
622 BLOCK_SIZE bsize) {
623 AV1_COMMON *const cm = &cpi->common;
624 const CommonModeInfoParams *const mi_params = &cm->mi_params;
625 const int mi_rows_remaining = tile->mi_row_end - mi_row;
626 const int mi_cols_remaining = tile->mi_col_end - mi_col;
627 MB_MODE_INFO *const mi_upper_left =
628 mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
629 int bh = mi_size_high[bsize];
630 int bw = mi_size_wide[bsize];
631
632 assert(bsize >= mi_params->mi_alloc_bsize &&
633 "Attempted to use bsize < mi_params->mi_alloc_bsize");
634 assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
635
636 // Apply the requested partition size to the SB if it is all "in image"
637 if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
638 (mi_rows_remaining >= cm->seq_params->mib_size)) {
639 for (int block_row = 0; block_row < cm->seq_params->mib_size;
640 block_row += bh) {
641 for (int block_col = 0; block_col < cm->seq_params->mib_size;
642 block_col += bw) {
643 const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
644 const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
645 mib[grid_index] = mi_upper_left + mi_index;
646 mib[grid_index]->bsize = bsize;
647 }
648 }
649 } else {
650 // Else this is a partial SB.
651 set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
652 mi_cols_remaining, bsize, mib);
653 }
654 }
655
av1_is_leaf_split_partition(AV1_COMMON * cm,int mi_row,int mi_col,BLOCK_SIZE bsize)656 int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
657 BLOCK_SIZE bsize) {
658 const int bs = mi_size_wide[bsize];
659 const int hbs = bs / 2;
660 assert(bsize >= BLOCK_8X8);
661 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
662
663 for (int i = 0; i < 4; i++) {
664 int x_idx = (i & 1) * hbs;
665 int y_idx = (i >> 1) * hbs;
666 if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
667 (mi_col + x_idx >= cm->mi_params.mi_cols))
668 return 0;
669 if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
670 PARTITION_NONE &&
671 subsize != BLOCK_8X8)
672 return 0;
673 }
674 return 1;
675 }
676
677 #if !CONFIG_REALTIME_ONLY
av1_get_rdmult_delta(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)678 int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
679 int mi_col, int orig_rdmult) {
680 AV1_COMMON *const cm = &cpi->common;
681 const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
682 assert(IMPLIES(cpi->ppi->gf_group.size > 0,
683 cpi->gf_frame_index < cpi->ppi->gf_group.size));
684 const int tpl_idx = cpi->gf_frame_index;
685 TplParams *const tpl_data = &cpi->ppi->tpl_data;
686 const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
687 int64_t intra_cost = 0;
688 int64_t mc_dep_cost = 0;
689 const int mi_wide = mi_size_wide[bsize];
690 const int mi_high = mi_size_high[bsize];
691
692 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
693 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
694 int tpl_stride = tpl_frame->stride;
695
696 if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
697 return orig_rdmult;
698 }
699 if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
700 return orig_rdmult;
701 }
702
703 #ifndef NDEBUG
704 int mi_count = 0;
705 #endif
706 const int mi_col_sr =
707 coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
708 const int mi_col_end_sr =
709 coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
710 const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
711 const int step = 1 << block_mis_log2;
712 const int row_step = step;
713 const int col_step_sr =
714 coded_to_superres_mi(step, cm->superres_scale_denominator);
715 for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
716 for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
717 if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
718 TplDepStats *this_stats =
719 &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
720 int64_t mc_dep_delta =
721 RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
722 this_stats->mc_dep_dist);
723 intra_cost += this_stats->recrf_dist << RDDIV_BITS;
724 mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
725 #ifndef NDEBUG
726 mi_count++;
727 #endif
728 }
729 }
730 assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
731
732 double beta = 1.0;
733 if (mc_dep_cost > 0 && intra_cost > 0) {
734 const double r0 = cpi->rd.r0;
735 const double rk = (double)intra_cost / mc_dep_cost;
736 beta = (r0 / rk);
737 }
738
739 int rdmult = av1_get_adaptive_rdmult(cpi, beta);
740
741 rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
742 rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
743
744 rdmult = AOMMAX(1, rdmult);
745
746 return rdmult;
747 }
748
749 // Checks to see if a super block is on a horizontal image edge.
750 // In most cases this is the "real" edge unless there are formatting
751 // bars embedded in the stream.
av1_active_h_edge(const AV1_COMP * cpi,int mi_row,int mi_step)752 int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
753 int top_edge = 0;
754 int bottom_edge = cpi->common.mi_params.mi_rows;
755 int is_active_h_edge = 0;
756
757 // For two pass account for any formatting bars detected.
758 if (is_stat_consumption_stage_twopass(cpi)) {
759 const AV1_COMMON *const cm = &cpi->common;
760 const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
761 &cpi->ppi->twopass, cm->current_frame.display_order_hint);
762 if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
763
764 // The inactive region is specified in MBs not mi units.
765 // The image edge is in the following MB row.
766 top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
767
768 bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
769 bottom_edge = AOMMAX(top_edge, bottom_edge);
770 }
771
772 if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
773 ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
774 is_active_h_edge = 1;
775 }
776 return is_active_h_edge;
777 }
778
779 // Checks to see if a super block is on a vertical image edge.
780 // In most cases this is the "real" edge unless there are formatting
781 // bars embedded in the stream.
av1_active_v_edge(const AV1_COMP * cpi,int mi_col,int mi_step)782 int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
783 int left_edge = 0;
784 int right_edge = cpi->common.mi_params.mi_cols;
785 int is_active_v_edge = 0;
786
787 // For two pass account for any formatting bars detected.
788 if (is_stat_consumption_stage_twopass(cpi)) {
789 const AV1_COMMON *const cm = &cpi->common;
790 const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
791 &cpi->ppi->twopass, cm->current_frame.display_order_hint);
792 if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
793
794 // The inactive region is specified in MBs not mi units.
795 // The image edge is in the following MB row.
796 left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
797
798 right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
799 right_edge = AOMMAX(left_edge, right_edge);
800 }
801
802 if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
803 ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
804 is_active_v_edge = 1;
805 }
806 return is_active_v_edge;
807 }
808
av1_get_tpl_stats_sb(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,SuperBlockEnc * sb_enc)809 void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
810 int mi_col, SuperBlockEnc *sb_enc) {
811 sb_enc->tpl_data_count = 0;
812
813 if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
814 if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
815 const FRAME_UPDATE_TYPE update_type =
816 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
817 if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
818 return;
819 assert(IMPLIES(cpi->ppi->gf_group.size > 0,
820 cpi->gf_frame_index < cpi->ppi->gf_group.size));
821
822 AV1_COMMON *const cm = &cpi->common;
823 const int gf_group_index = cpi->gf_frame_index;
824 TplParams *const tpl_data = &cpi->ppi->tpl_data;
825 if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
826 const int mi_wide = mi_size_wide[bsize];
827 const int mi_high = mi_size_high[bsize];
828
829 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
830 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
831 int tpl_stride = tpl_frame->stride;
832
833 int mi_count = 0;
834 int count = 0;
835 const int mi_col_sr =
836 coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
837 const int mi_col_end_sr =
838 coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
839 // mi_cols_sr is mi_cols at superres case.
840 const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
841
842 // TPL store unit size is not the same as the motion estimation unit size.
843 // Here always use motion estimation size to avoid getting repetitive inter/
844 // intra cost.
845 const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
846 assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
847 const int row_step = mi_size_high[tpl_bsize];
848 const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
849 cm->superres_scale_denominator);
850
851 // Stride is only based on SB size, and we fill in values for every 16x16
852 // block in a SB.
853 sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
854
855 for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
856 for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
857 assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
858 // Handle partial SB, so that no invalid values are used later.
859 if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
860 sb_enc->tpl_inter_cost[count] = INT64_MAX;
861 sb_enc->tpl_intra_cost[count] = INT64_MAX;
862 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
863 sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
864 }
865 count++;
866 continue;
867 }
868
869 TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
870 row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
871 sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
872 << TPL_DEP_COST_SCALE_LOG2;
873 sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
874 << TPL_DEP_COST_SCALE_LOG2;
875 memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
876 mi_count++;
877 count++;
878 }
879 }
880
881 assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
882 sb_enc->tpl_data_count = mi_count;
883 }
884
885 // analysis_type 0: Use mc_dep_cost and intra_cost
886 // analysis_type 1: Use count of best inter predictor chosen
887 // analysis_type 2: Use cost reduction from intra to inter for best inter
888 // predictor chosen
av1_get_q_for_deltaq_objective(AV1_COMP * const cpi,ThreadData * td,int64_t * delta_dist,BLOCK_SIZE bsize,int mi_row,int mi_col)889 int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
890 int64_t *delta_dist, BLOCK_SIZE bsize,
891 int mi_row, int mi_col) {
892 AV1_COMMON *const cm = &cpi->common;
893 assert(IMPLIES(cpi->ppi->gf_group.size > 0,
894 cpi->gf_frame_index < cpi->ppi->gf_group.size));
895 const int tpl_idx = cpi->gf_frame_index;
896 TplParams *const tpl_data = &cpi->ppi->tpl_data;
897 const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
898 double intra_cost = 0;
899 double mc_dep_reg = 0;
900 double mc_dep_cost = 0;
901 double cbcmp_base = 1;
902 double srcrf_dist = 0;
903 double srcrf_sse = 0;
904 double srcrf_rate = 0;
905 const int mi_wide = mi_size_wide[bsize];
906 const int mi_high = mi_size_high[bsize];
907 const int base_qindex = cm->quant_params.base_qindex;
908
909 if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
910
911 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
912 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
913 int tpl_stride = tpl_frame->stride;
914 if (!tpl_frame->is_valid) return base_qindex;
915
916 #ifndef NDEBUG
917 int mi_count = 0;
918 #endif
919 const int mi_col_sr =
920 coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
921 const int mi_col_end_sr =
922 coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
923 const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
924 const int step = 1 << block_mis_log2;
925 const int row_step = step;
926 const int col_step_sr =
927 coded_to_superres_mi(step, cm->superres_scale_denominator);
928 for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
929 for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
930 if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
931 TplDepStats *this_stats =
932 &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
933 double cbcmp = (double)this_stats->srcrf_dist;
934 int64_t mc_dep_delta =
935 RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
936 this_stats->mc_dep_dist);
937 double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
938 intra_cost += log(dist_scaled) * cbcmp;
939 mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
940 mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
941 srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
942 srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
943 srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
944 #ifndef NDEBUG
945 mi_count++;
946 #endif
947 cbcmp_base += cbcmp;
948 }
949 }
950 assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
951
952 int offset = 0;
953 double beta = 1.0;
954 double rk;
955 if (mc_dep_cost > 0 && intra_cost > 0) {
956 const double r0 = cpi->rd.r0;
957 rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
958 td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
959 beta = (r0 / rk);
960 assert(beta > 0.0);
961 } else {
962 return base_qindex;
963 }
964 offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
965
966 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
967 offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
968 offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
969 int qindex = cm->quant_params.base_qindex + offset;
970 qindex = AOMMIN(qindex, MAXQ);
971 qindex = AOMMAX(qindex, MINQ);
972
973 int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
974 int sbs_qstep =
975 av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);
976
977 if (delta_dist) {
978 double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
979 double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
980 sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
981 *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
982 *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
983 *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
984 }
985 return qindex;
986 }
987
988 #if !DISABLE_HDR_LUMA_DELTAQ
989 // offset table defined in Table3 of T-REC-H.Sup15 document.
990 static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567,
991 634, 701, 767, 834, 1024 };
992
993 static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1,
994 -2, -3, -4, -5, -6 };
995 #endif
996
av1_get_q_for_hdr(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col)997 int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
998 BLOCK_SIZE bsize, int mi_row, int mi_col) {
999 AV1_COMMON *const cm = &cpi->common;
1000 assert(cm->seq_params->bit_depth == AOM_BITS_10);
1001
1002 #if DISABLE_HDR_LUMA_DELTAQ
1003 (void)x;
1004 (void)bsize;
1005 (void)mi_row;
1006 (void)mi_col;
1007 return cm->quant_params.base_qindex;
1008 #else
1009 // calculate pixel average
1010 const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
1011 // adjust offset based on average of the pixel block
1012 int offset = 0;
1013 for (int i = 0; i < HDR_QP_LEVELS; i++) {
1014 if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
1015 offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
1016 break;
1017 }
1018 }
1019
1020 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
1021 offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
1022 offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
1023 int qindex = cm->quant_params.base_qindex + offset;
1024 qindex = AOMMIN(qindex, MAXQ);
1025 qindex = AOMMAX(qindex, MINQ);
1026
1027 return qindex;
1028 #endif
1029 }
1030 #endif // !CONFIG_REALTIME_ONLY
1031
av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE * sms_tree,BLOCK_SIZE bsize)1032 void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
1033 BLOCK_SIZE bsize) {
1034 if (sms_tree == NULL) return;
1035 sms_tree->partitioning = PARTITION_NONE;
1036
1037 if (bsize >= BLOCK_8X8) {
1038 BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1039 for (int idx = 0; idx < 4; ++idx)
1040 av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
1041 }
1042 }
1043
1044 // Record the ref frames that have been selected by square partition blocks.
av1_update_picked_ref_frames_mask(MACROBLOCK * const x,int ref_type,BLOCK_SIZE bsize,int mib_size,int mi_row,int mi_col)1045 void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
1046 BLOCK_SIZE bsize, int mib_size,
1047 int mi_row, int mi_col) {
1048 assert(mi_size_wide[bsize] == mi_size_high[bsize]);
1049 const int sb_size_mask = mib_size - 1;
1050 const int mi_row_in_sb = mi_row & sb_size_mask;
1051 const int mi_col_in_sb = mi_col & sb_size_mask;
1052 const int mi_size = mi_size_wide[bsize];
1053 for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
1054 for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
1055 x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
1056 }
1057 }
1058 }
1059
avg_cdf_symbol(aom_cdf_prob * cdf_ptr_left,aom_cdf_prob * cdf_ptr_tr,int num_cdfs,int cdf_stride,int nsymbs,int wt_left,int wt_tr)1060 static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
1061 int num_cdfs, int cdf_stride, int nsymbs,
1062 int wt_left, int wt_tr) {
1063 for (int i = 0; i < num_cdfs; i++) {
1064 for (int j = 0; j <= nsymbs; j++) {
1065 cdf_ptr_left[i * cdf_stride + j] =
1066 (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
1067 (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
1068 ((wt_left + wt_tr) / 2)) /
1069 (wt_left + wt_tr));
1070 assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
1071 cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
1072 }
1073 }
1074 }
1075
1076 #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
1077 AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
1078
1079 #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
1080 do { \
1081 aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
1082 aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
1083 int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
1084 int num_cdfs = array_size / cdf_stride; \
1085 avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
1086 wt_left, wt_tr); \
1087 } while (0)
1088
avg_nmv(nmv_context * nmv_left,nmv_context * nmv_tr,int wt_left,int wt_tr)1089 static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
1090 int wt_tr) {
1091 AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
1092 for (int i = 0; i < 2; i++) {
1093 AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
1094 MV_CLASSES);
1095 AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
1096 nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
1097 AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
1098 AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
1099 AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
1100 nmv_tr->comps[i].class0_hp_cdf, 2);
1101 AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
1102 AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
1103 CLASS0_SIZE);
1104 AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
1105 }
1106 }
1107
1108 // In case of row-based multi-threading of encoder, since we always
1109 // keep a top - right sync, we can average the top - right SB's CDFs and
1110 // the left SB's CDFs and use the same for current SB's encoding to
1111 // improve the performance. This function facilitates the averaging
1112 // of CDF and used only when row-mt is enabled in encoder.
av1_avg_cdf_symbols(FRAME_CONTEXT * ctx_left,FRAME_CONTEXT * ctx_tr,int wt_left,int wt_tr)1113 void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
1114 int wt_left, int wt_tr) {
1115 AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
1116 AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
1117 AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
1118 AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
1119 AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
1120 AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
1121 AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
1122 AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
1123 AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
1124 AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
1125 AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
1126 AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
1127 AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
1128 AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
1129 AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
1130 AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
1131 AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
1132 AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
1133 ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
1134 AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
1135 MASKED_COMPOUND_TYPES);
1136 AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
1137 AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
1138 AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
1139 AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
1140 INTERINTRA_MODES);
1141 AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
1142 AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
1143 AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
1144 PALETTE_SIZES);
1145 AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
1146 PALETTE_SIZES);
1147 for (int j = 0; j < PALETTE_SIZES; j++) {
1148 int nsymbs = j + PALETTE_MIN_SIZE;
1149 AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
1150 ctx_tr->palette_y_color_index_cdf[j], nsymbs,
1151 CDF_SIZE(PALETTE_COLORS));
1152 AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
1153 ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
1154 CDF_SIZE(PALETTE_COLORS));
1155 }
1156 AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
1157 AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
1158 AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
1159 AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
1160 AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
1161 AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
1162 AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
1163 AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
1164 AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
1165 AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
1166 AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
1167 AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
1168 AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
1169 AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
1170 avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
1171 avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
1172 AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
1173 AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
1174 AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
1175 ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
1176 AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
1177 AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
1178 FILTER_INTRA_MODES);
1179 AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
1180 RESTORE_SWITCHABLE_TYPES);
1181 AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
1182 AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
1183 AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
1184 AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
1185 UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
1186 AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
1187 for (int i = 0; i < PARTITION_CONTEXTS; i++) {
1188 if (i < 4) {
1189 AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
1190 CDF_SIZE(10));
1191 } else if (i < 16) {
1192 AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
1193 } else {
1194 AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
1195 CDF_SIZE(10));
1196 }
1197 }
1198 AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
1199 SWITCHABLE_FILTERS);
1200 AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
1201 AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
1202 2 * MAX_ANGLE_DELTA + 1);
1203 AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
1204 CDF_SIZE(MAX_TX_DEPTH + 1));
1205 AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
1206 MAX_TX_DEPTH + 1);
1207 AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
1208 MAX_TX_DEPTH + 1);
1209 AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
1210 MAX_TX_DEPTH + 1);
1211 AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
1212 AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
1213 for (int i = 0; i < FRAME_LF_COUNT; i++) {
1214 AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
1215 DELTA_LF_PROBS + 1);
1216 }
1217 AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
1218 CDF_SIZE(TX_TYPES));
1219 AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
1220 CDF_SIZE(TX_TYPES));
1221 AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
1222 CDF_SIZE(TX_TYPES));
1223 AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
1224 CDF_SIZE(TX_TYPES));
1225 AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
1226 CDF_SIZE(TX_TYPES));
1227 AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
1228 AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
1229 CFL_ALPHABET_SIZE);
1230 }
1231
1232 // Check neighbor blocks' motion information.
check_neighbor_blocks(MB_MODE_INFO ** mi,int mi_stride,const TileInfo * const tile_info,int mi_row,int mi_col)1233 static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
1234 const TileInfo *const tile_info, int mi_row,
1235 int mi_col) {
1236 int is_above_low_motion = 1;
1237 int is_left_low_motion = 1;
1238 const int thr = 24;
1239
1240 // Check above block.
1241 if (mi_row > tile_info->mi_row_start) {
1242 const MB_MODE_INFO *above_mbmi = mi[-mi_stride];
1243 const int_mv above_mv = above_mbmi->mv[0];
1244 if (above_mbmi->mode >= INTRA_MODE_END &&
1245 (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr))
1246 is_above_low_motion = 0;
1247 }
1248
1249 // Check left block.
1250 if (mi_col > tile_info->mi_col_start) {
1251 const MB_MODE_INFO *left_mbmi = mi[-1];
1252 const int_mv left_mv = left_mbmi->mv[0];
1253 if (left_mbmi->mode >= INTRA_MODE_END &&
1254 (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr))
1255 is_left_low_motion = 0;
1256 }
1257
1258 return (is_above_low_motion && is_left_low_motion);
1259 }
1260
1261 // Check this block's motion in a fast way.
fast_detect_non_zero_motion(AV1_COMP * cpi,const uint8_t * src_y,int src_ystride,const uint8_t * last_src_y,int last_src_ystride,int mi_row,int mi_col)1262 static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
1263 int src_ystride,
1264 const uint8_t *last_src_y,
1265 int last_src_ystride, int mi_row,
1266 int mi_col) {
1267 AV1_COMMON *const cm = &cpi->common;
1268 const BLOCK_SIZE bsize = cm->seq_params->sb_size;
1269 unsigned int blk_sad = INT_MAX;
1270 if (cpi->src_sad_blk_64x64 != NULL) {
1271 const int sb_size_by_mb = (bsize == BLOCK_128X128)
1272 ? (cm->seq_params->mib_size >> 1)
1273 : cm->seq_params->mib_size;
1274 const int sb_cols =
1275 (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
1276 const int sbi_col = mi_col / sb_size_by_mb;
1277 const int sbi_row = mi_row / sb_size_by_mb;
1278 blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
1279 } else {
1280 blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
1281 last_src_ystride);
1282 }
1283
1284 // Search 4 1-away points.
1285 const uint8_t *const search_pos[4] = {
1286 last_src_y - last_src_ystride,
1287 last_src_y - 1,
1288 last_src_y + 1,
1289 last_src_y + last_src_ystride,
1290 };
1291 unsigned int sad_arr[4];
1292 cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos,
1293 last_src_ystride, sad_arr);
1294
1295 blk_sad = (blk_sad * 5) >> 3;
1296 return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] &&
1297 blk_sad < sad_arr[2] && blk_sad < sad_arr[3]);
1298 }
1299
1300 // Grade the temporal variation of the source by comparing the current sb and
1301 // its collocated block in the last frame.
av1_source_content_sb(AV1_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col)1302 void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
1303 int mi_row, int mi_col) {
1304 if (cpi->last_source->y_width != cpi->source->y_width ||
1305 cpi->last_source->y_height != cpi->source->y_height)
1306 return;
1307 #if CONFIG_AV1_HIGHBITDEPTH
1308 if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
1309 #endif
1310
1311 unsigned int tmp_sse;
1312 unsigned int tmp_variance;
1313 const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
1314 uint8_t *src_y = cpi->source->y_buffer;
1315 const int src_ystride = cpi->source->y_stride;
1316 const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2);
1317 uint8_t *last_src_y = cpi->last_source->y_buffer;
1318 const int last_src_ystride = cpi->last_source->y_stride;
1319 const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2);
1320 uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64)
1321 uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64)
1322 36000 }; // ~3*3*(64*64)
1323
1324 uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64)
1325 if (cpi->sf.rt_sf.increase_source_sad_thresh) {
1326 avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1;
1327 avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1;
1328 avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1;
1329 }
1330 uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
1331 src_y += src_offset;
1332 last_src_y += last_src_offset;
1333 tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
1334 last_src_ystride, &tmp_sse);
1335 // rd thresholds
1336 if (tmp_sse < avg_source_sse_threshold_low[1])
1337 x->content_state_sb.source_sad_rd = kLowSad;
1338
1339 // nonrd thresholds
1340 if (tmp_sse == 0) {
1341 x->content_state_sb.source_sad_nonrd = kZeroSad;
1342 return;
1343 }
1344 if (tmp_sse < avg_source_sse_threshold_verylow)
1345 x->content_state_sb.source_sad_nonrd = kVeryLowSad;
1346 else if (tmp_sse < avg_source_sse_threshold_low[0])
1347 x->content_state_sb.source_sad_nonrd = kLowSad;
1348 else if (tmp_sse > avg_source_sse_threshold_high)
1349 x->content_state_sb.source_sad_nonrd = kHighSad;
1350
1351 // Detect large lighting change.
1352 // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1353 if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
1354 x->content_state_sb.lighting_change = 1;
1355 if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
1356 x->content_state_sb.low_sumdiff = 1;
1357
1358 if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) &&
1359 !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff)
1360 x->sb_force_fixed_part = 0;
1361
1362 if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
1363 cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
1364 return;
1365
1366 // In-place temporal filter. If psnr calculation is enabled, we store the
1367 // source for that.
1368 AV1_COMMON *const cm = &cpi->common;
1369 // Calculate n*mean^2
1370 const unsigned int nmean2 = tmp_sse - tmp_variance;
1371 const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
1372 cm->seq_params->bit_depth);
1373 const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
1374 const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME],
1375 0, cm->seq_params->bit_depth);
1376
1377 const unsigned int threshold =
1378 (cpi->sf.rt_sf.use_rtc_tf == 1)
1379 ? (clamp(avg_q_step, 250, 1000)) * ac_q_step
1380 : 250 * ac_q_step;
1381
1382 // TODO(yunqing): use a weighted sum instead of averaging in filtering.
1383 if (tmp_variance <= threshold && nmean2 <= 15) {
1384 // Check neighbor blocks. If neighbor blocks aren't low-motion blocks,
1385 // skip temporal filtering for this block.
1386 MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
1387 get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
1388 const TileInfo *const tile_info = &tile_data->tile_info;
1389 const int is_neighbor_blocks_low_motion = check_neighbor_blocks(
1390 mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col);
1391 if (!is_neighbor_blocks_low_motion) return;
1392
1393 // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB
1394 // size.
1395 // Test several nearby points. If non-zero mv exists, don't do temporal
1396 // filtering.
1397 const int is_this_blk_low_motion = fast_detect_non_zero_motion(
1398 cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col);
1399
1400 if (!is_this_blk_low_motion) return;
1401
1402 const int shift_x[2] = { 0, cpi->source->subsampling_x };
1403 const int shift_y[2] = { 0, cpi->source->subsampling_y };
1404 const uint8_t h = block_size_high[bsize];
1405 const uint8_t w = block_size_wide[bsize];
1406
1407 for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
1408 uint8_t *src = cpi->source->buffers[plane];
1409 const int src_stride = cpi->source->strides[plane != 0];
1410 uint8_t *last_src = cpi->last_source->buffers[plane];
1411 const int last_src_stride = cpi->last_source->strides[plane != 0];
1412 src += src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1413 (mi_col << (2 - shift_x[plane != 0]));
1414 last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1415 (mi_col << (2 - shift_x[plane != 0]));
1416
1417 for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) {
1418 for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) {
1419 src[j] = (last_src[j] + src[j]) >> 1;
1420 }
1421 src += src_stride;
1422 last_src += last_src_stride;
1423 }
1424 }
1425 }
1426 }
1427
1428 // Memset the mbmis at the current superblock to 0
av1_reset_mbmi(CommonModeInfoParams * const mi_params,BLOCK_SIZE sb_size,int mi_row,int mi_col)1429 void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
1430 int mi_row, int mi_col) {
1431 // size of sb in unit of mi (BLOCK_4X4)
1432 const int sb_size_mi = mi_size_wide[sb_size];
1433 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1434 // size of sb in unit of allocated mi size
1435 const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
1436 assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
1437 "mi is not allocated as a multiple of sb!");
1438 assert(mi_params->mi_stride % sb_size_mi == 0 &&
1439 "mi_grid_base is not allocated as a multiple of sb!");
1440
1441 const int mi_rows = mi_size_high[sb_size];
1442 for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
1443 assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
1444 mi_params->mi_stride);
1445 const int mi_grid_idx =
1446 get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
1447 const int alloc_mi_idx =
1448 get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
1449 memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
1450 sb_size_mi * sizeof(*mi_params->mi_grid_base));
1451 memset(&mi_params->tx_type_map[mi_grid_idx], 0,
1452 sb_size_mi * sizeof(*mi_params->tx_type_map));
1453 if (cur_mi_row % mi_alloc_size_1d == 0) {
1454 memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
1455 sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
1456 }
1457 }
1458 }
1459
av1_backup_sb_state(SB_FIRST_PASS_STATS * sb_fp_stats,const AV1_COMP * cpi,ThreadData * td,const TileDataEnc * tile_data,int mi_row,int mi_col)1460 void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
1461 ThreadData *td, const TileDataEnc *tile_data,
1462 int mi_row, int mi_col) {
1463 MACROBLOCK *x = &td->mb;
1464 MACROBLOCKD *xd = &x->e_mbd;
1465 const TileInfo *tile_info = &tile_data->tile_info;
1466
1467 const AV1_COMMON *cm = &cpi->common;
1468 const int num_planes = av1_num_planes(cm);
1469 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1470
1471 xd->above_txfm_context =
1472 cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
1473 xd->left_txfm_context =
1474 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1475 av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
1476
1477 sb_fp_stats->rd_count = td->rd_counts;
1478 sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
1479
1480 sb_fp_stats->fc = *td->counts;
1481
1482 // Don't copy in row_mt case, otherwise run into data race. No behavior change
1483 // in row_mt case.
1484 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1485 memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
1486 sizeof(sb_fp_stats->inter_mode_rd_models));
1487 }
1488
1489 memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
1490 sizeof(sb_fp_stats->thresh_freq_fact));
1491
1492 const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1493 sb_fp_stats->current_qindex =
1494 cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
1495
1496 #if CONFIG_INTERNAL_STATS
1497 memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
1498 sizeof(sb_fp_stats->mode_chosen_counts));
1499 #endif // CONFIG_INTERNAL_STATS
1500 }
1501
av1_restore_sb_state(const SB_FIRST_PASS_STATS * sb_fp_stats,AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,int mi_col)1502 void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
1503 ThreadData *td, TileDataEnc *tile_data, int mi_row,
1504 int mi_col) {
1505 MACROBLOCK *x = &td->mb;
1506
1507 const AV1_COMMON *cm = &cpi->common;
1508 const int num_planes = av1_num_planes(cm);
1509 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1510
1511 av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
1512 num_planes);
1513
1514 td->rd_counts = sb_fp_stats->rd_count;
1515 x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
1516
1517 *td->counts = sb_fp_stats->fc;
1518
1519 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1520 memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
1521 sizeof(sb_fp_stats->inter_mode_rd_models));
1522 }
1523
1524 memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
1525 sizeof(sb_fp_stats->thresh_freq_fact));
1526
1527 const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1528 cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
1529 sb_fp_stats->current_qindex;
1530
1531 #if CONFIG_INTERNAL_STATS
1532 memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
1533 sizeof(sb_fp_stats->mode_chosen_counts));
1534 #endif // CONFIG_INTERNAL_STATS
1535 }
1536
1537 /*! Checks whether to skip updating the entropy cost based on tile info.
1538 *
1539 * This function contains the common code used to skip the cost update of coeff,
1540 * mode, mv and dv symbols.
1541 */
skip_cost_update(const SequenceHeader * seq_params,const TileInfo * const tile_info,const int mi_row,const int mi_col,INTERNAL_COST_UPDATE_TYPE upd_level)1542 static int skip_cost_update(const SequenceHeader *seq_params,
1543 const TileInfo *const tile_info, const int mi_row,
1544 const int mi_col,
1545 INTERNAL_COST_UPDATE_TYPE upd_level) {
1546 if (upd_level == INTERNAL_COST_UPD_SB) return 0;
1547 if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
1548
1549 // upd_level is at most as frequent as each sb_row in a tile.
1550 if (mi_col != tile_info->mi_col_start) return 1;
1551
1552 if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
1553 const int mib_size_log2 = seq_params->mib_size_log2;
1554 const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
1555 const int sb_size = seq_params->mib_size * MI_SIZE;
1556 const int tile_height =
1557 (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
1558 // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
1559 // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
1560 // as the update will not be equally spaced in smaller resolutions making
1561 // it equally spaced by calculating (mv_num_rows_cost_update) the number of
1562 // rows after which the cost update should happen.
1563 const int sb_size_update_freq_map[2] = { 2, 4 };
1564 const int update_freq_sb_rows =
1565 sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
1566 const int update_freq_num_rows = sb_size * update_freq_sb_rows;
1567 // Round-up the division result to next integer.
1568 const int num_updates_per_tile =
1569 (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
1570 const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
1571 // Round-up the division result to next integer.
1572 const int num_sb_rows_per_update =
1573 (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
1574 if ((sb_row % num_sb_rows_per_update) != 0) return 1;
1575 }
1576 return 0;
1577 }
1578
1579 // Checks for skip status of mv cost update.
skip_mv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1580 static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1581 const int mi_row, const int mi_col) {
1582 const AV1_COMMON *cm = &cpi->common;
1583 // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
1584 // cost calculation is skipped in this case.
1585 if (frame_is_intra_only(cm)) return 1;
1586
1587 return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1588 cpi->sf.inter_sf.mv_cost_upd_level);
1589 }
1590
1591 // Checks for skip status of dv cost update.
skip_dv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1592 static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1593 const int mi_row, const int mi_col) {
1594 const AV1_COMMON *cm = &cpi->common;
1595 // Intrabc is only applicable to intra frames. So skip if intrabc is not
1596 // allowed.
1597 if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
1598 return 1;
1599 }
1600
1601 return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1602 cpi->sf.intra_sf.dv_cost_upd_level);
1603 }
1604
1605 // Update the rate costs of some symbols according to the frequency directed
1606 // by speed features
av1_set_cost_upd_freq(AV1_COMP * cpi,ThreadData * td,const TileInfo * const tile_info,const int mi_row,const int mi_col)1607 void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
1608 const TileInfo *const tile_info, const int mi_row,
1609 const int mi_col) {
1610 AV1_COMMON *const cm = &cpi->common;
1611 const int num_planes = av1_num_planes(cm);
1612 MACROBLOCK *const x = &td->mb;
1613 MACROBLOCKD *const xd = &x->e_mbd;
1614
1615 if (cm->features.disable_cdf_update) {
1616 return;
1617 }
1618
1619 switch (cpi->sf.inter_sf.coeff_cost_upd_level) {
1620 case INTERNAL_COST_UPD_OFF:
1621 case INTERNAL_COST_UPD_TILE: // Tile level
1622 break;
1623 case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
1624 case INTERNAL_COST_UPD_SBROW: // SB row level in tile
1625 case INTERNAL_COST_UPD_SB: // SB level
1626 if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1627 cpi->sf.inter_sf.coeff_cost_upd_level))
1628 break;
1629 av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
1630 break;
1631 default: assert(0);
1632 }
1633
1634 switch (cpi->sf.inter_sf.mode_cost_upd_level) {
1635 case INTERNAL_COST_UPD_OFF:
1636 case INTERNAL_COST_UPD_TILE: // Tile level
1637 break;
1638 case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
1639 case INTERNAL_COST_UPD_SBROW: // SB row level in tile
1640 case INTERNAL_COST_UPD_SB: // SB level
1641 if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1642 cpi->sf.inter_sf.mode_cost_upd_level))
1643 break;
1644 av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
1645 break;
1646 default: assert(0);
1647 }
1648
1649 switch (cpi->sf.inter_sf.mv_cost_upd_level) {
1650 case INTERNAL_COST_UPD_OFF:
1651 case INTERNAL_COST_UPD_TILE: // Tile level
1652 break;
1653 case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
1654 case INTERNAL_COST_UPD_SBROW: // SB row level in tile
1655 case INTERNAL_COST_UPD_SB: // SB level
1656 // Checks for skip status of mv cost update.
1657 if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1658 av1_fill_mv_costs(&xd->tile_ctx->nmvc,
1659 cm->features.cur_frame_force_integer_mv,
1660 cm->features.allow_high_precision_mv, x->mv_costs);
1661 break;
1662 default: assert(0);
1663 }
1664
1665 switch (cpi->sf.intra_sf.dv_cost_upd_level) {
1666 case INTERNAL_COST_UPD_OFF:
1667 case INTERNAL_COST_UPD_TILE: // Tile level
1668 break;
1669 case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
1670 case INTERNAL_COST_UPD_SBROW: // SB row level in tile
1671 case INTERNAL_COST_UPD_SB: // SB level
1672 // Checks for skip status of dv cost update.
1673 if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1674 av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
1675 break;
1676 default: assert(0);
1677 }
1678 }
1679
av1_dealloc_src_diff_buf(struct macroblock * mb,int num_planes)1680 void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {
1681 for (int plane = 0; plane < num_planes; ++plane) {
1682 aom_free(mb->plane[plane].src_diff);
1683 mb->plane[plane].src_diff = NULL;
1684 }
1685 }
1686
av1_alloc_src_diff_buf(const struct AV1Common * cm,struct macroblock * mb)1687 void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {
1688 const int num_planes = av1_num_planes(cm);
1689 #ifndef NDEBUG
1690 for (int plane = 0; plane < num_planes; ++plane) {
1691 assert(!mb->plane[plane].src_diff);
1692 }
1693 #endif
1694 for (int plane = 0; plane < num_planes; ++plane) {
1695 const int subsampling_xy =
1696 plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
1697 : 0;
1698 const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
1699 CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff,
1700 (int16_t *)aom_memalign(
1701 32, sizeof(*mb->plane[plane].src_diff) * sb_size));
1702 }
1703 }
1704