xref: /aosp_15_r20/external/libaom/av1/encoder/encodeframe_utils.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/common_data.h"
13 #include "av1/common/quant_common.h"
14 #include "av1/common/reconintra.h"
15 
16 #include "av1/encoder/encoder.h"
17 #include "av1/encoder/encodeframe_utils.h"
18 #include "av1/encoder/encoder_utils.h"
19 #include "av1/encoder/rdopt.h"
20 
av1_set_ssim_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)21 void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
22                          const BLOCK_SIZE bsize, const int mi_row,
23                          const int mi_col, int *const rdmult) {
24   const AV1_COMMON *const cm = &cpi->common;
25 
26   const BLOCK_SIZE bsize_base = BLOCK_16X16;
27   const int num_mi_w = mi_size_wide[bsize_base];
28   const int num_mi_h = mi_size_high[bsize_base];
29   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
30   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
31   const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
32   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
33   int row, col;
34   double num_of_mi = 0.0;
35   double geom_mean_of_scale = 1.0;
36 
37   // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least
38   // BLOCK_8X8.
39   //
40   // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would
41   // iterate 256 times. Considering the maximum value of
42   // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()),
43   // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX
44   // (maximum value a double data type can hold). If bsize_base is modified to
45   // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up
46   // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow.
47   assert(bsize_base >= BLOCK_8X8);
48   assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
49 
50   for (row = mi_row / num_mi_w;
51        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
52     for (col = mi_col / num_mi_h;
53          col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
54       const int index = row * num_cols + col;
55       assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0);
56       geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index];
57       num_of_mi += 1.0;
58     }
59   }
60   geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi));
61 
62   *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
63   *rdmult = AOMMAX(*rdmult, 0);
64   av1_set_error_per_bit(errorperbit, *rdmult);
65 }
66 
67 #if CONFIG_SALIENCY_MAP
av1_set_saliency_map_vmaf_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)68 void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
69                                       int *errorperbit, const BLOCK_SIZE bsize,
70                                       const int mi_row, const int mi_col,
71                                       int *const rdmult) {
72   const AV1_COMMON *const cm = &cpi->common;
73   const int num_mi_w = mi_size_wide[bsize];
74   const int num_mi_h = mi_size_high[bsize];
75   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
76 
77   *rdmult =
78       (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
79                                              (mi_col / num_mi_w)]);
80 
81   *rdmult = AOMMAX(*rdmult, 0);
82   av1_set_error_per_bit(errorperbit, *rdmult);
83 }
84 #endif
85 
86 // TODO(angiebird): Move this function to tpl_model.c
87 #if !CONFIG_REALTIME_ONLY
av1_get_cb_rdmult(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col)88 int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
89                       const BLOCK_SIZE bsize, const int mi_row,
90                       const int mi_col) {
91   const AV1_COMMON *const cm = &cpi->common;
92   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
93                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
94   const int tpl_idx = cpi->gf_frame_index;
95   int deltaq_rdmult = set_rdmult(cpi, x, -1);
96   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
97   if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
98   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
99   if (x->rb == 0) return deltaq_rdmult;
100 
101   TplParams *const tpl_data = &cpi->ppi->tpl_data;
102   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
103   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
104 
105   const int mi_wide = mi_size_wide[bsize];
106   const int mi_high = mi_size_high[bsize];
107 
108   int tpl_stride = tpl_frame->stride;
109   double intra_cost_base = 0;
110   double mc_dep_cost_base = 0;
111   double cbcmp_base = 0;
112   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
113 
114   for (int row = mi_row; row < mi_row + mi_high; row += step) {
115     for (int col = mi_col; col < mi_col + mi_wide; col += step) {
116       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
117         continue;
118 
119       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
120           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
121 
122       double cbcmp = (double)this_stats->srcrf_dist;
123       int64_t mc_dep_delta =
124           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
125                  this_stats->mc_dep_dist);
126       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
127       intra_cost_base += log(dist_scaled) * cbcmp;
128       mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
129       cbcmp_base += cbcmp;
130     }
131   }
132 
133   if (cbcmp_base == 0) return deltaq_rdmult;
134 
135   double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
136   deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));
137 
138   return AOMMAX(deltaq_rdmult, 1);
139 }
140 #endif  // !CONFIG_REALTIME_ONLY
141 
update_filter_type_count(FRAME_COUNTS * counts,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)142 static inline void update_filter_type_count(FRAME_COUNTS *counts,
143                                             const MACROBLOCKD *xd,
144                                             const MB_MODE_INFO *mbmi) {
145   int dir;
146   for (dir = 0; dir < 2; ++dir) {
147     const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
148     InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
149 
150     // Only allow the 3 valid SWITCHABLE_FILTERS.
151     assert(filter < SWITCHABLE_FILTERS);
152     ++counts->switchable_interp[ctx][filter];
153   }
154 }
155 
156 // This function will copy the best reference mode information from
157 // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
copy_mbmi_ext_frame_to_mbmi_ext(MB_MODE_INFO_EXT * mbmi_ext,const MB_MODE_INFO_EXT_FRAME * const mbmi_ext_best,uint8_t ref_frame_type)158 static inline void copy_mbmi_ext_frame_to_mbmi_ext(
159     MB_MODE_INFO_EXT *mbmi_ext,
160     const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
161   memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
162          sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
163   memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
164          sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
165   mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
166   mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
167   memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
168          sizeof(mbmi_ext->global_mvs));
169 }
170 
av1_update_state(const AV1_COMP * const cpi,ThreadData * td,const PICK_MODE_CONTEXT * const ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,RUN_TYPE dry_run)171 void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
172                       const PICK_MODE_CONTEXT *const ctx, int mi_row,
173                       int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
174   int i, x_idx, y;
175   const AV1_COMMON *const cm = &cpi->common;
176   const CommonModeInfoParams *const mi_params = &cm->mi_params;
177   const int num_planes = av1_num_planes(cm);
178   MACROBLOCK *const x = &td->mb;
179   MACROBLOCKD *const xd = &x->e_mbd;
180   struct macroblock_plane *const p = x->plane;
181   struct macroblockd_plane *const pd = xd->plane;
182   const MB_MODE_INFO *const mi = &ctx->mic;
183   MB_MODE_INFO *const mi_addr = xd->mi[0];
184   const struct segmentation *const seg = &cm->seg;
185   assert(bsize < BLOCK_SIZES_ALL);
186   const int bw = mi_size_wide[mi->bsize];
187   const int bh = mi_size_high[mi->bsize];
188   const int mis = mi_params->mi_stride;
189   const int mi_width = mi_size_wide[bsize];
190   const int mi_height = mi_size_high[bsize];
191   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
192 
193   assert(mi->bsize == bsize);
194 
195   *mi_addr = *mi;
196   copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
197                                   av1_ref_frame_type(ctx->mic.ref_frame));
198 
199   memcpy(txfm_info->blk_skip, ctx->blk_skip,
200          sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
201 
202   txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
203 
204   xd->tx_type_map = ctx->tx_type_map;
205   xd->tx_type_map_stride = mi_size_wide[bsize];
206   // If not dry_run, copy the transform type data into the frame level buffer.
207   // Encoder will fetch tx types when writing bitstream.
208   if (!dry_run) {
209     const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
210     uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
211     const int mi_stride = mi_params->mi_stride;
212     for (int blk_row = 0; blk_row < bh; ++blk_row) {
213       av1_copy_array(tx_type_map + blk_row * mi_stride,
214                      xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
215     }
216     xd->tx_type_map = tx_type_map;
217     xd->tx_type_map_stride = mi_stride;
218   }
219 
220   // If segmentation in use
221   if (seg->enabled) {
222     // For in frame complexity AQ copy the segment id from the segment map.
223     if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
224       const uint8_t *const map =
225           seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
226       mi_addr->segment_id =
227           map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
228     }
229     // Else for cyclic refresh mode update the segment map, set the segment id
230     // and then update the quantizer.
231     if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
232         mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE &&
233         !cpi->rc.rtc_external_ratectrl) {
234       av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
235                                         ctx->rd_stats.rate, ctx->rd_stats.dist,
236                                         txfm_info->skip_txfm, dry_run);
237     }
238     if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
239       mi_addr->uv_mode = UV_DC_PRED;
240 
241     if (!dry_run && !mi_addr->skip_txfm) {
242       int cdf_num;
243       const uint8_t spatial_pred = av1_get_spatial_seg_pred(
244           cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
245       const uint8_t coded_id = av1_neg_interleave(
246           mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1);
247       int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id];
248       td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost;
249 
250       const int pred_segment_id =
251           cm->last_frame_seg_map
252               ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
253                                mi_col)
254               : 0;
255       const int use_tmp_pred = pred_segment_id == mi_addr->segment_id;
256       const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd);
257       td->rd_counts.seg_tmp_pred_cost[1] +=
258           x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred];
259       if (!use_tmp_pred) {
260         td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost;
261       }
262     }
263   }
264 
265   // Count zero motion vector.
266   if (!dry_run && !frame_is_intra_only(cm)) {
267     const MV mv = mi->mv[0].as_mv;
268     if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
269         abs(mv.row) < 8 && abs(mv.col) < 8) {
270       const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
271       // Accumulate low_content_frame.
272       for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
273     }
274   }
275 
276   for (i = 0; i < num_planes; ++i) {
277     p[i].coeff = ctx->coeff[i];
278     p[i].qcoeff = ctx->qcoeff[i];
279     p[i].dqcoeff = ctx->dqcoeff[i];
280     p[i].eobs = ctx->eobs[i];
281     p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
282   }
283   for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
284   // Restore the coding context of the MB to that that was in place
285   // when the mode was picked for it
286 
287   const int cols =
288       AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width);
289   const int rows = AOMMIN(
290       (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height);
291   for (y = 0; y < rows; y++) {
292     for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr;
293   }
294 
295   if (cpi->oxcf.q_cfg.aq_mode)
296     av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0);
297 
298   if (dry_run) return;
299 
300 #if CONFIG_INTERNAL_STATS
301   {
302     unsigned int *const mode_chosen_counts =
303         (unsigned int *)cpi->mode_chosen_counts;  // Cast const away.
304     if (frame_is_intra_only(cm)) {
305       static const int kf_mode_index[] = {
306         THR_DC /*DC_PRED*/,
307         THR_V_PRED /*V_PRED*/,
308         THR_H_PRED /*H_PRED*/,
309         THR_D45_PRED /*D45_PRED*/,
310         THR_D135_PRED /*D135_PRED*/,
311         THR_D113_PRED /*D113_PRED*/,
312         THR_D157_PRED /*D157_PRED*/,
313         THR_D203_PRED /*D203_PRED*/,
314         THR_D67_PRED /*D67_PRED*/,
315         THR_SMOOTH,   /*SMOOTH_PRED*/
316         THR_SMOOTH_V, /*SMOOTH_V_PRED*/
317         THR_SMOOTH_H, /*SMOOTH_H_PRED*/
318         THR_PAETH /*PAETH_PRED*/,
319       };
320       ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
321     } else {
322       // Note how often each mode chosen as best
323       ++mode_chosen_counts[ctx->best_mode_index];
324     }
325   }
326 #endif
327   if (!frame_is_intra_only(cm)) {
328     if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) {
329       // When the frame interp filter is SWITCHABLE, several cases that always
330       // use the default type (EIGHTTAP_REGULAR) are described in
331       // av1_is_interp_needed(). Here, we should keep the counts for all
332       // applicable blocks, so the frame filter resetting decision in
333       // fix_interp_filter() is made correctly.
334       update_filter_type_count(td->counts, xd, mi_addr);
335     }
336   }
337 
338   const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
339   const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
340   if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
341     av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
342 }
343 
av1_update_inter_mode_stats(FRAME_CONTEXT * fc,FRAME_COUNTS * counts,PREDICTION_MODE mode,int16_t mode_context)344 void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
345                                  PREDICTION_MODE mode, int16_t mode_context) {
346   (void)counts;
347 
348   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
349   if (mode == NEWMV) {
350 #if CONFIG_ENTROPY_STATS
351     ++counts->newmv_mode[mode_ctx][0];
352 #endif
353     update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
354     return;
355   }
356 
357 #if CONFIG_ENTROPY_STATS
358   ++counts->newmv_mode[mode_ctx][1];
359 #endif
360   update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
361 
362   mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
363   if (mode == GLOBALMV) {
364 #if CONFIG_ENTROPY_STATS
365     ++counts->zeromv_mode[mode_ctx][0];
366 #endif
367     update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
368     return;
369   }
370 
371 #if CONFIG_ENTROPY_STATS
372   ++counts->zeromv_mode[mode_ctx][1];
373 #endif
374   update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
375 
376   mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
377 #if CONFIG_ENTROPY_STATS
378   ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
379 #endif
380   update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
381 }
382 
update_palette_cdf(MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,FRAME_COUNTS * counts)383 static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
384                                FRAME_COUNTS *counts) {
385   FRAME_CONTEXT *fc = xd->tile_ctx;
386   const BLOCK_SIZE bsize = mbmi->bsize;
387   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
388   const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
389 
390   (void)counts;
391 
392   if (mbmi->mode == DC_PRED) {
393     const int n = pmi->palette_size[0];
394     const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
395 
396 #if CONFIG_ENTROPY_STATS
397     ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
398 #endif
399     update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
400                n > 0, 2);
401     if (n > 0) {
402 #if CONFIG_ENTROPY_STATS
403       ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
404 #endif
405       update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
406                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
407     }
408   }
409 
410   if (mbmi->uv_mode == UV_DC_PRED) {
411     const int n = pmi->palette_size[1];
412     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
413 
414 #if CONFIG_ENTROPY_STATS
415     ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
416 #endif
417     update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
418 
419     if (n > 0) {
420 #if CONFIG_ENTROPY_STATS
421       ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
422 #endif
423       update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
424                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
425     }
426   }
427 }
428 
av1_sum_intra_stats(const AV1_COMMON * const cm,FRAME_COUNTS * counts,MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,const int intraonly)429 void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
430                          MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
431                          const MB_MODE_INFO *above_mi,
432                          const MB_MODE_INFO *left_mi, const int intraonly) {
433   FRAME_CONTEXT *fc = xd->tile_ctx;
434   const PREDICTION_MODE y_mode = mbmi->mode;
435   (void)counts;
436   const BLOCK_SIZE bsize = mbmi->bsize;
437 
438   if (intraonly) {
439 #if CONFIG_ENTROPY_STATS
440     const PREDICTION_MODE above = av1_above_block_mode(above_mi);
441     const PREDICTION_MODE left = av1_left_block_mode(left_mi);
442     const int above_ctx = intra_mode_context[above];
443     const int left_ctx = intra_mode_context[left];
444     ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
445 #endif  // CONFIG_ENTROPY_STATS
446     update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
447   } else {
448 #if CONFIG_ENTROPY_STATS
449     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
450 #endif  // CONFIG_ENTROPY_STATS
451     update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
452   }
453 
454   if (av1_filter_intra_allowed(cm, mbmi)) {
455     const int use_filter_intra_mode =
456         mbmi->filter_intra_mode_info.use_filter_intra;
457 #if CONFIG_ENTROPY_STATS
458     ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
459     if (use_filter_intra_mode) {
460       ++counts
461             ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
462     }
463 #endif  // CONFIG_ENTROPY_STATS
464     update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
465     if (use_filter_intra_mode) {
466       update_cdf(fc->filter_intra_mode_cdf,
467                  mbmi->filter_intra_mode_info.filter_intra_mode,
468                  FILTER_INTRA_MODES);
469     }
470   }
471   if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
472 #if CONFIG_ENTROPY_STATS
473     ++counts->angle_delta[mbmi->mode - V_PRED]
474                          [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
475 #endif
476     update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
477                mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
478                2 * MAX_ANGLE_DELTA + 1);
479   }
480 
481   if (!xd->is_chroma_ref) return;
482 
483   const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
484   const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
485 #if CONFIG_ENTROPY_STATS
486   ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
487 #endif  // CONFIG_ENTROPY_STATS
488   update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
489              UV_INTRA_MODES - !cfl_allowed);
490   if (uv_mode == UV_CFL_PRED) {
491     const int8_t joint_sign = mbmi->cfl_alpha_signs;
492     const uint8_t idx = mbmi->cfl_alpha_idx;
493 
494 #if CONFIG_ENTROPY_STATS
495     ++counts->cfl_sign[joint_sign];
496 #endif
497     update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
498     if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
499       aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
500 
501 #if CONFIG_ENTROPY_STATS
502       ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
503 #endif
504       update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
505     }
506     if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
507       aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
508 
509 #if CONFIG_ENTROPY_STATS
510       ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
511 #endif
512       update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
513     }
514   }
515   const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
516   if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) {
517 #if CONFIG_ENTROPY_STATS
518     ++counts->angle_delta[intra_mode - V_PRED]
519                          [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
520 #endif
521     update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED],
522                mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
523                2 * MAX_ANGLE_DELTA + 1);
524   }
525   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
526     update_palette_cdf(xd, mbmi, counts);
527   }
528 }
529 
av1_restore_context(MACROBLOCK * x,const RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)530 void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
531                          int mi_row, int mi_col, BLOCK_SIZE bsize,
532                          const int num_planes) {
533   MACROBLOCKD *xd = &x->e_mbd;
534   int p;
535   const int num_4x4_blocks_wide = mi_size_wide[bsize];
536   const int num_4x4_blocks_high = mi_size_high[bsize];
537   int mi_width = mi_size_wide[bsize];
538   int mi_height = mi_size_high[bsize];
539   for (p = 0; p < num_planes; p++) {
540     int tx_col = mi_col;
541     int tx_row = mi_row & MAX_MIB_MASK;
542     memcpy(
543         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
544         ctx->a + num_4x4_blocks_wide * p,
545         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
546             xd->plane[p].subsampling_x);
547     memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
548            ctx->l + num_4x4_blocks_high * p,
549            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
550                xd->plane[p].subsampling_y);
551   }
552   memcpy(xd->above_partition_context + mi_col, ctx->sa,
553          sizeof(*xd->above_partition_context) * mi_width);
554   memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
555          sizeof(xd->left_partition_context[0]) * mi_height);
556   xd->above_txfm_context = ctx->p_ta;
557   xd->left_txfm_context = ctx->p_tl;
558   memcpy(xd->above_txfm_context, ctx->ta,
559          sizeof(*xd->above_txfm_context) * mi_width);
560   memcpy(xd->left_txfm_context, ctx->tl,
561          sizeof(*xd->left_txfm_context) * mi_height);
562 }
563 
av1_save_context(const MACROBLOCK * x,RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)564 void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
565                       int mi_row, int mi_col, BLOCK_SIZE bsize,
566                       const int num_planes) {
567   const MACROBLOCKD *xd = &x->e_mbd;
568   int p;
569   int mi_width = mi_size_wide[bsize];
570   int mi_height = mi_size_high[bsize];
571 
572   // buffer the above/left context information of the block in search.
573   for (p = 0; p < num_planes; ++p) {
574     int tx_col = mi_col;
575     int tx_row = mi_row & MAX_MIB_MASK;
576     memcpy(
577         ctx->a + mi_width * p,
578         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
579         (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
580     memcpy(ctx->l + mi_height * p,
581            xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
582            (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
583   }
584   memcpy(ctx->sa, xd->above_partition_context + mi_col,
585          sizeof(*xd->above_partition_context) * mi_width);
586   memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
587          sizeof(xd->left_partition_context[0]) * mi_height);
588   memcpy(ctx->ta, xd->above_txfm_context,
589          sizeof(*xd->above_txfm_context) * mi_width);
590   memcpy(ctx->tl, xd->left_txfm_context,
591          sizeof(*xd->left_txfm_context) * mi_height);
592   ctx->p_ta = xd->above_txfm_context;
593   ctx->p_tl = xd->left_txfm_context;
594 }
595 
set_partial_sb_partition(const AV1_COMMON * const cm,MB_MODE_INFO * mi,int bh_in,int bw_in,int mi_rows_remaining,int mi_cols_remaining,BLOCK_SIZE bsize,MB_MODE_INFO ** mib)596 static void set_partial_sb_partition(const AV1_COMMON *const cm,
597                                      MB_MODE_INFO *mi, int bh_in, int bw_in,
598                                      int mi_rows_remaining,
599                                      int mi_cols_remaining, BLOCK_SIZE bsize,
600                                      MB_MODE_INFO **mib) {
601   int bh = bh_in;
602   int r, c;
603   for (r = 0; r < cm->seq_params->mib_size; r += bh) {
604     int bw = bw_in;
605     for (c = 0; c < cm->seq_params->mib_size; c += bw) {
606       const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
607       const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
608       mib[grid_index] = mi + mi_index;
609       mib[grid_index]->bsize = find_partition_size(
610           bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
611     }
612   }
613 }
614 
615 // This function attempts to set all mode info entries in a given superblock
616 // to the same block partition size.
617 // However, at the bottom and right borders of the image the requested size
618 // may not be allowed in which case this code attempts to choose the largest
619 // allowable partition.
av1_set_fixed_partitioning(AV1_COMP * cpi,const TileInfo * const tile,MB_MODE_INFO ** mib,int mi_row,int mi_col,BLOCK_SIZE bsize)620 void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
621                                 MB_MODE_INFO **mib, int mi_row, int mi_col,
622                                 BLOCK_SIZE bsize) {
623   AV1_COMMON *const cm = &cpi->common;
624   const CommonModeInfoParams *const mi_params = &cm->mi_params;
625   const int mi_rows_remaining = tile->mi_row_end - mi_row;
626   const int mi_cols_remaining = tile->mi_col_end - mi_col;
627   MB_MODE_INFO *const mi_upper_left =
628       mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
629   int bh = mi_size_high[bsize];
630   int bw = mi_size_wide[bsize];
631 
632   assert(bsize >= mi_params->mi_alloc_bsize &&
633          "Attempted to use bsize < mi_params->mi_alloc_bsize");
634   assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
635 
636   // Apply the requested partition size to the SB if it is all "in image"
637   if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
638       (mi_rows_remaining >= cm->seq_params->mib_size)) {
639     for (int block_row = 0; block_row < cm->seq_params->mib_size;
640          block_row += bh) {
641       for (int block_col = 0; block_col < cm->seq_params->mib_size;
642            block_col += bw) {
643         const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
644         const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
645         mib[grid_index] = mi_upper_left + mi_index;
646         mib[grid_index]->bsize = bsize;
647       }
648     }
649   } else {
650     // Else this is a partial SB.
651     set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
652                              mi_cols_remaining, bsize, mib);
653   }
654 }
655 
av1_is_leaf_split_partition(AV1_COMMON * cm,int mi_row,int mi_col,BLOCK_SIZE bsize)656 int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
657                                 BLOCK_SIZE bsize) {
658   const int bs = mi_size_wide[bsize];
659   const int hbs = bs / 2;
660   assert(bsize >= BLOCK_8X8);
661   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
662 
663   for (int i = 0; i < 4; i++) {
664     int x_idx = (i & 1) * hbs;
665     int y_idx = (i >> 1) * hbs;
666     if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
667         (mi_col + x_idx >= cm->mi_params.mi_cols))
668       return 0;
669     if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
670             PARTITION_NONE &&
671         subsize != BLOCK_8X8)
672       return 0;
673   }
674   return 1;
675 }
676 
677 #if !CONFIG_REALTIME_ONLY
av1_get_rdmult_delta(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)678 int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
679                          int mi_col, int orig_rdmult) {
680   AV1_COMMON *const cm = &cpi->common;
681   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
682   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
683                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
684   const int tpl_idx = cpi->gf_frame_index;
685   TplParams *const tpl_data = &cpi->ppi->tpl_data;
686   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
687   int64_t intra_cost = 0;
688   int64_t mc_dep_cost = 0;
689   const int mi_wide = mi_size_wide[bsize];
690   const int mi_high = mi_size_high[bsize];
691 
692   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
693   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
694   int tpl_stride = tpl_frame->stride;
695 
696   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
697     return orig_rdmult;
698   }
699   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
700     return orig_rdmult;
701   }
702 
703 #ifndef NDEBUG
704   int mi_count = 0;
705 #endif
706   const int mi_col_sr =
707       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
708   const int mi_col_end_sr =
709       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
710   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
711   const int step = 1 << block_mis_log2;
712   const int row_step = step;
713   const int col_step_sr =
714       coded_to_superres_mi(step, cm->superres_scale_denominator);
715   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
716     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
717       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
718       TplDepStats *this_stats =
719           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
720       int64_t mc_dep_delta =
721           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
722                  this_stats->mc_dep_dist);
723       intra_cost += this_stats->recrf_dist << RDDIV_BITS;
724       mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
725 #ifndef NDEBUG
726       mi_count++;
727 #endif
728     }
729   }
730   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
731 
732   double beta = 1.0;
733   if (mc_dep_cost > 0 && intra_cost > 0) {
734     const double r0 = cpi->rd.r0;
735     const double rk = (double)intra_cost / mc_dep_cost;
736     beta = (r0 / rk);
737   }
738 
739   int rdmult = av1_get_adaptive_rdmult(cpi, beta);
740 
741   rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
742   rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
743 
744   rdmult = AOMMAX(1, rdmult);
745 
746   return rdmult;
747 }
748 
749 // Checks to see if a super block is on a horizontal image edge.
750 // In most cases this is the "real" edge unless there are formatting
751 // bars embedded in the stream.
av1_active_h_edge(const AV1_COMP * cpi,int mi_row,int mi_step)752 int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
753   int top_edge = 0;
754   int bottom_edge = cpi->common.mi_params.mi_rows;
755   int is_active_h_edge = 0;
756 
757   // For two pass account for any formatting bars detected.
758   if (is_stat_consumption_stage_twopass(cpi)) {
759     const AV1_COMMON *const cm = &cpi->common;
760     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
761         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
762     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
763 
764     // The inactive region is specified in MBs not mi units.
765     // The image edge is in the following MB row.
766     top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
767 
768     bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
769     bottom_edge = AOMMAX(top_edge, bottom_edge);
770   }
771 
772   if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
773       ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
774     is_active_h_edge = 1;
775   }
776   return is_active_h_edge;
777 }
778 
779 // Checks to see if a super block is on a vertical image edge.
780 // In most cases this is the "real" edge unless there are formatting
781 // bars embedded in the stream.
av1_active_v_edge(const AV1_COMP * cpi,int mi_col,int mi_step)782 int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
783   int left_edge = 0;
784   int right_edge = cpi->common.mi_params.mi_cols;
785   int is_active_v_edge = 0;
786 
787   // For two pass account for any formatting bars detected.
788   if (is_stat_consumption_stage_twopass(cpi)) {
789     const AV1_COMMON *const cm = &cpi->common;
790     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
791         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
792     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
793 
794     // The inactive region is specified in MBs not mi units.
795     // The image edge is in the following MB row.
796     left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
797 
798     right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
799     right_edge = AOMMAX(left_edge, right_edge);
800   }
801 
802   if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
803       ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
804     is_active_v_edge = 1;
805   }
806   return is_active_v_edge;
807 }
808 
av1_get_tpl_stats_sb(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,SuperBlockEnc * sb_enc)809 void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
810                           int mi_col, SuperBlockEnc *sb_enc) {
811   sb_enc->tpl_data_count = 0;
812 
813   if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
814   if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
815   const FRAME_UPDATE_TYPE update_type =
816       get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
817   if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
818     return;
819   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
820                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
821 
822   AV1_COMMON *const cm = &cpi->common;
823   const int gf_group_index = cpi->gf_frame_index;
824   TplParams *const tpl_data = &cpi->ppi->tpl_data;
825   if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
826   const int mi_wide = mi_size_wide[bsize];
827   const int mi_high = mi_size_high[bsize];
828 
829   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
830   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
831   int tpl_stride = tpl_frame->stride;
832 
833   int mi_count = 0;
834   int count = 0;
835   const int mi_col_sr =
836       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
837   const int mi_col_end_sr =
838       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
839   // mi_cols_sr is mi_cols at superres case.
840   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
841 
842   // TPL store unit size is not the same as the motion estimation unit size.
843   // Here always use motion estimation size to avoid getting repetitive inter/
844   // intra cost.
845   const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
846   assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
847   const int row_step = mi_size_high[tpl_bsize];
848   const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
849                                                cm->superres_scale_denominator);
850 
851   // Stride is only based on SB size, and we fill in values for every 16x16
852   // block in a SB.
853   sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
854 
855   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
856     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
857       assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
858       // Handle partial SB, so that no invalid values are used later.
859       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
860         sb_enc->tpl_inter_cost[count] = INT64_MAX;
861         sb_enc->tpl_intra_cost[count] = INT64_MAX;
862         for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
863           sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
864         }
865         count++;
866         continue;
867       }
868 
869       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
870           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
871       sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
872                                       << TPL_DEP_COST_SCALE_LOG2;
873       sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
874                                       << TPL_DEP_COST_SCALE_LOG2;
875       memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
876       mi_count++;
877       count++;
878     }
879   }
880 
881   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
882   sb_enc->tpl_data_count = mi_count;
883 }
884 
885 // analysis_type 0: Use mc_dep_cost and intra_cost
886 // analysis_type 1: Use count of best inter predictor chosen
887 // analysis_type 2: Use cost reduction from intra to inter for best inter
888 //                  predictor chosen
av1_get_q_for_deltaq_objective(AV1_COMP * const cpi,ThreadData * td,int64_t * delta_dist,BLOCK_SIZE bsize,int mi_row,int mi_col)889 int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
890                                    int64_t *delta_dist, BLOCK_SIZE bsize,
891                                    int mi_row, int mi_col) {
892   AV1_COMMON *const cm = &cpi->common;
893   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
894                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
895   const int tpl_idx = cpi->gf_frame_index;
896   TplParams *const tpl_data = &cpi->ppi->tpl_data;
897   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
898   double intra_cost = 0;
899   double mc_dep_reg = 0;
900   double mc_dep_cost = 0;
901   double cbcmp_base = 1;
902   double srcrf_dist = 0;
903   double srcrf_sse = 0;
904   double srcrf_rate = 0;
905   const int mi_wide = mi_size_wide[bsize];
906   const int mi_high = mi_size_high[bsize];
907   const int base_qindex = cm->quant_params.base_qindex;
908 
909   if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
910 
911   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
912   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
913   int tpl_stride = tpl_frame->stride;
914   if (!tpl_frame->is_valid) return base_qindex;
915 
916 #ifndef NDEBUG
917   int mi_count = 0;
918 #endif
919   const int mi_col_sr =
920       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
921   const int mi_col_end_sr =
922       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
923   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
924   const int step = 1 << block_mis_log2;
925   const int row_step = step;
926   const int col_step_sr =
927       coded_to_superres_mi(step, cm->superres_scale_denominator);
928   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
929     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
930       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
931       TplDepStats *this_stats =
932           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
933       double cbcmp = (double)this_stats->srcrf_dist;
934       int64_t mc_dep_delta =
935           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
936                  this_stats->mc_dep_dist);
937       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
938       intra_cost += log(dist_scaled) * cbcmp;
939       mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
940       mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
941       srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
942       srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
943       srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
944 #ifndef NDEBUG
945       mi_count++;
946 #endif
947       cbcmp_base += cbcmp;
948     }
949   }
950   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
951 
952   int offset = 0;
953   double beta = 1.0;
954   double rk;
955   if (mc_dep_cost > 0 && intra_cost > 0) {
956     const double r0 = cpi->rd.r0;
957     rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
958     td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
959     beta = (r0 / rk);
960     assert(beta > 0.0);
961   } else {
962     return base_qindex;
963   }
964   offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
965 
966   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
967   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
968   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
969   int qindex = cm->quant_params.base_qindex + offset;
970   qindex = AOMMIN(qindex, MAXQ);
971   qindex = AOMMAX(qindex, MINQ);
972 
973   int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
974   int sbs_qstep =
975       av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);
976 
977   if (delta_dist) {
978     double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
979     double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
980     sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
981     *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
982     *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
983     *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
984   }
985   return qindex;
986 }
987 
988 #if !DISABLE_HDR_LUMA_DELTAQ
989 // offset table defined in Table3 of T-REC-H.Sup15 document.
990 static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0,   301, 367, 434, 501, 567,
991                                                   634, 701, 767, 834, 1024 };
992 
993 static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3,  2,  1,  0,  -1,
994                                                     -2, -3, -4, -5, -6 };
995 #endif
996 
av1_get_q_for_hdr(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col)997 int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
998                       BLOCK_SIZE bsize, int mi_row, int mi_col) {
999   AV1_COMMON *const cm = &cpi->common;
1000   assert(cm->seq_params->bit_depth == AOM_BITS_10);
1001 
1002 #if DISABLE_HDR_LUMA_DELTAQ
1003   (void)x;
1004   (void)bsize;
1005   (void)mi_row;
1006   (void)mi_col;
1007   return cm->quant_params.base_qindex;
1008 #else
1009   // calculate pixel average
1010   const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
1011   // adjust offset based on average of the pixel block
1012   int offset = 0;
1013   for (int i = 0; i < HDR_QP_LEVELS; i++) {
1014     if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
1015       offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
1016       break;
1017     }
1018   }
1019 
1020   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
1021   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
1022   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
1023   int qindex = cm->quant_params.base_qindex + offset;
1024   qindex = AOMMIN(qindex, MAXQ);
1025   qindex = AOMMAX(qindex, MINQ);
1026 
1027   return qindex;
1028 #endif
1029 }
1030 #endif  // !CONFIG_REALTIME_ONLY
1031 
av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE * sms_tree,BLOCK_SIZE bsize)1032 void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
1033                                             BLOCK_SIZE bsize) {
1034   if (sms_tree == NULL) return;
1035   sms_tree->partitioning = PARTITION_NONE;
1036 
1037   if (bsize >= BLOCK_8X8) {
1038     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1039     for (int idx = 0; idx < 4; ++idx)
1040       av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
1041   }
1042 }
1043 
1044 // Record the ref frames that have been selected by square partition blocks.
av1_update_picked_ref_frames_mask(MACROBLOCK * const x,int ref_type,BLOCK_SIZE bsize,int mib_size,int mi_row,int mi_col)1045 void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
1046                                        BLOCK_SIZE bsize, int mib_size,
1047                                        int mi_row, int mi_col) {
1048   assert(mi_size_wide[bsize] == mi_size_high[bsize]);
1049   const int sb_size_mask = mib_size - 1;
1050   const int mi_row_in_sb = mi_row & sb_size_mask;
1051   const int mi_col_in_sb = mi_col & sb_size_mask;
1052   const int mi_size = mi_size_wide[bsize];
1053   for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
1054     for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
1055       x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
1056     }
1057   }
1058 }
1059 
avg_cdf_symbol(aom_cdf_prob * cdf_ptr_left,aom_cdf_prob * cdf_ptr_tr,int num_cdfs,int cdf_stride,int nsymbs,int wt_left,int wt_tr)1060 static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
1061                            int num_cdfs, int cdf_stride, int nsymbs,
1062                            int wt_left, int wt_tr) {
1063   for (int i = 0; i < num_cdfs; i++) {
1064     for (int j = 0; j <= nsymbs; j++) {
1065       cdf_ptr_left[i * cdf_stride + j] =
1066           (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
1067                           (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
1068                           ((wt_left + wt_tr) / 2)) /
1069                          (wt_left + wt_tr));
1070       assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
1071              cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
1072     }
1073   }
1074 }
1075 
1076 #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
1077   AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
1078 
1079 #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \
1080   do {                                                                     \
1081     aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \
1082     aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \
1083     int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \
1084     int num_cdfs = array_size / cdf_stride;                                \
1085     avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
1086                    wt_left, wt_tr);                                        \
1087   } while (0)
1088 
avg_nmv(nmv_context * nmv_left,nmv_context * nmv_tr,int wt_left,int wt_tr)1089 static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
1090                     int wt_tr) {
1091   AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
1092   for (int i = 0; i < 2; i++) {
1093     AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
1094                 MV_CLASSES);
1095     AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
1096                 nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
1097     AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
1098     AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
1099     AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
1100                 nmv_tr->comps[i].class0_hp_cdf, 2);
1101     AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
1102     AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
1103                 CLASS0_SIZE);
1104     AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
1105   }
1106 }
1107 
1108 // In case of row-based multi-threading of encoder, since we always
1109 // keep a top - right sync, we can average the top - right SB's CDFs and
1110 // the left SB's CDFs and use the same for current SB's encoding to
1111 // improve the performance. This function facilitates the averaging
1112 // of CDF and used only when row-mt is enabled in encoder.
av1_avg_cdf_symbols(FRAME_CONTEXT * ctx_left,FRAME_CONTEXT * ctx_tr,int wt_left,int wt_tr)1113 void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
1114                          int wt_left, int wt_tr) {
1115   AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
1116   AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
1117   AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
1118   AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
1119   AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
1120   AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
1121   AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
1122   AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
1123   AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
1124   AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
1125   AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
1126   AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
1127   AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
1128   AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
1129   AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
1130   AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
1131   AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
1132   AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
1133               ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
1134   AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
1135               MASKED_COMPOUND_TYPES);
1136   AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
1137   AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
1138   AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
1139   AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
1140               INTERINTRA_MODES);
1141   AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
1142   AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
1143   AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
1144               PALETTE_SIZES);
1145   AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
1146               PALETTE_SIZES);
1147   for (int j = 0; j < PALETTE_SIZES; j++) {
1148     int nsymbs = j + PALETTE_MIN_SIZE;
1149     AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
1150                    ctx_tr->palette_y_color_index_cdf[j], nsymbs,
1151                    CDF_SIZE(PALETTE_COLORS));
1152     AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
1153                    ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
1154                    CDF_SIZE(PALETTE_COLORS));
1155   }
1156   AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
1157   AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
1158   AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
1159   AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
1160   AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
1161   AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
1162   AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
1163   AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
1164   AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
1165   AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
1166   AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
1167   AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
1168   AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
1169   AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
1170   avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
1171   avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
1172   AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
1173   AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
1174   AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
1175               ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
1176   AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
1177   AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
1178               FILTER_INTRA_MODES);
1179   AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
1180               RESTORE_SWITCHABLE_TYPES);
1181   AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
1182   AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
1183   AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
1184   AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
1185                  UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
1186   AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
1187   for (int i = 0; i < PARTITION_CONTEXTS; i++) {
1188     if (i < 4) {
1189       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
1190                      CDF_SIZE(10));
1191     } else if (i < 16) {
1192       AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
1193     } else {
1194       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
1195                      CDF_SIZE(10));
1196     }
1197   }
1198   AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
1199               SWITCHABLE_FILTERS);
1200   AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
1201   AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
1202               2 * MAX_ANGLE_DELTA + 1);
1203   AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
1204                  CDF_SIZE(MAX_TX_DEPTH + 1));
1205   AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
1206               MAX_TX_DEPTH + 1);
1207   AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
1208               MAX_TX_DEPTH + 1);
1209   AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
1210               MAX_TX_DEPTH + 1);
1211   AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
1212   AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
1213   for (int i = 0; i < FRAME_LF_COUNT; i++) {
1214     AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
1215                 DELTA_LF_PROBS + 1);
1216   }
1217   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
1218                  CDF_SIZE(TX_TYPES));
1219   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
1220                  CDF_SIZE(TX_TYPES));
1221   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
1222                  CDF_SIZE(TX_TYPES));
1223   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
1224                  CDF_SIZE(TX_TYPES));
1225   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
1226                  CDF_SIZE(TX_TYPES));
1227   AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
1228   AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
1229               CFL_ALPHABET_SIZE);
1230 }
1231 
1232 // Check neighbor blocks' motion information.
check_neighbor_blocks(MB_MODE_INFO ** mi,int mi_stride,const TileInfo * const tile_info,int mi_row,int mi_col)1233 static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
1234                                  const TileInfo *const tile_info, int mi_row,
1235                                  int mi_col) {
1236   int is_above_low_motion = 1;
1237   int is_left_low_motion = 1;
1238   const int thr = 24;
1239 
1240   // Check above block.
1241   if (mi_row > tile_info->mi_row_start) {
1242     const MB_MODE_INFO *above_mbmi = mi[-mi_stride];
1243     const int_mv above_mv = above_mbmi->mv[0];
1244     if (above_mbmi->mode >= INTRA_MODE_END &&
1245         (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr))
1246       is_above_low_motion = 0;
1247   }
1248 
1249   // Check left block.
1250   if (mi_col > tile_info->mi_col_start) {
1251     const MB_MODE_INFO *left_mbmi = mi[-1];
1252     const int_mv left_mv = left_mbmi->mv[0];
1253     if (left_mbmi->mode >= INTRA_MODE_END &&
1254         (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr))
1255       is_left_low_motion = 0;
1256   }
1257 
1258   return (is_above_low_motion && is_left_low_motion);
1259 }
1260 
1261 // Check this block's motion in a fast way.
fast_detect_non_zero_motion(AV1_COMP * cpi,const uint8_t * src_y,int src_ystride,const uint8_t * last_src_y,int last_src_ystride,int mi_row,int mi_col)1262 static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
1263                                        int src_ystride,
1264                                        const uint8_t *last_src_y,
1265                                        int last_src_ystride, int mi_row,
1266                                        int mi_col) {
1267   AV1_COMMON *const cm = &cpi->common;
1268   const BLOCK_SIZE bsize = cm->seq_params->sb_size;
1269   unsigned int blk_sad = INT_MAX;
1270   if (cpi->src_sad_blk_64x64 != NULL) {
1271     const int sb_size_by_mb = (bsize == BLOCK_128X128)
1272                                   ? (cm->seq_params->mib_size >> 1)
1273                                   : cm->seq_params->mib_size;
1274     const int sb_cols =
1275         (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
1276     const int sbi_col = mi_col / sb_size_by_mb;
1277     const int sbi_row = mi_row / sb_size_by_mb;
1278     blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
1279   } else {
1280     blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
1281                                           last_src_ystride);
1282   }
1283 
1284   // Search 4 1-away points.
1285   const uint8_t *const search_pos[4] = {
1286     last_src_y - last_src_ystride,
1287     last_src_y - 1,
1288     last_src_y + 1,
1289     last_src_y + last_src_ystride,
1290   };
1291   unsigned int sad_arr[4];
1292   cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos,
1293                                  last_src_ystride, sad_arr);
1294 
1295   blk_sad = (blk_sad * 5) >> 3;
1296   return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] &&
1297           blk_sad < sad_arr[2] && blk_sad < sad_arr[3]);
1298 }
1299 
1300 // Grade the temporal variation of the source by comparing the current sb and
1301 // its collocated block in the last frame.
av1_source_content_sb(AV1_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col)1302 void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
1303                            int mi_row, int mi_col) {
1304   if (cpi->last_source->y_width != cpi->source->y_width ||
1305       cpi->last_source->y_height != cpi->source->y_height)
1306     return;
1307 #if CONFIG_AV1_HIGHBITDEPTH
1308   if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
1309 #endif
1310 
1311   unsigned int tmp_sse;
1312   unsigned int tmp_variance;
1313   const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
1314   uint8_t *src_y = cpi->source->y_buffer;
1315   const int src_ystride = cpi->source->y_stride;
1316   const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2);
1317   uint8_t *last_src_y = cpi->last_source->y_buffer;
1318   const int last_src_ystride = cpi->last_source->y_stride;
1319   const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2);
1320   uint64_t avg_source_sse_threshold_verylow = 10000;     // ~1.5*1.5*(64*64)
1321   uint64_t avg_source_sse_threshold_low[2] = { 100000,   // ~5*5*(64*64)
1322                                                36000 };  // ~3*3*(64*64)
1323 
1324   uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64)
1325   if (cpi->sf.rt_sf.increase_source_sad_thresh) {
1326     avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1;
1327     avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1;
1328     avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1;
1329   }
1330   uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5
1331   src_y += src_offset;
1332   last_src_y += last_src_offset;
1333   tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
1334                                             last_src_ystride, &tmp_sse);
1335   // rd thresholds
1336   if (tmp_sse < avg_source_sse_threshold_low[1])
1337     x->content_state_sb.source_sad_rd = kLowSad;
1338 
1339   // nonrd thresholds
1340   if (tmp_sse == 0) {
1341     x->content_state_sb.source_sad_nonrd = kZeroSad;
1342     return;
1343   }
1344   if (tmp_sse < avg_source_sse_threshold_verylow)
1345     x->content_state_sb.source_sad_nonrd = kVeryLowSad;
1346   else if (tmp_sse < avg_source_sse_threshold_low[0])
1347     x->content_state_sb.source_sad_nonrd = kLowSad;
1348   else if (tmp_sse > avg_source_sse_threshold_high)
1349     x->content_state_sb.source_sad_nonrd = kHighSad;
1350 
1351   // Detect large lighting change.
1352   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1353   if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
1354     x->content_state_sb.lighting_change = 1;
1355   if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
1356     x->content_state_sb.low_sumdiff = 1;
1357 
1358   if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) &&
1359       !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff)
1360     x->sb_force_fixed_part = 0;
1361 
1362   if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
1363       cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
1364     return;
1365 
1366   // In-place temporal filter. If psnr calculation is enabled, we store the
1367   // source for that.
1368   AV1_COMMON *const cm = &cpi->common;
1369   // Calculate n*mean^2
1370   const unsigned int nmean2 = tmp_sse - tmp_variance;
1371   const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
1372                                          cm->seq_params->bit_depth);
1373   const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
1374   const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME],
1375                                           0, cm->seq_params->bit_depth);
1376 
1377   const unsigned int threshold =
1378       (cpi->sf.rt_sf.use_rtc_tf == 1)
1379           ? (clamp(avg_q_step, 250, 1000)) * ac_q_step
1380           : 250 * ac_q_step;
1381 
1382   // TODO(yunqing): use a weighted sum instead of averaging in filtering.
1383   if (tmp_variance <= threshold && nmean2 <= 15) {
1384     // Check neighbor blocks. If neighbor blocks aren't low-motion blocks,
1385     // skip temporal filtering for this block.
1386     MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
1387                         get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
1388     const TileInfo *const tile_info = &tile_data->tile_info;
1389     const int is_neighbor_blocks_low_motion = check_neighbor_blocks(
1390         mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col);
1391     if (!is_neighbor_blocks_low_motion) return;
1392 
1393     // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB
1394     // size.
1395     // Test several nearby points. If non-zero mv exists, don't do temporal
1396     // filtering.
1397     const int is_this_blk_low_motion = fast_detect_non_zero_motion(
1398         cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col);
1399 
1400     if (!is_this_blk_low_motion) return;
1401 
1402     const int shift_x[2] = { 0, cpi->source->subsampling_x };
1403     const int shift_y[2] = { 0, cpi->source->subsampling_y };
1404     const uint8_t h = block_size_high[bsize];
1405     const uint8_t w = block_size_wide[bsize];
1406 
1407     for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
1408       uint8_t *src = cpi->source->buffers[plane];
1409       const int src_stride = cpi->source->strides[plane != 0];
1410       uint8_t *last_src = cpi->last_source->buffers[plane];
1411       const int last_src_stride = cpi->last_source->strides[plane != 0];
1412       src += src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1413              (mi_col << (2 - shift_x[plane != 0]));
1414       last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) +
1415                   (mi_col << (2 - shift_x[plane != 0]));
1416 
1417       for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) {
1418         for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) {
1419           src[j] = (last_src[j] + src[j]) >> 1;
1420         }
1421         src += src_stride;
1422         last_src += last_src_stride;
1423       }
1424     }
1425   }
1426 }
1427 
1428 // Memset the mbmis at the current superblock to 0
av1_reset_mbmi(CommonModeInfoParams * const mi_params,BLOCK_SIZE sb_size,int mi_row,int mi_col)1429 void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
1430                     int mi_row, int mi_col) {
1431   // size of sb in unit of mi (BLOCK_4X4)
1432   const int sb_size_mi = mi_size_wide[sb_size];
1433   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1434   // size of sb in unit of allocated mi size
1435   const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
1436   assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
1437          "mi is not allocated as a multiple of sb!");
1438   assert(mi_params->mi_stride % sb_size_mi == 0 &&
1439          "mi_grid_base is not allocated as a multiple of sb!");
1440 
1441   const int mi_rows = mi_size_high[sb_size];
1442   for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
1443     assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
1444            mi_params->mi_stride);
1445     const int mi_grid_idx =
1446         get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
1447     const int alloc_mi_idx =
1448         get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
1449     memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
1450            sb_size_mi * sizeof(*mi_params->mi_grid_base));
1451     memset(&mi_params->tx_type_map[mi_grid_idx], 0,
1452            sb_size_mi * sizeof(*mi_params->tx_type_map));
1453     if (cur_mi_row % mi_alloc_size_1d == 0) {
1454       memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
1455              sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
1456     }
1457   }
1458 }
1459 
av1_backup_sb_state(SB_FIRST_PASS_STATS * sb_fp_stats,const AV1_COMP * cpi,ThreadData * td,const TileDataEnc * tile_data,int mi_row,int mi_col)1460 void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
1461                          ThreadData *td, const TileDataEnc *tile_data,
1462                          int mi_row, int mi_col) {
1463   MACROBLOCK *x = &td->mb;
1464   MACROBLOCKD *xd = &x->e_mbd;
1465   const TileInfo *tile_info = &tile_data->tile_info;
1466 
1467   const AV1_COMMON *cm = &cpi->common;
1468   const int num_planes = av1_num_planes(cm);
1469   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1470 
1471   xd->above_txfm_context =
1472       cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
1473   xd->left_txfm_context =
1474       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1475   av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
1476 
1477   sb_fp_stats->rd_count = td->rd_counts;
1478   sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
1479 
1480   sb_fp_stats->fc = *td->counts;
1481 
1482   // Don't copy in row_mt case, otherwise run into data race. No behavior change
1483   // in row_mt case.
1484   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1485     memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
1486            sizeof(sb_fp_stats->inter_mode_rd_models));
1487   }
1488 
1489   memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
1490          sizeof(sb_fp_stats->thresh_freq_fact));
1491 
1492   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1493   sb_fp_stats->current_qindex =
1494       cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
1495 
1496 #if CONFIG_INTERNAL_STATS
1497   memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
1498          sizeof(sb_fp_stats->mode_chosen_counts));
1499 #endif  // CONFIG_INTERNAL_STATS
1500 }
1501 
av1_restore_sb_state(const SB_FIRST_PASS_STATS * sb_fp_stats,AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,int mi_col)1502 void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
1503                           ThreadData *td, TileDataEnc *tile_data, int mi_row,
1504                           int mi_col) {
1505   MACROBLOCK *x = &td->mb;
1506 
1507   const AV1_COMMON *cm = &cpi->common;
1508   const int num_planes = av1_num_planes(cm);
1509   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1510 
1511   av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
1512                       num_planes);
1513 
1514   td->rd_counts = sb_fp_stats->rd_count;
1515   x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
1516 
1517   *td->counts = sb_fp_stats->fc;
1518 
1519   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
1520     memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
1521            sizeof(sb_fp_stats->inter_mode_rd_models));
1522   }
1523 
1524   memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
1525          sizeof(sb_fp_stats->thresh_freq_fact));
1526 
1527   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1528   cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
1529       sb_fp_stats->current_qindex;
1530 
1531 #if CONFIG_INTERNAL_STATS
1532   memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
1533          sizeof(sb_fp_stats->mode_chosen_counts));
1534 #endif  // CONFIG_INTERNAL_STATS
1535 }
1536 
1537 /*! Checks whether to skip updating the entropy cost based on tile info.
1538  *
1539  * This function contains the common code used to skip the cost update of coeff,
1540  * mode, mv and dv symbols.
1541  */
skip_cost_update(const SequenceHeader * seq_params,const TileInfo * const tile_info,const int mi_row,const int mi_col,INTERNAL_COST_UPDATE_TYPE upd_level)1542 static int skip_cost_update(const SequenceHeader *seq_params,
1543                             const TileInfo *const tile_info, const int mi_row,
1544                             const int mi_col,
1545                             INTERNAL_COST_UPDATE_TYPE upd_level) {
1546   if (upd_level == INTERNAL_COST_UPD_SB) return 0;
1547   if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
1548 
1549   // upd_level is at most as frequent as each sb_row in a tile.
1550   if (mi_col != tile_info->mi_col_start) return 1;
1551 
1552   if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
1553     const int mib_size_log2 = seq_params->mib_size_log2;
1554     const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
1555     const int sb_size = seq_params->mib_size * MI_SIZE;
1556     const int tile_height =
1557         (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
1558     // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
1559     // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
1560     // as the update will not be equally spaced in smaller resolutions making
1561     // it equally spaced by calculating (mv_num_rows_cost_update) the number of
1562     // rows after which the cost update should happen.
1563     const int sb_size_update_freq_map[2] = { 2, 4 };
1564     const int update_freq_sb_rows =
1565         sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
1566     const int update_freq_num_rows = sb_size * update_freq_sb_rows;
1567     // Round-up the division result to next integer.
1568     const int num_updates_per_tile =
1569         (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
1570     const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
1571     // Round-up the division result to next integer.
1572     const int num_sb_rows_per_update =
1573         (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
1574     if ((sb_row % num_sb_rows_per_update) != 0) return 1;
1575   }
1576   return 0;
1577 }
1578 
1579 // Checks for skip status of mv cost update.
skip_mv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1580 static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1581                                const int mi_row, const int mi_col) {
1582   const AV1_COMMON *cm = &cpi->common;
1583   // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
1584   // cost calculation is skipped in this case.
1585   if (frame_is_intra_only(cm)) return 1;
1586 
1587   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1588                           cpi->sf.inter_sf.mv_cost_upd_level);
1589 }
1590 
1591 // Checks for skip status of dv cost update.
skip_dv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1592 static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1593                                const int mi_row, const int mi_col) {
1594   const AV1_COMMON *cm = &cpi->common;
1595   // Intrabc is only applicable to intra frames. So skip if intrabc is not
1596   // allowed.
1597   if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
1598     return 1;
1599   }
1600 
1601   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1602                           cpi->sf.intra_sf.dv_cost_upd_level);
1603 }
1604 
1605 // Update the rate costs of some symbols according to the frequency directed
1606 // by speed features
av1_set_cost_upd_freq(AV1_COMP * cpi,ThreadData * td,const TileInfo * const tile_info,const int mi_row,const int mi_col)1607 void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
1608                            const TileInfo *const tile_info, const int mi_row,
1609                            const int mi_col) {
1610   AV1_COMMON *const cm = &cpi->common;
1611   const int num_planes = av1_num_planes(cm);
1612   MACROBLOCK *const x = &td->mb;
1613   MACROBLOCKD *const xd = &x->e_mbd;
1614 
1615   if (cm->features.disable_cdf_update) {
1616     return;
1617   }
1618 
1619   switch (cpi->sf.inter_sf.coeff_cost_upd_level) {
1620     case INTERNAL_COST_UPD_OFF:
1621     case INTERNAL_COST_UPD_TILE:  // Tile level
1622       break;
1623     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1624     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1625     case INTERNAL_COST_UPD_SB:         // SB level
1626       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1627                            cpi->sf.inter_sf.coeff_cost_upd_level))
1628         break;
1629       av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
1630       break;
1631     default: assert(0);
1632   }
1633 
1634   switch (cpi->sf.inter_sf.mode_cost_upd_level) {
1635     case INTERNAL_COST_UPD_OFF:
1636     case INTERNAL_COST_UPD_TILE:  // Tile level
1637       break;
1638     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1639     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1640     case INTERNAL_COST_UPD_SB:         // SB level
1641       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1642                            cpi->sf.inter_sf.mode_cost_upd_level))
1643         break;
1644       av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
1645       break;
1646     default: assert(0);
1647   }
1648 
1649   switch (cpi->sf.inter_sf.mv_cost_upd_level) {
1650     case INTERNAL_COST_UPD_OFF:
1651     case INTERNAL_COST_UPD_TILE:  // Tile level
1652       break;
1653     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1654     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1655     case INTERNAL_COST_UPD_SB:         // SB level
1656       // Checks for skip status of mv cost update.
1657       if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1658       av1_fill_mv_costs(&xd->tile_ctx->nmvc,
1659                         cm->features.cur_frame_force_integer_mv,
1660                         cm->features.allow_high_precision_mv, x->mv_costs);
1661       break;
1662     default: assert(0);
1663   }
1664 
1665   switch (cpi->sf.intra_sf.dv_cost_upd_level) {
1666     case INTERNAL_COST_UPD_OFF:
1667     case INTERNAL_COST_UPD_TILE:  // Tile level
1668       break;
1669     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile
1670     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile
1671     case INTERNAL_COST_UPD_SB:         // SB level
1672       // Checks for skip status of dv cost update.
1673       if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1674       av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
1675       break;
1676     default: assert(0);
1677   }
1678 }
1679 
av1_dealloc_src_diff_buf(struct macroblock * mb,int num_planes)1680 void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {
1681   for (int plane = 0; plane < num_planes; ++plane) {
1682     aom_free(mb->plane[plane].src_diff);
1683     mb->plane[plane].src_diff = NULL;
1684   }
1685 }
1686 
av1_alloc_src_diff_buf(const struct AV1Common * cm,struct macroblock * mb)1687 void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {
1688   const int num_planes = av1_num_planes(cm);
1689 #ifndef NDEBUG
1690   for (int plane = 0; plane < num_planes; ++plane) {
1691     assert(!mb->plane[plane].src_diff);
1692   }
1693 #endif
1694   for (int plane = 0; plane < num_planes; ++plane) {
1695     const int subsampling_xy =
1696         plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
1697               : 0;
1698     const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
1699     CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff,
1700                     (int16_t *)aom_memalign(
1701                         32, sizeof(*mb->plane[plane].src_diff) * sb_size));
1702   }
1703 }
1704