xref: /aosp_15_r20/external/libaom/av1/encoder/firstpass.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 
16 #include "config/aom_dsp_rtcd.h"
17 #include "config/aom_scale_rtcd.h"
18 
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_dsp/variance.h"
21 #include "aom_mem/aom_mem.h"
22 #include "aom_ports/mem.h"
23 #include "aom_scale/yv12config.h"
24 #include "aom_util/aom_pthread.h"
25 
26 #include "av1/common/entropymv.h"
27 #include "av1/common/quant_common.h"
28 #include "av1/common/reconinter.h"  // av1_setup_dst_planes()
29 #include "av1/common/reconintra.h"
30 #include "av1/common/txb_common.h"
31 #include "av1/encoder/aq_variance.h"
32 #include "av1/encoder/av1_quantize.h"
33 #include "av1/encoder/block.h"
34 #include "av1/encoder/dwt.h"
35 #include "av1/encoder/encodeframe.h"
36 #include "av1/encoder/encodeframe_utils.h"
37 #include "av1/encoder/encodemb.h"
38 #include "av1/encoder/encodemv.h"
39 #include "av1/encoder/encoder.h"
40 #include "av1/encoder/encoder_utils.h"
41 #include "av1/encoder/encode_strategy.h"
42 #include "av1/encoder/ethread.h"
43 #include "av1/encoder/extend.h"
44 #include "av1/encoder/firstpass.h"
45 #include "av1/encoder/mcomp.h"
46 #include "av1/encoder/rd.h"
47 #include "av1/encoder/reconinter_enc.h"
48 
49 #define OUTPUT_FPF 0
50 
51 #define FIRST_PASS_Q 10.0
52 #define INTRA_MODE_PENALTY 1024
53 #define NEW_MV_MODE_PENALTY 32
54 #define DARK_THRESH 64
55 
56 #define NCOUNT_INTRA_THRESH 8192
57 #define NCOUNT_INTRA_FACTOR 3
58 
59 #define INVALID_FP_STATS_TO_PREDICT_FLAT_GOP -1
60 
output_stats(FIRSTPASS_STATS * stats,struct aom_codec_pkt_list * pktlist)61 static inline void output_stats(FIRSTPASS_STATS *stats,
62                                 struct aom_codec_pkt_list *pktlist) {
63   struct aom_codec_cx_pkt pkt;
64   pkt.kind = AOM_CODEC_STATS_PKT;
65   pkt.data.twopass_stats.buf = stats;
66   pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
67   if (pktlist != NULL) aom_codec_pkt_list_add(pktlist, &pkt);
68 
69 // TEMP debug code
70 #if OUTPUT_FPF
71   {
72     FILE *fpfile;
73     fpfile = fopen("firstpass.stt", "a");
74 
75     fprintf(fpfile,
76             "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
77             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
78             "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
79             stats->frame, stats->weight, stats->intra_error, stats->coded_error,
80             stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
81             stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
82             stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
83             stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
84             stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
85             stats->count, stats->duration);
86     fclose(fpfile);
87   }
88 #endif
89 }
90 
av1_twopass_zero_stats(FIRSTPASS_STATS * section)91 void av1_twopass_zero_stats(FIRSTPASS_STATS *section) {
92   section->frame = 0.0;
93   section->weight = 0.0;
94   section->intra_error = 0.0;
95   section->frame_avg_wavelet_energy = 0.0;
96   section->coded_error = 0.0;
97   section->log_intra_error = 0.0;
98   section->log_coded_error = 0.0;
99   section->sr_coded_error = 0.0;
100   section->pcnt_inter = 0.0;
101   section->pcnt_motion = 0.0;
102   section->pcnt_second_ref = 0.0;
103   section->pcnt_neutral = 0.0;
104   section->intra_skip_pct = 0.0;
105   section->inactive_zone_rows = 0.0;
106   section->inactive_zone_cols = 0.0;
107   section->MVr = 0.0;
108   section->mvr_abs = 0.0;
109   section->MVc = 0.0;
110   section->mvc_abs = 0.0;
111   section->MVrv = 0.0;
112   section->MVcv = 0.0;
113   section->mv_in_out_count = 0.0;
114   section->new_mv_count = 0.0;
115   section->count = 0.0;
116   section->duration = 1.0;
117   section->is_flash = 0;
118   section->noise_var = 0;
119   section->cor_coeff = 1.0;
120 }
121 
av1_accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)122 void av1_accumulate_stats(FIRSTPASS_STATS *section,
123                           const FIRSTPASS_STATS *frame) {
124   section->frame += frame->frame;
125   section->weight += frame->weight;
126   section->intra_error += frame->intra_error;
127   section->log_intra_error += log1p(frame->intra_error);
128   section->log_coded_error += log1p(frame->coded_error);
129   section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
130   section->coded_error += frame->coded_error;
131   section->sr_coded_error += frame->sr_coded_error;
132   section->pcnt_inter += frame->pcnt_inter;
133   section->pcnt_motion += frame->pcnt_motion;
134   section->pcnt_second_ref += frame->pcnt_second_ref;
135   section->pcnt_neutral += frame->pcnt_neutral;
136   section->intra_skip_pct += frame->intra_skip_pct;
137   section->inactive_zone_rows += frame->inactive_zone_rows;
138   section->inactive_zone_cols += frame->inactive_zone_cols;
139   section->MVr += frame->MVr;
140   section->mvr_abs += frame->mvr_abs;
141   section->MVc += frame->MVc;
142   section->mvc_abs += frame->mvc_abs;
143   section->MVrv += frame->MVrv;
144   section->MVcv += frame->MVcv;
145   section->mv_in_out_count += frame->mv_in_out_count;
146   section->new_mv_count += frame->new_mv_count;
147   section->count += frame->count;
148   section->duration += frame->duration;
149 }
150 
get_unit_rows(const BLOCK_SIZE fp_block_size,const int mb_rows)151 static int get_unit_rows(const BLOCK_SIZE fp_block_size, const int mb_rows) {
152   const int height_mi_log2 = mi_size_high_log2[fp_block_size];
153   const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
154   if (height_mi_log2 > mb_height_mi_log2) {
155     return mb_rows >> (height_mi_log2 - mb_height_mi_log2);
156   }
157 
158   return mb_rows << (mb_height_mi_log2 - height_mi_log2);
159 }
160 
get_unit_cols(const BLOCK_SIZE fp_block_size,const int mb_cols)161 static int get_unit_cols(const BLOCK_SIZE fp_block_size, const int mb_cols) {
162   const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
163   const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
164   if (width_mi_log2 > mb_width_mi_log2) {
165     return mb_cols >> (width_mi_log2 - mb_width_mi_log2);
166   }
167 
168   return mb_cols << (mb_width_mi_log2 - width_mi_log2);
169 }
170 
171 // TODO(chengchen): can we simplify it even if resize has to be considered?
get_num_mbs(const BLOCK_SIZE fp_block_size,const int num_mbs_16X16)172 static int get_num_mbs(const BLOCK_SIZE fp_block_size,
173                        const int num_mbs_16X16) {
174   const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
175   const int height_mi_log2 = mi_size_high_log2[fp_block_size];
176   const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
177   const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
178   // TODO(chengchen): Now this function assumes a square block is used.
179   // It does not support rectangular block sizes.
180   assert(width_mi_log2 == height_mi_log2);
181   if (width_mi_log2 > mb_width_mi_log2) {
182     return num_mbs_16X16 >> ((width_mi_log2 - mb_width_mi_log2) +
183                              (height_mi_log2 - mb_height_mi_log2));
184   }
185 
186   return num_mbs_16X16 << ((mb_width_mi_log2 - width_mi_log2) +
187                            (mb_height_mi_log2 - height_mi_log2));
188 }
189 
av1_end_first_pass(AV1_COMP * cpi)190 void av1_end_first_pass(AV1_COMP *cpi) {
191   if (cpi->ppi->twopass.stats_buf_ctx->total_stats && !cpi->ppi->lap_enabled)
192     output_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats,
193                  cpi->ppi->output_pkt_list);
194 }
195 
get_block_variance_fn(BLOCK_SIZE bsize)196 static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
197   switch (bsize) {
198     case BLOCK_8X8: return aom_mse8x8;
199     case BLOCK_16X8: return aom_mse16x8;
200     case BLOCK_8X16: return aom_mse8x16;
201     default: return aom_mse16x16;
202   }
203 }
204 
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)205 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
206                                          const struct buf_2d *src,
207                                          const struct buf_2d *ref) {
208   unsigned int sse;
209   const aom_variance_fn_t fn = get_block_variance_fn(bsize);
210   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
211   return sse;
212 }
213 
214 #if CONFIG_AV1_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)215 static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
216                                                       int bd) {
217   switch (bd) {
218     default:
219       switch (bsize) {
220         case BLOCK_8X8: return aom_highbd_8_mse8x8;
221         case BLOCK_16X8: return aom_highbd_8_mse16x8;
222         case BLOCK_8X16: return aom_highbd_8_mse8x16;
223         default: return aom_highbd_8_mse16x16;
224       }
225     case 10:
226       switch (bsize) {
227         case BLOCK_8X8: return aom_highbd_10_mse8x8;
228         case BLOCK_16X8: return aom_highbd_10_mse16x8;
229         case BLOCK_8X16: return aom_highbd_10_mse8x16;
230         default: return aom_highbd_10_mse16x16;
231       }
232     case 12:
233       switch (bsize) {
234         case BLOCK_8X8: return aom_highbd_12_mse8x8;
235         case BLOCK_16X8: return aom_highbd_12_mse16x8;
236         case BLOCK_8X16: return aom_highbd_12_mse8x16;
237         default: return aom_highbd_12_mse16x16;
238       }
239   }
240 }
241 
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)242 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
243                                                 const struct buf_2d *src,
244                                                 const struct buf_2d *ref,
245                                                 int bd) {
246   unsigned int sse;
247   const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
248   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
249   return sse;
250 }
251 #endif  // CONFIG_AV1_HIGHBITDEPTH
252 
253 // Refine the motion search range according to the frame dimension
254 // for first pass test.
get_search_range(int width,int height)255 static int get_search_range(int width, int height) {
256   int sr = 0;
257   const int dim = AOMMIN(width, height);
258 
259   while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
260   return sr;
261 }
262 
av1_get_first_pass_search_site_config(const AV1_COMP * cpi,MACROBLOCK * x,SEARCH_METHODS search_method)263 static inline const search_site_config *av1_get_first_pass_search_site_config(
264     const AV1_COMP *cpi, MACROBLOCK *x, SEARCH_METHODS search_method) {
265   const int ref_stride = x->e_mbd.plane[0].pre[0].stride;
266 
267   // For AVIF applications, even the source frames can have changing resolution,
268   // so we need to manually check for the strides :(
269   // AV1_COMP::mv_search_params.search_site_config is a compressor level cache
270   // that's shared by multiple threads. In most cases where all frames have the
271   // same resolution, the cache contains the search site config that we need.
272   const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params;
273   if (ref_stride == mv_search_params->search_site_cfg[SS_CFG_FPF]->stride) {
274     return mv_search_params->search_site_cfg[SS_CFG_FPF];
275   }
276 
277   // If the cache does not contain the correct stride, then we will need to rely
278   // on the thread level config MACROBLOCK::search_site_cfg_buf. If even the
279   // thread level config doesn't match, then we need to update it.
280   search_method = search_method_lookup[search_method];
281   assert(search_method_lookup[search_method] == search_method &&
282          "The search_method_lookup table should be idempotent.");
283   if (ref_stride != x->search_site_cfg_buf[search_method].stride) {
284     av1_refresh_search_site_config(x->search_site_cfg_buf, search_method,
285                                    ref_stride);
286   }
287 
288   return x->search_site_cfg_buf;
289 }
290 
first_pass_motion_search(AV1_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,FULLPEL_MV * best_mv,int * best_motion_err)291 static inline void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
292                                             const MV *ref_mv,
293                                             FULLPEL_MV *best_mv,
294                                             int *best_motion_err) {
295   AV1_COMMON *const cm = &cpi->common;
296   MACROBLOCKD *const xd = &x->e_mbd;
297   FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
298   int tmp_err;
299   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
300   const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
301   const int sr = get_search_range(cm->width, cm->height);
302   const int step_param = cpi->sf.fp_sf.reduce_mv_step_param + sr;
303 
304   const search_site_config *first_pass_search_sites =
305       av1_get_first_pass_search_site_config(cpi, x, NSTEP);
306   const int fine_search_interval =
307       cpi->is_screen_content_type && cm->features.allow_intrabc;
308   FULLPEL_MOTION_SEARCH_PARAMS ms_params;
309   av1_make_default_fullpel_ms_params(&ms_params, cpi, x, bsize, ref_mv,
310                                      start_mv, first_pass_search_sites, NSTEP,
311                                      fine_search_interval);
312 
313   FULLPEL_MV this_best_mv;
314   FULLPEL_MV_STATS best_mv_stats;
315   tmp_err = av1_full_pixel_search(start_mv, &ms_params, step_param, NULL,
316                                   &this_best_mv, &best_mv_stats, NULL);
317 
318   if (tmp_err < INT_MAX) {
319     aom_variance_fn_ptr_t v_fn_ptr = cpi->ppi->fn_ptr[bsize];
320     const MSBuffers *ms_buffers = &ms_params.ms_buffers;
321     tmp_err = av1_get_mvpred_sse(&ms_params.mv_cost_params, this_best_mv,
322                                  &v_fn_ptr, ms_buffers->src, ms_buffers->ref) +
323               new_mv_mode_penalty;
324   }
325 
326   if (tmp_err < *best_motion_err) {
327     *best_motion_err = tmp_err;
328     *best_mv = this_best_mv;
329   }
330 }
331 
get_bsize(const CommonModeInfoParams * const mi_params,const BLOCK_SIZE fp_block_size,const int unit_row,const int unit_col)332 static BLOCK_SIZE get_bsize(const CommonModeInfoParams *const mi_params,
333                             const BLOCK_SIZE fp_block_size, const int unit_row,
334                             const int unit_col) {
335   const int unit_width = mi_size_wide[fp_block_size];
336   const int unit_height = mi_size_high[fp_block_size];
337   const int is_half_width =
338       unit_width * unit_col + unit_width / 2 >= mi_params->mi_cols;
339   const int is_half_height =
340       unit_height * unit_row + unit_height / 2 >= mi_params->mi_rows;
341   const int max_dimension =
342       AOMMAX(block_size_wide[fp_block_size], block_size_high[fp_block_size]);
343   int square_block_size = 0;
344   // 4X4, 8X8, 16X16, 32X32, 64X64, 128X128
345   switch (max_dimension) {
346     case 4: square_block_size = 0; break;
347     case 8: square_block_size = 1; break;
348     case 16: square_block_size = 2; break;
349     case 32: square_block_size = 3; break;
350     case 64: square_block_size = 4; break;
351     case 128: square_block_size = 5; break;
352     default: assert(0 && "First pass block size is not supported!"); break;
353   }
354   if (is_half_width && is_half_height) {
355     return subsize_lookup[PARTITION_SPLIT][square_block_size];
356   } else if (is_half_width) {
357     return subsize_lookup[PARTITION_VERT][square_block_size];
358   } else if (is_half_height) {
359     return subsize_lookup[PARTITION_HORZ][square_block_size];
360   } else {
361     return fp_block_size;
362   }
363 }
364 
find_fp_qindex(aom_bit_depth_t bit_depth)365 static int find_fp_qindex(aom_bit_depth_t bit_depth) {
366   return av1_find_qindex(FIRST_PASS_Q, bit_depth, 0, QINDEX_RANGE - 1);
367 }
368 
raw_motion_error_stdev(int * raw_motion_err_list,int raw_motion_err_counts)369 static double raw_motion_error_stdev(int *raw_motion_err_list,
370                                      int raw_motion_err_counts) {
371   int64_t sum_raw_err = 0;
372   double raw_err_avg = 0;
373   double raw_err_stdev = 0;
374   if (raw_motion_err_counts == 0) return 0;
375 
376   int i;
377   for (i = 0; i < raw_motion_err_counts; i++) {
378     sum_raw_err += raw_motion_err_list[i];
379   }
380   raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
381   for (i = 0; i < raw_motion_err_counts; i++) {
382     raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
383                      (raw_motion_err_list[i] - raw_err_avg);
384   }
385   // Calculate the standard deviation for the motion error of all the inter
386   // blocks of the 0,0 motion using the last source
387   // frame as the reference.
388   raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
389   return raw_err_stdev;
390 }
391 
calc_wavelet_energy(const AV1EncoderConfig * oxcf)392 static inline int calc_wavelet_energy(const AV1EncoderConfig *oxcf) {
393   return oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL;
394 }
395 typedef struct intra_pred_block_pass1_args {
396   const SequenceHeader *seq_params;
397   MACROBLOCK *x;
398 } intra_pred_block_pass1_args;
399 
copy_rect(uint8_t * dst,int dstride,const uint8_t * src,int sstride,int width,int height,int use_hbd)400 static inline void copy_rect(uint8_t *dst, int dstride, const uint8_t *src,
401                              int sstride, int width, int height, int use_hbd) {
402 #if CONFIG_AV1_HIGHBITDEPTH
403   if (use_hbd) {
404     aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), sstride,
405                              CONVERT_TO_SHORTPTR(dst), dstride, width, height);
406   } else {
407     aom_convolve_copy(src, sstride, dst, dstride, width, height);
408   }
409 #else
410   (void)use_hbd;
411   aom_convolve_copy(src, sstride, dst, dstride, width, height);
412 #endif
413 }
414 
first_pass_intra_pred_and_calc_diff(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)415 static void first_pass_intra_pred_and_calc_diff(int plane, int block,
416                                                 int blk_row, int blk_col,
417                                                 BLOCK_SIZE plane_bsize,
418                                                 TX_SIZE tx_size, void *arg) {
419   (void)block;
420   struct intra_pred_block_pass1_args *const args = arg;
421   MACROBLOCK *const x = args->x;
422   MACROBLOCKD *const xd = &x->e_mbd;
423   MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
424   MACROBLOCK_PLANE *const p = &x->plane[plane];
425   const int dst_stride = pd->dst.stride;
426   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
427   const MB_MODE_INFO *const mbmi = xd->mi[0];
428   const SequenceHeader *seq_params = args->seq_params;
429   const int src_stride = p->src.stride;
430   uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
431 
432   av1_predict_intra_block(
433       xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
434       pd->height, tx_size, mbmi->mode, 0, 0, FILTER_INTRA_MODES, src,
435       src_stride, dst, dst_stride, blk_col, blk_row, plane);
436 
437   av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
438 }
439 
first_pass_predict_intra_block_for_luma_plane(const SequenceHeader * seq_params,MACROBLOCK * x,BLOCK_SIZE bsize)440 static void first_pass_predict_intra_block_for_luma_plane(
441     const SequenceHeader *seq_params, MACROBLOCK *x, BLOCK_SIZE bsize) {
442   assert(bsize < BLOCK_SIZES_ALL);
443   const MACROBLOCKD *const xd = &x->e_mbd;
444   const int plane = AOM_PLANE_Y;
445   const MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
446   const int ss_x = pd->subsampling_x;
447   const int ss_y = pd->subsampling_y;
448   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
449   const int dst_stride = pd->dst.stride;
450   uint8_t *dst = pd->dst.buf;
451   const MACROBLOCK_PLANE *const p = &x->plane[plane];
452   const int src_stride = p->src.stride;
453   const uint8_t *src = p->src.buf;
454 
455   intra_pred_block_pass1_args args = { seq_params, x };
456   av1_foreach_transformed_block_in_plane(
457       xd, plane_bsize, plane, first_pass_intra_pred_and_calc_diff, &args);
458 
459   // copy source data to recon buffer, as the recon buffer will be used as a
460   // reference frame subsequently.
461   copy_rect(dst, dst_stride, src, src_stride, block_size_wide[bsize],
462             block_size_high[bsize], seq_params->use_highbitdepth);
463 }
464 
465 #define UL_INTRA_THRESH 50
466 #define INVALID_ROW -1
467 // Computes and returns the intra pred error of a block.
468 // intra pred error: sum of squared error of the intra predicted residual.
469 // Inputs:
470 //   cpi: the encoder setting. Only a few params in it will be used.
471 //   this_frame: the current frame buffer.
472 //   tile: tile information (not used in first pass, already init to zero)
473 //   unit_row: row index in the unit of first pass block size.
474 //   unit_col: column index in the unit of first pass block size.
475 //   y_offset: the offset of y frame buffer, indicating the starting point of
476 //             the current block.
477 //   uv_offset: the offset of u and v frame buffer, indicating the starting
478 //              point of the current block.
479 //   fp_block_size: first pass block size.
480 //   qindex: quantization step size to encode the frame.
481 //   stats: frame encoding stats.
482 // Modifies:
483 //   stats->intra_skip_count
484 //   stats->image_data_start_row
485 //   stats->intra_factor
486 //   stats->brightness_factor
487 //   stats->intra_error
488 //   stats->frame_avg_wavelet_energy
489 // Returns:
490 //   this_intra_error.
firstpass_intra_prediction(AV1_COMP * cpi,ThreadData * td,YV12_BUFFER_CONFIG * const this_frame,const TileInfo * const tile,const int unit_row,const int unit_col,const int y_offset,const int uv_offset,const BLOCK_SIZE fp_block_size,const int qindex,FRAME_STATS * const stats)491 static int firstpass_intra_prediction(
492     AV1_COMP *cpi, ThreadData *td, YV12_BUFFER_CONFIG *const this_frame,
493     const TileInfo *const tile, const int unit_row, const int unit_col,
494     const int y_offset, const int uv_offset, const BLOCK_SIZE fp_block_size,
495     const int qindex, FRAME_STATS *const stats) {
496   const AV1_COMMON *const cm = &cpi->common;
497   const CommonModeInfoParams *const mi_params = &cm->mi_params;
498   const SequenceHeader *const seq_params = cm->seq_params;
499   MACROBLOCK *const x = &td->mb;
500   MACROBLOCKD *const xd = &x->e_mbd;
501   const int unit_scale = mi_size_wide[fp_block_size];
502   const int num_planes = av1_num_planes(cm);
503   const BLOCK_SIZE bsize =
504       get_bsize(mi_params, fp_block_size, unit_row, unit_col);
505 
506   set_mi_offsets(mi_params, xd, unit_row * unit_scale, unit_col * unit_scale);
507   xd->plane[0].dst.buf = this_frame->y_buffer + y_offset;
508   if (num_planes > 1) {
509     xd->plane[1].dst.buf = this_frame->u_buffer + uv_offset;
510     xd->plane[2].dst.buf = this_frame->v_buffer + uv_offset;
511   }
512   xd->left_available = (unit_col != 0);
513   xd->mi[0]->bsize = bsize;
514   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
515   set_mi_row_col(xd, tile, unit_row * unit_scale, mi_size_high[bsize],
516                  unit_col * unit_scale, mi_size_wide[bsize], mi_params->mi_rows,
517                  mi_params->mi_cols);
518   set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
519   xd->mi[0]->segment_id = 0;
520   xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
521   xd->mi[0]->mode = DC_PRED;
522   xd->mi[0]->tx_size = TX_4X4;
523 
524   if (cpi->sf.fp_sf.disable_recon)
525     first_pass_predict_intra_block_for_luma_plane(seq_params, x, bsize);
526   else
527     av1_encode_intra_block_plane(cpi, x, bsize, 0, DRY_RUN_NORMAL, 0);
528   int this_intra_error = aom_get_mb_ss(x->plane[0].src_diff);
529   if (seq_params->use_highbitdepth) {
530     switch (seq_params->bit_depth) {
531       case AOM_BITS_8: break;
532       case AOM_BITS_10: this_intra_error >>= 4; break;
533       case AOM_BITS_12: this_intra_error >>= 8; break;
534       default:
535         assert(0 &&
536                "seq_params->bit_depth should be AOM_BITS_8, "
537                "AOM_BITS_10 or AOM_BITS_12");
538         return -1;
539     }
540   }
541 
542   if (this_intra_error < UL_INTRA_THRESH) {
543     ++stats->intra_skip_count;
544   } else if ((unit_col > 0) && (stats->image_data_start_row == INVALID_ROW)) {
545     stats->image_data_start_row = unit_row;
546   }
547 
548   double log_intra = log1p(this_intra_error);
549   if (log_intra < 10.0) {
550     stats->intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
551   } else {
552     stats->intra_factor += 1.0;
553   }
554 
555   int level_sample;
556   if (seq_params->use_highbitdepth) {
557     level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
558   } else {
559     level_sample = x->plane[0].src.buf[0];
560   }
561 
562   if (seq_params->use_highbitdepth) {
563     switch (seq_params->bit_depth) {
564       case AOM_BITS_8: break;
565       case AOM_BITS_10: level_sample >>= 2; break;
566       case AOM_BITS_12: level_sample >>= 4; break;
567       default:
568         assert(0 &&
569                "seq_params->bit_depth should be AOM_BITS_8, "
570                "AOM_BITS_10 or AOM_BITS_12");
571         return -1;
572     }
573   }
574   if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
575     stats->brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
576   } else {
577     stats->brightness_factor += 1.0;
578   }
579 
580   // Intrapenalty below deals with situations where the intra and inter
581   // error scores are very low (e.g. a plain black frame).
582   // We do not have special cases in first pass for 0,0 and nearest etc so
583   // all inter modes carry an overhead cost estimate for the mv.
584   // When the error score is very low this causes us to pick all or lots of
585   // INTRA modes and throw lots of key frames.
586   // This penalty adds a cost matching that of a 0,0 mv to the intra case.
587   this_intra_error += INTRA_MODE_PENALTY;
588 
589   // Accumulate the intra error.
590   stats->intra_error += (int64_t)this_intra_error;
591 
592   // Stats based on wavelet energy is used in the following cases :
593   // 1. ML model which predicts if a flat structure (golden-frame only structure
594   // without ALT-REF and Internal-ARFs) is better. This ML model is enabled in
595   // constant quality mode under certain conditions.
596   // 2. Delta qindex mode is set as DELTA_Q_PERCEPTUAL.
597   // Thus, wavelet energy calculation is enabled for the above cases.
598   if (calc_wavelet_energy(&cpi->oxcf)) {
599     const int hbd = is_cur_buf_hbd(xd);
600     const int stride = x->plane[0].src.stride;
601     const int num_8x8_rows = block_size_high[fp_block_size] / 8;
602     const int num_8x8_cols = block_size_wide[fp_block_size] / 8;
603     const uint8_t *buf = x->plane[0].src.buf;
604     stats->frame_avg_wavelet_energy += av1_haar_ac_sad_mxn_uint8_input(
605         buf, stride, hbd, num_8x8_rows, num_8x8_cols);
606   } else {
607     stats->frame_avg_wavelet_energy = INVALID_FP_STATS_TO_PREDICT_FLAT_GOP;
608   }
609 
610   return this_intra_error;
611 }
612 
613 // Returns the sum of square error between source and reference blocks.
get_prediction_error_bitdepth(const int is_high_bitdepth,const int bitdepth,const BLOCK_SIZE block_size,const struct buf_2d * src,const struct buf_2d * ref)614 static int get_prediction_error_bitdepth(const int is_high_bitdepth,
615                                          const int bitdepth,
616                                          const BLOCK_SIZE block_size,
617                                          const struct buf_2d *src,
618                                          const struct buf_2d *ref) {
619   (void)is_high_bitdepth;
620   (void)bitdepth;
621 #if CONFIG_AV1_HIGHBITDEPTH
622   if (is_high_bitdepth) {
623     return highbd_get_prediction_error(block_size, src, ref, bitdepth);
624   }
625 #endif  // CONFIG_AV1_HIGHBITDEPTH
626   return get_prediction_error(block_size, src, ref);
627 }
628 
629 // Accumulates motion vector stats.
630 // Modifies member variables of "stats".
accumulate_mv_stats(const MV best_mv,const FULLPEL_MV mv,const int mb_row,const int mb_col,const int mb_rows,const int mb_cols,MV * last_non_zero_mv,FRAME_STATS * stats)631 static void accumulate_mv_stats(const MV best_mv, const FULLPEL_MV mv,
632                                 const int mb_row, const int mb_col,
633                                 const int mb_rows, const int mb_cols,
634                                 MV *last_non_zero_mv, FRAME_STATS *stats) {
635   if (is_zero_mv(&best_mv)) return;
636 
637   ++stats->mv_count;
638   // Non-zero vector, was it different from the last non zero vector?
639   if (!is_equal_mv(&best_mv, last_non_zero_mv)) ++stats->new_mv_count;
640   *last_non_zero_mv = best_mv;
641 
642   // Does the row vector point inwards or outwards?
643   if (mb_row < mb_rows / 2) {
644     if (mv.row > 0) {
645       --stats->sum_in_vectors;
646     } else if (mv.row < 0) {
647       ++stats->sum_in_vectors;
648     }
649   } else if (mb_row > mb_rows / 2) {
650     if (mv.row > 0) {
651       ++stats->sum_in_vectors;
652     } else if (mv.row < 0) {
653       --stats->sum_in_vectors;
654     }
655   }
656 
657   // Does the col vector point inwards or outwards?
658   if (mb_col < mb_cols / 2) {
659     if (mv.col > 0) {
660       --stats->sum_in_vectors;
661     } else if (mv.col < 0) {
662       ++stats->sum_in_vectors;
663     }
664   } else if (mb_col > mb_cols / 2) {
665     if (mv.col > 0) {
666       ++stats->sum_in_vectors;
667     } else if (mv.col < 0) {
668       --stats->sum_in_vectors;
669     }
670   }
671 }
672 
673 // Computes and returns the inter prediction error from the last frame.
674 // Computes inter prediction errors from the golden and alt ref frams and
675 // Updates stats accordingly.
676 // Inputs:
677 //   cpi: the encoder setting. Only a few params in it will be used.
678 //   last_frame: the frame buffer of the last frame.
679 //   golden_frame: the frame buffer of the golden frame.
680 //   unit_row: row index in the unit of first pass block size.
681 //   unit_col: column index in the unit of first pass block size.
682 //   recon_yoffset: the y offset of the reconstructed  frame buffer,
683 //                  indicating the starting point of the current block.
684 //   recont_uvoffset: the u/v offset of the reconstructed frame buffer,
685 //                    indicating the starting point of the current block.
686 //   src_yoffset: the y offset of the source frame buffer.
687 //   fp_block_size: first pass block size.
688 //   this_intra_error: the intra prediction error of this block.
689 //   raw_motion_err_counts: the count of raw motion vectors.
690 //   raw_motion_err_list: the array that records the raw motion error.
691 //   ref_mv: the reference used to start the motion search
692 //   best_mv: the best mv found
693 //   last_non_zero_mv: the last non zero mv found in this tile row.
694 //   stats: frame encoding stats.
695 //  Modifies:
696 //    raw_motion_err_list
697 //    best_ref_mv
698 //    last_mv
699 //    stats: many member params in it.
700 //  Returns:
701 //    this_inter_error
firstpass_inter_prediction(AV1_COMP * cpi,ThreadData * td,const YV12_BUFFER_CONFIG * const last_frame,const YV12_BUFFER_CONFIG * const golden_frame,const int unit_row,const int unit_col,const int recon_yoffset,const int recon_uvoffset,const int src_yoffset,const BLOCK_SIZE fp_block_size,const int this_intra_error,const int raw_motion_err_counts,int * raw_motion_err_list,const MV ref_mv,MV * best_mv,MV * last_non_zero_mv,FRAME_STATS * stats)702 static int firstpass_inter_prediction(
703     AV1_COMP *cpi, ThreadData *td, const YV12_BUFFER_CONFIG *const last_frame,
704     const YV12_BUFFER_CONFIG *const golden_frame, const int unit_row,
705     const int unit_col, const int recon_yoffset, const int recon_uvoffset,
706     const int src_yoffset, const BLOCK_SIZE fp_block_size,
707     const int this_intra_error, const int raw_motion_err_counts,
708     int *raw_motion_err_list, const MV ref_mv, MV *best_mv,
709     MV *last_non_zero_mv, FRAME_STATS *stats) {
710   int this_inter_error = this_intra_error;
711   AV1_COMMON *const cm = &cpi->common;
712   const CommonModeInfoParams *const mi_params = &cm->mi_params;
713   CurrentFrame *const current_frame = &cm->current_frame;
714   MACROBLOCK *const x = &td->mb;
715   MACROBLOCKD *const xd = &x->e_mbd;
716   const int is_high_bitdepth = is_cur_buf_hbd(xd);
717   const int bitdepth = xd->bd;
718   const int unit_scale = mi_size_wide[fp_block_size];
719   const BLOCK_SIZE bsize =
720       get_bsize(mi_params, fp_block_size, unit_row, unit_col);
721   const int fp_block_size_height = block_size_wide[fp_block_size];
722   const int unit_width = mi_size_wide[fp_block_size];
723   const int unit_rows = get_unit_rows(fp_block_size, mi_params->mb_rows);
724   const int unit_cols = get_unit_cols(fp_block_size, mi_params->mb_cols);
725   // Assume 0,0 motion with no mv overhead.
726   FULLPEL_MV mv = kZeroFullMv;
727   xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
728   // Set up limit values for motion vectors to prevent them extending
729   // outside the UMV borders.
730   av1_set_mv_col_limits(mi_params, &x->mv_limits, unit_col * unit_width,
731                         fp_block_size_height >> MI_SIZE_LOG2,
732                         cpi->oxcf.border_in_pixels);
733 
734   int motion_error =
735       get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
736                                     &x->plane[0].src, &xd->plane[0].pre[0]);
737 
738   // Compute the motion error of the 0,0 motion using the last source
739   // frame as the reference. Skip the further motion search on
740   // reconstructed frame if this error is small.
741   // TODO(chiyotsai): The unscaled last source might be different dimension
742   // as the current source. See BUG=aomedia:3413
743   struct buf_2d unscaled_last_source_buf_2d;
744   unscaled_last_source_buf_2d.buf =
745       cpi->unscaled_last_source->y_buffer + src_yoffset;
746   unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
747   const int raw_motion_error = get_prediction_error_bitdepth(
748       is_high_bitdepth, bitdepth, bsize, &x->plane[0].src,
749       &unscaled_last_source_buf_2d);
750   raw_motion_err_list[raw_motion_err_counts] = raw_motion_error;
751   const FIRST_PASS_SPEED_FEATURES *const fp_sf = &cpi->sf.fp_sf;
752 
753   if (raw_motion_error > fp_sf->skip_motion_search_threshold) {
754     // Test last reference frame using the previous best mv as the
755     // starting point (best reference) for the search.
756     first_pass_motion_search(cpi, x, &ref_mv, &mv, &motion_error);
757 
758     // If the current best reference mv is not centered on 0,0 then do a
759     // 0,0 based search as well.
760     if ((fp_sf->skip_zeromv_motion_search == 0) && !is_zero_mv(&ref_mv)) {
761       FULLPEL_MV tmp_mv = kZeroFullMv;
762       int tmp_err = INT_MAX;
763       first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);
764 
765       if (tmp_err < motion_error) {
766         motion_error = tmp_err;
767         mv = tmp_mv;
768       }
769     }
770   }
771 
772   // Motion search in 2nd reference frame.
773   int gf_motion_error = motion_error;
774   if ((current_frame->frame_number > 1) && golden_frame != NULL) {
775     FULLPEL_MV tmp_mv = kZeroFullMv;
776     // Assume 0,0 motion with no mv overhead.
777     av1_setup_pre_planes(xd, 0, golden_frame, 0, 0, NULL, 1);
778     xd->plane[0].pre[0].buf += recon_yoffset;
779     gf_motion_error =
780         get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
781                                       &x->plane[0].src, &xd->plane[0].pre[0]);
782     first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &gf_motion_error);
783   }
784   if (gf_motion_error < motion_error && gf_motion_error < this_intra_error) {
785     ++stats->second_ref_count;
786   }
787   // In accumulating a score for the 2nd reference frame take the
788   // best of the motion predicted score and the intra coded error
789   // (just as will be done for) accumulation of "coded_error" for
790   // the last frame.
791   if ((current_frame->frame_number > 1) && golden_frame != NULL) {
792     stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error);
793   } else {
794     // TODO(chengchen): I believe logically this should also be changed to
795     // stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error).
796     stats->sr_coded_error += motion_error;
797   }
798 
799   // Reset to last frame as reference buffer.
800   xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
801   if (av1_num_planes(&cpi->common) > 1) {
802     xd->plane[1].pre[0].buf = last_frame->u_buffer + recon_uvoffset;
803     xd->plane[2].pre[0].buf = last_frame->v_buffer + recon_uvoffset;
804   }
805 
806   // Start by assuming that intra mode is best.
807   *best_mv = kZeroMv;
808 
809   if (motion_error <= this_intra_error) {
810     // Keep a count of cases where the inter and intra were very close
811     // and very low. This helps with scene cut detection for example in
812     // cropped clips with black bars at the sides or top and bottom.
813     if (((this_intra_error - INTRA_MODE_PENALTY) * 9 <= motion_error * 10) &&
814         (this_intra_error < (2 * INTRA_MODE_PENALTY))) {
815       stats->neutral_count += 1.0;
816       // Also track cases where the intra is not much worse than the inter
817       // and use this in limiting the GF/arf group length.
818     } else if ((this_intra_error > NCOUNT_INTRA_THRESH) &&
819                (this_intra_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
820       stats->neutral_count +=
821           (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_intra_error);
822     }
823 
824     *best_mv = get_mv_from_fullmv(&mv);
825     this_inter_error = motion_error;
826     xd->mi[0]->mode = NEWMV;
827     xd->mi[0]->mv[0].as_mv = *best_mv;
828     xd->mi[0]->tx_size = TX_4X4;
829     xd->mi[0]->ref_frame[0] = LAST_FRAME;
830     xd->mi[0]->ref_frame[1] = NONE_FRAME;
831 
832     if (fp_sf->disable_recon == 0) {
833       av1_enc_build_inter_predictor(cm, xd, unit_row * unit_scale,
834                                     unit_col * unit_scale, NULL, bsize,
835                                     AOM_PLANE_Y, AOM_PLANE_Y);
836       av1_encode_sby_pass1(cpi, x, bsize);
837     }
838     stats->sum_mvr += best_mv->row;
839     stats->sum_mvr_abs += abs(best_mv->row);
840     stats->sum_mvc += best_mv->col;
841     stats->sum_mvc_abs += abs(best_mv->col);
842     stats->sum_mvrs += best_mv->row * best_mv->row;
843     stats->sum_mvcs += best_mv->col * best_mv->col;
844     ++stats->inter_count;
845 
846     accumulate_mv_stats(*best_mv, mv, unit_row, unit_col, unit_rows, unit_cols,
847                         last_non_zero_mv, stats);
848   }
849 
850   return this_inter_error;
851 }
852 
853 // Normalize the first pass stats.
854 // Error / counters are normalized to each MB.
855 // MVs are normalized to the width/height of the frame.
normalize_firstpass_stats(FIRSTPASS_STATS * fps,double num_mbs_16x16,double f_w,double f_h)856 static void normalize_firstpass_stats(FIRSTPASS_STATS *fps,
857                                       double num_mbs_16x16, double f_w,
858                                       double f_h) {
859   fps->coded_error /= num_mbs_16x16;
860   fps->sr_coded_error /= num_mbs_16x16;
861   fps->intra_error /= num_mbs_16x16;
862   fps->frame_avg_wavelet_energy /= num_mbs_16x16;
863   fps->log_coded_error = log1p(fps->coded_error);
864   fps->log_intra_error = log1p(fps->intra_error);
865   fps->MVr /= f_h;
866   fps->mvr_abs /= f_h;
867   fps->MVc /= f_w;
868   fps->mvc_abs /= f_w;
869   fps->MVrv /= (f_h * f_h);
870   fps->MVcv /= (f_w * f_w);
871   fps->new_mv_count /= num_mbs_16x16;
872 }
873 
874 // Updates the first pass stats of this frame.
875 // Input:
876 //   cpi: the encoder setting. Only a few params in it will be used.
877 //   stats: stats accumulated for this frame.
878 //   raw_err_stdev: the statndard deviation for the motion error of all the
879 //                  inter blocks of the (0,0) motion using the last source
880 //                  frame as the reference.
881 //   frame_number: current frame number.
882 //   ts_duration: Duration of the frame / collection of frames.
883 // Updates:
884 //   twopass->total_stats: the accumulated stats.
885 //   twopass->stats_buf_ctx->stats_in_end: the pointer to the current stats,
886 //                                         update its value and its position
887 //                                         in the buffer.
update_firstpass_stats(AV1_COMP * cpi,const FRAME_STATS * const stats,const double raw_err_stdev,const int frame_number,const int64_t ts_duration,const BLOCK_SIZE fp_block_size)888 static void update_firstpass_stats(AV1_COMP *cpi,
889                                    const FRAME_STATS *const stats,
890                                    const double raw_err_stdev,
891                                    const int frame_number,
892                                    const int64_t ts_duration,
893                                    const BLOCK_SIZE fp_block_size) {
894   TWO_PASS *twopass = &cpi->ppi->twopass;
895   AV1_COMMON *const cm = &cpi->common;
896   const CommonModeInfoParams *const mi_params = &cm->mi_params;
897   FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
898   FIRSTPASS_STATS fps;
899   // The minimum error here insures some bit allocation to frames even
900   // in static regions. The allocation per MB declines for larger formats
901   // where the typical "real" energy per MB also falls.
902   // Initial estimate here uses sqrt(mbs) to define the min_err, where the
903   // number of mbs is proportional to the image area.
904   const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
905                                 ? cpi->initial_mbs
906                                 : mi_params->MBs;
907   // Number of actual units used in the first pass, it can be other square
908   // block sizes than 16X16.
909   const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
910   const double min_err = 200 * sqrt(num_mbs);
911 
912   fps.weight = stats->intra_factor * stats->brightness_factor;
913   fps.frame = frame_number;
914   fps.coded_error = (double)(stats->coded_error >> 8) + min_err;
915   fps.sr_coded_error = (double)(stats->sr_coded_error >> 8) + min_err;
916   fps.intra_error = (double)(stats->intra_error >> 8) + min_err;
917   fps.frame_avg_wavelet_energy = (double)stats->frame_avg_wavelet_energy;
918   fps.count = 1.0;
919   fps.pcnt_inter = (double)stats->inter_count / num_mbs;
920   fps.pcnt_second_ref = (double)stats->second_ref_count / num_mbs;
921   fps.pcnt_neutral = (double)stats->neutral_count / num_mbs;
922   fps.intra_skip_pct = (double)stats->intra_skip_count / num_mbs;
923   fps.inactive_zone_rows = (double)stats->image_data_start_row;
924   fps.inactive_zone_cols = 0.0;  // Placeholder: not currently supported.
925   fps.raw_error_stdev = raw_err_stdev;
926   fps.is_flash = 0;
927   fps.noise_var = 0.0;
928   fps.cor_coeff = 1.0;
929   fps.log_coded_error = 0.0;
930   fps.log_intra_error = 0.0;
931 
932   if (stats->mv_count > 0) {
933     fps.MVr = (double)stats->sum_mvr / stats->mv_count;
934     fps.mvr_abs = (double)stats->sum_mvr_abs / stats->mv_count;
935     fps.MVc = (double)stats->sum_mvc / stats->mv_count;
936     fps.mvc_abs = (double)stats->sum_mvc_abs / stats->mv_count;
937     fps.MVrv = ((double)stats->sum_mvrs -
938                 ((double)stats->sum_mvr * stats->sum_mvr / stats->mv_count)) /
939                stats->mv_count;
940     fps.MVcv = ((double)stats->sum_mvcs -
941                 ((double)stats->sum_mvc * stats->sum_mvc / stats->mv_count)) /
942                stats->mv_count;
943     fps.mv_in_out_count = (double)stats->sum_in_vectors / (stats->mv_count * 2);
944     fps.new_mv_count = stats->new_mv_count;
945     fps.pcnt_motion = (double)stats->mv_count / num_mbs;
946   } else {
947     fps.MVr = 0.0;
948     fps.mvr_abs = 0.0;
949     fps.MVc = 0.0;
950     fps.mvc_abs = 0.0;
951     fps.MVrv = 0.0;
952     fps.MVcv = 0.0;
953     fps.mv_in_out_count = 0.0;
954     fps.new_mv_count = 0.0;
955     fps.pcnt_motion = 0.0;
956   }
957 
958   // TODO(paulwilkins):  Handle the case when duration is set to 0, or
959   // something less than the full time between subsequent values of
960   // cpi->source_time_stamp.
961   fps.duration = (double)ts_duration;
962 
963   normalize_firstpass_stats(&fps, num_mbs_16X16, cm->width, cm->height);
964 
965   // We will store the stats inside the persistent twopass struct (and NOT the
966   // local variable 'fps'), and then cpi->output_pkt_list will point to it.
967   *this_frame_stats = fps;
968   if (!cpi->ppi->lap_enabled) {
969     output_stats(this_frame_stats, cpi->ppi->output_pkt_list);
970   } else {
971     av1_firstpass_info_push(&twopass->firstpass_info, this_frame_stats);
972   }
973   if (cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL) {
974     av1_accumulate_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats, &fps);
975   }
976   twopass->stats_buf_ctx->stats_in_end++;
977   // When ducky encode is on, we always use linear buffer for stats_buf_ctx.
978   if (cpi->use_ducky_encode == 0) {
979     // TODO(angiebird): Figure out why first pass uses circular buffer.
980     /* In the case of two pass, first pass uses it as a circular buffer,
981      * when LAP is enabled it is used as a linear buffer*/
982     if ((cpi->oxcf.pass == AOM_RC_FIRST_PASS) &&
983         (twopass->stats_buf_ctx->stats_in_end >=
984          twopass->stats_buf_ctx->stats_in_buf_end)) {
985       twopass->stats_buf_ctx->stats_in_end =
986           twopass->stats_buf_ctx->stats_in_start;
987     }
988   }
989 }
990 
print_reconstruction_frame(const YV12_BUFFER_CONFIG * const last_frame,int frame_number,int do_print)991 static void print_reconstruction_frame(
992     const YV12_BUFFER_CONFIG *const last_frame, int frame_number,
993     int do_print) {
994   if (!do_print) return;
995 
996   char filename[512];
997   FILE *recon_file;
998   snprintf(filename, sizeof(filename), "enc%04d.yuv", frame_number);
999 
1000   if (frame_number == 0) {
1001     recon_file = fopen(filename, "wb");
1002   } else {
1003     recon_file = fopen(filename, "ab");
1004   }
1005 
1006   fwrite(last_frame->buffer_alloc, last_frame->frame_size, 1, recon_file);
1007   fclose(recon_file);
1008 }
1009 
accumulate_frame_stats(FRAME_STATS * mb_stats,int mb_rows,int mb_cols)1010 static FRAME_STATS accumulate_frame_stats(FRAME_STATS *mb_stats, int mb_rows,
1011                                           int mb_cols) {
1012   FRAME_STATS stats = { 0 };
1013   int i, j;
1014 
1015   stats.image_data_start_row = INVALID_ROW;
1016   for (j = 0; j < mb_rows; j++) {
1017     for (i = 0; i < mb_cols; i++) {
1018       FRAME_STATS mb_stat = mb_stats[j * mb_cols + i];
1019       stats.brightness_factor += mb_stat.brightness_factor;
1020       stats.coded_error += mb_stat.coded_error;
1021       stats.frame_avg_wavelet_energy += mb_stat.frame_avg_wavelet_energy;
1022       if (stats.image_data_start_row == INVALID_ROW &&
1023           mb_stat.image_data_start_row != INVALID_ROW) {
1024         stats.image_data_start_row = mb_stat.image_data_start_row;
1025       }
1026       stats.inter_count += mb_stat.inter_count;
1027       stats.intra_error += mb_stat.intra_error;
1028       stats.intra_factor += mb_stat.intra_factor;
1029       stats.intra_skip_count += mb_stat.intra_skip_count;
1030       stats.mv_count += mb_stat.mv_count;
1031       stats.neutral_count += mb_stat.neutral_count;
1032       stats.new_mv_count += mb_stat.new_mv_count;
1033       stats.second_ref_count += mb_stat.second_ref_count;
1034       stats.sr_coded_error += mb_stat.sr_coded_error;
1035       stats.sum_in_vectors += mb_stat.sum_in_vectors;
1036       stats.sum_mvc += mb_stat.sum_mvc;
1037       stats.sum_mvc_abs += mb_stat.sum_mvc_abs;
1038       stats.sum_mvcs += mb_stat.sum_mvcs;
1039       stats.sum_mvr += mb_stat.sum_mvr;
1040       stats.sum_mvr_abs += mb_stat.sum_mvr_abs;
1041       stats.sum_mvrs += mb_stat.sum_mvrs;
1042     }
1043   }
1044   return stats;
1045 }
1046 
setup_firstpass_data(AV1_COMMON * const cm,FirstPassData * firstpass_data,const int unit_rows,const int unit_cols)1047 static void setup_firstpass_data(AV1_COMMON *const cm,
1048                                  FirstPassData *firstpass_data,
1049                                  const int unit_rows, const int unit_cols) {
1050   CHECK_MEM_ERROR(cm, firstpass_data->raw_motion_err_list,
1051                   aom_calloc(unit_rows * unit_cols,
1052                              sizeof(*firstpass_data->raw_motion_err_list)));
1053   CHECK_MEM_ERROR(
1054       cm, firstpass_data->mb_stats,
1055       aom_calloc(unit_rows * unit_cols, sizeof(*firstpass_data->mb_stats)));
1056   for (int j = 0; j < unit_rows; j++) {
1057     for (int i = 0; i < unit_cols; i++) {
1058       firstpass_data->mb_stats[j * unit_cols + i].image_data_start_row =
1059           INVALID_ROW;
1060     }
1061   }
1062 }
1063 
av1_free_firstpass_data(FirstPassData * firstpass_data)1064 void av1_free_firstpass_data(FirstPassData *firstpass_data) {
1065   aom_free(firstpass_data->raw_motion_err_list);
1066   firstpass_data->raw_motion_err_list = NULL;
1067   aom_free(firstpass_data->mb_stats);
1068   firstpass_data->mb_stats = NULL;
1069 }
1070 
av1_get_unit_rows_in_tile(const TileInfo * tile,const BLOCK_SIZE fp_block_size)1071 int av1_get_unit_rows_in_tile(const TileInfo *tile,
1072                               const BLOCK_SIZE fp_block_size) {
1073   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1074   const int mi_rows = tile->mi_row_end - tile->mi_row_start;
1075   const int unit_rows = CEIL_POWER_OF_TWO(mi_rows, unit_height_log2);
1076 
1077   return unit_rows;
1078 }
1079 
av1_get_unit_cols_in_tile(const TileInfo * tile,const BLOCK_SIZE fp_block_size)1080 int av1_get_unit_cols_in_tile(const TileInfo *tile,
1081                               const BLOCK_SIZE fp_block_size) {
1082   const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
1083   const int mi_cols = tile->mi_col_end - tile->mi_col_start;
1084   const int unit_cols = CEIL_POWER_OF_TWO(mi_cols, unit_width_log2);
1085 
1086   return unit_cols;
1087 }
1088 
1089 #define FIRST_PASS_ALT_REF_DISTANCE 16
first_pass_tile(AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,const BLOCK_SIZE fp_block_size)1090 static void first_pass_tile(AV1_COMP *cpi, ThreadData *td,
1091                             TileDataEnc *tile_data,
1092                             const BLOCK_SIZE fp_block_size) {
1093   TileInfo *tile = &tile_data->tile_info;
1094   const int unit_height = mi_size_high[fp_block_size];
1095   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1096   for (int mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
1097        mi_row += unit_height) {
1098     av1_first_pass_row(cpi, td, tile_data, mi_row >> unit_height_log2,
1099                        fp_block_size);
1100   }
1101 }
1102 
first_pass_tiles(AV1_COMP * cpi,const BLOCK_SIZE fp_block_size)1103 static void first_pass_tiles(AV1_COMP *cpi, const BLOCK_SIZE fp_block_size) {
1104   AV1_COMMON *const cm = &cpi->common;
1105   const int tile_cols = cm->tiles.cols;
1106   const int tile_rows = cm->tiles.rows;
1107 
1108   av1_alloc_src_diff_buf(cm, &cpi->td.mb);
1109   for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
1110     for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
1111       TileDataEnc *const tile_data =
1112           &cpi->tile_data[tile_row * tile_cols + tile_col];
1113       first_pass_tile(cpi, &cpi->td, tile_data, fp_block_size);
1114     }
1115   }
1116 }
1117 
av1_first_pass_row(AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,const int unit_row,const BLOCK_SIZE fp_block_size)1118 void av1_first_pass_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
1119                         const int unit_row, const BLOCK_SIZE fp_block_size) {
1120   MACROBLOCK *const x = &td->mb;
1121   AV1_COMMON *const cm = &cpi->common;
1122   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1123   const SequenceHeader *const seq_params = cm->seq_params;
1124   const int num_planes = av1_num_planes(cm);
1125   MACROBLOCKD *const xd = &x->e_mbd;
1126   TileInfo *tile = &tile_data->tile_info;
1127   const int qindex = find_fp_qindex(seq_params->bit_depth);
1128   const int fp_block_size_width = block_size_high[fp_block_size];
1129   const int fp_block_size_height = block_size_wide[fp_block_size];
1130   const int unit_width = mi_size_wide[fp_block_size];
1131   const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
1132   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1133   const int unit_cols = mi_params->mb_cols * 4 / unit_width;
1134   int raw_motion_err_counts = 0;
1135   int unit_row_in_tile = unit_row - (tile->mi_row_start >> unit_height_log2);
1136   int unit_col_start = tile->mi_col_start >> unit_width_log2;
1137   int unit_cols_in_tile = av1_get_unit_cols_in_tile(tile, fp_block_size);
1138   MultiThreadInfo *const mt_info = &cpi->mt_info;
1139   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1140   AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
1141 
1142   const YV12_BUFFER_CONFIG *last_frame =
1143       av1_get_scaled_ref_frame(cpi, LAST_FRAME);
1144   if (!last_frame) {
1145     last_frame = get_ref_frame_yv12_buf(cm, LAST_FRAME);
1146   }
1147   const YV12_BUFFER_CONFIG *golden_frame =
1148       av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
1149   if (!golden_frame) {
1150     golden_frame = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
1151   }
1152   YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;
1153 
1154   PICK_MODE_CONTEXT *ctx = td->firstpass_ctx;
1155   FRAME_STATS *mb_stats =
1156       cpi->firstpass_data.mb_stats + unit_row * unit_cols + unit_col_start;
1157   int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list +
1158                              unit_row * unit_cols + unit_col_start;
1159   MV *first_top_mv = &tile_data->firstpass_top_mv;
1160 
1161   for (int i = 0; i < num_planes; ++i) {
1162     x->plane[i].coeff = ctx->coeff[i];
1163     x->plane[i].qcoeff = ctx->qcoeff[i];
1164     x->plane[i].eobs = ctx->eobs[i];
1165     x->plane[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
1166     x->plane[i].dqcoeff = ctx->dqcoeff[i];
1167   }
1168 
1169   const int src_y_stride = cpi->source->y_stride;
1170   const int recon_y_stride = this_frame->y_stride;
1171   const int recon_uv_stride = this_frame->uv_stride;
1172   const int uv_mb_height =
1173       fp_block_size_height >> (this_frame->y_height > this_frame->uv_height);
1174 
1175   MV best_ref_mv = kZeroMv;
1176   MV last_mv;
1177 
1178   // Reset above block coeffs.
1179   xd->up_available = (unit_row_in_tile != 0);
1180   int recon_yoffset = (unit_row * recon_y_stride * fp_block_size_height) +
1181                       (unit_col_start * fp_block_size_width);
1182   int src_yoffset = (unit_row * src_y_stride * fp_block_size_height) +
1183                     (unit_col_start * fp_block_size_width);
1184   int recon_uvoffset = (unit_row * recon_uv_stride * uv_mb_height) +
1185                        (unit_col_start * uv_mb_height);
1186 
1187   // Set up limit values for motion vectors to prevent them extending
1188   // outside the UMV borders.
1189   av1_set_mv_row_limits(
1190       mi_params, &x->mv_limits, (unit_row << unit_height_log2),
1191       (fp_block_size_height >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels);
1192 
1193   av1_setup_src_planes(x, cpi->source, unit_row << unit_height_log2,
1194                        tile->mi_col_start, num_planes, fp_block_size);
1195 
1196   // Fix - zero the 16x16 block first. This ensures correct this_intra_error for
1197   // block sizes smaller than 16x16.
1198   av1_zero_array(x->plane[0].src_diff, 256);
1199 
1200   for (int unit_col_in_tile = 0; unit_col_in_tile < unit_cols_in_tile;
1201        unit_col_in_tile++) {
1202     const int unit_col = unit_col_start + unit_col_in_tile;
1203 
1204     enc_row_mt->sync_read_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile);
1205 
1206 #if CONFIG_MULTITHREAD
1207     if (cpi->ppi->p_mt_info.num_workers > 1) {
1208       pthread_mutex_lock(enc_row_mt->mutex_);
1209       bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
1210       pthread_mutex_unlock(enc_row_mt->mutex_);
1211       // Exit in case any worker has encountered an error.
1212       if (firstpass_mt_exit) return;
1213     }
1214 #endif
1215 
1216     if (unit_col_in_tile == 0) {
1217       last_mv = *first_top_mv;
1218     }
1219     int this_intra_error = firstpass_intra_prediction(
1220         cpi, td, this_frame, tile, unit_row, unit_col, recon_yoffset,
1221         recon_uvoffset, fp_block_size, qindex, mb_stats);
1222 
1223     if (!frame_is_intra_only(cm)) {
1224       const int this_inter_error = firstpass_inter_prediction(
1225           cpi, td, last_frame, golden_frame, unit_row, unit_col, recon_yoffset,
1226           recon_uvoffset, src_yoffset, fp_block_size, this_intra_error,
1227           raw_motion_err_counts, raw_motion_err_list, best_ref_mv, &best_ref_mv,
1228           &last_mv, mb_stats);
1229       if (unit_col_in_tile == 0) {
1230         *first_top_mv = last_mv;
1231       }
1232       mb_stats->coded_error += this_inter_error;
1233       ++raw_motion_err_counts;
1234     } else {
1235       mb_stats->sr_coded_error += this_intra_error;
1236       mb_stats->coded_error += this_intra_error;
1237     }
1238 
1239     // Adjust to the next column of MBs.
1240     x->plane[0].src.buf += fp_block_size_width;
1241     if (num_planes > 1) {
1242       x->plane[1].src.buf += uv_mb_height;
1243       x->plane[2].src.buf += uv_mb_height;
1244     }
1245 
1246     recon_yoffset += fp_block_size_width;
1247     src_yoffset += fp_block_size_width;
1248     recon_uvoffset += uv_mb_height;
1249     mb_stats++;
1250 
1251     enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile,
1252                                unit_cols_in_tile);
1253   }
1254 }
1255 
av1_noop_first_pass_frame(AV1_COMP * cpi,const int64_t ts_duration)1256 void av1_noop_first_pass_frame(AV1_COMP *cpi, const int64_t ts_duration) {
1257   AV1_COMMON *const cm = &cpi->common;
1258   CurrentFrame *const current_frame = &cm->current_frame;
1259   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1260   int max_mb_rows = mi_params->mb_rows;
1261   int max_mb_cols = mi_params->mb_cols;
1262   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
1263     int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
1264     max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
1265   }
1266   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
1267     int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
1268     max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
1269   }
1270   const int unit_rows = get_unit_rows(BLOCK_16X16, max_mb_rows);
1271   const int unit_cols = get_unit_cols(BLOCK_16X16, max_mb_cols);
1272   setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
1273   FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;
1274   FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
1275   av1_free_firstpass_data(&cpi->firstpass_data);
1276   update_firstpass_stats(cpi, &stats, 1.0, current_frame->frame_number,
1277                          ts_duration, BLOCK_16X16);
1278 }
1279 
av1_first_pass(AV1_COMP * cpi,const int64_t ts_duration)1280 void av1_first_pass(AV1_COMP *cpi, const int64_t ts_duration) {
1281   MACROBLOCK *const x = &cpi->td.mb;
1282   AV1_COMMON *const cm = &cpi->common;
1283   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1284   CurrentFrame *const current_frame = &cm->current_frame;
1285   const SequenceHeader *const seq_params = cm->seq_params;
1286   const int num_planes = av1_num_planes(cm);
1287   MACROBLOCKD *const xd = &x->e_mbd;
1288   const int qindex = find_fp_qindex(seq_params->bit_depth);
1289   const int ref_frame_flags_backup = cpi->ref_frame_flags;
1290   cpi->ref_frame_flags = av1_ref_frame_flag_list[LAST_FRAME] |
1291                          av1_ref_frame_flag_list[GOLDEN_FRAME];
1292 
1293   // Detect if the key frame is screen content type.
1294   if (frame_is_intra_only(cm)) {
1295     FeatureFlags *const features = &cm->features;
1296     assert(cpi->source != NULL);
1297     xd->cur_buf = cpi->source;
1298     av1_set_screen_content_options(cpi, features);
1299   }
1300 
1301   // Prepare the speed features
1302   av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed);
1303 
1304   // Unit size for the first pass encoding.
1305   const BLOCK_SIZE fp_block_size =
1306       get_fp_block_size(cpi->is_screen_content_type);
1307 
1308   int max_mb_rows = mi_params->mb_rows;
1309   int max_mb_cols = mi_params->mb_cols;
1310   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
1311     int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
1312     max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
1313   }
1314   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
1315     int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
1316     max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
1317   }
1318 
1319   // Number of rows in the unit size.
1320   // Note max_mb_rows and max_mb_cols are in the unit of 16x16.
1321   const int unit_rows = get_unit_rows(fp_block_size, max_mb_rows);
1322   const int unit_cols = get_unit_cols(fp_block_size, max_mb_cols);
1323 
1324   // Set fp_block_size, for the convenience of multi-thread usage.
1325   cpi->fp_block_size = fp_block_size;
1326 
1327   setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
1328   int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list;
1329   FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;
1330 
1331   // multi threading info
1332   MultiThreadInfo *const mt_info = &cpi->mt_info;
1333   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1334 
1335   const int tile_cols = cm->tiles.cols;
1336   const int tile_rows = cm->tiles.rows;
1337   if (cpi->allocated_tiles < tile_cols * tile_rows) {
1338     av1_alloc_tile_data(cpi);
1339   }
1340 
1341   av1_init_tile_data(cpi);
1342 
1343   const YV12_BUFFER_CONFIG *last_frame = NULL;
1344   const YV12_BUFFER_CONFIG *golden_frame = NULL;
1345   if (!frame_is_intra_only(cm)) {
1346     av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0);
1347     last_frame = av1_is_scaled(get_ref_scale_factors_const(cm, LAST_FRAME))
1348                      ? av1_get_scaled_ref_frame(cpi, LAST_FRAME)
1349                      : get_ref_frame_yv12_buf(cm, LAST_FRAME);
1350     golden_frame = av1_is_scaled(get_ref_scale_factors_const(cm, GOLDEN_FRAME))
1351                        ? av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME)
1352                        : get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
1353   }
1354 
1355   YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;
1356   // First pass code requires valid last and new frame buffers.
1357   assert(this_frame != NULL);
1358   assert(frame_is_intra_only(cm) || (last_frame != NULL));
1359 
1360   av1_setup_frame_size(cpi);
1361   av1_set_mv_search_params(cpi);
1362 
1363   set_mi_offsets(mi_params, xd, 0, 0);
1364   xd->mi[0]->bsize = fp_block_size;
1365 
1366   // Do not use periodic key frames.
1367   cpi->rc.frames_to_key = INT_MAX;
1368 
1369   av1_set_quantizer(
1370       cm, cpi->oxcf.q_cfg.qm_minlevel, cpi->oxcf.q_cfg.qm_maxlevel, qindex,
1371       cpi->oxcf.q_cfg.enable_chroma_deltaq, cpi->oxcf.q_cfg.enable_hdr_deltaq);
1372 
1373   av1_setup_block_planes(xd, seq_params->subsampling_x,
1374                          seq_params->subsampling_y, num_planes);
1375 
1376   av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, fp_block_size);
1377   av1_setup_dst_planes(xd->plane, seq_params->sb_size, this_frame, 0, 0, 0,
1378                        num_planes);
1379 
1380   if (!frame_is_intra_only(cm)) {
1381     av1_setup_pre_planes(xd, 0, last_frame, 0, 0, NULL, num_planes);
1382   }
1383 
1384   set_mi_offsets(mi_params, xd, 0, 0);
1385 
1386   // Don't store luma on the fist pass since chroma is not computed
1387   xd->cfl.store_y = 0;
1388   av1_frame_init_quantizer(cpi);
1389 
1390   av1_default_coef_probs(cm);
1391   av1_init_mode_probs(cm->fc);
1392   av1_init_mv_probs(cm);
1393   av1_initialize_rd_consts(cpi);
1394 
1395   enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy;
1396   enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy;
1397 
1398   if (mt_info->num_workers > 1) {
1399     enc_row_mt->sync_read_ptr = av1_row_mt_sync_read;
1400     enc_row_mt->sync_write_ptr = av1_row_mt_sync_write;
1401     av1_fp_encode_tiles_row_mt(cpi);
1402   } else {
1403     first_pass_tiles(cpi, fp_block_size);
1404   }
1405 
1406   FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
1407   int total_raw_motion_err_count =
1408       frame_is_intra_only(cm) ? 0 : unit_rows * unit_cols;
1409   const double raw_err_stdev =
1410       raw_motion_error_stdev(raw_motion_err_list, total_raw_motion_err_count);
1411   av1_free_firstpass_data(&cpi->firstpass_data);
1412   av1_dealloc_src_diff_buf(&cpi->td.mb, av1_num_planes(cm));
1413 
1414   // Clamp the image start to rows/2. This number of rows is discarded top
1415   // and bottom as dead data so rows / 2 means the frame is blank.
1416   if ((stats.image_data_start_row > unit_rows / 2) ||
1417       (stats.image_data_start_row == INVALID_ROW)) {
1418     stats.image_data_start_row = unit_rows / 2;
1419   }
1420   // Exclude any image dead zone
1421   if (stats.image_data_start_row > 0) {
1422     stats.intra_skip_count =
1423         AOMMAX(0, stats.intra_skip_count -
1424                       (stats.image_data_start_row * unit_cols * 2));
1425   }
1426 
1427   TWO_PASS *twopass = &cpi->ppi->twopass;
1428   const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
1429                                 ? cpi->initial_mbs
1430                                 : mi_params->MBs;
1431   // Number of actual units used in the first pass, it can be other square
1432   // block sizes than 16X16.
1433   const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
1434   stats.intra_factor = stats.intra_factor / (double)num_mbs;
1435   stats.brightness_factor = stats.brightness_factor / (double)num_mbs;
1436   FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
1437   update_firstpass_stats(cpi, &stats, raw_err_stdev,
1438                          current_frame->frame_number, ts_duration,
1439                          fp_block_size);
1440 
1441   // Copy the previous Last Frame back into gf buffer if the prediction is good
1442   // enough... but also don't allow it to lag too far.
1443   if ((twopass->sr_update_lag > 3) ||
1444       ((current_frame->frame_number > 0) &&
1445        (this_frame_stats->pcnt_inter > 0.20) &&
1446        ((this_frame_stats->intra_error /
1447          DOUBLE_DIVIDE_CHECK(this_frame_stats->coded_error)) > 2.0))) {
1448     if (golden_frame != NULL) {
1449       assign_frame_buffer_p(
1450           &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
1451           cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
1452     }
1453     twopass->sr_update_lag = 1;
1454   } else {
1455     ++twopass->sr_update_lag;
1456   }
1457 
1458   aom_extend_frame_borders(this_frame, num_planes);
1459 
1460   // The frame we just compressed now becomes the last frame.
1461   assign_frame_buffer_p(
1462       &cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)], cm->cur_frame);
1463 
1464   // Special case for the first frame. Copy into the GF buffer as a second
1465   // reference.
1466   if (current_frame->frame_number == 0 &&
1467       get_ref_frame_map_idx(cm, GOLDEN_FRAME) != INVALID_IDX) {
1468     assign_frame_buffer_p(
1469         &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
1470         cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
1471   }
1472 
1473   print_reconstruction_frame(last_frame, current_frame->frame_number,
1474                              /*do_print=*/0);
1475 
1476   ++current_frame->frame_number;
1477   cpi->ref_frame_flags = ref_frame_flags_backup;
1478   if (!frame_is_intra_only(cm)) {
1479     release_scaled_references(cpi);
1480   }
1481 }
1482 
av1_firstpass_info_init(FIRSTPASS_INFO * firstpass_info,FIRSTPASS_STATS * ext_stats_buf,int ext_stats_buf_size)1483 aom_codec_err_t av1_firstpass_info_init(FIRSTPASS_INFO *firstpass_info,
1484                                         FIRSTPASS_STATS *ext_stats_buf,
1485                                         int ext_stats_buf_size) {
1486   assert(IMPLIES(ext_stats_buf == NULL, ext_stats_buf_size == 0));
1487   if (ext_stats_buf == NULL) {
1488     firstpass_info->stats_buf = firstpass_info->static_stats_buf;
1489     firstpass_info->stats_buf_size =
1490         sizeof(firstpass_info->static_stats_buf) /
1491         sizeof(firstpass_info->static_stats_buf[0]);
1492     firstpass_info->start_index = 0;
1493     firstpass_info->cur_index = 0;
1494     firstpass_info->stats_count = 0;
1495     firstpass_info->future_stats_count = 0;
1496     firstpass_info->past_stats_count = 0;
1497     av1_zero(firstpass_info->total_stats);
1498     if (ext_stats_buf_size == 0) {
1499       return AOM_CODEC_OK;
1500     } else {
1501       return AOM_CODEC_ERROR;
1502     }
1503   } else {
1504     firstpass_info->stats_buf = ext_stats_buf;
1505     firstpass_info->stats_buf_size = ext_stats_buf_size;
1506     firstpass_info->start_index = 0;
1507     firstpass_info->cur_index = 0;
1508     firstpass_info->stats_count = firstpass_info->stats_buf_size;
1509     firstpass_info->future_stats_count = firstpass_info->stats_count;
1510     firstpass_info->past_stats_count = 0;
1511     av1_zero(firstpass_info->total_stats);
1512     for (int i = 0; i < firstpass_info->stats_count; ++i) {
1513       av1_accumulate_stats(&firstpass_info->total_stats,
1514                            &firstpass_info->stats_buf[i]);
1515     }
1516   }
1517   return AOM_CODEC_OK;
1518 }
1519 
av1_firstpass_info_move_cur_index(FIRSTPASS_INFO * firstpass_info)1520 aom_codec_err_t av1_firstpass_info_move_cur_index(
1521     FIRSTPASS_INFO *firstpass_info) {
1522   assert(firstpass_info->future_stats_count +
1523              firstpass_info->past_stats_count ==
1524          firstpass_info->stats_count);
1525   if (firstpass_info->future_stats_count > 1) {
1526     firstpass_info->cur_index =
1527         (firstpass_info->cur_index + 1) % firstpass_info->stats_buf_size;
1528     --firstpass_info->future_stats_count;
1529     ++firstpass_info->past_stats_count;
1530     return AOM_CODEC_OK;
1531   } else {
1532     return AOM_CODEC_ERROR;
1533   }
1534 }
1535 
av1_firstpass_info_pop(FIRSTPASS_INFO * firstpass_info)1536 aom_codec_err_t av1_firstpass_info_pop(FIRSTPASS_INFO *firstpass_info) {
1537   if (firstpass_info->stats_count > 0 && firstpass_info->past_stats_count > 0) {
1538     const int next_start =
1539         (firstpass_info->start_index + 1) % firstpass_info->stats_buf_size;
1540     firstpass_info->start_index = next_start;
1541     --firstpass_info->stats_count;
1542     --firstpass_info->past_stats_count;
1543     return AOM_CODEC_OK;
1544   } else {
1545     return AOM_CODEC_ERROR;
1546   }
1547 }
1548 
av1_firstpass_info_move_cur_index_and_pop(FIRSTPASS_INFO * firstpass_info)1549 aom_codec_err_t av1_firstpass_info_move_cur_index_and_pop(
1550     FIRSTPASS_INFO *firstpass_info) {
1551   aom_codec_err_t ret = av1_firstpass_info_move_cur_index(firstpass_info);
1552   if (ret != AOM_CODEC_OK) return ret;
1553   ret = av1_firstpass_info_pop(firstpass_info);
1554   return ret;
1555 }
1556 
av1_firstpass_info_push(FIRSTPASS_INFO * firstpass_info,const FIRSTPASS_STATS * input_stats)1557 aom_codec_err_t av1_firstpass_info_push(FIRSTPASS_INFO *firstpass_info,
1558                                         const FIRSTPASS_STATS *input_stats) {
1559   if (firstpass_info->stats_count < firstpass_info->stats_buf_size) {
1560     const int next_index =
1561         (firstpass_info->start_index + firstpass_info->stats_count) %
1562         firstpass_info->stats_buf_size;
1563     firstpass_info->stats_buf[next_index] = *input_stats;
1564     ++firstpass_info->stats_count;
1565     ++firstpass_info->future_stats_count;
1566     av1_accumulate_stats(&firstpass_info->total_stats, input_stats);
1567     return AOM_CODEC_OK;
1568   } else {
1569     return AOM_CODEC_ERROR;
1570   }
1571 }
1572 
av1_firstpass_info_peek(const FIRSTPASS_INFO * firstpass_info,int offset_from_cur)1573 const FIRSTPASS_STATS *av1_firstpass_info_peek(
1574     const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) {
1575   if (offset_from_cur >= -firstpass_info->past_stats_count &&
1576       offset_from_cur < firstpass_info->future_stats_count) {
1577     const int index = (firstpass_info->cur_index + offset_from_cur) %
1578                       firstpass_info->stats_buf_size;
1579     return &firstpass_info->stats_buf[index];
1580   } else {
1581     return NULL;
1582   }
1583 }
1584 
av1_firstpass_info_future_count(const FIRSTPASS_INFO * firstpass_info,int offset_from_cur)1585 int av1_firstpass_info_future_count(const FIRSTPASS_INFO *firstpass_info,
1586                                     int offset_from_cur) {
1587   if (offset_from_cur < firstpass_info->future_stats_count) {
1588     return firstpass_info->future_stats_count - offset_from_cur;
1589   }
1590   return 0;
1591 }
1592