xref: /aosp_15_r20/external/libaom/av1/encoder/encodemb.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/av1_rtcd.h"
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/bitwriter.h"
17 #include "aom_dsp/quantize.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_ports/mem.h"
20 
21 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
22 #include "aom_util/debug_util.h"
23 #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
24 
25 #include "av1/common/cfl.h"
26 #include "av1/common/idct.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/scan.h"
30 
31 #include "av1/encoder/av1_quantize.h"
32 #include "av1/encoder/encodemb.h"
33 #include "av1/encoder/hybrid_fwd_txfm.h"
34 #include "av1/encoder/txb_rdopt.h"
35 #include "av1/encoder/rd.h"
36 #include "av1/encoder/rdopt.h"
37 
av1_subtract_block(BitDepthInfo bd_info,int rows,int cols,int16_t * diff,ptrdiff_t diff_stride,const uint8_t * src8,ptrdiff_t src_stride,const uint8_t * pred8,ptrdiff_t pred_stride)38 void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
39                         ptrdiff_t diff_stride, const uint8_t *src8,
40                         ptrdiff_t src_stride, const uint8_t *pred8,
41                         ptrdiff_t pred_stride) {
42   assert(rows >= 4 && cols >= 4);
43 #if CONFIG_AV1_HIGHBITDEPTH
44   if (bd_info.use_highbitdepth_buf) {
45     aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
46                               pred8, pred_stride);
47     return;
48   }
49 #endif
50   (void)bd_info;
51   aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
52                      pred_stride);
53 }
54 
av1_subtract_txb(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int blk_col,int blk_row,TX_SIZE tx_size)55 void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
56                       int blk_col, int blk_row, TX_SIZE tx_size) {
57   MACROBLOCKD *const xd = &x->e_mbd;
58   const BitDepthInfo bd_info = get_bit_depth_info(xd);
59   struct macroblock_plane *const p = &x->plane[plane];
60   const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
61   const int diff_stride = block_size_wide[plane_bsize];
62   const int src_stride = p->src.stride;
63   const int dst_stride = pd->dst.stride;
64   const int tx1d_width = tx_size_wide[tx_size];
65   const int tx1d_height = tx_size_high[tx_size];
66   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
67   uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
68   int16_t *src_diff =
69       &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
70   av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
71                      src, src_stride, dst, dst_stride);
72 }
73 
av1_subtract_plane(MACROBLOCK * x,BLOCK_SIZE plane_bsize,int plane)74 void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
75   struct macroblock_plane *const p = &x->plane[plane];
76   const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
77   assert(plane_bsize < BLOCK_SIZES_ALL);
78   const int bw = block_size_wide[plane_bsize];
79   const int bh = block_size_high[plane_bsize];
80   const MACROBLOCKD *xd = &x->e_mbd;
81   const BitDepthInfo bd_info = get_bit_depth_info(xd);
82 
83   av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
84                      p->src.stride, pd->dst.buf, pd->dst.stride);
85 }
86 
av1_optimize_b(const struct AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int * rate_cost)87 int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
88                    int block, TX_SIZE tx_size, TX_TYPE tx_type,
89                    const TXB_CTX *const txb_ctx, int *rate_cost) {
90   MACROBLOCKD *const xd = &x->e_mbd;
91   struct macroblock_plane *const p = &x->plane[plane];
92   const int eob = p->eobs[block];
93   const int segment_id = xd->mi[0]->segment_id;
94 
95   if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
96       xd->lossless[segment_id]) {
97     *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
98     return eob;
99   }
100 
101   return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
102                           rate_cost, cpi->oxcf.algo_cfg.sharpness);
103 }
104 
105 // Hyper-parameters for dropout optimization, based on following logics.
106 // TODO(yjshen): These settings are tuned by experiments. They may still be
107 // optimized for better performance.
108 // (1) Coefficients which are large enough will ALWAYS be kept.
109 static const tran_low_t DROPOUT_COEFF_MAX = 2;  // Max dropout-able coefficient.
110 // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
111 //     NOT required. For example, `5 0 0 0 7` is treated as two continuous
112 //     coefficients if three zeros do not fulfill the dropout condition.
113 static const int DROPOUT_CONTINUITY_MAX =
114     2;  // Max dropout-able continuous coeff.
115 // (3) Dropout operation is NOT applicable to blocks with large or small
116 //     quantization index.
117 static const int DROPOUT_Q_MAX = 128;
118 static const int DROPOUT_Q_MIN = 16;
119 // (4) Recall that dropout optimization will forcibly set some quantized
120 //     coefficients to zero. The key logic on determining whether a coefficient
121 //     should be dropped is to check the number of continuous zeros before AND
122 //     after this coefficient. The exact number of zeros for judgement depends
123 //     on block size and quantization index. More concretely, block size
124 //     determines the base number of zeros, while quantization index determines
125 //     the multiplier. Intuitively, larger block requires more zeros and larger
126 //     quantization index also requires more zeros (more information is lost
127 //     when using larger quantization index).
128 static const int DROPOUT_BEFORE_BASE_MAX =
129     32;  // Max base number for leading zeros.
130 static const int DROPOUT_BEFORE_BASE_MIN =
131     16;  // Min base number for leading zeros.
132 static const int DROPOUT_AFTER_BASE_MAX =
133     32;  // Max base number for trailing zeros.
134 static const int DROPOUT_AFTER_BASE_MIN =
135     16;  // Min base number for trailing zeros.
136 static const int DROPOUT_MULTIPLIER_MAX =
137     8;  // Max multiplier on number of zeros.
138 static const int DROPOUT_MULTIPLIER_MIN =
139     2;  // Min multiplier on number of zeros.
140 static const int DROPOUT_MULTIPLIER_Q_BASE =
141     32;  // Base Q to compute multiplier.
142 
av1_dropout_qcoeff(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int qindex)143 void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
144                         TX_TYPE tx_type, int qindex) {
145   const int tx_width = tx_size_wide[tx_size];
146   const int tx_height = tx_size_high[tx_size];
147 
148   // Early return if `qindex` is out of range.
149   if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
150     return;
151   }
152 
153   // Compute number of zeros used for dropout judgement.
154   const int base_size = AOMMAX(tx_width, tx_height);
155   const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
156                               DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
157   const int dropout_num_before =
158       multiplier *
159       CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
160   const int dropout_num_after =
161       multiplier *
162       CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
163 
164   av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
165                          dropout_num_after);
166 }
167 
av1_dropout_qcoeff_num(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int dropout_num_before,int dropout_num_after)168 void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
169                             TX_SIZE tx_size, TX_TYPE tx_type,
170                             int dropout_num_before, int dropout_num_after) {
171   const struct macroblock_plane *const p = &mb->plane[plane];
172   tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
173   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
174   const int max_eob = av1_get_max_eob(tx_size);
175   const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
176 
177   // Early return if there are not enough non-zero coefficients.
178   if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before ||
179       max_eob <= dropout_num_before + dropout_num_after) {
180     return;
181   }
182 
183   int count_zeros_before = 0;
184   int count_zeros_after = 0;
185   int count_nonzeros = 0;
186   // Index of the first non-zero coefficient after sufficient number of
187   // continuous zeros. If equals to `-1`, it means number of leading zeros
188   // hasn't reach `dropout_num_before`.
189   int idx = -1;
190   int eob = 0;  // New end of block.
191 
192   for (int i = 0; i < p->eobs[block]; ++i) {
193     const int scan_idx = scan_order->scan[i];
194     if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
195       // Keep large coefficients.
196       count_zeros_before = 0;
197       count_zeros_after = 0;
198       idx = -1;
199       eob = i + 1;
200     } else if (qcoeff[scan_idx] == 0) {  // Count zeros.
201       if (idx == -1) {
202         ++count_zeros_before;
203       } else {
204         ++count_zeros_after;
205       }
206     } else {  // Count non-zeros.
207       if (count_zeros_before >= dropout_num_before) {
208         idx = (idx == -1) ? i : idx;
209         ++count_nonzeros;
210       } else {
211         count_zeros_before = 0;
212         eob = i + 1;
213       }
214     }
215 
216     // Handle continuity.
217     if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
218       count_zeros_before = 0;
219       count_zeros_after = 0;
220       count_nonzeros = 0;
221       idx = -1;
222       eob = i + 1;
223     }
224 
225     // Handle the trailing zeros after original end of block.
226     if (idx != -1 && i == p->eobs[block] - 1) {
227       count_zeros_after += (max_eob - p->eobs[block]);
228     }
229 
230     // Set redundant coefficients to zeros if needed.
231     if (count_zeros_after >= dropout_num_after) {
232       for (int j = idx; j <= i; ++j) {
233         qcoeff[scan_order->scan[j]] = 0;
234         dqcoeff[scan_order->scan[j]] = 0;
235       }
236       count_zeros_before += (i - idx + 1);
237       count_zeros_after = 0;
238       count_nonzeros = 0;
239     } else if (i == p->eobs[block] - 1) {
240       eob = i + 1;
241     }
242   }
243 
244   if (eob != p->eobs[block]) {
245     p->eobs[block] = eob;
246     p->txb_entropy_ctx[block] =
247         av1_get_txb_entropy_context(qcoeff, scan_order, eob);
248   }
249 }
250 
251 // Settings for optimization type. NOTE: To set optimization type for all intra
252 // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
253 // TODO(yjshen): These settings are hard-coded and look okay for now. They
254 // should be made configurable later.
255 // Blocks of key frames ONLY.
256 static const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
257 // Blocks of intra frames (key frames EXCLUSIVE).
258 static const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
259 // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
260 // if trellis optimization is on for inter frames.)
261 static const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
262 
263 enum {
264   QUANT_FUNC_LOWBD = 0,
265   QUANT_FUNC_HIGHBD = 1,
266   QUANT_FUNC_TYPES = 2
267 } UENUM1BYTE(QUANT_FUNC);
268 
269 #if CONFIG_AV1_HIGHBITDEPTH
270 static AV1_QUANT_FACADE
271     quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
272       { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
273       { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
274       { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
275       { NULL, NULL }
276     };
277 #else
278 static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
279   av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
280 };
281 #endif
282 
283 // Computes the transform for DC only blocks
av1_xform_dc_only(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,int64_t per_px_mean)284 void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
285                        TxfmParam *txfm_param, int64_t per_px_mean) {
286   assert(per_px_mean != INT64_MAX);
287   const struct macroblock_plane *const p = &x->plane[plane];
288   const int block_offset = BLOCK_OFFSET(block);
289   tran_low_t *const coeff = p->coeff + block_offset;
290   const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
291   memset(coeff, 0, sizeof(*coeff) * n_coeffs);
292   coeff[0] =
293       (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
294 }
295 
av1_xform_quant(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param,const QUANT_PARAM * qparam)296 void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
297                      int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
298                      const QUANT_PARAM *qparam) {
299   av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
300   av1_quant(x, plane, block, txfm_param, qparam);
301 }
302 
av1_xform(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param)303 void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
304                BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
305   const struct macroblock_plane *const p = &x->plane[plane];
306   const int block_offset = BLOCK_OFFSET(block);
307   tran_low_t *const coeff = p->coeff + block_offset;
308   const int diff_stride = block_size_wide[plane_bsize];
309 
310   const int src_offset = (blk_row * diff_stride + blk_col);
311   const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
312 
313   av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
314 }
315 
av1_quant(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,const QUANT_PARAM * qparam)316 void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
317                const QUANT_PARAM *qparam) {
318   const struct macroblock_plane *const p = &x->plane[plane];
319   const SCAN_ORDER *const scan_order =
320       get_scan(txfm_param->tx_size, txfm_param->tx_type);
321   const int block_offset = BLOCK_OFFSET(block);
322   tran_low_t *const coeff = p->coeff + block_offset;
323   tran_low_t *const qcoeff = p->qcoeff + block_offset;
324   tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
325   uint16_t *const eob = &p->eobs[block];
326 
327   if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
328     const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
329     if (LIKELY(!x->seg_skip_block)) {
330 #if CONFIG_AV1_HIGHBITDEPTH
331       quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
332           coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
333 #else
334       quant_func_list[qparam->xform_quant_idx](
335           coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
336 #endif
337     } else {
338       av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
339     }
340   }
341   // use_optimize_b is true means av1_optimze_b will be called,
342   // thus cannot update entropy ctx now (performed in optimize_b)
343   if (qparam->use_optimize_b) {
344     p->txb_entropy_ctx[block] = 0;
345   } else {
346     p->txb_entropy_ctx[block] =
347         av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
348   }
349 }
350 
av1_setup_xform(const AV1_COMMON * cm,MACROBLOCK * x,TX_SIZE tx_size,TX_TYPE tx_type,TxfmParam * txfm_param)351 void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
352                      TX_TYPE tx_type, TxfmParam *txfm_param) {
353   MACROBLOCKD *const xd = &x->e_mbd;
354   MB_MODE_INFO *const mbmi = xd->mi[0];
355 
356   txfm_param->tx_type = tx_type;
357   txfm_param->tx_size = tx_size;
358   txfm_param->lossless = xd->lossless[mbmi->segment_id];
359   txfm_param->tx_set_type = av1_get_ext_tx_set_type(
360       tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
361 
362   txfm_param->bd = xd->bd;
363   txfm_param->is_hbd = is_cur_buf_hbd(xd);
364 }
av1_setup_quant(TX_SIZE tx_size,int use_optimize_b,int xform_quant_idx,int use_quant_b_adapt,QUANT_PARAM * qparam)365 void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
366                      int use_quant_b_adapt, QUANT_PARAM *qparam) {
367   qparam->log_scale = av1_get_tx_scale(tx_size);
368   qparam->tx_size = tx_size;
369 
370   qparam->use_quant_b_adapt = use_quant_b_adapt;
371 
372   // TODO(bohanli): optimize_b and quantization idx has relationship,
373   // but is kind of buried and complicated in different encoding stages.
374   // Should have a unified function to derive quant_idx, rather than
375   // determine and pass in the quant_idx
376   qparam->use_optimize_b = use_optimize_b;
377   qparam->xform_quant_idx = xform_quant_idx;
378 
379   qparam->qmatrix = NULL;
380   qparam->iqmatrix = NULL;
381 }
av1_setup_qmatrix(const CommonQuantParams * quant_params,const MACROBLOCKD * xd,int plane,TX_SIZE tx_size,TX_TYPE tx_type,QUANT_PARAM * qparam)382 void av1_setup_qmatrix(const CommonQuantParams *quant_params,
383                        const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
384                        TX_TYPE tx_type, QUANT_PARAM *qparam) {
385   qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
386   qparam->iqmatrix =
387       av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
388 }
389 
encode_block(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)390 static void encode_block(int plane, int block, int blk_row, int blk_col,
391                          BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
392                          RUN_TYPE dry_run) {
393   (void)dry_run;
394   struct encode_b_args *const args = arg;
395   const AV1_COMP *const cpi = args->cpi;
396   const AV1_COMMON *const cm = &cpi->common;
397   MACROBLOCK *const x = args->x;
398   MACROBLOCKD *const xd = &x->e_mbd;
399   MB_MODE_INFO *mbmi = xd->mi[0];
400   struct macroblock_plane *const p = &x->plane[plane];
401   struct macroblockd_plane *const pd = &xd->plane[plane];
402   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
403   uint8_t *dst;
404   ENTROPY_CONTEXT *a, *l;
405   int dummy_rate_cost = 0;
406 
407   const int bw = mi_size_wide[plane_bsize];
408   dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
409 
410   a = &args->ta[blk_col];
411   l = &args->tl[blk_row];
412 
413   TX_TYPE tx_type = DCT_DCT;
414   const int blk_skip_idx = blk_row * bw + blk_col;
415   if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) &&
416       !mbmi->skip_mode) {
417     tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
418                               cm->features.reduced_tx_set_used);
419     TxfmParam txfm_param;
420     QUANT_PARAM quant_param;
421     const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
422     int quant_idx;
423     if (use_trellis)
424       quant_idx = AV1_XFORM_QUANT_FP;
425     else
426       quant_idx =
427           USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
428     av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
429     av1_setup_quant(tx_size, use_trellis, quant_idx,
430                     cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
431     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
432                       &quant_param);
433     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
434                     &quant_param);
435 
436     // Whether trellis or dropout optimization is required for inter frames.
437     const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
438                             INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
439     const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
440                             INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
441 
442     if (quant_param.use_optimize_b && do_trellis) {
443       TXB_CTX txb_ctx;
444       get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
445       av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
446                      &dummy_rate_cost);
447     }
448     if (!quant_param.use_optimize_b && do_dropout) {
449       av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
450                          cm->quant_params.base_qindex);
451     }
452   } else {
453     p->eobs[block] = 0;
454     p->txb_entropy_ctx[block] = 0;
455   }
456 
457   av1_set_txb_context(x, plane, block, tx_size, a, l);
458 
459   if (p->eobs[block]) {
460     // As long as any YUV plane has non-zero quantized transform coefficients,
461     // mbmi->skip_txfm flag is set to 0.
462     mbmi->skip_txfm = 0;
463     av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
464                                 pd->dst.stride, p->eobs[block],
465                                 cm->features.reduced_tx_set_used);
466   } else {
467     // Only when YUV planes all have zero quantized transform coefficients,
468     // mbmi->skip_txfm flag is set to 1.
469     mbmi->skip_txfm &= 1;
470   }
471 
472   // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
473   // case. It is possible that certain collision in hash index would cause
474   // the assertion failure. To further optimize the rate-distortion
475   // performance, we need to re-visit this part and enable this assert
476   // again.
477   if (p->eobs[block] == 0 && plane == 0) {
478 #if 0
479     if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
480         args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
481       // TODO(jingning,angiebird,[email protected]): enable txk_check when
482       // enable_optimize_b is true to detect potential RD bug.
483       const uint8_t disable_txk_check = args->enable_optimize_b;
484       if (!disable_txk_check) {
485         assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
486             DCT_DCT);
487       }
488     }
489 #endif
490     update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
491   }
492 
493 #if CONFIG_MISMATCH_DEBUG
494   if (dry_run == OUTPUT_ENABLED) {
495     int pixel_c, pixel_r;
496     BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
497     int blk_w = block_size_wide[bsize];
498     int blk_h = block_size_high[bsize];
499     mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
500                     blk_row, pd->subsampling_x, pd->subsampling_y);
501     mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
502                              plane, pixel_c, pixel_r, blk_w, blk_h,
503                              xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
504   }
505 #endif
506 }
507 
encode_block_inter(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)508 static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
509                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
510                                void *arg, RUN_TYPE dry_run) {
511   struct encode_b_args *const args = arg;
512   MACROBLOCK *const x = args->x;
513   MACROBLOCKD *const xd = &x->e_mbd;
514   MB_MODE_INFO *const mbmi = xd->mi[0];
515   const struct macroblockd_plane *const pd = &xd->plane[plane];
516   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
517   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
518 
519   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
520 
521   const TX_SIZE plane_tx_size =
522       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
523                                     pd->subsampling_y)
524             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
525                                                          blk_col)];
526   if (!plane) {
527     assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
528            tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
529   }
530 
531   if (tx_size == plane_tx_size || plane) {
532     encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
533                  dry_run);
534   } else {
535     assert(tx_size < TX_SIZES_ALL);
536     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
537     assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
538     assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
539     // This is the square transform block partition entry point.
540     const int bsw = tx_size_wide_unit[sub_txs];
541     const int bsh = tx_size_high_unit[sub_txs];
542     const int step = bsh * bsw;
543     const int row_end =
544         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
545     const int col_end =
546         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
547     assert(bsw > 0 && bsh > 0);
548 
549     for (int row = 0; row < row_end; row += bsh) {
550       const int offsetr = blk_row + row;
551       for (int col = 0; col < col_end; col += bsw) {
552         const int offsetc = blk_col + col;
553 
554         encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
555                            arg, dry_run);
556         block += step;
557       }
558     }
559   }
560 }
561 
av1_foreach_transformed_block_in_plane(const MACROBLOCKD * const xd,BLOCK_SIZE plane_bsize,int plane,foreach_transformed_block_visitor visit,void * arg)562 void av1_foreach_transformed_block_in_plane(
563     const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
564     foreach_transformed_block_visitor visit, void *arg) {
565   const struct macroblockd_plane *const pd = &xd->plane[plane];
566   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
567   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
568   // transform size varies per plane, look it up in a common way.
569   const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
570   const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
571   // Call visit() directly with zero offsets if the current block size is the
572   // same as the transform block size.
573   if (plane_bsize == tx_bsize) {
574     visit(plane, 0, 0, 0, plane_bsize, tx_size, arg);
575     return;
576   }
577   const uint8_t txw_unit = tx_size_wide_unit[tx_size];
578   const uint8_t txh_unit = tx_size_high_unit[tx_size];
579   const int step = txw_unit * txh_unit;
580 
581   // If mb_to_right_edge is < 0 we are in a situation in which
582   // the current block size extends into the UMV and we won't
583   // visit the sub blocks that are wholly within the UMV.
584   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
585   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
586   const BLOCK_SIZE max_unit_bsize =
587       get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
588   const int mu_blocks_wide =
589       AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
590   const int mu_blocks_high =
591       AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
592 
593   // Keep track of the row and column of the blocks we use so that we know
594   // if we are in the unrestricted motion border.
595   int i = 0;
596   for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
597     const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
598     // Skip visiting the sub blocks that are wholly within the UMV.
599     for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
600       const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
601       for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
602         for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
603           visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
604           i += step;
605         }
606       }
607     }
608   }
609   // Check if visit() is invoked at least once.
610   assert(i >= 1);
611 }
612 
613 typedef struct encode_block_pass1_args {
614   AV1_COMP *cpi;
615   MACROBLOCK *x;
616 } encode_block_pass1_args;
617 
encode_block_pass1(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)618 static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
619                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
620                                void *arg) {
621   encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
622   AV1_COMP *cpi = args->cpi;
623   AV1_COMMON *cm = &cpi->common;
624   MACROBLOCK *const x = args->x;
625   MACROBLOCKD *const xd = &x->e_mbd;
626   struct macroblock_plane *const p = &x->plane[plane];
627   struct macroblockd_plane *const pd = &xd->plane[plane];
628   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
629 
630   uint8_t *dst;
631   dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
632 
633   TxfmParam txfm_param;
634   QUANT_PARAM quant_param;
635 
636   av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
637   av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
638                   &quant_param);
639   av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
640                     &quant_param);
641 
642   av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
643                   &quant_param);
644 
645   if (p->eobs[block] > 0) {
646     txfm_param.eob = p->eobs[block];
647     if (txfm_param.is_hbd) {
648       av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
649       return;
650     }
651     av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
652   }
653 }
654 
av1_encode_sby_pass1(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize)655 void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
656   encode_block_pass1_args args = { cpi, x };
657   av1_subtract_plane(x, bsize, 0);
658   av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
659                                          encode_block_pass1, &args);
660 }
661 
av1_encode_sb(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RUN_TYPE dry_run)662 void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
663                    RUN_TYPE dry_run) {
664   assert(bsize < BLOCK_SIZES_ALL);
665   MACROBLOCKD *const xd = &x->e_mbd;
666   MB_MODE_INFO *mbmi = xd->mi[0];
667   // In the current encoder implementation, for inter blocks,
668   // only when YUV planes all have zero quantized transform coefficients,
669   // mbmi->skip_txfm flag is set to 1.
670   // For intra blocks, this flag is set to 0 since skipped blocks are so rare
671   // that transmitting skip_txfm = 1 is very expensive.
672   // mbmi->skip_txfm is init to 1, and will be modified in encode_block() based
673   // on transform, quantization, and (if exists) trellis optimization.
674   mbmi->skip_txfm = 1;
675   if (x->txfm_search_info.skip_txfm) return;
676 
677   struct optimize_ctx ctx;
678   struct encode_b_args arg = {
679     cpi, x, &ctx, NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
680   };
681   const AV1_COMMON *const cm = &cpi->common;
682   const int num_planes = av1_num_planes(cm);
683   for (int plane = 0; plane < num_planes; ++plane) {
684     const struct macroblockd_plane *const pd = &xd->plane[plane];
685     const int subsampling_x = pd->subsampling_x;
686     const int subsampling_y = pd->subsampling_y;
687     if (plane && !xd->is_chroma_ref) break;
688     const BLOCK_SIZE plane_bsize =
689         get_plane_block_size(bsize, subsampling_x, subsampling_y);
690     assert(plane_bsize < BLOCK_SIZES_ALL);
691     const int mi_width = mi_size_wide[plane_bsize];
692     const int mi_height = mi_size_high[plane_bsize];
693     const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
694     const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
695     const int bw = mi_size_wide[txb_size];
696     const int bh = mi_size_high[txb_size];
697     int block = 0;
698     const int step =
699         tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
700     av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
701     av1_subtract_plane(x, plane_bsize, plane);
702     arg.ta = ctx.ta[plane];
703     arg.tl = ctx.tl[plane];
704     const BLOCK_SIZE max_unit_bsize =
705         get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
706     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
707     int mu_blocks_high = mi_size_high[max_unit_bsize];
708     mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
709     mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
710 
711     for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
712       for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
713         int blk_row, blk_col;
714         const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
715         const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
716         for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
717           for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
718             encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
719                                max_tx_size, &arg, dry_run);
720             block += step;
721           }
722         }
723       }
724     }
725   }
726 }
727 
encode_block_intra(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)728 static void encode_block_intra(int plane, int block, int blk_row, int blk_col,
729                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
730                                void *arg) {
731   struct encode_b_args *const args = arg;
732   const AV1_COMP *const cpi = args->cpi;
733   const AV1_COMMON *const cm = &cpi->common;
734   MACROBLOCK *const x = args->x;
735   MACROBLOCKD *const xd = &x->e_mbd;
736   MB_MODE_INFO *mbmi = xd->mi[0];
737   struct macroblock_plane *const p = &x->plane[plane];
738   struct macroblockd_plane *const pd = &xd->plane[plane];
739   tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
740   PLANE_TYPE plane_type = get_plane_type(plane);
741   uint16_t *eob = &p->eobs[block];
742   const int dst_stride = pd->dst.stride;
743   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
744   int dummy_rate_cost = 0;
745 
746   av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
747 
748   TX_TYPE tx_type = DCT_DCT;
749   const int bw = mi_size_wide[plane_bsize];
750   if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
751                                 blk_row * bw + blk_col)) {
752     *eob = 0;
753     p->txb_entropy_ctx[block] = 0;
754   } else {
755     av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
756 
757     const ENTROPY_CONTEXT *a = &args->ta[blk_col];
758     const ENTROPY_CONTEXT *l = &args->tl[blk_row];
759     tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
760                               cm->features.reduced_tx_set_used);
761     TxfmParam txfm_param;
762     QUANT_PARAM quant_param;
763     const int use_trellis =
764         is_trellis_used(args->enable_optimize_b, args->dry_run);
765     int quant_idx;
766     if (use_trellis)
767       quant_idx = AV1_XFORM_QUANT_FP;
768     else
769       quant_idx =
770           USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
771 
772     av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
773     av1_setup_quant(tx_size, use_trellis, quant_idx,
774                     cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
775     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
776                       &quant_param);
777 
778     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
779                     &quant_param);
780 
781     // Whether trellis or dropout optimization is required for key frames and
782     // intra frames.
783     const bool do_trellis = (frame_is_intra_only(cm) &&
784                              (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
785                               KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
786                             (!frame_is_intra_only(cm) &&
787                              (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
788                               INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
789     const bool do_dropout = (frame_is_intra_only(cm) &&
790                              (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
791                               KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
792                             (!frame_is_intra_only(cm) &&
793                              (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
794                               INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
795 
796     if (quant_param.use_optimize_b && do_trellis) {
797       TXB_CTX txb_ctx;
798       get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
799       av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
800                      &dummy_rate_cost);
801     }
802     if (do_dropout) {
803       av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
804                          cm->quant_params.base_qindex);
805     }
806   }
807 
808   if (*eob) {
809     av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
810                                 dst_stride, *eob,
811                                 cm->features.reduced_tx_set_used);
812   }
813 
814   // TODO(jingning): Temporarily disable txk_type check for eob=0 case.
815   // It is possible that certain collision in hash index would cause
816   // the assertion failure. To further optimize the rate-distortion
817   // performance, we need to re-visit this part and enable this assert
818   // again.
819   if (*eob == 0 && plane == 0) {
820 #if 0
821     if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
822         && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
823       assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
824           DCT_DCT);
825     }
826 #endif
827     update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
828   }
829 
830   // For intra mode, skipped blocks are so rare that transmitting
831   // skip_txfm = 1 is very expensive.
832   mbmi->skip_txfm = 0;
833 
834 #if !CONFIG_REALTIME_ONLY
835   if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
836     cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
837   }
838 #endif
839 }
840 
encode_block_intra_and_set_context(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)841 static void encode_block_intra_and_set_context(int plane, int block,
842                                                int blk_row, int blk_col,
843                                                BLOCK_SIZE plane_bsize,
844                                                TX_SIZE tx_size, void *arg) {
845   encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
846 
847   struct encode_b_args *const args = arg;
848   MACROBLOCK *x = args->x;
849   ENTROPY_CONTEXT *a = &args->ta[blk_col];
850   ENTROPY_CONTEXT *l = &args->tl[blk_row];
851   av1_set_txb_context(x, plane, block, tx_size, a, l);
852 }
853 
av1_encode_intra_block_plane(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int plane,RUN_TYPE dry_run,TRELLIS_OPT_TYPE enable_optimize_b)854 void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
855                                   BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
856                                   TRELLIS_OPT_TYPE enable_optimize_b) {
857   assert(bsize < BLOCK_SIZES_ALL);
858   const MACROBLOCKD *const xd = &x->e_mbd;
859   if (plane && !xd->is_chroma_ref) return;
860 
861   const struct macroblockd_plane *const pd = &xd->plane[plane];
862   const int ss_x = pd->subsampling_x;
863   const int ss_y = pd->subsampling_y;
864   ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
865   ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
866   struct encode_b_args arg = {
867     cpi, x, NULL, ta, tl, dry_run, enable_optimize_b
868   };
869   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
870   if (enable_optimize_b) {
871     av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
872   }
873   av1_foreach_transformed_block_in_plane(
874       xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
875 }
876