1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "config/aom_config.h"
13 #include "config/av1_rtcd.h"
14 #include "config/aom_dsp_rtcd.h"
15
16 #include "aom_dsp/bitwriter.h"
17 #include "aom_dsp/quantize.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_ports/mem.h"
20
21 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
22 #include "aom_util/debug_util.h"
23 #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
24
25 #include "av1/common/cfl.h"
26 #include "av1/common/idct.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/scan.h"
30
31 #include "av1/encoder/av1_quantize.h"
32 #include "av1/encoder/encodemb.h"
33 #include "av1/encoder/hybrid_fwd_txfm.h"
34 #include "av1/encoder/txb_rdopt.h"
35 #include "av1/encoder/rd.h"
36 #include "av1/encoder/rdopt.h"
37
av1_subtract_block(BitDepthInfo bd_info,int rows,int cols,int16_t * diff,ptrdiff_t diff_stride,const uint8_t * src8,ptrdiff_t src_stride,const uint8_t * pred8,ptrdiff_t pred_stride)38 void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
39 ptrdiff_t diff_stride, const uint8_t *src8,
40 ptrdiff_t src_stride, const uint8_t *pred8,
41 ptrdiff_t pred_stride) {
42 assert(rows >= 4 && cols >= 4);
43 #if CONFIG_AV1_HIGHBITDEPTH
44 if (bd_info.use_highbitdepth_buf) {
45 aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
46 pred8, pred_stride);
47 return;
48 }
49 #endif
50 (void)bd_info;
51 aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
52 pred_stride);
53 }
54
av1_subtract_txb(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int blk_col,int blk_row,TX_SIZE tx_size)55 void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
56 int blk_col, int blk_row, TX_SIZE tx_size) {
57 MACROBLOCKD *const xd = &x->e_mbd;
58 const BitDepthInfo bd_info = get_bit_depth_info(xd);
59 struct macroblock_plane *const p = &x->plane[plane];
60 const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
61 const int diff_stride = block_size_wide[plane_bsize];
62 const int src_stride = p->src.stride;
63 const int dst_stride = pd->dst.stride;
64 const int tx1d_width = tx_size_wide[tx_size];
65 const int tx1d_height = tx_size_high[tx_size];
66 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
67 uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
68 int16_t *src_diff =
69 &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
70 av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
71 src, src_stride, dst, dst_stride);
72 }
73
av1_subtract_plane(MACROBLOCK * x,BLOCK_SIZE plane_bsize,int plane)74 void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
75 struct macroblock_plane *const p = &x->plane[plane];
76 const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
77 assert(plane_bsize < BLOCK_SIZES_ALL);
78 const int bw = block_size_wide[plane_bsize];
79 const int bh = block_size_high[plane_bsize];
80 const MACROBLOCKD *xd = &x->e_mbd;
81 const BitDepthInfo bd_info = get_bit_depth_info(xd);
82
83 av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
84 p->src.stride, pd->dst.buf, pd->dst.stride);
85 }
86
av1_optimize_b(const struct AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int * rate_cost)87 int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
88 int block, TX_SIZE tx_size, TX_TYPE tx_type,
89 const TXB_CTX *const txb_ctx, int *rate_cost) {
90 MACROBLOCKD *const xd = &x->e_mbd;
91 struct macroblock_plane *const p = &x->plane[plane];
92 const int eob = p->eobs[block];
93 const int segment_id = xd->mi[0]->segment_id;
94
95 if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
96 xd->lossless[segment_id]) {
97 *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
98 return eob;
99 }
100
101 return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
102 rate_cost, cpi->oxcf.algo_cfg.sharpness);
103 }
104
105 // Hyper-parameters for dropout optimization, based on following logics.
106 // TODO(yjshen): These settings are tuned by experiments. They may still be
107 // optimized for better performance.
108 // (1) Coefficients which are large enough will ALWAYS be kept.
109 static const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient.
110 // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
111 // NOT required. For example, `5 0 0 0 7` is treated as two continuous
112 // coefficients if three zeros do not fulfill the dropout condition.
113 static const int DROPOUT_CONTINUITY_MAX =
114 2; // Max dropout-able continuous coeff.
115 // (3) Dropout operation is NOT applicable to blocks with large or small
116 // quantization index.
117 static const int DROPOUT_Q_MAX = 128;
118 static const int DROPOUT_Q_MIN = 16;
119 // (4) Recall that dropout optimization will forcibly set some quantized
120 // coefficients to zero. The key logic on determining whether a coefficient
121 // should be dropped is to check the number of continuous zeros before AND
122 // after this coefficient. The exact number of zeros for judgement depends
123 // on block size and quantization index. More concretely, block size
124 // determines the base number of zeros, while quantization index determines
125 // the multiplier. Intuitively, larger block requires more zeros and larger
126 // quantization index also requires more zeros (more information is lost
127 // when using larger quantization index).
128 static const int DROPOUT_BEFORE_BASE_MAX =
129 32; // Max base number for leading zeros.
130 static const int DROPOUT_BEFORE_BASE_MIN =
131 16; // Min base number for leading zeros.
132 static const int DROPOUT_AFTER_BASE_MAX =
133 32; // Max base number for trailing zeros.
134 static const int DROPOUT_AFTER_BASE_MIN =
135 16; // Min base number for trailing zeros.
136 static const int DROPOUT_MULTIPLIER_MAX =
137 8; // Max multiplier on number of zeros.
138 static const int DROPOUT_MULTIPLIER_MIN =
139 2; // Min multiplier on number of zeros.
140 static const int DROPOUT_MULTIPLIER_Q_BASE =
141 32; // Base Q to compute multiplier.
142
av1_dropout_qcoeff(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int qindex)143 void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
144 TX_TYPE tx_type, int qindex) {
145 const int tx_width = tx_size_wide[tx_size];
146 const int tx_height = tx_size_high[tx_size];
147
148 // Early return if `qindex` is out of range.
149 if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
150 return;
151 }
152
153 // Compute number of zeros used for dropout judgement.
154 const int base_size = AOMMAX(tx_width, tx_height);
155 const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
156 DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
157 const int dropout_num_before =
158 multiplier *
159 CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
160 const int dropout_num_after =
161 multiplier *
162 CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
163
164 av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
165 dropout_num_after);
166 }
167
av1_dropout_qcoeff_num(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int dropout_num_before,int dropout_num_after)168 void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
169 TX_SIZE tx_size, TX_TYPE tx_type,
170 int dropout_num_before, int dropout_num_after) {
171 const struct macroblock_plane *const p = &mb->plane[plane];
172 tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
173 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
174 const int max_eob = av1_get_max_eob(tx_size);
175 const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
176
177 // Early return if there are not enough non-zero coefficients.
178 if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before ||
179 max_eob <= dropout_num_before + dropout_num_after) {
180 return;
181 }
182
183 int count_zeros_before = 0;
184 int count_zeros_after = 0;
185 int count_nonzeros = 0;
186 // Index of the first non-zero coefficient after sufficient number of
187 // continuous zeros. If equals to `-1`, it means number of leading zeros
188 // hasn't reach `dropout_num_before`.
189 int idx = -1;
190 int eob = 0; // New end of block.
191
192 for (int i = 0; i < p->eobs[block]; ++i) {
193 const int scan_idx = scan_order->scan[i];
194 if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
195 // Keep large coefficients.
196 count_zeros_before = 0;
197 count_zeros_after = 0;
198 idx = -1;
199 eob = i + 1;
200 } else if (qcoeff[scan_idx] == 0) { // Count zeros.
201 if (idx == -1) {
202 ++count_zeros_before;
203 } else {
204 ++count_zeros_after;
205 }
206 } else { // Count non-zeros.
207 if (count_zeros_before >= dropout_num_before) {
208 idx = (idx == -1) ? i : idx;
209 ++count_nonzeros;
210 } else {
211 count_zeros_before = 0;
212 eob = i + 1;
213 }
214 }
215
216 // Handle continuity.
217 if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
218 count_zeros_before = 0;
219 count_zeros_after = 0;
220 count_nonzeros = 0;
221 idx = -1;
222 eob = i + 1;
223 }
224
225 // Handle the trailing zeros after original end of block.
226 if (idx != -1 && i == p->eobs[block] - 1) {
227 count_zeros_after += (max_eob - p->eobs[block]);
228 }
229
230 // Set redundant coefficients to zeros if needed.
231 if (count_zeros_after >= dropout_num_after) {
232 for (int j = idx; j <= i; ++j) {
233 qcoeff[scan_order->scan[j]] = 0;
234 dqcoeff[scan_order->scan[j]] = 0;
235 }
236 count_zeros_before += (i - idx + 1);
237 count_zeros_after = 0;
238 count_nonzeros = 0;
239 } else if (i == p->eobs[block] - 1) {
240 eob = i + 1;
241 }
242 }
243
244 if (eob != p->eobs[block]) {
245 p->eobs[block] = eob;
246 p->txb_entropy_ctx[block] =
247 av1_get_txb_entropy_context(qcoeff, scan_order, eob);
248 }
249 }
250
251 // Settings for optimization type. NOTE: To set optimization type for all intra
252 // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
253 // TODO(yjshen): These settings are hard-coded and look okay for now. They
254 // should be made configurable later.
255 // Blocks of key frames ONLY.
256 static const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
257 // Blocks of intra frames (key frames EXCLUSIVE).
258 static const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
259 // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
260 // if trellis optimization is on for inter frames.)
261 static const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
262
263 enum {
264 QUANT_FUNC_LOWBD = 0,
265 QUANT_FUNC_HIGHBD = 1,
266 QUANT_FUNC_TYPES = 2
267 } UENUM1BYTE(QUANT_FUNC);
268
269 #if CONFIG_AV1_HIGHBITDEPTH
270 static AV1_QUANT_FACADE
271 quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
272 { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
273 { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
274 { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
275 { NULL, NULL }
276 };
277 #else
278 static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
279 av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
280 };
281 #endif
282
283 // Computes the transform for DC only blocks
av1_xform_dc_only(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,int64_t per_px_mean)284 void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
285 TxfmParam *txfm_param, int64_t per_px_mean) {
286 assert(per_px_mean != INT64_MAX);
287 const struct macroblock_plane *const p = &x->plane[plane];
288 const int block_offset = BLOCK_OFFSET(block);
289 tran_low_t *const coeff = p->coeff + block_offset;
290 const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
291 memset(coeff, 0, sizeof(*coeff) * n_coeffs);
292 coeff[0] =
293 (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
294 }
295
av1_xform_quant(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param,const QUANT_PARAM * qparam)296 void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
297 int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
298 const QUANT_PARAM *qparam) {
299 av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
300 av1_quant(x, plane, block, txfm_param, qparam);
301 }
302
av1_xform(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param)303 void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
304 BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
305 const struct macroblock_plane *const p = &x->plane[plane];
306 const int block_offset = BLOCK_OFFSET(block);
307 tran_low_t *const coeff = p->coeff + block_offset;
308 const int diff_stride = block_size_wide[plane_bsize];
309
310 const int src_offset = (blk_row * diff_stride + blk_col);
311 const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
312
313 av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
314 }
315
av1_quant(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,const QUANT_PARAM * qparam)316 void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
317 const QUANT_PARAM *qparam) {
318 const struct macroblock_plane *const p = &x->plane[plane];
319 const SCAN_ORDER *const scan_order =
320 get_scan(txfm_param->tx_size, txfm_param->tx_type);
321 const int block_offset = BLOCK_OFFSET(block);
322 tran_low_t *const coeff = p->coeff + block_offset;
323 tran_low_t *const qcoeff = p->qcoeff + block_offset;
324 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
325 uint16_t *const eob = &p->eobs[block];
326
327 if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
328 const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
329 if (LIKELY(!x->seg_skip_block)) {
330 #if CONFIG_AV1_HIGHBITDEPTH
331 quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
332 coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
333 #else
334 quant_func_list[qparam->xform_quant_idx](
335 coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
336 #endif
337 } else {
338 av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
339 }
340 }
341 // use_optimize_b is true means av1_optimze_b will be called,
342 // thus cannot update entropy ctx now (performed in optimize_b)
343 if (qparam->use_optimize_b) {
344 p->txb_entropy_ctx[block] = 0;
345 } else {
346 p->txb_entropy_ctx[block] =
347 av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
348 }
349 }
350
av1_setup_xform(const AV1_COMMON * cm,MACROBLOCK * x,TX_SIZE tx_size,TX_TYPE tx_type,TxfmParam * txfm_param)351 void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
352 TX_TYPE tx_type, TxfmParam *txfm_param) {
353 MACROBLOCKD *const xd = &x->e_mbd;
354 MB_MODE_INFO *const mbmi = xd->mi[0];
355
356 txfm_param->tx_type = tx_type;
357 txfm_param->tx_size = tx_size;
358 txfm_param->lossless = xd->lossless[mbmi->segment_id];
359 txfm_param->tx_set_type = av1_get_ext_tx_set_type(
360 tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
361
362 txfm_param->bd = xd->bd;
363 txfm_param->is_hbd = is_cur_buf_hbd(xd);
364 }
av1_setup_quant(TX_SIZE tx_size,int use_optimize_b,int xform_quant_idx,int use_quant_b_adapt,QUANT_PARAM * qparam)365 void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
366 int use_quant_b_adapt, QUANT_PARAM *qparam) {
367 qparam->log_scale = av1_get_tx_scale(tx_size);
368 qparam->tx_size = tx_size;
369
370 qparam->use_quant_b_adapt = use_quant_b_adapt;
371
372 // TODO(bohanli): optimize_b and quantization idx has relationship,
373 // but is kind of buried and complicated in different encoding stages.
374 // Should have a unified function to derive quant_idx, rather than
375 // determine and pass in the quant_idx
376 qparam->use_optimize_b = use_optimize_b;
377 qparam->xform_quant_idx = xform_quant_idx;
378
379 qparam->qmatrix = NULL;
380 qparam->iqmatrix = NULL;
381 }
av1_setup_qmatrix(const CommonQuantParams * quant_params,const MACROBLOCKD * xd,int plane,TX_SIZE tx_size,TX_TYPE tx_type,QUANT_PARAM * qparam)382 void av1_setup_qmatrix(const CommonQuantParams *quant_params,
383 const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
384 TX_TYPE tx_type, QUANT_PARAM *qparam) {
385 qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
386 qparam->iqmatrix =
387 av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
388 }
389
encode_block(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)390 static void encode_block(int plane, int block, int blk_row, int blk_col,
391 BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
392 RUN_TYPE dry_run) {
393 (void)dry_run;
394 struct encode_b_args *const args = arg;
395 const AV1_COMP *const cpi = args->cpi;
396 const AV1_COMMON *const cm = &cpi->common;
397 MACROBLOCK *const x = args->x;
398 MACROBLOCKD *const xd = &x->e_mbd;
399 MB_MODE_INFO *mbmi = xd->mi[0];
400 struct macroblock_plane *const p = &x->plane[plane];
401 struct macroblockd_plane *const pd = &xd->plane[plane];
402 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
403 uint8_t *dst;
404 ENTROPY_CONTEXT *a, *l;
405 int dummy_rate_cost = 0;
406
407 const int bw = mi_size_wide[plane_bsize];
408 dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
409
410 a = &args->ta[blk_col];
411 l = &args->tl[blk_row];
412
413 TX_TYPE tx_type = DCT_DCT;
414 const int blk_skip_idx = blk_row * bw + blk_col;
415 if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) &&
416 !mbmi->skip_mode) {
417 tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
418 cm->features.reduced_tx_set_used);
419 TxfmParam txfm_param;
420 QUANT_PARAM quant_param;
421 const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
422 int quant_idx;
423 if (use_trellis)
424 quant_idx = AV1_XFORM_QUANT_FP;
425 else
426 quant_idx =
427 USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
428 av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
429 av1_setup_quant(tx_size, use_trellis, quant_idx,
430 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
431 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
432 &quant_param);
433 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
434 &quant_param);
435
436 // Whether trellis or dropout optimization is required for inter frames.
437 const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
438 INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
439 const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
440 INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
441
442 if (quant_param.use_optimize_b && do_trellis) {
443 TXB_CTX txb_ctx;
444 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
445 av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
446 &dummy_rate_cost);
447 }
448 if (!quant_param.use_optimize_b && do_dropout) {
449 av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
450 cm->quant_params.base_qindex);
451 }
452 } else {
453 p->eobs[block] = 0;
454 p->txb_entropy_ctx[block] = 0;
455 }
456
457 av1_set_txb_context(x, plane, block, tx_size, a, l);
458
459 if (p->eobs[block]) {
460 // As long as any YUV plane has non-zero quantized transform coefficients,
461 // mbmi->skip_txfm flag is set to 0.
462 mbmi->skip_txfm = 0;
463 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
464 pd->dst.stride, p->eobs[block],
465 cm->features.reduced_tx_set_used);
466 } else {
467 // Only when YUV planes all have zero quantized transform coefficients,
468 // mbmi->skip_txfm flag is set to 1.
469 mbmi->skip_txfm &= 1;
470 }
471
472 // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
473 // case. It is possible that certain collision in hash index would cause
474 // the assertion failure. To further optimize the rate-distortion
475 // performance, we need to re-visit this part and enable this assert
476 // again.
477 if (p->eobs[block] == 0 && plane == 0) {
478 #if 0
479 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
480 args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
481 // TODO(jingning,angiebird,[email protected]): enable txk_check when
482 // enable_optimize_b is true to detect potential RD bug.
483 const uint8_t disable_txk_check = args->enable_optimize_b;
484 if (!disable_txk_check) {
485 assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
486 DCT_DCT);
487 }
488 }
489 #endif
490 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
491 }
492
493 #if CONFIG_MISMATCH_DEBUG
494 if (dry_run == OUTPUT_ENABLED) {
495 int pixel_c, pixel_r;
496 BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
497 int blk_w = block_size_wide[bsize];
498 int blk_h = block_size_high[bsize];
499 mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
500 blk_row, pd->subsampling_x, pd->subsampling_y);
501 mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
502 plane, pixel_c, pixel_r, blk_w, blk_h,
503 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
504 }
505 #endif
506 }
507
encode_block_inter(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)508 static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
509 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
510 void *arg, RUN_TYPE dry_run) {
511 struct encode_b_args *const args = arg;
512 MACROBLOCK *const x = args->x;
513 MACROBLOCKD *const xd = &x->e_mbd;
514 MB_MODE_INFO *const mbmi = xd->mi[0];
515 const struct macroblockd_plane *const pd = &xd->plane[plane];
516 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
517 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
518
519 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
520
521 const TX_SIZE plane_tx_size =
522 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
523 pd->subsampling_y)
524 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
525 blk_col)];
526 if (!plane) {
527 assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
528 tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
529 }
530
531 if (tx_size == plane_tx_size || plane) {
532 encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
533 dry_run);
534 } else {
535 assert(tx_size < TX_SIZES_ALL);
536 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
537 assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
538 assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
539 // This is the square transform block partition entry point.
540 const int bsw = tx_size_wide_unit[sub_txs];
541 const int bsh = tx_size_high_unit[sub_txs];
542 const int step = bsh * bsw;
543 const int row_end =
544 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
545 const int col_end =
546 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
547 assert(bsw > 0 && bsh > 0);
548
549 for (int row = 0; row < row_end; row += bsh) {
550 const int offsetr = blk_row + row;
551 for (int col = 0; col < col_end; col += bsw) {
552 const int offsetc = blk_col + col;
553
554 encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
555 arg, dry_run);
556 block += step;
557 }
558 }
559 }
560 }
561
av1_foreach_transformed_block_in_plane(const MACROBLOCKD * const xd,BLOCK_SIZE plane_bsize,int plane,foreach_transformed_block_visitor visit,void * arg)562 void av1_foreach_transformed_block_in_plane(
563 const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
564 foreach_transformed_block_visitor visit, void *arg) {
565 const struct macroblockd_plane *const pd = &xd->plane[plane];
566 // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
567 // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
568 // transform size varies per plane, look it up in a common way.
569 const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
570 const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
571 // Call visit() directly with zero offsets if the current block size is the
572 // same as the transform block size.
573 if (plane_bsize == tx_bsize) {
574 visit(plane, 0, 0, 0, plane_bsize, tx_size, arg);
575 return;
576 }
577 const uint8_t txw_unit = tx_size_wide_unit[tx_size];
578 const uint8_t txh_unit = tx_size_high_unit[tx_size];
579 const int step = txw_unit * txh_unit;
580
581 // If mb_to_right_edge is < 0 we are in a situation in which
582 // the current block size extends into the UMV and we won't
583 // visit the sub blocks that are wholly within the UMV.
584 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
585 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
586 const BLOCK_SIZE max_unit_bsize =
587 get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
588 const int mu_blocks_wide =
589 AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
590 const int mu_blocks_high =
591 AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
592
593 // Keep track of the row and column of the blocks we use so that we know
594 // if we are in the unrestricted motion border.
595 int i = 0;
596 for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
597 const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
598 // Skip visiting the sub blocks that are wholly within the UMV.
599 for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
600 const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
601 for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
602 for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
603 visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
604 i += step;
605 }
606 }
607 }
608 }
609 // Check if visit() is invoked at least once.
610 assert(i >= 1);
611 }
612
613 typedef struct encode_block_pass1_args {
614 AV1_COMP *cpi;
615 MACROBLOCK *x;
616 } encode_block_pass1_args;
617
encode_block_pass1(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)618 static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
619 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
620 void *arg) {
621 encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
622 AV1_COMP *cpi = args->cpi;
623 AV1_COMMON *cm = &cpi->common;
624 MACROBLOCK *const x = args->x;
625 MACROBLOCKD *const xd = &x->e_mbd;
626 struct macroblock_plane *const p = &x->plane[plane];
627 struct macroblockd_plane *const pd = &xd->plane[plane];
628 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
629
630 uint8_t *dst;
631 dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
632
633 TxfmParam txfm_param;
634 QUANT_PARAM quant_param;
635
636 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
637 av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
638 &quant_param);
639 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
640 &quant_param);
641
642 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
643 &quant_param);
644
645 if (p->eobs[block] > 0) {
646 txfm_param.eob = p->eobs[block];
647 if (txfm_param.is_hbd) {
648 av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
649 return;
650 }
651 av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
652 }
653 }
654
av1_encode_sby_pass1(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize)655 void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
656 encode_block_pass1_args args = { cpi, x };
657 av1_subtract_plane(x, bsize, 0);
658 av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
659 encode_block_pass1, &args);
660 }
661
av1_encode_sb(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RUN_TYPE dry_run)662 void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
663 RUN_TYPE dry_run) {
664 assert(bsize < BLOCK_SIZES_ALL);
665 MACROBLOCKD *const xd = &x->e_mbd;
666 MB_MODE_INFO *mbmi = xd->mi[0];
667 // In the current encoder implementation, for inter blocks,
668 // only when YUV planes all have zero quantized transform coefficients,
669 // mbmi->skip_txfm flag is set to 1.
670 // For intra blocks, this flag is set to 0 since skipped blocks are so rare
671 // that transmitting skip_txfm = 1 is very expensive.
672 // mbmi->skip_txfm is init to 1, and will be modified in encode_block() based
673 // on transform, quantization, and (if exists) trellis optimization.
674 mbmi->skip_txfm = 1;
675 if (x->txfm_search_info.skip_txfm) return;
676
677 struct optimize_ctx ctx;
678 struct encode_b_args arg = {
679 cpi, x, &ctx, NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
680 };
681 const AV1_COMMON *const cm = &cpi->common;
682 const int num_planes = av1_num_planes(cm);
683 for (int plane = 0; plane < num_planes; ++plane) {
684 const struct macroblockd_plane *const pd = &xd->plane[plane];
685 const int subsampling_x = pd->subsampling_x;
686 const int subsampling_y = pd->subsampling_y;
687 if (plane && !xd->is_chroma_ref) break;
688 const BLOCK_SIZE plane_bsize =
689 get_plane_block_size(bsize, subsampling_x, subsampling_y);
690 assert(plane_bsize < BLOCK_SIZES_ALL);
691 const int mi_width = mi_size_wide[plane_bsize];
692 const int mi_height = mi_size_high[plane_bsize];
693 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
694 const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
695 const int bw = mi_size_wide[txb_size];
696 const int bh = mi_size_high[txb_size];
697 int block = 0;
698 const int step =
699 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
700 av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
701 av1_subtract_plane(x, plane_bsize, plane);
702 arg.ta = ctx.ta[plane];
703 arg.tl = ctx.tl[plane];
704 const BLOCK_SIZE max_unit_bsize =
705 get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
706 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
707 int mu_blocks_high = mi_size_high[max_unit_bsize];
708 mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
709 mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
710
711 for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
712 for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
713 int blk_row, blk_col;
714 const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
715 const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
716 for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
717 for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
718 encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
719 max_tx_size, &arg, dry_run);
720 block += step;
721 }
722 }
723 }
724 }
725 }
726 }
727
encode_block_intra(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)728 static void encode_block_intra(int plane, int block, int blk_row, int blk_col,
729 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
730 void *arg) {
731 struct encode_b_args *const args = arg;
732 const AV1_COMP *const cpi = args->cpi;
733 const AV1_COMMON *const cm = &cpi->common;
734 MACROBLOCK *const x = args->x;
735 MACROBLOCKD *const xd = &x->e_mbd;
736 MB_MODE_INFO *mbmi = xd->mi[0];
737 struct macroblock_plane *const p = &x->plane[plane];
738 struct macroblockd_plane *const pd = &xd->plane[plane];
739 tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
740 PLANE_TYPE plane_type = get_plane_type(plane);
741 uint16_t *eob = &p->eobs[block];
742 const int dst_stride = pd->dst.stride;
743 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
744 int dummy_rate_cost = 0;
745
746 av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
747
748 TX_TYPE tx_type = DCT_DCT;
749 const int bw = mi_size_wide[plane_bsize];
750 if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
751 blk_row * bw + blk_col)) {
752 *eob = 0;
753 p->txb_entropy_ctx[block] = 0;
754 } else {
755 av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
756
757 const ENTROPY_CONTEXT *a = &args->ta[blk_col];
758 const ENTROPY_CONTEXT *l = &args->tl[blk_row];
759 tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
760 cm->features.reduced_tx_set_used);
761 TxfmParam txfm_param;
762 QUANT_PARAM quant_param;
763 const int use_trellis =
764 is_trellis_used(args->enable_optimize_b, args->dry_run);
765 int quant_idx;
766 if (use_trellis)
767 quant_idx = AV1_XFORM_QUANT_FP;
768 else
769 quant_idx =
770 USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
771
772 av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
773 av1_setup_quant(tx_size, use_trellis, quant_idx,
774 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
775 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
776 &quant_param);
777
778 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
779 &quant_param);
780
781 // Whether trellis or dropout optimization is required for key frames and
782 // intra frames.
783 const bool do_trellis = (frame_is_intra_only(cm) &&
784 (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
785 KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
786 (!frame_is_intra_only(cm) &&
787 (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
788 INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
789 const bool do_dropout = (frame_is_intra_only(cm) &&
790 (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
791 KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
792 (!frame_is_intra_only(cm) &&
793 (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
794 INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
795
796 if (quant_param.use_optimize_b && do_trellis) {
797 TXB_CTX txb_ctx;
798 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
799 av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
800 &dummy_rate_cost);
801 }
802 if (do_dropout) {
803 av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
804 cm->quant_params.base_qindex);
805 }
806 }
807
808 if (*eob) {
809 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
810 dst_stride, *eob,
811 cm->features.reduced_tx_set_used);
812 }
813
814 // TODO(jingning): Temporarily disable txk_type check for eob=0 case.
815 // It is possible that certain collision in hash index would cause
816 // the assertion failure. To further optimize the rate-distortion
817 // performance, we need to re-visit this part and enable this assert
818 // again.
819 if (*eob == 0 && plane == 0) {
820 #if 0
821 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
822 && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
823 assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
824 DCT_DCT);
825 }
826 #endif
827 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
828 }
829
830 // For intra mode, skipped blocks are so rare that transmitting
831 // skip_txfm = 1 is very expensive.
832 mbmi->skip_txfm = 0;
833
834 #if !CONFIG_REALTIME_ONLY
835 if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
836 cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
837 }
838 #endif
839 }
840
encode_block_intra_and_set_context(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)841 static void encode_block_intra_and_set_context(int plane, int block,
842 int blk_row, int blk_col,
843 BLOCK_SIZE plane_bsize,
844 TX_SIZE tx_size, void *arg) {
845 encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
846
847 struct encode_b_args *const args = arg;
848 MACROBLOCK *x = args->x;
849 ENTROPY_CONTEXT *a = &args->ta[blk_col];
850 ENTROPY_CONTEXT *l = &args->tl[blk_row];
851 av1_set_txb_context(x, plane, block, tx_size, a, l);
852 }
853
av1_encode_intra_block_plane(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int plane,RUN_TYPE dry_run,TRELLIS_OPT_TYPE enable_optimize_b)854 void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
855 BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
856 TRELLIS_OPT_TYPE enable_optimize_b) {
857 assert(bsize < BLOCK_SIZES_ALL);
858 const MACROBLOCKD *const xd = &x->e_mbd;
859 if (plane && !xd->is_chroma_ref) return;
860
861 const struct macroblockd_plane *const pd = &xd->plane[plane];
862 const int ss_x = pd->subsampling_x;
863 const int ss_y = pd->subsampling_y;
864 ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
865 ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
866 struct encode_b_args arg = {
867 cpi, x, NULL, ta, tl, dry_run, enable_optimize_b
868 };
869 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
870 if (enable_optimize_b) {
871 av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
872 }
873 av1_foreach_transformed_block_in_plane(
874 xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
875 }
876