xref: /aosp_15_r20/external/libaom/av1/encoder/encoder.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdbool.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <time.h>
20 
21 #include "av1/common/scale.h"
22 #include "config/aom_config.h"
23 #include "config/aom_dsp_rtcd.h"
24 
25 #include "aom/aomcx.h"
26 
27 #if CONFIG_DENOISE
28 #include "aom_dsp/grain_table.h"
29 #include "aom_dsp/noise_util.h"
30 #include "aom_dsp/noise_model.h"
31 #endif
32 #include "aom_dsp/flow_estimation/corner_detect.h"
33 #include "aom_dsp/psnr.h"
34 #if CONFIG_INTERNAL_STATS
35 #include "aom_dsp/ssim.h"
36 #endif
37 #include "aom_ports/aom_timer.h"
38 #include "aom_ports/mem.h"
39 #include "aom_util/aom_pthread.h"
40 #if CONFIG_BITSTREAM_DEBUG
41 #include "aom_util/debug_util.h"
42 #endif  // CONFIG_BITSTREAM_DEBUG
43 
44 #include "av1/common/alloccommon.h"
45 #include "av1/common/debugmodes.h"
46 #include "av1/common/filter.h"
47 #include "av1/common/idct.h"
48 #include "av1/common/reconinter.h"
49 #include "av1/common/reconintra.h"
50 #include "av1/common/resize.h"
51 #include "av1/common/tile_common.h"
52 
53 #include "av1/encoder/allintra_vis.h"
54 #include "av1/encoder/aq_complexity.h"
55 #include "av1/encoder/aq_cyclicrefresh.h"
56 #include "av1/encoder/aq_variance.h"
57 #include "av1/encoder/bitstream.h"
58 #if CONFIG_INTERNAL_STATS
59 #include "av1/encoder/blockiness.h"
60 #endif
61 #include "av1/encoder/context_tree.h"
62 #include "av1/encoder/dwt.h"
63 #include "av1/encoder/encodeframe.h"
64 #include "av1/encoder/encodemv.h"
65 #include "av1/encoder/encode_strategy.h"
66 #include "av1/encoder/encoder.h"
67 #include "av1/encoder/encoder_alloc.h"
68 #include "av1/encoder/encoder_utils.h"
69 #include "av1/encoder/encodetxb.h"
70 #include "av1/encoder/ethread.h"
71 #include "av1/encoder/firstpass.h"
72 #include "av1/encoder/hash_motion.h"
73 #include "av1/encoder/hybrid_fwd_txfm.h"
74 #include "av1/encoder/intra_mode_search.h"
75 #include "av1/encoder/mv_prec.h"
76 #include "av1/encoder/pass2_strategy.h"
77 #include "av1/encoder/pickcdef.h"
78 #include "av1/encoder/picklpf.h"
79 #include "av1/encoder/pickrst.h"
80 #include "av1/encoder/random.h"
81 #include "av1/encoder/ratectrl.h"
82 #include "av1/encoder/rc_utils.h"
83 #include "av1/encoder/rd.h"
84 #include "av1/encoder/rdopt.h"
85 #if CONFIG_SALIENCY_MAP
86 #include "av1/encoder/saliency_map.h"
87 #endif
88 #include "av1/encoder/segmentation.h"
89 #include "av1/encoder/speed_features.h"
90 #include "av1/encoder/superres_scale.h"
91 #if CONFIG_THREE_PASS
92 #include "av1/encoder/thirdpass.h"
93 #endif
94 #include "av1/encoder/tpl_model.h"
95 #include "av1/encoder/reconinter_enc.h"
96 #include "av1/encoder/var_based_part.h"
97 
98 #define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7
99 
100 // #define OUTPUT_YUV_REC
101 #ifdef OUTPUT_YUV_REC
102 FILE *yuv_rec_file;
103 #define FILE_NAME_LEN 100
104 #endif
105 
106 #ifdef OUTPUT_YUV_DENOISED
107 FILE *yuv_denoised_file = NULL;
108 #endif
109 
Scale2Ratio(AOM_SCALING_MODE mode,int * hr,int * hs)110 static inline void Scale2Ratio(AOM_SCALING_MODE mode, int *hr, int *hs) {
111   switch (mode) {
112     case AOME_NORMAL:
113       *hr = 1;
114       *hs = 1;
115       break;
116     case AOME_FOURFIVE:
117       *hr = 4;
118       *hs = 5;
119       break;
120     case AOME_THREEFIVE:
121       *hr = 3;
122       *hs = 5;
123       break;
124     case AOME_THREEFOUR:
125       *hr = 3;
126       *hs = 4;
127       break;
128     case AOME_ONEFOUR:
129       *hr = 1;
130       *hs = 4;
131       break;
132     case AOME_ONEEIGHT:
133       *hr = 1;
134       *hs = 8;
135       break;
136     case AOME_ONETWO:
137       *hr = 1;
138       *hs = 2;
139       break;
140     case AOME_TWOTHREE:
141       *hr = 2;
142       *hs = 3;
143       break;
144     case AOME_ONETHREE:
145       *hr = 1;
146       *hs = 3;
147       break;
148     default:
149       *hr = 1;
150       *hs = 1;
151       assert(0);
152       break;
153   }
154 }
155 
av1_set_active_map(AV1_COMP * cpi,unsigned char * new_map_16x16,int rows,int cols)156 int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
157                        int cols) {
158   const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
159   if (rows == mi_params->mb_rows && cols == mi_params->mb_cols) {
160     unsigned char *const active_map_4x4 = cpi->active_map.map;
161     const int mi_rows = mi_params->mi_rows;
162     const int mi_cols = mi_params->mi_cols;
163     cpi->active_map.update = 0;
164     cpi->rc.percent_blocks_inactive = 0;
165     assert(mi_rows % 2 == 0 && mi_rows > 0);
166     assert(mi_cols % 2 == 0 && mi_cols > 0);
167     if (new_map_16x16) {
168       int num_samples = 0;
169       int num_blocks_inactive = 0;
170       for (int r = 0; r < mi_rows; r += 4) {
171         for (int c = 0; c < mi_cols; c += 4) {
172           const uint8_t val = new_map_16x16[(r >> 2) * cols + (c >> 2)]
173                                   ? AM_SEGMENT_ID_ACTIVE
174                                   : AM_SEGMENT_ID_INACTIVE;
175           num_samples++;
176           if (val == AM_SEGMENT_ID_INACTIVE) num_blocks_inactive++;
177           const int row_max = AOMMIN(4, mi_rows - r);
178           const int col_max = AOMMIN(4, mi_cols - c);
179           for (int x = 0; x < row_max; ++x) {
180             for (int y = 0; y < col_max; ++y) {
181               active_map_4x4[(r + x) * mi_cols + (c + y)] = val;
182             }
183           }
184         }
185       }
186       cpi->active_map.enabled = 1;
187       cpi->active_map.update = 1;
188       assert(num_samples);
189       cpi->rc.percent_blocks_inactive =
190           (num_blocks_inactive * 100) / num_samples;
191     }
192     return 0;
193   }
194 
195   return -1;
196 }
197 
av1_get_active_map(AV1_COMP * cpi,unsigned char * new_map_16x16,int rows,int cols)198 int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
199                        int cols) {
200   const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
201   if (rows == mi_params->mb_rows && cols == mi_params->mb_cols &&
202       new_map_16x16) {
203     unsigned char *const seg_map_8x8 = cpi->enc_seg.map;
204     const int mi_rows = mi_params->mi_rows;
205     const int mi_cols = mi_params->mi_cols;
206     const int row_scale = mi_size_high_log2[BLOCK_16X16];
207     const int col_scale = mi_size_wide_log2[BLOCK_16X16];
208     assert(mi_rows % 2 == 0);
209     assert(mi_cols % 2 == 0);
210 
211     memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
212     if (cpi->active_map.enabled) {
213       for (int r = 0; r < (mi_rows >> row_scale); ++r) {
214         for (int c = 0; c < (mi_cols >> col_scale); ++c) {
215           // Cyclic refresh segments are considered active despite not having
216           // AM_SEGMENT_ID_ACTIVE
217           uint8_t temp = 0;
218           temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 0)] !=
219                   AM_SEGMENT_ID_INACTIVE;
220           temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 1)] !=
221                   AM_SEGMENT_ID_INACTIVE;
222           temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 0)] !=
223                   AM_SEGMENT_ID_INACTIVE;
224           temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 1)] !=
225                   AM_SEGMENT_ID_INACTIVE;
226           new_map_16x16[r * cols + c] |= temp;
227         }
228       }
229     }
230     return 0;
231   }
232 
233   return -1;
234 }
235 
av1_initialize_enc(unsigned int usage,enum aom_rc_mode end_usage)236 void av1_initialize_enc(unsigned int usage, enum aom_rc_mode end_usage) {
237   bool is_allintra = usage == ALLINTRA;
238 
239   av1_rtcd();
240   aom_dsp_rtcd();
241   aom_scale_rtcd();
242   av1_init_intra_predictors();
243   av1_init_me_luts();
244   if (!is_allintra) av1_init_wedge_masks();
245   if (!is_allintra || end_usage != AOM_Q) av1_rc_init_minq_luts();
246 }
247 
av1_new_framerate(AV1_COMP * cpi,double framerate)248 void av1_new_framerate(AV1_COMP *cpi, double framerate) {
249   cpi->framerate = framerate < 0.1 ? 30 : framerate;
250   av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height);
251 }
252 
av1_get_compression_ratio(const AV1_COMMON * const cm,size_t encoded_frame_size)253 double av1_get_compression_ratio(const AV1_COMMON *const cm,
254                                  size_t encoded_frame_size) {
255   const int upscaled_width = cm->superres_upscaled_width;
256   const int height = cm->height;
257   const int64_t luma_pic_size = (int64_t)upscaled_width * height;
258   const SequenceHeader *const seq_params = cm->seq_params;
259   const BITSTREAM_PROFILE profile = seq_params->profile;
260   const int pic_size_profile_factor =
261       profile == PROFILE_0 ? 15 : (profile == PROFILE_1 ? 30 : 36);
262   encoded_frame_size =
263       (encoded_frame_size > 129 ? encoded_frame_size - 128 : 1);
264   const int64_t uncompressed_frame_size =
265       (luma_pic_size * pic_size_profile_factor) >> 3;
266   return (double)uncompressed_frame_size / encoded_frame_size;
267 }
268 
auto_tile_size_balancing(AV1_COMMON * const cm,int num_sbs,int num_tiles_lg,int tile_col_row)269 static void auto_tile_size_balancing(AV1_COMMON *const cm, int num_sbs,
270                                      int num_tiles_lg, int tile_col_row) {
271   CommonTileParams *const tiles = &cm->tiles;
272   int i, start_sb;
273   int size_sb = num_sbs >> num_tiles_lg;
274   int res_sbs = num_sbs - (size_sb << num_tiles_lg);
275   int num_tiles = 1 << num_tiles_lg;
276   int inc_index = num_tiles - res_sbs;
277 
278   tiles->uniform_spacing = 0;
279 
280   for (i = 0, start_sb = 0; start_sb < num_sbs && i < MAX_TILE_COLS; ++i) {
281     if (i == inc_index) ++size_sb;
282     if (tile_col_row)
283       tiles->col_start_sb[i] = start_sb;
284     else
285       tiles->row_start_sb[i] = start_sb;
286 
287     start_sb += AOMMIN(size_sb, tiles->max_width_sb);
288   }
289 
290   if (tile_col_row) {
291     tiles->cols = i;
292     tiles->col_start_sb[i] = num_sbs;
293   } else {
294     tiles->rows = i;
295     tiles->row_start_sb[i] = num_sbs;
296   }
297 }
298 
set_tile_info(AV1_COMMON * const cm,const TileConfig * const tile_cfg)299 static void set_tile_info(AV1_COMMON *const cm,
300                           const TileConfig *const tile_cfg) {
301   const CommonModeInfoParams *const mi_params = &cm->mi_params;
302   const SequenceHeader *const seq_params = cm->seq_params;
303   CommonTileParams *const tiles = &cm->tiles;
304   int i, start_sb;
305 
306   av1_get_tile_limits(cm);
307 
308   int sb_cols =
309       CEIL_POWER_OF_TWO(mi_params->mi_cols, seq_params->mib_size_log2);
310   // configure tile columns
311   if (tile_cfg->tile_width_count == 0 || tile_cfg->tile_height_count == 0) {
312     tiles->uniform_spacing = 1;
313     tiles->log2_cols = AOMMAX(tile_cfg->tile_columns, tiles->min_log2_cols);
314     // Add a special case to handle super resolution
315     sb_cols = coded_to_superres_mi(sb_cols, cm->superres_scale_denominator);
316     int min_log2_cols = 0;
317     for (; (tiles->max_width_sb << min_log2_cols) <= sb_cols; ++min_log2_cols) {
318     }
319     tiles->log2_cols = AOMMAX(tiles->log2_cols, min_log2_cols);
320 
321     tiles->log2_cols = AOMMIN(tiles->log2_cols, tiles->max_log2_cols);
322   } else if (tile_cfg->tile_widths[0] < 0) {
323     auto_tile_size_balancing(cm, sb_cols, tile_cfg->tile_columns, 1);
324   } else {
325     int size_sb, j = 0;
326     tiles->uniform_spacing = 0;
327     for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) {
328       tiles->col_start_sb[i] = start_sb;
329       size_sb = tile_cfg->tile_widths[j++];
330       if (j >= tile_cfg->tile_width_count) j = 0;
331       start_sb += AOMMIN(size_sb, tiles->max_width_sb);
332     }
333     tiles->cols = i;
334     tiles->col_start_sb[i] = sb_cols;
335   }
336   av1_calculate_tile_cols(seq_params, mi_params->mi_rows, mi_params->mi_cols,
337                           tiles);
338 
339   // configure tile rows
340   int sb_rows =
341       CEIL_POWER_OF_TWO(mi_params->mi_rows, seq_params->mib_size_log2);
342   if (tiles->uniform_spacing) {
343     tiles->log2_rows = AOMMAX(tile_cfg->tile_rows, tiles->min_log2_rows);
344     tiles->log2_rows = AOMMIN(tiles->log2_rows, tiles->max_log2_rows);
345   } else if (tile_cfg->tile_heights[0] < 0) {
346     auto_tile_size_balancing(cm, sb_rows, tile_cfg->tile_rows, 0);
347   } else {
348     int size_sb, j = 0;
349     for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) {
350       tiles->row_start_sb[i] = start_sb;
351       size_sb = tile_cfg->tile_heights[j++];
352       if (j >= tile_cfg->tile_height_count) j = 0;
353       start_sb += AOMMIN(size_sb, tiles->max_height_sb);
354     }
355     tiles->rows = i;
356     tiles->row_start_sb[i] = sb_rows;
357   }
358   av1_calculate_tile_rows(seq_params, mi_params->mi_rows, tiles);
359 }
360 
av1_update_frame_size(AV1_COMP * cpi)361 void av1_update_frame_size(AV1_COMP *cpi) {
362   AV1_COMMON *const cm = &cpi->common;
363   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
364 
365   // Setup mi_params here in case we need more mi's.
366   CommonModeInfoParams *const mi_params = &cm->mi_params;
367   mi_params->set_mb_mi(mi_params, cm->width, cm->height,
368                        cpi->sf.part_sf.default_min_partition_size);
369 
370   av1_init_macroblockd(cm, xd);
371 
372   if (!cpi->ppi->seq_params_locked)
373     set_sb_size(cm->seq_params,
374                 av1_select_sb_size(&cpi->oxcf, cm->width, cm->height,
375                                    cpi->ppi->number_spatial_layers));
376 
377   set_tile_info(cm, &cpi->oxcf.tile_cfg);
378 }
379 
does_level_match(int width,int height,double fps,int lvl_width,int lvl_height,double lvl_fps,int lvl_dim_mult)380 static inline int does_level_match(int width, int height, double fps,
381                                    int lvl_width, int lvl_height,
382                                    double lvl_fps, int lvl_dim_mult) {
383   const int64_t lvl_luma_pels = (int64_t)lvl_width * lvl_height;
384   const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps;
385   const int64_t luma_pels = (int64_t)width * height;
386   const double display_sample_rate = luma_pels * fps;
387   return luma_pels <= lvl_luma_pels &&
388          display_sample_rate <= lvl_display_sample_rate &&
389          width <= lvl_width * lvl_dim_mult &&
390          height <= lvl_height * lvl_dim_mult;
391 }
392 
set_bitstream_level_tier(AV1_PRIMARY * const ppi,int width,int height,double init_framerate)393 static void set_bitstream_level_tier(AV1_PRIMARY *const ppi, int width,
394                                      int height, double init_framerate) {
395   SequenceHeader *const seq_params = &ppi->seq_params;
396   const AV1LevelParams *const level_params = &ppi->level_params;
397   // TODO(any): This is a placeholder function that only addresses dimensions
398   // and max display sample rates.
399   // Need to add checks for max bit rate, max decoded luma sample rate, header
400   // rate, etc. that are not covered by this function.
401   AV1_LEVEL level = SEQ_LEVEL_MAX;
402   if (does_level_match(width, height, init_framerate, 512, 288, 30.0, 4)) {
403     level = SEQ_LEVEL_2_0;
404   } else if (does_level_match(width, height, init_framerate, 704, 396, 30.0,
405                               4)) {
406     level = SEQ_LEVEL_2_1;
407   } else if (does_level_match(width, height, init_framerate, 1088, 612, 30.0,
408                               4)) {
409     level = SEQ_LEVEL_3_0;
410   } else if (does_level_match(width, height, init_framerate, 1376, 774, 30.0,
411                               4)) {
412     level = SEQ_LEVEL_3_1;
413   } else if (does_level_match(width, height, init_framerate, 2048, 1152, 30.0,
414                               3)) {
415     level = SEQ_LEVEL_4_0;
416   } else if (does_level_match(width, height, init_framerate, 2048, 1152, 60.0,
417                               3)) {
418     level = SEQ_LEVEL_4_1;
419   } else if (does_level_match(width, height, init_framerate, 4096, 2176, 30.0,
420                               2)) {
421     level = SEQ_LEVEL_5_0;
422   } else if (does_level_match(width, height, init_framerate, 4096, 2176, 60.0,
423                               2)) {
424     level = SEQ_LEVEL_5_1;
425   } else if (does_level_match(width, height, init_framerate, 4096, 2176, 120.0,
426                               2)) {
427     level = SEQ_LEVEL_5_2;
428   } else if (does_level_match(width, height, init_framerate, 8192, 4352, 30.0,
429                               2)) {
430     level = SEQ_LEVEL_6_0;
431   } else if (does_level_match(width, height, init_framerate, 8192, 4352, 60.0,
432                               2)) {
433     level = SEQ_LEVEL_6_1;
434   } else if (does_level_match(width, height, init_framerate, 8192, 4352, 120.0,
435                               2)) {
436     level = SEQ_LEVEL_6_2;
437   }
438 #if CONFIG_CWG_C013
439   // TODO(bohanli): currently target level is only working for the 0th operating
440   // point, so scalable coding is not supported.
441   else if (level_params->target_seq_level_idx[0] >= SEQ_LEVEL_7_0 &&
442            level_params->target_seq_level_idx[0] <= SEQ_LEVEL_8_3) {
443     // Only use level 7.x to 8.x when explicitly asked to.
444     if (does_level_match(width, height, init_framerate, 16384, 8704, 30.0, 2)) {
445       level = SEQ_LEVEL_7_0;
446     } else if (does_level_match(width, height, init_framerate, 16384, 8704,
447                                 60.0, 2)) {
448       level = SEQ_LEVEL_7_1;
449     } else if (does_level_match(width, height, init_framerate, 16384, 8704,
450                                 120.0, 2)) {
451       level = SEQ_LEVEL_7_2;
452     } else if (does_level_match(width, height, init_framerate, 32768, 17408,
453                                 30.0, 2)) {
454       level = SEQ_LEVEL_8_0;
455     } else if (does_level_match(width, height, init_framerate, 32768, 17408,
456                                 60.0, 2)) {
457       level = SEQ_LEVEL_8_1;
458     } else if (does_level_match(width, height, init_framerate, 32768, 17408,
459                                 120.0, 2)) {
460       level = SEQ_LEVEL_8_2;
461     }
462   }
463 #endif
464 
465   for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) {
466     assert(is_valid_seq_level_idx(level_params->target_seq_level_idx[i]) ||
467            level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS);
468     // If a higher target level is specified, it is then used rather than the
469     // inferred one from resolution and framerate.
470     seq_params->seq_level_idx[i] =
471         level_params->target_seq_level_idx[i] < SEQ_LEVELS &&
472                 level_params->target_seq_level_idx[i] > level
473             ? level_params->target_seq_level_idx[i]
474             : level;
475     // Set the maximum parameters for bitrate and buffer size for this profile,
476     // level, and tier
477     seq_params->op_params[i].bitrate = av1_max_level_bitrate(
478         seq_params->profile, seq_params->seq_level_idx[i], seq_params->tier[i]);
479     // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass the
480     // check
481     if (seq_params->op_params[i].bitrate == 0)
482       aom_internal_error(
483           &ppi->error, AOM_CODEC_UNSUP_BITSTREAM,
484           "AV1 does not support this combination of profile, level, and tier.");
485     // Buffer size in bits/s is bitrate in bits/s * 1 s
486     seq_params->op_params[i].buffer_size = seq_params->op_params[i].bitrate;
487   }
488 }
489 
init_seq_coding_tools(AV1_PRIMARY * const ppi,const AV1EncoderConfig * oxcf,int disable_frame_id_numbers)490 static void init_seq_coding_tools(AV1_PRIMARY *const ppi,
491                                   const AV1EncoderConfig *oxcf,
492                                   int disable_frame_id_numbers) {
493   SequenceHeader *const seq = &ppi->seq_params;
494   const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg;
495   const ToolCfg *const tool_cfg = &oxcf->tool_cfg;
496 
497   seq->still_picture =
498       !tool_cfg->force_video_mode && (oxcf->input_cfg.limit == 1);
499   seq->reduced_still_picture_hdr =
500       seq->still_picture && !tool_cfg->full_still_picture_hdr;
501   seq->force_screen_content_tools = 2;
502   seq->force_integer_mv = 2;
503   seq->order_hint_info.enable_order_hint = tool_cfg->enable_order_hint;
504   seq->frame_id_numbers_present_flag =
505       !seq->reduced_still_picture_hdr &&
506       !oxcf->tile_cfg.enable_large_scale_tile &&
507       tool_cfg->error_resilient_mode && !disable_frame_id_numbers;
508   if (seq->reduced_still_picture_hdr) {
509     seq->order_hint_info.enable_order_hint = 0;
510     seq->force_screen_content_tools = 2;
511     seq->force_integer_mv = 2;
512   }
513   seq->order_hint_info.order_hint_bits_minus_1 =
514       seq->order_hint_info.enable_order_hint
515           ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1
516           : -1;
517 
518   seq->max_frame_width = frm_dim_cfg->forced_max_frame_width
519                              ? frm_dim_cfg->forced_max_frame_width
520                              : frm_dim_cfg->width;
521   seq->max_frame_height = frm_dim_cfg->forced_max_frame_height
522                               ? frm_dim_cfg->forced_max_frame_height
523                               : frm_dim_cfg->height;
524   seq->num_bits_width =
525       (seq->max_frame_width > 1) ? get_msb(seq->max_frame_width - 1) + 1 : 1;
526   seq->num_bits_height =
527       (seq->max_frame_height > 1) ? get_msb(seq->max_frame_height - 1) + 1 : 1;
528   assert(seq->num_bits_width <= 16);
529   assert(seq->num_bits_height <= 16);
530 
531   seq->frame_id_length = FRAME_ID_LENGTH;
532   seq->delta_frame_id_length = DELTA_FRAME_ID_LENGTH;
533 
534   seq->enable_dual_filter = tool_cfg->enable_dual_filter;
535   seq->order_hint_info.enable_dist_wtd_comp =
536       oxcf->comp_type_cfg.enable_dist_wtd_comp;
537   seq->order_hint_info.enable_dist_wtd_comp &=
538       seq->order_hint_info.enable_order_hint;
539   seq->order_hint_info.enable_ref_frame_mvs = tool_cfg->ref_frame_mvs_present;
540   seq->order_hint_info.enable_ref_frame_mvs &=
541       seq->order_hint_info.enable_order_hint;
542   seq->enable_superres = oxcf->superres_cfg.enable_superres;
543   seq->enable_cdef = tool_cfg->cdef_control != CDEF_NONE ? 1 : 0;
544   seq->enable_restoration = tool_cfg->enable_restoration;
545   seq->enable_warped_motion = oxcf->motion_mode_cfg.enable_warped_motion;
546   seq->enable_interintra_compound = tool_cfg->enable_interintra_comp;
547   seq->enable_masked_compound = oxcf->comp_type_cfg.enable_masked_comp;
548   seq->enable_intra_edge_filter = oxcf->intra_mode_cfg.enable_intra_edge_filter;
549   seq->enable_filter_intra = oxcf->intra_mode_cfg.enable_filter_intra;
550 
551   set_bitstream_level_tier(ppi, frm_dim_cfg->width, frm_dim_cfg->height,
552                            oxcf->input_cfg.init_framerate);
553 
554   if (seq->operating_points_cnt_minus_1 == 0) {
555     seq->operating_point_idc[0] = 0;
556     seq->has_nonzero_operating_point_idc = false;
557   } else {
558     // Set operating_point_idc[] such that the i=0 point corresponds to the
559     // highest quality operating point (all layers), and subsequent
560     // operarting points (i > 0) are lower quality corresponding to
561     // skip decoding enhancement  layers (temporal first).
562     int i = 0;
563     assert(seq->operating_points_cnt_minus_1 ==
564            (int)(ppi->number_spatial_layers * ppi->number_temporal_layers - 1));
565     for (unsigned int sl = 0; sl < ppi->number_spatial_layers; sl++) {
566       for (unsigned int tl = 0; tl < ppi->number_temporal_layers; tl++) {
567         seq->operating_point_idc[i] =
568             (~(~0u << (ppi->number_spatial_layers - sl)) << 8) |
569             ~(~0u << (ppi->number_temporal_layers - tl));
570         assert(seq->operating_point_idc[i] != 0);
571         i++;
572       }
573     }
574     seq->has_nonzero_operating_point_idc = true;
575   }
576 }
577 
init_config_sequence(struct AV1_PRIMARY * ppi,const AV1EncoderConfig * oxcf)578 static void init_config_sequence(struct AV1_PRIMARY *ppi,
579                                  const AV1EncoderConfig *oxcf) {
580   SequenceHeader *const seq_params = &ppi->seq_params;
581   const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg;
582   const ColorCfg *const color_cfg = &oxcf->color_cfg;
583 
584   ppi->use_svc = 0;
585   ppi->number_spatial_layers = 1;
586   ppi->number_temporal_layers = 1;
587 
588   seq_params->profile = oxcf->profile;
589   seq_params->bit_depth = oxcf->tool_cfg.bit_depth;
590   seq_params->use_highbitdepth = oxcf->use_highbitdepth;
591   seq_params->color_primaries = color_cfg->color_primaries;
592   seq_params->transfer_characteristics = color_cfg->transfer_characteristics;
593   seq_params->matrix_coefficients = color_cfg->matrix_coefficients;
594   seq_params->monochrome = oxcf->tool_cfg.enable_monochrome;
595   seq_params->chroma_sample_position = color_cfg->chroma_sample_position;
596   seq_params->color_range = color_cfg->color_range;
597   seq_params->timing_info_present = dec_model_cfg->timing_info_present;
598   seq_params->timing_info.num_units_in_display_tick =
599       dec_model_cfg->timing_info.num_units_in_display_tick;
600   seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale;
601   seq_params->timing_info.equal_picture_interval =
602       dec_model_cfg->timing_info.equal_picture_interval;
603   seq_params->timing_info.num_ticks_per_picture =
604       dec_model_cfg->timing_info.num_ticks_per_picture;
605 
606   seq_params->display_model_info_present_flag =
607       dec_model_cfg->display_model_info_present_flag;
608   seq_params->decoder_model_info_present_flag =
609       dec_model_cfg->decoder_model_info_present_flag;
610   if (dec_model_cfg->decoder_model_info_present_flag) {
611     // set the decoder model parameters in schedule mode
612     seq_params->decoder_model_info.num_units_in_decoding_tick =
613         dec_model_cfg->num_units_in_decoding_tick;
614     ppi->buffer_removal_time_present = 1;
615     av1_set_aom_dec_model_info(&seq_params->decoder_model_info);
616     av1_set_dec_model_op_parameters(&seq_params->op_params[0]);
617   } else if (seq_params->timing_info_present &&
618              seq_params->timing_info.equal_picture_interval &&
619              !seq_params->decoder_model_info_present_flag) {
620     // set the decoder model parameters in resource availability mode
621     av1_set_resource_availability_parameters(&seq_params->op_params[0]);
622   } else {
623     seq_params->op_params[0].initial_display_delay =
624         10;  // Default value (not signaled)
625   }
626 
627   if (seq_params->monochrome) {
628     seq_params->subsampling_x = 1;
629     seq_params->subsampling_y = 1;
630   } else if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
631              seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
632              seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
633     seq_params->subsampling_x = 0;
634     seq_params->subsampling_y = 0;
635   } else {
636     if (seq_params->profile == 0) {
637       seq_params->subsampling_x = 1;
638       seq_params->subsampling_y = 1;
639     } else if (seq_params->profile == 1) {
640       seq_params->subsampling_x = 0;
641       seq_params->subsampling_y = 0;
642     } else {
643       if (seq_params->bit_depth == AOM_BITS_12) {
644         seq_params->subsampling_x = oxcf->input_cfg.chroma_subsampling_x;
645         seq_params->subsampling_y = oxcf->input_cfg.chroma_subsampling_y;
646       } else {
647         seq_params->subsampling_x = 1;
648         seq_params->subsampling_y = 0;
649       }
650     }
651   }
652   av1_change_config_seq(ppi, oxcf, NULL);
653 }
654 
init_config(struct AV1_COMP * cpi,const AV1EncoderConfig * oxcf)655 static void init_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) {
656   AV1_COMMON *const cm = &cpi->common;
657   ResizePendingParams *resize_pending_params = &cpi->resize_pending_params;
658 
659   cpi->oxcf = *oxcf;
660   cpi->framerate = oxcf->input_cfg.init_framerate;
661 
662   cm->width = oxcf->frm_dim_cfg.width;
663   cm->height = oxcf->frm_dim_cfg.height;
664   cpi->is_dropped_frame = false;
665 
666   alloc_compressor_data(cpi);
667 
668   cpi->data_alloc_width = cm->width;
669   cpi->data_alloc_height = cm->height;
670   cpi->frame_size_related_setup_done = false;
671 
672   // Single thread case: use counts in common.
673   cpi->td.counts = &cpi->counts;
674 
675   // Init SVC parameters.
676   cpi->svc.number_spatial_layers = 1;
677   cpi->svc.number_temporal_layers = 1;
678   cm->spatial_layer_id = 0;
679   cm->temporal_layer_id = 0;
680   // Init rtc_ref parameters.
681   cpi->ppi->rtc_ref.set_ref_frame_config = 0;
682   cpi->ppi->rtc_ref.non_reference_frame = 0;
683   cpi->ppi->rtc_ref.ref_frame_comp[0] = 0;
684   cpi->ppi->rtc_ref.ref_frame_comp[1] = 0;
685   cpi->ppi->rtc_ref.ref_frame_comp[2] = 0;
686 
687   // change includes all joint functionality
688   av1_change_config(cpi, oxcf, false);
689 
690   cpi->ref_frame_flags = 0;
691 
692   // Reset resize pending flags
693   resize_pending_params->width = 0;
694   resize_pending_params->height = 0;
695 
696   // Setup identity scale factor
697   av1_setup_scale_factors_for_frame(&cm->sf_identity, 1, 1, 1, 1);
698 
699   init_buffer_indices(&cpi->force_intpel_info, cm->remapped_ref_idx);
700 
701   av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
702 }
703 
av1_change_config_seq(struct AV1_PRIMARY * ppi,const AV1EncoderConfig * oxcf,bool * is_sb_size_changed)704 void av1_change_config_seq(struct AV1_PRIMARY *ppi,
705                            const AV1EncoderConfig *oxcf,
706                            bool *is_sb_size_changed) {
707   SequenceHeader *const seq_params = &ppi->seq_params;
708   const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg;
709   const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg;
710   const ColorCfg *const color_cfg = &oxcf->color_cfg;
711 
712   if (seq_params->profile != oxcf->profile) seq_params->profile = oxcf->profile;
713   seq_params->bit_depth = oxcf->tool_cfg.bit_depth;
714   seq_params->color_primaries = color_cfg->color_primaries;
715   seq_params->transfer_characteristics = color_cfg->transfer_characteristics;
716   seq_params->matrix_coefficients = color_cfg->matrix_coefficients;
717   seq_params->monochrome = oxcf->tool_cfg.enable_monochrome;
718   seq_params->chroma_sample_position = color_cfg->chroma_sample_position;
719   seq_params->color_range = color_cfg->color_range;
720 
721   assert(IMPLIES(seq_params->profile <= PROFILE_1,
722                  seq_params->bit_depth <= AOM_BITS_10));
723 
724   seq_params->timing_info_present = dec_model_cfg->timing_info_present;
725   seq_params->timing_info.num_units_in_display_tick =
726       dec_model_cfg->timing_info.num_units_in_display_tick;
727   seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale;
728   seq_params->timing_info.equal_picture_interval =
729       dec_model_cfg->timing_info.equal_picture_interval;
730   seq_params->timing_info.num_ticks_per_picture =
731       dec_model_cfg->timing_info.num_ticks_per_picture;
732 
733   seq_params->display_model_info_present_flag =
734       dec_model_cfg->display_model_info_present_flag;
735   seq_params->decoder_model_info_present_flag =
736       dec_model_cfg->decoder_model_info_present_flag;
737   if (dec_model_cfg->decoder_model_info_present_flag) {
738     // set the decoder model parameters in schedule mode
739     seq_params->decoder_model_info.num_units_in_decoding_tick =
740         dec_model_cfg->num_units_in_decoding_tick;
741     ppi->buffer_removal_time_present = 1;
742     av1_set_aom_dec_model_info(&seq_params->decoder_model_info);
743     av1_set_dec_model_op_parameters(&seq_params->op_params[0]);
744   } else if (seq_params->timing_info_present &&
745              seq_params->timing_info.equal_picture_interval &&
746              !seq_params->decoder_model_info_present_flag) {
747     // set the decoder model parameters in resource availability mode
748     av1_set_resource_availability_parameters(&seq_params->op_params[0]);
749   } else {
750     seq_params->op_params[0].initial_display_delay =
751         10;  // Default value (not signaled)
752   }
753 
754 #if !CONFIG_REALTIME_ONLY
755   av1_update_film_grain_parameters_seq(ppi, oxcf);
756 #endif
757 
758   int sb_size = seq_params->sb_size;
759   // Superblock size should not be updated after the first key frame.
760   if (!ppi->seq_params_locked) {
761     set_sb_size(seq_params, av1_select_sb_size(oxcf, frm_dim_cfg->width,
762                                                frm_dim_cfg->height,
763                                                ppi->number_spatial_layers));
764     for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i)
765       seq_params->tier[i] = (oxcf->tier_mask >> i) & 1;
766   }
767   if (is_sb_size_changed != NULL && sb_size != seq_params->sb_size)
768     *is_sb_size_changed = true;
769 
770   // Init sequence level coding tools
771   // This should not be called after the first key frame.
772   if (!ppi->seq_params_locked) {
773     seq_params->operating_points_cnt_minus_1 =
774         (ppi->number_spatial_layers > 1 || ppi->number_temporal_layers > 1)
775             ? ppi->number_spatial_layers * ppi->number_temporal_layers - 1
776             : 0;
777     init_seq_coding_tools(ppi, oxcf,
778                           ppi->use_svc || ppi->rtc_ref.set_ref_frame_config);
779   }
780   seq_params->timing_info_present &= !seq_params->reduced_still_picture_hdr;
781 
782 #if CONFIG_AV1_HIGHBITDEPTH
783   highbd_set_var_fns(ppi);
784 #endif
785 
786   set_primary_rc_buffer_sizes(oxcf, ppi);
787 }
788 
av1_change_config(struct AV1_COMP * cpi,const AV1EncoderConfig * oxcf,bool is_sb_size_changed)789 void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf,
790                        bool is_sb_size_changed) {
791   AV1_COMMON *const cm = &cpi->common;
792   SequenceHeader *const seq_params = cm->seq_params;
793   RATE_CONTROL *const rc = &cpi->rc;
794   PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
795   MACROBLOCK *const x = &cpi->td.mb;
796   AV1LevelParams *const level_params = &cpi->ppi->level_params;
797   RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
798   const FrameDimensionCfg *const frm_dim_cfg = &cpi->oxcf.frm_dim_cfg;
799   const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
800   FeatureFlags *const features = &cm->features;
801 
802   // in case of LAP, lag in frames is set according to number of lap buffers
803   // calculated at init time. This stores and restores LAP's lag in frames to
804   // prevent override by new cfg.
805   int lap_lag_in_frames = -1;
806   if (cpi->ppi->lap_enabled && cpi->compressor_stage == LAP_STAGE) {
807     lap_lag_in_frames = cpi->oxcf.gf_cfg.lag_in_frames;
808   }
809 
810   cpi->oxcf = *oxcf;
811 
812 #if !CONFIG_REALTIME_ONLY
813   av1_update_film_grain_parameters(cpi, oxcf);
814 #endif
815 
816   // When user provides superres_mode = AOM_SUPERRES_AUTO, we still initialize
817   // superres mode for current encoding = AOM_SUPERRES_NONE. This is to ensure
818   // that any analysis (e.g. TPL) happening outside the main encoding loop still
819   // happens at full resolution.
820   // This value will later be set appropriately just before main encoding loop.
821   cpi->superres_mode = oxcf->superres_cfg.superres_mode == AOM_SUPERRES_AUTO
822                            ? AOM_SUPERRES_NONE
823                            : oxcf->superres_cfg.superres_mode;  // default
824   x->e_mbd.bd = (int)seq_params->bit_depth;
825   x->e_mbd.global_motion = cm->global_motion;
826 
827   memcpy(level_params->target_seq_level_idx, cpi->oxcf.target_seq_level_idx,
828          sizeof(level_params->target_seq_level_idx));
829   level_params->keep_level_stats = 0;
830   for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) {
831     if (level_params->target_seq_level_idx[i] < SEQ_LEVELS ||
832         level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS) {
833       level_params->keep_level_stats |= 1u << i;
834       if (!level_params->level_info[i]) {
835         CHECK_MEM_ERROR(cm, level_params->level_info[i],
836                         aom_calloc(1, sizeof(*level_params->level_info[i])));
837       }
838     }
839   }
840 
841   // TODO(huisu@): level targeting currently only works for the 0th operating
842   // point, so scalable coding is not supported yet.
843   if (level_params->target_seq_level_idx[0] < SEQ_LEVELS) {
844     // Adjust encoder config in order to meet target level.
845     config_target_level(cpi, level_params->target_seq_level_idx[0],
846                         seq_params->tier[0]);
847   }
848 
849   if (has_no_stats_stage(cpi) && (rc_cfg->mode == AOM_Q)) {
850     p_rc->baseline_gf_interval = FIXED_GF_INTERVAL;
851   } else if (!is_one_pass_rt_params(cpi) ||
852              cm->current_frame.frame_number == 0) {
853     // For rtc mode: logic for setting the baseline_gf_interval is done
854     // in av1_get_one_pass_rt_params(), and it should not be reset here in
855     // change_config(), unless after init_config (first frame).
856     p_rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
857   }
858 
859   refresh_frame->golden_frame = false;
860   refresh_frame->bwd_ref_frame = false;
861 
862   features->refresh_frame_context =
863       (oxcf->tool_cfg.frame_parallel_decoding_mode)
864           ? REFRESH_FRAME_CONTEXT_DISABLED
865           : REFRESH_FRAME_CONTEXT_BACKWARD;
866   if (oxcf->tile_cfg.enable_large_scale_tile)
867     features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
868 
869   if (x->palette_buffer == NULL) {
870     CHECK_MEM_ERROR(cm, x->palette_buffer,
871                     aom_memalign(16, sizeof(*x->palette_buffer)));
872   }
873 
874   if (x->tmp_conv_dst == NULL) {
875     CHECK_MEM_ERROR(
876         cm, x->tmp_conv_dst,
877         aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*x->tmp_conv_dst)));
878     x->e_mbd.tmp_conv_dst = x->tmp_conv_dst;
879   }
880   // The buffers 'tmp_pred_bufs[]' and 'comp_rd_buffer' are used in inter frames
881   // to store intermediate inter mode prediction results and are not required
882   // for allintra encoding mode. Hence, the memory allocations for these buffers
883   // are avoided for allintra encoding mode.
884   if (cpi->oxcf.kf_cfg.key_freq_max != 0) {
885     if (x->comp_rd_buffer.pred0 == NULL)
886       alloc_compound_type_rd_buffers(cm->error, &x->comp_rd_buffer);
887 
888     for (int i = 0; i < 2; ++i) {
889       if (x->tmp_pred_bufs[i] == NULL) {
890         CHECK_MEM_ERROR(cm, x->tmp_pred_bufs[i],
891                         aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
892                                              sizeof(*x->tmp_pred_bufs[i])));
893         x->e_mbd.tmp_obmc_bufs[i] = x->tmp_pred_bufs[i];
894       }
895     }
896   }
897 
898   av1_reset_segment_features(cm);
899 
900   av1_set_high_precision_mv(cpi, 1, 0);
901 
902   // Under a configuration change, where maximum_buffer_size may change,
903   // keep buffer level clipped to the maximum allowed buffer size.
904   p_rc->bits_off_target =
905       AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size);
906   p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size);
907 
908   // Set up frame rate and related parameters rate control values.
909   av1_new_framerate(cpi, cpi->framerate);
910 
911   // Set absolute upper and lower quality limits
912   rc->worst_quality = rc_cfg->worst_allowed_q;
913   rc->best_quality = rc_cfg->best_allowed_q;
914 
915   // If lossless has been requested make sure average Q accumulators are reset.
916   if (is_lossless_requested(&cpi->oxcf.rc_cfg)) {
917     int i;
918     for (i = 0; i < FRAME_TYPES; ++i) {
919       p_rc->avg_frame_qindex[i] = 0;
920     }
921   }
922 
923   features->interp_filter =
924       oxcf->tile_cfg.enable_large_scale_tile ? EIGHTTAP_REGULAR : SWITCHABLE;
925   features->switchable_motion_mode = is_switchable_motion_mode_allowed(
926       features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc);
927 
928   if (frm_dim_cfg->render_width > 0 && frm_dim_cfg->render_height > 0) {
929     cm->render_width = frm_dim_cfg->render_width;
930     cm->render_height = frm_dim_cfg->render_height;
931   } else {
932     cm->render_width = frm_dim_cfg->width;
933     cm->render_height = frm_dim_cfg->height;
934   }
935   cm->width = frm_dim_cfg->width;
936   cm->height = frm_dim_cfg->height;
937 
938   if (cm->width > cpi->data_alloc_width ||
939       cm->height > cpi->data_alloc_height || is_sb_size_changed) {
940     av1_free_context_buffers(cm);
941     av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf);
942     av1_free_sms_tree(&cpi->td);
943     av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm));
944     cpi->td.firstpass_ctx = NULL;
945     alloc_compressor_data(cpi);
946     realloc_segmentation_maps(cpi);
947     cpi->data_alloc_width = cm->width;
948     cpi->data_alloc_height = cm->height;
949     cpi->frame_size_related_setup_done = false;
950   }
951   av1_update_frame_size(cpi);
952 
953   rc->is_src_frame_alt_ref = 0;
954 
955   if (!cpi->ppi->rtc_ref.set_ref_frame_config)
956     cpi->ext_flags.refresh_frame.update_pending = 0;
957   cpi->ext_flags.refresh_frame_context_pending = 0;
958 
959   if (cpi->ppi->use_svc)
960     av1_update_layer_context_change_config(cpi, rc_cfg->target_bandwidth);
961 
962   check_reset_rc_flag(cpi);
963 
964   // restore the value of lag_in_frame for LAP stage.
965   if (lap_lag_in_frames != -1) {
966     cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames;
967   }
968 
969 #if CONFIG_REALTIME_ONLY
970   assert(!oxcf->tool_cfg.enable_global_motion);
971   cpi->alloc_pyramid = false;
972 #else
973   cpi->alloc_pyramid = oxcf->tool_cfg.enable_global_motion;
974 #endif  // CONFIG_REALTIME_ONLY
975 }
976 
init_frame_info(FRAME_INFO * frame_info,const AV1_COMMON * const cm)977 static inline void init_frame_info(FRAME_INFO *frame_info,
978                                    const AV1_COMMON *const cm) {
979   const CommonModeInfoParams *const mi_params = &cm->mi_params;
980   const SequenceHeader *const seq_params = cm->seq_params;
981   frame_info->frame_width = cm->width;
982   frame_info->frame_height = cm->height;
983   frame_info->mi_cols = mi_params->mi_cols;
984   frame_info->mi_rows = mi_params->mi_rows;
985   frame_info->mb_cols = mi_params->mb_cols;
986   frame_info->mb_rows = mi_params->mb_rows;
987   frame_info->num_mbs = mi_params->MBs;
988   frame_info->bit_depth = seq_params->bit_depth;
989   frame_info->subsampling_x = seq_params->subsampling_x;
990   frame_info->subsampling_y = seq_params->subsampling_y;
991 }
992 
init_frame_index_set(FRAME_INDEX_SET * frame_index_set)993 static inline void init_frame_index_set(FRAME_INDEX_SET *frame_index_set) {
994   frame_index_set->show_frame_count = 0;
995 }
996 
update_counters_for_show_frame(AV1_COMP * const cpi)997 static inline void update_counters_for_show_frame(AV1_COMP *const cpi) {
998   assert(cpi->common.show_frame);
999   cpi->frame_index_set.show_frame_count++;
1000   cpi->common.current_frame.frame_number++;
1001 }
1002 
av1_create_primary_compressor(struct aom_codec_pkt_list * pkt_list_head,int num_lap_buffers,const AV1EncoderConfig * oxcf)1003 AV1_PRIMARY *av1_create_primary_compressor(
1004     struct aom_codec_pkt_list *pkt_list_head, int num_lap_buffers,
1005     const AV1EncoderConfig *oxcf) {
1006   AV1_PRIMARY *volatile const ppi = aom_memalign(32, sizeof(AV1_PRIMARY));
1007   if (!ppi) return NULL;
1008   av1_zero(*ppi);
1009 
1010   // The jmp_buf is valid only for the duration of the function that calls
1011   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1012   // before it returns.
1013   if (setjmp(ppi->error.jmp)) {
1014     ppi->error.setjmp = 0;
1015     av1_remove_primary_compressor(ppi);
1016     return 0;
1017   }
1018   ppi->error.setjmp = 1;
1019 
1020   ppi->seq_params_locked = 0;
1021   ppi->lap_enabled = num_lap_buffers > 0;
1022   ppi->output_pkt_list = pkt_list_head;
1023   ppi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
1024   ppi->frames_left = oxcf->input_cfg.limit;
1025   ppi->num_fp_contexts = 1;
1026 
1027   init_config_sequence(ppi, oxcf);
1028 
1029 #if CONFIG_ENTROPY_STATS
1030   av1_zero(ppi->aggregate_fc);
1031 #endif  // CONFIG_ENTROPY_STATS
1032 
1033   av1_primary_rc_init(oxcf, &ppi->p_rc);
1034 
1035   // For two pass and lag_in_frames > 33 in LAP.
1036   ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_2;
1037   if (ppi->lap_enabled) {
1038     if ((num_lap_buffers <
1039          (MAX_GF_LENGTH_LAP + SCENE_CUT_KEY_TEST_INTERVAL + 1)) &&
1040         num_lap_buffers >= (MAX_GF_LENGTH_LAP + 3)) {
1041       /*
1042        * For lag in frames >= 19 and <33, enable scenecut
1043        * with limited future frame prediction.
1044        */
1045       ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_1;
1046     } else if (num_lap_buffers < (MAX_GF_LENGTH_LAP + 3)) {
1047       // Disable scenecut when lag_in_frames < 19.
1048       ppi->p_rc.enable_scenecut_detection = DISABLE_SCENECUT;
1049     }
1050   }
1051 
1052 #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, SDX3DF, JSDAF, JSVAF) \
1053   ppi->fn_ptr[BT].sdf = SDF;                                            \
1054   ppi->fn_ptr[BT].sdaf = SDAF;                                          \
1055   ppi->fn_ptr[BT].vf = VF;                                              \
1056   ppi->fn_ptr[BT].svf = SVF;                                            \
1057   ppi->fn_ptr[BT].svaf = SVAF;                                          \
1058   ppi->fn_ptr[BT].sdx4df = SDX4DF;                                      \
1059   ppi->fn_ptr[BT].jsdaf = JSDAF;                                        \
1060   ppi->fn_ptr[BT].jsvaf = JSVAF;                                        \
1061   ppi->fn_ptr[BT].sdx3df = SDX3DF;
1062 
1063 // Realtime mode doesn't use 4x rectangular blocks.
1064 #if !CONFIG_REALTIME_ONLY
1065   BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16,
1066       aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16,
1067       aom_sad4x16x4d, aom_sad4x16x3d, aom_dist_wtd_sad4x16_avg,
1068       aom_dist_wtd_sub_pixel_avg_variance4x16)
1069 
1070   BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4,
1071       aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4,
1072       aom_sad16x4x4d, aom_sad16x4x3d, aom_dist_wtd_sad16x4_avg,
1073       aom_dist_wtd_sub_pixel_avg_variance16x4)
1074 
1075   BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32,
1076       aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32,
1077       aom_sad8x32x4d, aom_sad8x32x3d, aom_dist_wtd_sad8x32_avg,
1078       aom_dist_wtd_sub_pixel_avg_variance8x32)
1079 
1080   BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8,
1081       aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8,
1082       aom_sad32x8x4d, aom_sad32x8x3d, aom_dist_wtd_sad32x8_avg,
1083       aom_dist_wtd_sub_pixel_avg_variance32x8)
1084 
1085   BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64,
1086       aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64,
1087       aom_sad16x64x4d, aom_sad16x64x3d, aom_dist_wtd_sad16x64_avg,
1088       aom_dist_wtd_sub_pixel_avg_variance16x64)
1089 
1090   BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16,
1091       aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16,
1092       aom_sad64x16x4d, aom_sad64x16x3d, aom_dist_wtd_sad64x16_avg,
1093       aom_dist_wtd_sub_pixel_avg_variance64x16)
1094 #endif  // !CONFIG_REALTIME_ONLY
1095 
1096   BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128,
1097       aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128,
1098       aom_sad128x128x4d, aom_sad128x128x3d, aom_dist_wtd_sad128x128_avg,
1099       aom_dist_wtd_sub_pixel_avg_variance128x128)
1100 
1101   BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64,
1102       aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64,
1103       aom_sad128x64x4d, aom_sad128x64x3d, aom_dist_wtd_sad128x64_avg,
1104       aom_dist_wtd_sub_pixel_avg_variance128x64)
1105 
1106   BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128,
1107       aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128,
1108       aom_sad64x128x4d, aom_sad64x128x3d, aom_dist_wtd_sad64x128_avg,
1109       aom_dist_wtd_sub_pixel_avg_variance64x128)
1110 
1111   BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16,
1112       aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16,
1113       aom_sad32x16x4d, aom_sad32x16x3d, aom_dist_wtd_sad32x16_avg,
1114       aom_dist_wtd_sub_pixel_avg_variance32x16)
1115 
1116   BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32,
1117       aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32,
1118       aom_sad16x32x4d, aom_sad16x32x3d, aom_dist_wtd_sad16x32_avg,
1119       aom_dist_wtd_sub_pixel_avg_variance16x32)
1120 
1121   BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32,
1122       aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32,
1123       aom_sad64x32x4d, aom_sad64x32x3d, aom_dist_wtd_sad64x32_avg,
1124       aom_dist_wtd_sub_pixel_avg_variance64x32)
1125 
1126   BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64,
1127       aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64,
1128       aom_sad32x64x4d, aom_sad32x64x3d, aom_dist_wtd_sad32x64_avg,
1129       aom_dist_wtd_sub_pixel_avg_variance32x64)
1130 
1131   BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32,
1132       aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32,
1133       aom_sad32x32x4d, aom_sad32x32x3d, aom_dist_wtd_sad32x32_avg,
1134       aom_dist_wtd_sub_pixel_avg_variance32x32)
1135 
1136   BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64,
1137       aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64,
1138       aom_sad64x64x4d, aom_sad64x64x3d, aom_dist_wtd_sad64x64_avg,
1139       aom_dist_wtd_sub_pixel_avg_variance64x64)
1140 
1141   BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16,
1142       aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16,
1143       aom_sad16x16x4d, aom_sad16x16x3d, aom_dist_wtd_sad16x16_avg,
1144       aom_dist_wtd_sub_pixel_avg_variance16x16)
1145 
1146   BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8,
1147       aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8,
1148       aom_sad16x8x4d, aom_sad16x8x3d, aom_dist_wtd_sad16x8_avg,
1149       aom_dist_wtd_sub_pixel_avg_variance16x8)
1150 
1151   BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16,
1152       aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16,
1153       aom_sad8x16x4d, aom_sad8x16x3d, aom_dist_wtd_sad8x16_avg,
1154       aom_dist_wtd_sub_pixel_avg_variance8x16)
1155 
1156   BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8,
1157       aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d,
1158       aom_sad8x8x3d, aom_dist_wtd_sad8x8_avg,
1159       aom_dist_wtd_sub_pixel_avg_variance8x8)
1160 
1161   BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4,
1162       aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d,
1163       aom_sad8x4x3d, aom_dist_wtd_sad8x4_avg,
1164       aom_dist_wtd_sub_pixel_avg_variance8x4)
1165 
1166   BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8,
1167       aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d,
1168       aom_sad4x8x3d, aom_dist_wtd_sad4x8_avg,
1169       aom_dist_wtd_sub_pixel_avg_variance4x8)
1170 
1171   BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4,
1172       aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d,
1173       aom_sad4x4x3d, aom_dist_wtd_sad4x4_avg,
1174       aom_dist_wtd_sub_pixel_avg_variance4x4)
1175 
1176 #if !CONFIG_REALTIME_ONLY
1177 #define OBFP(BT, OSDF, OVF, OSVF) \
1178   ppi->fn_ptr[BT].osdf = OSDF;    \
1179   ppi->fn_ptr[BT].ovf = OVF;      \
1180   ppi->fn_ptr[BT].osvf = OSVF;
1181 
1182   OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128,
1183        aom_obmc_sub_pixel_variance128x128)
1184   OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64,
1185        aom_obmc_sub_pixel_variance128x64)
1186   OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128,
1187        aom_obmc_sub_pixel_variance64x128)
1188   OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64,
1189        aom_obmc_sub_pixel_variance64x64)
1190   OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32,
1191        aom_obmc_sub_pixel_variance64x32)
1192   OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64,
1193        aom_obmc_sub_pixel_variance32x64)
1194   OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32,
1195        aom_obmc_sub_pixel_variance32x32)
1196   OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16,
1197        aom_obmc_sub_pixel_variance32x16)
1198   OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32,
1199        aom_obmc_sub_pixel_variance16x32)
1200   OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16,
1201        aom_obmc_sub_pixel_variance16x16)
1202   OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8,
1203        aom_obmc_sub_pixel_variance16x8)
1204   OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16,
1205        aom_obmc_sub_pixel_variance8x16)
1206   OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8,
1207        aom_obmc_sub_pixel_variance8x8)
1208   OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8,
1209        aom_obmc_sub_pixel_variance4x8)
1210   OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4,
1211        aom_obmc_sub_pixel_variance8x4)
1212   OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4,
1213        aom_obmc_sub_pixel_variance4x4)
1214   OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16,
1215        aom_obmc_sub_pixel_variance4x16)
1216   OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4,
1217        aom_obmc_sub_pixel_variance16x4)
1218   OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32,
1219        aom_obmc_sub_pixel_variance8x32)
1220   OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8,
1221        aom_obmc_sub_pixel_variance32x8)
1222   OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64,
1223        aom_obmc_sub_pixel_variance16x64)
1224   OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16,
1225        aom_obmc_sub_pixel_variance64x16)
1226 #endif  // !CONFIG_REALTIME_ONLY
1227 
1228 #define MBFP(BT, MCSDF, MCSVF)  \
1229   ppi->fn_ptr[BT].msdf = MCSDF; \
1230   ppi->fn_ptr[BT].msvf = MCSVF;
1231 
1232   MBFP(BLOCK_128X128, aom_masked_sad128x128,
1233        aom_masked_sub_pixel_variance128x128)
1234   MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64)
1235   MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128)
1236   MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64)
1237   MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32)
1238   MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64)
1239   MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32)
1240   MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16)
1241   MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32)
1242   MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16)
1243   MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8)
1244   MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16)
1245   MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8)
1246   MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8)
1247   MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4)
1248   MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4)
1249 
1250 #if !CONFIG_REALTIME_ONLY
1251   MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16)
1252   MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4)
1253   MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32)
1254   MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8)
1255   MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64)
1256   MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16)
1257 #endif
1258 
1259 #define SDSFP(BT, SDSF, SDSX4DF) \
1260   ppi->fn_ptr[BT].sdsf = SDSF;   \
1261   ppi->fn_ptr[BT].sdsx4df = SDSX4DF;
1262 
1263   SDSFP(BLOCK_128X128, aom_sad_skip_128x128, aom_sad_skip_128x128x4d)
1264   SDSFP(BLOCK_128X64, aom_sad_skip_128x64, aom_sad_skip_128x64x4d)
1265   SDSFP(BLOCK_64X128, aom_sad_skip_64x128, aom_sad_skip_64x128x4d)
1266   SDSFP(BLOCK_64X64, aom_sad_skip_64x64, aom_sad_skip_64x64x4d)
1267   SDSFP(BLOCK_64X32, aom_sad_skip_64x32, aom_sad_skip_64x32x4d)
1268 
1269   SDSFP(BLOCK_32X64, aom_sad_skip_32x64, aom_sad_skip_32x64x4d)
1270   SDSFP(BLOCK_32X32, aom_sad_skip_32x32, aom_sad_skip_32x32x4d)
1271   SDSFP(BLOCK_32X16, aom_sad_skip_32x16, aom_sad_skip_32x16x4d)
1272 
1273   SDSFP(BLOCK_16X32, aom_sad_skip_16x32, aom_sad_skip_16x32x4d)
1274   SDSFP(BLOCK_16X16, aom_sad_skip_16x16, aom_sad_skip_16x16x4d)
1275   SDSFP(BLOCK_16X8, aom_sad_skip_16x8, aom_sad_skip_16x8x4d)
1276   SDSFP(BLOCK_8X16, aom_sad_skip_8x16, aom_sad_skip_8x16x4d)
1277   SDSFP(BLOCK_8X8, aom_sad_skip_8x8, aom_sad_skip_8x8x4d)
1278 
1279   SDSFP(BLOCK_4X8, aom_sad_skip_4x8, aom_sad_skip_4x8x4d)
1280 
1281 #if !CONFIG_REALTIME_ONLY
1282   SDSFP(BLOCK_64X16, aom_sad_skip_64x16, aom_sad_skip_64x16x4d)
1283   SDSFP(BLOCK_16X64, aom_sad_skip_16x64, aom_sad_skip_16x64x4d)
1284   SDSFP(BLOCK_32X8, aom_sad_skip_32x8, aom_sad_skip_32x8x4d)
1285   SDSFP(BLOCK_8X32, aom_sad_skip_8x32, aom_sad_skip_8x32x4d)
1286   SDSFP(BLOCK_4X16, aom_sad_skip_4x16, aom_sad_skip_4x16x4d)
1287 #endif
1288 #undef SDSFP
1289 
1290 #if CONFIG_AV1_HIGHBITDEPTH
1291   highbd_set_var_fns(ppi);
1292 #endif
1293 
1294   {
1295     // As cm->mi_params is a part of the frame level context (cpi), it is
1296     // unavailable at this point. mi_params is created as a local temporary
1297     // variable, to be passed into the functions used for allocating tpl
1298     // buffers. The values in this variable are populated according to initial
1299     // width and height of the frame.
1300     CommonModeInfoParams mi_params;
1301     enc_set_mb_mi(&mi_params, oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height,
1302                   BLOCK_4X4);
1303 
1304     const BLOCK_SIZE bsize = BLOCK_16X16;
1305     const int w = mi_size_wide[bsize];
1306     const int h = mi_size_high[bsize];
1307     const int num_cols = (mi_params.mi_cols + w - 1) / w;
1308     const int num_rows = (mi_params.mi_rows + h - 1) / h;
1309     AOM_CHECK_MEM_ERROR(
1310         &ppi->error, ppi->tpl_sb_rdmult_scaling_factors,
1311         aom_calloc(num_rows * num_cols,
1312                    sizeof(*ppi->tpl_sb_rdmult_scaling_factors)));
1313 
1314 #if CONFIG_INTERNAL_STATS
1315     ppi->b_calculate_blockiness = 1;
1316     ppi->b_calculate_consistency = 1;
1317 
1318     for (int i = 0; i <= STAT_ALL; i++) {
1319       ppi->psnr[0].stat[i] = 0;
1320       ppi->psnr[1].stat[i] = 0;
1321 
1322       ppi->fastssim.stat[i] = 0;
1323       ppi->psnrhvs.stat[i] = 0;
1324     }
1325 
1326     ppi->psnr[0].worst = 100.0;
1327     ppi->psnr[1].worst = 100.0;
1328     ppi->worst_ssim = 100.0;
1329     ppi->worst_ssim_hbd = 100.0;
1330 
1331     ppi->count[0] = 0;
1332     ppi->count[1] = 0;
1333     ppi->total_bytes = 0;
1334 
1335     if (ppi->b_calculate_psnr) {
1336       ppi->total_sq_error[0] = 0;
1337       ppi->total_samples[0] = 0;
1338       ppi->total_sq_error[1] = 0;
1339       ppi->total_samples[1] = 0;
1340       ppi->total_recode_hits = 0;
1341       ppi->summed_quality = 0;
1342       ppi->summed_weights = 0;
1343       ppi->summed_quality_hbd = 0;
1344       ppi->summed_weights_hbd = 0;
1345     }
1346 
1347     ppi->fastssim.worst = 100.0;
1348     ppi->psnrhvs.worst = 100.0;
1349 
1350     if (ppi->b_calculate_blockiness) {
1351       ppi->total_blockiness = 0;
1352       ppi->worst_blockiness = 0.0;
1353     }
1354 
1355     ppi->total_inconsistency = 0;
1356     ppi->worst_consistency = 100.0;
1357     if (ppi->b_calculate_consistency) {
1358       AOM_CHECK_MEM_ERROR(&ppi->error, ppi->ssim_vars,
1359                           aom_malloc(sizeof(*ppi->ssim_vars) * 4 *
1360                                      mi_params.mi_rows * mi_params.mi_cols));
1361     }
1362 #endif
1363   }
1364 
1365   ppi->error.setjmp = 0;
1366   return ppi;
1367 }
1368 
av1_create_compressor(AV1_PRIMARY * ppi,const AV1EncoderConfig * oxcf,BufferPool * const pool,COMPRESSOR_STAGE stage,int lap_lag_in_frames)1369 AV1_COMP *av1_create_compressor(AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf,
1370                                 BufferPool *const pool, COMPRESSOR_STAGE stage,
1371                                 int lap_lag_in_frames) {
1372   AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP));
1373 
1374   if (!cpi) return NULL;
1375 
1376   av1_zero(*cpi);
1377 
1378   cpi->ppi = ppi;
1379 
1380   AV1_COMMON *volatile const cm = &cpi->common;
1381   cm->seq_params = &ppi->seq_params;
1382   cm->error =
1383       (struct aom_internal_error_info *)aom_calloc(1, sizeof(*cm->error));
1384   if (!cm->error) {
1385     aom_free(cpi);
1386     return NULL;
1387   }
1388 
1389   // The jmp_buf is valid only for the duration of the function that calls
1390   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1391   // before it returns.
1392   if (setjmp(cm->error->jmp)) {
1393     cm->error->setjmp = 0;
1394     av1_remove_compressor(cpi);
1395     return NULL;
1396   }
1397 
1398   cm->error->setjmp = 1;
1399   cpi->compressor_stage = stage;
1400 
1401   cpi->do_frame_data_update = true;
1402 
1403   CommonModeInfoParams *const mi_params = &cm->mi_params;
1404   mi_params->free_mi = enc_free_mi;
1405   mi_params->setup_mi = enc_setup_mi;
1406   mi_params->set_mb_mi =
1407       (oxcf->pass == AOM_RC_FIRST_PASS || cpi->compressor_stage == LAP_STAGE)
1408           ? stat_stage_set_mb_mi
1409           : enc_set_mb_mi;
1410 
1411   mi_params->mi_alloc_bsize = BLOCK_4X4;
1412 
1413   CHECK_MEM_ERROR(cm, cm->fc,
1414                   (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc)));
1415   CHECK_MEM_ERROR(
1416       cm, cm->default_frame_context,
1417       (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context)));
1418   memset(cm->fc, 0, sizeof(*cm->fc));
1419   memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context));
1420 
1421   cpi->common.buffer_pool = pool;
1422 
1423   init_config(cpi, oxcf);
1424   if (cpi->compressor_stage == LAP_STAGE) {
1425     cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames;
1426   }
1427 
1428   av1_rc_init(&cpi->oxcf, &cpi->rc);
1429 
1430   init_frame_info(&cpi->frame_info, cm);
1431   init_frame_index_set(&cpi->frame_index_set);
1432 
1433   cm->current_frame.frame_number = 0;
1434   cpi->rc.frame_number_encoded = 0;
1435   cpi->rc.prev_frame_is_dropped = 0;
1436   cpi->rc.max_consec_drop = INT_MAX;
1437   cpi->rc.drop_count_consec = 0;
1438   cm->current_frame_id = -1;
1439   cpi->tile_data = NULL;
1440   cpi->last_show_frame_buf = NULL;
1441   realloc_segmentation_maps(cpi);
1442 
1443   cpi->refresh_frame.alt_ref_frame = false;
1444 
1445 #if CONFIG_SPEED_STATS
1446   cpi->tx_search_count = 0;
1447 #endif  // CONFIG_SPEED_STATS
1448 
1449   cpi->time_stamps.first_ts_start = INT64_MAX;
1450 
1451 #ifdef OUTPUT_YUV_REC
1452   yuv_rec_file = fopen("rec.yuv", "wb");
1453 #endif
1454 #ifdef OUTPUT_YUV_DENOISED
1455   yuv_denoised_file = fopen("denoised.yuv", "wb");
1456 #endif
1457 
1458 #if !CONFIG_REALTIME_ONLY
1459   if (is_stat_consumption_stage(cpi)) {
1460     const size_t packet_sz = sizeof(FIRSTPASS_STATS);
1461     const int packets = (int)(oxcf->twopass_stats_in.sz / packet_sz);
1462 
1463     if (!cpi->ppi->lap_enabled) {
1464       /*Re-initialize to stats buffer, populated by application in the case of
1465        * two pass*/
1466       cpi->ppi->twopass.stats_buf_ctx->stats_in_start =
1467           oxcf->twopass_stats_in.buf;
1468       cpi->twopass_frame.stats_in =
1469           cpi->ppi->twopass.stats_buf_ctx->stats_in_start;
1470       cpi->ppi->twopass.stats_buf_ctx->stats_in_end =
1471           &cpi->ppi->twopass.stats_buf_ctx->stats_in_start[packets - 1];
1472 
1473       // The buffer size is packets - 1 because the last packet is total_stats.
1474       av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info,
1475                               oxcf->twopass_stats_in.buf, packets - 1);
1476       av1_init_second_pass(cpi);
1477     } else {
1478       av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info, NULL, 0);
1479       av1_init_single_pass_lap(cpi);
1480     }
1481   }
1482 #endif
1483 
1484   // The buffer "obmc_buffer" is used in inter frames for fast obmc search.
1485   // Hence, the memory allocation for the same is avoided for allintra encoding
1486   // mode.
1487   if (cpi->oxcf.kf_cfg.key_freq_max != 0)
1488     alloc_obmc_buffers(&cpi->td.mb.obmc_buffer, cm->error);
1489 
1490   for (int x = 0; x < 2; x++)
1491     for (int y = 0; y < 2; y++)
1492       CHECK_MEM_ERROR(
1493           cm, cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
1494           (uint32_t *)aom_malloc(
1495               AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1496               sizeof(*cpi->td.mb.intrabc_hash_info.hash_value_buffer[0][0])));
1497 
1498   cpi->td.mb.intrabc_hash_info.g_crc_initialized = 0;
1499 
1500   av1_set_speed_features_framesize_independent(cpi, oxcf->speed);
1501   av1_set_speed_features_framesize_dependent(cpi, oxcf->speed);
1502 
1503   int max_mi_cols = mi_params->mi_cols;
1504   int max_mi_rows = mi_params->mi_rows;
1505   if (oxcf->frm_dim_cfg.forced_max_frame_width) {
1506     max_mi_cols = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_width);
1507   }
1508   if (oxcf->frm_dim_cfg.forced_max_frame_height) {
1509     max_mi_rows = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_height);
1510   }
1511 
1512   const int consec_zero_mv_alloc_size = (max_mi_rows * max_mi_cols) >> 2;
1513   CHECK_MEM_ERROR(
1514       cm, cpi->consec_zero_mv,
1515       aom_calloc(consec_zero_mv_alloc_size, sizeof(*cpi->consec_zero_mv)));
1516   cpi->consec_zero_mv_alloc_size = consec_zero_mv_alloc_size;
1517 
1518   cpi->mb_weber_stats = NULL;
1519   cpi->mb_delta_q = NULL;
1520   cpi->palette_pixel_num = 0;
1521   cpi->scaled_last_source_available = 0;
1522 
1523   {
1524     const BLOCK_SIZE bsize = BLOCK_16X16;
1525     const int w = mi_size_wide[bsize];
1526     const int h = mi_size_high[bsize];
1527     const int num_cols = (max_mi_cols + w - 1) / w;
1528     const int num_rows = (max_mi_rows + h - 1) / h;
1529     CHECK_MEM_ERROR(cm, cpi->ssim_rdmult_scaling_factors,
1530                     aom_calloc(num_rows * num_cols,
1531                                sizeof(*cpi->ssim_rdmult_scaling_factors)));
1532     CHECK_MEM_ERROR(cm, cpi->tpl_rdmult_scaling_factors,
1533                     aom_calloc(num_rows * num_cols,
1534                                sizeof(*cpi->tpl_rdmult_scaling_factors)));
1535   }
1536 
1537 #if CONFIG_TUNE_VMAF
1538   {
1539     const BLOCK_SIZE bsize = BLOCK_64X64;
1540     const int w = mi_size_wide[bsize];
1541     const int h = mi_size_high[bsize];
1542     const int num_cols = (mi_params->mi_cols + w - 1) / w;
1543     const int num_rows = (mi_params->mi_rows + h - 1) / h;
1544     CHECK_MEM_ERROR(cm, cpi->vmaf_info.rdmult_scaling_factors,
1545                     aom_calloc(num_rows * num_cols,
1546                                sizeof(*cpi->vmaf_info.rdmult_scaling_factors)));
1547     for (int i = 0; i < MAX_ARF_LAYERS; i++) {
1548       cpi->vmaf_info.last_frame_unsharp_amount[i] = -1.0;
1549       cpi->vmaf_info.last_frame_ysse[i] = -1.0;
1550       cpi->vmaf_info.last_frame_vmaf[i] = -1.0;
1551     }
1552     cpi->vmaf_info.original_qindex = -1;
1553     cpi->vmaf_info.vmaf_model = NULL;
1554   }
1555 #endif
1556 
1557 #if CONFIG_TUNE_BUTTERAUGLI
1558   {
1559     const int w = mi_size_wide[butteraugli_rdo_bsize];
1560     const int h = mi_size_high[butteraugli_rdo_bsize];
1561     const int num_cols = (mi_params->mi_cols + w - 1) / w;
1562     const int num_rows = (mi_params->mi_rows + h - 1) / h;
1563     CHECK_MEM_ERROR(
1564         cm, cpi->butteraugli_info.rdmult_scaling_factors,
1565         aom_malloc(num_rows * num_cols *
1566                    sizeof(*cpi->butteraugli_info.rdmult_scaling_factors)));
1567     memset(&cpi->butteraugli_info.source, 0,
1568            sizeof(cpi->butteraugli_info.source));
1569     memset(&cpi->butteraugli_info.resized_source, 0,
1570            sizeof(cpi->butteraugli_info.resized_source));
1571     cpi->butteraugli_info.recon_set = false;
1572   }
1573 #endif
1574 
1575 #if CONFIG_SALIENCY_MAP
1576   {
1577     CHECK_MEM_ERROR(cm, cpi->saliency_map,
1578                     (uint8_t *)aom_calloc(cm->height * cm->width,
1579                                           sizeof(*cpi->saliency_map)));
1580     // Buffer initialization based on MIN_MIB_SIZE_LOG2 to ensure that
1581     // cpi->sm_scaling_factor buffer is allocated big enough, since we have no
1582     // idea of the actual superblock size we are going to use yet.
1583     const int min_mi_w_sb = (1 << MIN_MIB_SIZE_LOG2);
1584     const int min_mi_h_sb = (1 << MIN_MIB_SIZE_LOG2);
1585     const int max_sb_cols =
1586         (cm->mi_params.mi_cols + min_mi_w_sb - 1) / min_mi_w_sb;
1587     const int max_sb_rows =
1588         (cm->mi_params.mi_rows + min_mi_h_sb - 1) / min_mi_h_sb;
1589     CHECK_MEM_ERROR(cm, cpi->sm_scaling_factor,
1590                     (double *)aom_calloc(max_sb_rows * max_sb_cols,
1591                                          sizeof(*cpi->sm_scaling_factor)));
1592   }
1593 #endif
1594 
1595 #if CONFIG_COLLECT_PARTITION_STATS
1596   av1_zero(cpi->partition_stats);
1597 #endif  // CONFIG_COLLECT_PARTITION_STATS
1598 
1599   // Initialize the members of DeltaQuantParams with INT_MAX to ensure that
1600   // the quantizer tables are correctly initialized using the default deltaq
1601   // parameters when av1_init_quantizer is called for the first time.
1602   DeltaQuantParams *const prev_deltaq_params =
1603       &cpi->enc_quant_dequant_params.prev_deltaq_params;
1604   prev_deltaq_params->y_dc_delta_q = INT_MAX;
1605   prev_deltaq_params->u_dc_delta_q = INT_MAX;
1606   prev_deltaq_params->v_dc_delta_q = INT_MAX;
1607   prev_deltaq_params->u_ac_delta_q = INT_MAX;
1608   prev_deltaq_params->v_ac_delta_q = INT_MAX;
1609 
1610   av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
1611                      cm->seq_params->bit_depth);
1612   av1_qm_init(&cm->quant_params, av1_num_planes(cm));
1613 
1614   av1_loop_filter_init(cm);
1615   cm->superres_scale_denominator = SCALE_NUMERATOR;
1616   cm->superres_upscaled_width = oxcf->frm_dim_cfg.width;
1617   cm->superres_upscaled_height = oxcf->frm_dim_cfg.height;
1618 #if !CONFIG_REALTIME_ONLY
1619   av1_loop_restoration_precal();
1620 #endif
1621 
1622 #if CONFIG_THREE_PASS
1623   cpi->third_pass_ctx = NULL;
1624   if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
1625     av1_init_thirdpass_ctx(cm, &cpi->third_pass_ctx, NULL);
1626   }
1627 #endif
1628 
1629   cpi->second_pass_log_stream = NULL;
1630   cpi->use_ducky_encode = 0;
1631 
1632   cm->error->setjmp = 0;
1633   return cpi;
1634 }
1635 
1636 #if CONFIG_INTERNAL_STATS
1637 #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
1638 
1639 #define SNPRINT2(H, T, V) \
1640   snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
1641 #endif  // CONFIG_INTERNAL_STATS
1642 
av1_remove_primary_compressor(AV1_PRIMARY * ppi)1643 void av1_remove_primary_compressor(AV1_PRIMARY *ppi) {
1644   if (!ppi) return;
1645 #if !CONFIG_REALTIME_ONLY
1646   av1_tf_info_free(&ppi->tf_info);
1647 #endif  // !CONFIG_REALTIME_ONLY
1648 
1649   for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) {
1650     aom_free(ppi->level_params.level_info[i]);
1651   }
1652   av1_lookahead_destroy(ppi->lookahead);
1653 
1654   aom_free(ppi->tpl_sb_rdmult_scaling_factors);
1655   ppi->tpl_sb_rdmult_scaling_factors = NULL;
1656 
1657   TplParams *const tpl_data = &ppi->tpl_data;
1658   aom_free(tpl_data->txfm_stats_list);
1659 
1660   for (int frame = 0; frame < MAX_LAG_BUFFERS; ++frame) {
1661     aom_free(tpl_data->tpl_stats_pool[frame]);
1662     aom_free_frame_buffer(&tpl_data->tpl_rec_pool[frame]);
1663     tpl_data->tpl_stats_pool[frame] = NULL;
1664   }
1665 
1666 #if !CONFIG_REALTIME_ONLY
1667   av1_tpl_dealloc(&tpl_data->tpl_mt_sync);
1668 #endif
1669 
1670   av1_terminate_workers(ppi);
1671   free_thread_data(ppi);
1672 
1673   aom_free(ppi->p_mt_info.tile_thr_data);
1674   ppi->p_mt_info.tile_thr_data = NULL;
1675   aom_free(ppi->p_mt_info.workers);
1676   ppi->p_mt_info.workers = NULL;
1677   ppi->p_mt_info.num_workers = 0;
1678 
1679   aom_free(ppi);
1680 }
1681 
av1_remove_compressor(AV1_COMP * cpi)1682 void av1_remove_compressor(AV1_COMP *cpi) {
1683   if (!cpi) return;
1684 #if CONFIG_RATECTRL_LOG
1685   if (cpi->oxcf.pass == 3) {
1686     rc_log_show(&cpi->rc_log);
1687   }
1688 #endif  // CONFIG_RATECTRL_LOG
1689 
1690   AV1_COMMON *cm = &cpi->common;
1691   if (cm->current_frame.frame_number > 0) {
1692 #if CONFIG_SPEED_STATS
1693     if (!is_stat_generation_stage(cpi)) {
1694       fprintf(stdout, "tx_search_count = %d\n", cpi->tx_search_count);
1695     }
1696 #endif  // CONFIG_SPEED_STATS
1697 
1698 #if CONFIG_COLLECT_PARTITION_STATS == 2
1699     if (!is_stat_generation_stage(cpi)) {
1700       av1_print_fr_partition_timing_stats(&cpi->partition_stats,
1701                                           "fr_part_timing_data.csv");
1702     }
1703 #endif
1704   }
1705 
1706 #if CONFIG_AV1_TEMPORAL_DENOISING
1707   av1_denoiser_free(&(cpi->denoiser));
1708 #endif
1709 
1710   if (cm->error) {
1711     // Help detect use after free of the error detail string.
1712     memset(cm->error->detail, 'A', sizeof(cm->error->detail) - 1);
1713     cm->error->detail[sizeof(cm->error->detail) - 1] = '\0';
1714     aom_free(cm->error);
1715   }
1716   aom_free(cpi->td.tctx);
1717   MultiThreadInfo *const mt_info = &cpi->mt_info;
1718 #if CONFIG_MULTITHREAD
1719   pthread_mutex_t *const enc_row_mt_mutex_ = mt_info->enc_row_mt.mutex_;
1720   pthread_cond_t *const enc_row_mt_cond_ = mt_info->enc_row_mt.cond_;
1721   pthread_mutex_t *const gm_mt_mutex_ = mt_info->gm_sync.mutex_;
1722   pthread_mutex_t *const tpl_error_mutex_ = mt_info->tpl_row_mt.mutex_;
1723   pthread_mutex_t *const pack_bs_mt_mutex_ = mt_info->pack_bs_sync.mutex_;
1724   if (enc_row_mt_mutex_ != NULL) {
1725     pthread_mutex_destroy(enc_row_mt_mutex_);
1726     aom_free(enc_row_mt_mutex_);
1727   }
1728   if (enc_row_mt_cond_ != NULL) {
1729     pthread_cond_destroy(enc_row_mt_cond_);
1730     aom_free(enc_row_mt_cond_);
1731   }
1732   if (gm_mt_mutex_ != NULL) {
1733     pthread_mutex_destroy(gm_mt_mutex_);
1734     aom_free(gm_mt_mutex_);
1735   }
1736   if (tpl_error_mutex_ != NULL) {
1737     pthread_mutex_destroy(tpl_error_mutex_);
1738     aom_free(tpl_error_mutex_);
1739   }
1740   if (pack_bs_mt_mutex_ != NULL) {
1741     pthread_mutex_destroy(pack_bs_mt_mutex_);
1742     aom_free(pack_bs_mt_mutex_);
1743   }
1744 #endif
1745   av1_row_mt_mem_dealloc(cpi);
1746 
1747   if (mt_info->num_workers > 1) {
1748     av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync);
1749     av1_loop_filter_dealloc(&mt_info->lf_row_sync);
1750     av1_cdef_mt_dealloc(&mt_info->cdef_sync);
1751 #if !CONFIG_REALTIME_ONLY
1752     av1_loop_restoration_dealloc(&mt_info->lr_row_sync);
1753     av1_tf_mt_dealloc(&mt_info->tf_sync);
1754 #endif
1755   }
1756 
1757 #if CONFIG_THREE_PASS
1758   av1_free_thirdpass_ctx(cpi->third_pass_ctx);
1759 
1760   av1_close_second_pass_log(cpi);
1761 #endif
1762 
1763   dealloc_compressor_data(cpi);
1764 
1765   av1_ext_part_delete(&cpi->ext_part_controller);
1766 
1767   av1_remove_common(cm);
1768 
1769   aom_free(cpi);
1770 
1771 #ifdef OUTPUT_YUV_REC
1772   fclose(yuv_rec_file);
1773 #endif
1774 
1775 #ifdef OUTPUT_YUV_DENOISED
1776   fclose(yuv_denoised_file);
1777 #endif
1778 }
1779 
generate_psnr_packet(AV1_COMP * cpi)1780 static void generate_psnr_packet(AV1_COMP *cpi) {
1781   struct aom_codec_cx_pkt pkt;
1782   int i;
1783   PSNR_STATS psnr;
1784 #if CONFIG_AV1_HIGHBITDEPTH
1785   const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth;
1786   const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
1787   aom_calc_highbd_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr,
1788                        bit_depth, in_bit_depth);
1789 #else
1790   aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr);
1791 #endif
1792 
1793   for (i = 0; i < 4; ++i) {
1794     pkt.data.psnr.samples[i] = psnr.samples[i];
1795     pkt.data.psnr.sse[i] = psnr.sse[i];
1796     pkt.data.psnr.psnr[i] = psnr.psnr[i];
1797   }
1798 
1799 #if CONFIG_AV1_HIGHBITDEPTH
1800   if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) &&
1801       (in_bit_depth < bit_depth)) {
1802     for (i = 0; i < 4; ++i) {
1803       pkt.data.psnr.samples_hbd[i] = psnr.samples_hbd[i];
1804       pkt.data.psnr.sse_hbd[i] = psnr.sse_hbd[i];
1805       pkt.data.psnr.psnr_hbd[i] = psnr.psnr_hbd[i];
1806     }
1807   }
1808 #endif
1809 
1810   pkt.kind = AOM_CODEC_PSNR_PKT;
1811   aom_codec_pkt_list_add(cpi->ppi->output_pkt_list, &pkt);
1812 }
1813 
av1_use_as_reference(int * ext_ref_frame_flags,int ref_frame_flags)1814 int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags) {
1815   if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1;
1816 
1817   *ext_ref_frame_flags = ref_frame_flags;
1818   return 0;
1819 }
1820 
av1_copy_reference_enc(AV1_COMP * cpi,int idx,YV12_BUFFER_CONFIG * sd)1821 int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
1822   AV1_COMMON *const cm = &cpi->common;
1823   const int num_planes = av1_num_planes(cm);
1824   YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
1825   if (cfg) {
1826     aom_yv12_copy_frame(cfg, sd, num_planes);
1827     return 0;
1828   } else {
1829     return -1;
1830   }
1831 }
1832 
av1_set_reference_enc(AV1_COMP * cpi,int idx,YV12_BUFFER_CONFIG * sd)1833 int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
1834   AV1_COMMON *const cm = &cpi->common;
1835   const int num_planes = av1_num_planes(cm);
1836   YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
1837   if (cfg) {
1838     aom_yv12_copy_frame(sd, cfg, num_planes);
1839     return 0;
1840   } else {
1841     return -1;
1842   }
1843 }
1844 
1845 #ifdef OUTPUT_YUV_REC
aom_write_one_yuv_frame(AV1_COMMON * cm,YV12_BUFFER_CONFIG * s)1846 void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) {
1847   uint8_t *src = s->y_buffer;
1848   int h = cm->height;
1849   if (yuv_rec_file == NULL) return;
1850   if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
1851     uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
1852 
1853     do {
1854       fwrite(src16, s->y_width, 2, yuv_rec_file);
1855       src16 += s->y_stride;
1856     } while (--h);
1857 
1858     src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
1859     h = s->uv_height;
1860 
1861     do {
1862       fwrite(src16, s->uv_width, 2, yuv_rec_file);
1863       src16 += s->uv_stride;
1864     } while (--h);
1865 
1866     src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
1867     h = s->uv_height;
1868 
1869     do {
1870       fwrite(src16, s->uv_width, 2, yuv_rec_file);
1871       src16 += s->uv_stride;
1872     } while (--h);
1873 
1874     fflush(yuv_rec_file);
1875     return;
1876   }
1877 
1878   do {
1879     fwrite(src, s->y_width, 1, yuv_rec_file);
1880     src += s->y_stride;
1881   } while (--h);
1882 
1883   src = s->u_buffer;
1884   h = s->uv_height;
1885 
1886   do {
1887     fwrite(src, s->uv_width, 1, yuv_rec_file);
1888     src += s->uv_stride;
1889   } while (--h);
1890 
1891   src = s->v_buffer;
1892   h = s->uv_height;
1893 
1894   do {
1895     fwrite(src, s->uv_width, 1, yuv_rec_file);
1896     src += s->uv_stride;
1897   } while (--h);
1898 
1899   fflush(yuv_rec_file);
1900 }
1901 #endif  // OUTPUT_YUV_REC
1902 
av1_set_mv_search_params(AV1_COMP * cpi)1903 void av1_set_mv_search_params(AV1_COMP *cpi) {
1904   const AV1_COMMON *const cm = &cpi->common;
1905   MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params;
1906   const int max_mv_def = AOMMAX(cm->width, cm->height);
1907 
1908   // Default based on max resolution.
1909   mv_search_params->mv_step_param = av1_init_search_range(max_mv_def);
1910 
1911   if (cpi->sf.mv_sf.auto_mv_step_size) {
1912     if (frame_is_intra_only(cm)) {
1913       // Initialize max_mv_magnitude for use in the first INTER frame
1914       // after a key/intra-only frame.
1915       mv_search_params->max_mv_magnitude = max_mv_def;
1916     } else {
1917       // Use adaptive mv steps based on previous frame stats for show frames and
1918       // internal arfs.
1919       FRAME_UPDATE_TYPE cur_update_type =
1920           cpi->ppi->gf_group.update_type[cpi->gf_frame_index];
1921       int use_auto_mv_step =
1922           (cm->show_frame || cur_update_type == INTNL_ARF_UPDATE) &&
1923           mv_search_params->max_mv_magnitude != -1 &&
1924           cpi->sf.mv_sf.auto_mv_step_size >= 2;
1925       if (use_auto_mv_step) {
1926         // Allow mv_steps to correspond to twice the max mv magnitude found
1927         // in the previous frame, capped by the default max_mv_magnitude based
1928         // on resolution.
1929         mv_search_params->mv_step_param = av1_init_search_range(
1930             AOMMIN(max_mv_def, 2 * mv_search_params->max_mv_magnitude));
1931       }
1932       // Reset max_mv_magnitude based on update flag.
1933       if (cpi->do_frame_data_update) mv_search_params->max_mv_magnitude = -1;
1934     }
1935   }
1936 }
1937 
av1_set_screen_content_options(AV1_COMP * cpi,FeatureFlags * features)1938 void av1_set_screen_content_options(AV1_COMP *cpi, FeatureFlags *features) {
1939   const AV1_COMMON *const cm = &cpi->common;
1940   const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1941 
1942   if (cm->seq_params->force_screen_content_tools != 2) {
1943     features->allow_screen_content_tools = features->allow_intrabc =
1944         cm->seq_params->force_screen_content_tools;
1945     return;
1946   }
1947 
1948   if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
1949     features->allow_screen_content_tools = 1;
1950     features->allow_intrabc = cpi->oxcf.mode == REALTIME ? 0 : 1;
1951     cpi->is_screen_content_type = 1;
1952     cpi->use_screen_content_tools = 1;
1953     return;
1954   }
1955 
1956   if (cpi->oxcf.mode == REALTIME) {
1957     features->allow_screen_content_tools = features->allow_intrabc = 0;
1958     return;
1959   }
1960 
1961   // Screen content tools are not evaluated in non-RD encoding mode unless
1962   // content type is not set explicitly, i.e., when
1963   // cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN, use_nonrd_pick_mode = 1
1964   // and hybrid_intra_pickmode = 0. Hence, screen content detection is
1965   // disabled.
1966   if (cpi->sf.rt_sf.use_nonrd_pick_mode &&
1967       !cpi->sf.rt_sf.hybrid_intra_pickmode) {
1968     features->allow_screen_content_tools = features->allow_intrabc = 0;
1969     return;
1970   }
1971 
1972   // Estimate if the source frame is screen content, based on the portion of
1973   // blocks that have few luma colors.
1974   const uint8_t *src = cpi->unfiltered_source->y_buffer;
1975   assert(src != NULL);
1976   const int use_hbd = cpi->unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH;
1977   const int stride = cpi->unfiltered_source->y_stride;
1978   const int width = cpi->unfiltered_source->y_width;
1979   const int height = cpi->unfiltered_source->y_height;
1980   const int64_t area = (int64_t)width * height;
1981   const int bd = cm->seq_params->bit_depth;
1982   const int blk_w = 16;
1983   const int blk_h = 16;
1984   // These threshold values are selected experimentally.
1985   const int color_thresh = 4;
1986   const unsigned int var_thresh = 0;
1987   // Counts of blocks with no more than color_thresh colors.
1988   int64_t counts_1 = 0;
1989   // Counts of blocks with no more than color_thresh colors and variance larger
1990   // than var_thresh.
1991   int64_t counts_2 = 0;
1992 
1993   for (int r = 0; r + blk_h <= height; r += blk_h) {
1994     for (int c = 0; c + blk_w <= width; c += blk_w) {
1995       int count_buf[1 << 8];  // Maximum (1 << 8) bins for hbd path.
1996       const uint8_t *const this_src = src + r * stride + c;
1997       int n_colors;
1998       if (use_hbd)
1999         av1_count_colors_highbd(this_src, stride, blk_w, blk_h, bd, NULL,
2000                                 count_buf, &n_colors, NULL);
2001       else
2002         av1_count_colors(this_src, stride, blk_w, blk_h, count_buf, &n_colors);
2003       if (n_colors > 1 && n_colors <= color_thresh) {
2004         ++counts_1;
2005         struct buf_2d buf;
2006         buf.stride = stride;
2007         buf.buf = (uint8_t *)this_src;
2008         const unsigned int var = av1_get_perpixel_variance(
2009             cpi, xd, &buf, BLOCK_16X16, AOM_PLANE_Y, use_hbd);
2010         if (var > var_thresh) ++counts_2;
2011       }
2012     }
2013   }
2014 
2015   // The threshold values are selected experimentally.
2016   features->allow_screen_content_tools = counts_1 * blk_h * blk_w * 10 > area;
2017   // IntraBC would force loop filters off, so we use more strict rules that also
2018   // requires that the block has high variance.
2019   features->allow_intrabc = features->allow_screen_content_tools &&
2020                             counts_2 * blk_h * blk_w * 12 > area;
2021   cpi->use_screen_content_tools = features->allow_screen_content_tools;
2022   cpi->is_screen_content_type =
2023       features->allow_intrabc || (counts_1 * blk_h * blk_w * 10 > area * 4 &&
2024                                   counts_2 * blk_h * blk_w * 30 > area);
2025 }
2026 
init_motion_estimation(AV1_COMP * cpi)2027 static void init_motion_estimation(AV1_COMP *cpi) {
2028   AV1_COMMON *const cm = &cpi->common;
2029   MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params;
2030   const int aligned_width = (cm->width + 7) & ~7;
2031   const int y_stride =
2032       aom_calc_y_stride(aligned_width, cpi->oxcf.border_in_pixels);
2033   const int y_stride_src = ((cpi->oxcf.frm_dim_cfg.width != cm->width ||
2034                              cpi->oxcf.frm_dim_cfg.height != cm->height) ||
2035                             av1_superres_scaled(cm))
2036                                ? y_stride
2037                                : cpi->ppi->lookahead->buf->img.y_stride;
2038   int fpf_y_stride =
2039       cm->cur_frame != NULL ? cm->cur_frame->buf.y_stride : y_stride;
2040 
2041   // Update if search_site_cfg is uninitialized or the current frame has a new
2042   // stride
2043   const int should_update =
2044       !mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride ||
2045       !mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][DIAMOND].stride ||
2046       (y_stride !=
2047        mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride);
2048 
2049   if (!should_update) {
2050     return;
2051   }
2052 
2053   // Initialization of search_site_cfg for NUM_DISTINCT_SEARCH_METHODS.
2054   for (SEARCH_METHODS i = DIAMOND; i < NUM_DISTINCT_SEARCH_METHODS; i++) {
2055     const int level = ((i == NSTEP_8PT) || (i == CLAMPED_DIAMOND)) ? 1 : 0;
2056     av1_init_motion_compensation[i](
2057         &mv_search_params->search_site_cfg[SS_CFG_SRC][i], y_stride, level);
2058     av1_init_motion_compensation[i](
2059         &mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][i], y_stride_src,
2060         level);
2061   }
2062 
2063   // First pass search site config initialization.
2064   av1_init_motion_fpf(&mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND],
2065                       fpf_y_stride);
2066   for (SEARCH_METHODS i = NSTEP; i < NUM_DISTINCT_SEARCH_METHODS; i++) {
2067     memcpy(&mv_search_params->search_site_cfg[SS_CFG_FPF][i],
2068            &mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND],
2069            sizeof(search_site_config));
2070   }
2071 }
2072 
init_ref_frame_bufs(AV1_COMP * cpi)2073 static void init_ref_frame_bufs(AV1_COMP *cpi) {
2074   AV1_COMMON *const cm = &cpi->common;
2075   int i;
2076   if (cm->cur_frame) {
2077     cm->cur_frame->ref_count--;
2078     cm->cur_frame = NULL;
2079   }
2080   for (i = 0; i < REF_FRAMES; ++i) {
2081     if (cm->ref_frame_map[i]) {
2082       cm->ref_frame_map[i]->ref_count--;
2083       cm->ref_frame_map[i] = NULL;
2084     }
2085   }
2086 #ifndef NDEBUG
2087   BufferPool *const pool = cm->buffer_pool;
2088   for (i = 0; i < pool->num_frame_bufs; ++i) {
2089     assert(pool->frame_bufs[i].ref_count == 0);
2090   }
2091 #endif
2092 }
2093 
2094 // TODO(chengchen): consider renaming this function as it is necessary
2095 // for the encoder to setup critical parameters, and it does not
2096 // deal with initial width any longer.
av1_check_initial_width(AV1_COMP * cpi,int use_highbitdepth,int subsampling_x,int subsampling_y)2097 aom_codec_err_t av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth,
2098                                         int subsampling_x, int subsampling_y) {
2099   AV1_COMMON *const cm = &cpi->common;
2100   SequenceHeader *const seq_params = cm->seq_params;
2101 
2102   if (!cpi->frame_size_related_setup_done ||
2103       seq_params->use_highbitdepth != use_highbitdepth ||
2104       seq_params->subsampling_x != subsampling_x ||
2105       seq_params->subsampling_y != subsampling_y) {
2106     seq_params->subsampling_x = subsampling_x;
2107     seq_params->subsampling_y = subsampling_y;
2108     seq_params->use_highbitdepth = use_highbitdepth;
2109 
2110     av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed);
2111     av1_set_speed_features_framesize_dependent(cpi, cpi->oxcf.speed);
2112 
2113     if (!is_stat_generation_stage(cpi)) {
2114 #if !CONFIG_REALTIME_ONLY
2115       if (!av1_tf_info_alloc(&cpi->ppi->tf_info, cpi))
2116         return AOM_CODEC_MEM_ERROR;
2117 #endif  // !CONFIG_REALTIME_ONLY
2118     }
2119     init_ref_frame_bufs(cpi);
2120 
2121     init_motion_estimation(cpi);  // TODO(agrange) This can be removed.
2122 
2123     cpi->initial_mbs = cm->mi_params.MBs;
2124     cpi->frame_size_related_setup_done = true;
2125   }
2126   return AOM_CODEC_OK;
2127 }
2128 
2129 #if CONFIG_AV1_TEMPORAL_DENOISING
setup_denoiser_buffer(AV1_COMP * cpi)2130 static void setup_denoiser_buffer(AV1_COMP *cpi) {
2131   AV1_COMMON *const cm = &cpi->common;
2132   if (cpi->oxcf.noise_sensitivity > 0 &&
2133       !cpi->denoiser.frame_buffer_initialized) {
2134     if (av1_denoiser_alloc(
2135             cm, &cpi->svc, &cpi->denoiser, cpi->ppi->use_svc,
2136             cpi->oxcf.noise_sensitivity, cm->width, cm->height,
2137             cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
2138             cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS))
2139       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2140                          "Failed to allocate denoiser");
2141   }
2142 }
2143 #endif
2144 
2145 // Returns 1 if the assigned width or height was <= 0.
set_size_literal(AV1_COMP * cpi,int width,int height)2146 static int set_size_literal(AV1_COMP *cpi, int width, int height) {
2147   AV1_COMMON *cm = &cpi->common;
2148   aom_codec_err_t err = av1_check_initial_width(
2149       cpi, cm->seq_params->use_highbitdepth, cm->seq_params->subsampling_x,
2150       cm->seq_params->subsampling_y);
2151   if (err != AOM_CODEC_OK) {
2152     aom_internal_error(cm->error, err, "av1_check_initial_width() failed");
2153   }
2154 
2155   if (width <= 0 || height <= 0) return 1;
2156 
2157   cm->width = width;
2158   cm->height = height;
2159 
2160 #if CONFIG_AV1_TEMPORAL_DENOISING
2161   setup_denoiser_buffer(cpi);
2162 #endif
2163 
2164   if (cm->width > cpi->data_alloc_width ||
2165       cm->height > cpi->data_alloc_height) {
2166     av1_free_context_buffers(cm);
2167     av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf);
2168     av1_free_sms_tree(&cpi->td);
2169     av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm));
2170     cpi->td.firstpass_ctx = NULL;
2171     alloc_compressor_data(cpi);
2172     realloc_segmentation_maps(cpi);
2173     cpi->data_alloc_width = cm->width;
2174     cpi->data_alloc_height = cm->height;
2175     cpi->frame_size_related_setup_done = false;
2176   }
2177   alloc_mb_mode_info_buffers(cpi);
2178   av1_update_frame_size(cpi);
2179 
2180   return 0;
2181 }
2182 
av1_set_frame_size(AV1_COMP * cpi,int width,int height)2183 void av1_set_frame_size(AV1_COMP *cpi, int width, int height) {
2184   AV1_COMMON *const cm = &cpi->common;
2185   const SequenceHeader *const seq_params = cm->seq_params;
2186   const int num_planes = av1_num_planes(cm);
2187   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2188   int ref_frame;
2189 
2190   if (width != cm->width || height != cm->height) {
2191     // There has been a change in the encoded frame size
2192     set_size_literal(cpi, width, height);
2193     // Recalculate 'all_lossless' in case super-resolution was (un)selected.
2194     cm->features.all_lossless =
2195         cm->features.coded_lossless && !av1_superres_scaled(cm);
2196 
2197     av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
2198 #if CONFIG_AV1_TEMPORAL_DENOISING
2199     // Reset the denoiser on the resized frame.
2200     if (cpi->oxcf.noise_sensitivity > 0) {
2201       av1_denoiser_free(&(cpi->denoiser));
2202       setup_denoiser_buffer(cpi);
2203     }
2204 #endif
2205   }
2206   if (is_stat_consumption_stage(cpi)) {
2207     av1_set_target_rate(cpi, cm->width, cm->height);
2208   }
2209 
2210   alloc_frame_mvs(cm, cm->cur_frame);
2211 
2212   // Allocate above context buffers
2213   CommonContexts *const above_contexts = &cm->above_contexts;
2214   if (above_contexts->num_planes < av1_num_planes(cm) ||
2215       above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
2216       above_contexts->num_tile_rows < cm->tiles.rows) {
2217     av1_free_above_context_buffers(above_contexts);
2218     if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
2219                                         cm->mi_params.mi_cols,
2220                                         av1_num_planes(cm)))
2221       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2222                          "Failed to allocate context buffers");
2223   }
2224 
2225   AV1EncoderConfig *oxcf = &cpi->oxcf;
2226   oxcf->border_in_pixels = av1_get_enc_border_size(
2227       av1_is_resize_needed(oxcf), oxcf->kf_cfg.key_freq_max == 0,
2228       cm->seq_params->sb_size);
2229 
2230   // Reset the frame pointers to the current frame size.
2231   if (aom_realloc_frame_buffer(
2232           &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
2233           seq_params->subsampling_y, seq_params->use_highbitdepth,
2234           cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
2235           NULL, cpi->alloc_pyramid, 0))
2236     aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2237                        "Failed to allocate frame buffer");
2238 
2239   if (!is_stat_generation_stage(cpi)) av1_init_cdef_worker(cpi);
2240 
2241 #if !CONFIG_REALTIME_ONLY
2242   if (is_restoration_used(cm)) {
2243     for (int i = 0; i < num_planes; ++i)
2244       cm->rst_info[i].frame_restoration_type = RESTORE_NONE;
2245 
2246     const bool is_sgr_enabled = !cpi->sf.lpf_sf.disable_sgr_filter;
2247     av1_alloc_restoration_buffers(cm, is_sgr_enabled);
2248     // Store the allocated restoration buffers in MT object.
2249     if (cpi->ppi->p_mt_info.num_workers > 1) {
2250       av1_init_lr_mt_buffers(cpi);
2251     }
2252   }
2253 #endif
2254 
2255   init_motion_estimation(cpi);
2256 
2257   int has_valid_ref_frame = 0;
2258   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2259     RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2260     if (buf != NULL) {
2261       struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame);
2262       av1_setup_scale_factors_for_frame(sf, buf->buf.y_crop_width,
2263                                         buf->buf.y_crop_height, cm->width,
2264                                         cm->height);
2265       has_valid_ref_frame |= av1_is_valid_scale(sf);
2266       if (av1_is_scaled(sf)) aom_extend_frame_borders(&buf->buf, num_planes);
2267     }
2268   }
2269   if (!frame_is_intra_only(cm) && !has_valid_ref_frame) {
2270     aom_internal_error(
2271         cm->error, AOM_CODEC_CORRUPT_FRAME,
2272         "Can't find at least one reference frame with valid size");
2273   }
2274 
2275   av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
2276                                     cm->width, cm->height);
2277 
2278   set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
2279 }
2280 
extend_borders_mt(const AV1_COMP * cpi,MULTI_THREADED_MODULES stage,int plane)2281 static inline int extend_borders_mt(const AV1_COMP *cpi,
2282                                     MULTI_THREADED_MODULES stage, int plane) {
2283   const AV1_COMMON *const cm = &cpi->common;
2284   if (cpi->mt_info.num_mod_workers[stage] < 2) return 0;
2285   switch (stage) {
2286     // TODO([email protected]): When cdef and loop-restoration are disabled,
2287     // multi-thread frame border extension along with loop filter frame.
2288     // As loop-filtering of a superblock row modifies the pixels of the
2289     // above superblock row, border extension requires that loop filtering
2290     // of the current and above superblock row is complete.
2291     case MOD_LPF: return 0;
2292     case MOD_CDEF:
2293       return is_cdef_used(cm) && !cpi->ppi->rtc_ref.non_reference_frame &&
2294              !is_restoration_used(cm) && !av1_superres_scaled(cm);
2295     case MOD_LR:
2296       return is_restoration_used(cm) &&
2297              (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE);
2298     default: assert(0);
2299   }
2300   return 0;
2301 }
2302 
2303 /*!\brief Select and apply cdef filters and switchable restoration filters
2304  *
2305  * \ingroup high_level_algo
2306  */
cdef_restoration_frame(AV1_COMP * cpi,AV1_COMMON * cm,MACROBLOCKD * xd,int use_restoration,int use_cdef,unsigned int skip_apply_postproc_filters)2307 static void cdef_restoration_frame(AV1_COMP *cpi, AV1_COMMON *cm,
2308                                    MACROBLOCKD *xd, int use_restoration,
2309                                    int use_cdef,
2310                                    unsigned int skip_apply_postproc_filters) {
2311 #if !CONFIG_REALTIME_ONLY
2312   if (use_restoration)
2313     av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 0);
2314 #else
2315   (void)use_restoration;
2316 #endif
2317 
2318   if (use_cdef) {
2319 #if CONFIG_COLLECT_COMPONENT_TIMING
2320     start_timing(cpi, cdef_time);
2321 #endif
2322     const int num_workers = cpi->mt_info.num_mod_workers[MOD_CDEF];
2323     // Find CDEF parameters
2324     av1_cdef_search(cpi);
2325 
2326     // Apply the filter
2327     if ((skip_apply_postproc_filters & SKIP_APPLY_CDEF) == 0) {
2328       assert(!cpi->ppi->rtc_ref.non_reference_frame);
2329       if (num_workers > 1) {
2330         // Extension of frame borders is multi-threaded along with cdef.
2331         const int do_extend_border =
2332             extend_borders_mt(cpi, MOD_CDEF, /* plane */ 0);
2333         av1_cdef_frame_mt(cm, xd, cpi->mt_info.cdef_worker,
2334                           cpi->mt_info.workers, &cpi->mt_info.cdef_sync,
2335                           num_workers, av1_cdef_init_fb_row_mt,
2336                           do_extend_border);
2337       } else {
2338         av1_cdef_frame(&cm->cur_frame->buf, cm, xd, av1_cdef_init_fb_row);
2339       }
2340     }
2341 #if CONFIG_COLLECT_COMPONENT_TIMING
2342     end_timing(cpi, cdef_time);
2343 #endif
2344   }
2345 
2346   const int use_superres = av1_superres_scaled(cm);
2347   if (use_superres) {
2348     if ((skip_apply_postproc_filters & SKIP_APPLY_SUPERRES) == 0) {
2349       av1_superres_post_encode(cpi);
2350     }
2351   }
2352 
2353 #if !CONFIG_REALTIME_ONLY
2354 #if CONFIG_COLLECT_COMPONENT_TIMING
2355   start_timing(cpi, loop_restoration_time);
2356 #endif
2357   if (use_restoration) {
2358     MultiThreadInfo *const mt_info = &cpi->mt_info;
2359     const int num_workers = mt_info->num_mod_workers[MOD_LR];
2360     av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 1);
2361     av1_pick_filter_restoration(cpi->source, cpi);
2362     if ((skip_apply_postproc_filters & SKIP_APPLY_RESTORATION) == 0 &&
2363         (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
2364          cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
2365          cm->rst_info[2].frame_restoration_type != RESTORE_NONE)) {
2366       if (num_workers > 1) {
2367         // Extension of frame borders is multi-threaded along with loop
2368         // restoration filter.
2369         const int do_extend_border = 1;
2370         av1_loop_restoration_filter_frame_mt(
2371             &cm->cur_frame->buf, cm, 0, mt_info->workers, num_workers,
2372             &mt_info->lr_row_sync, &cpi->lr_ctxt, do_extend_border);
2373       } else {
2374         av1_loop_restoration_filter_frame(&cm->cur_frame->buf, cm, 0,
2375                                           &cpi->lr_ctxt);
2376       }
2377     }
2378   }
2379 #if CONFIG_COLLECT_COMPONENT_TIMING
2380   end_timing(cpi, loop_restoration_time);
2381 #endif
2382 #endif  // !CONFIG_REALTIME_ONLY
2383 }
2384 
extend_frame_borders(AV1_COMP * cpi)2385 static void extend_frame_borders(AV1_COMP *cpi) {
2386   const AV1_COMMON *const cm = &cpi->common;
2387   // TODO(debargha): Fix mv search range on encoder side
2388   for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
2389     const bool extend_border_done = extend_borders_mt(cpi, MOD_CDEF, plane) ||
2390                                     extend_borders_mt(cpi, MOD_LR, plane);
2391     if (!extend_border_done) {
2392       const YV12_BUFFER_CONFIG *const ybf = &cm->cur_frame->buf;
2393       aom_extend_frame_borders_plane_row(ybf, plane, 0,
2394                                          ybf->crop_heights[plane > 0]);
2395     }
2396   }
2397 }
2398 
2399 /*!\brief Select and apply deblocking filters, cdef filters, and restoration
2400  * filters.
2401  *
2402  * \ingroup high_level_algo
2403  */
loopfilter_frame(AV1_COMP * cpi,AV1_COMMON * cm)2404 static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
2405   MultiThreadInfo *const mt_info = &cpi->mt_info;
2406   const int num_workers = mt_info->num_mod_workers[MOD_LPF];
2407   const int num_planes = av1_num_planes(cm);
2408   MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
2409   cpi->td.mb.rdmult = cpi->rd.RDMULT;
2410 
2411   assert(IMPLIES(is_lossless_requested(&cpi->oxcf.rc_cfg),
2412                  cm->features.coded_lossless && cm->features.all_lossless));
2413 
2414   const int use_loopfilter =
2415       is_loopfilter_used(cm) && !cpi->mt_info.pipeline_lpf_mt_with_enc;
2416   const int use_cdef = is_cdef_used(cm);
2417   const int use_superres = av1_superres_scaled(cm);
2418   const int use_restoration = is_restoration_used(cm);
2419 
2420   const unsigned int skip_apply_postproc_filters =
2421       derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
2422                                          use_superres, use_restoration);
2423 
2424 #if CONFIG_COLLECT_COMPONENT_TIMING
2425   start_timing(cpi, loop_filter_time);
2426 #endif
2427   if (use_loopfilter) {
2428     av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_sf.lpf_pick);
2429     struct loopfilter *lf = &cm->lf;
2430     if ((lf->filter_level[0] || lf->filter_level[1]) &&
2431         (skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0) {
2432       assert(!cpi->ppi->rtc_ref.non_reference_frame);
2433       // lpf_opt_level = 1 : Enables dual/quad loop-filtering.
2434       // lpf_opt_level is set to 1 if transform size search depth in inter
2435       // blocks is limited to one as quad loop filtering assumes that all the
2436       // transform blocks within a 16x8/8x16/16x16 prediction block are of the
2437       // same size. lpf_opt_level = 2 : Filters both chroma planes together, in
2438       // addition to enabling dual/quad loop-filtering. This is enabled when lpf
2439       // pick method is LPF_PICK_FROM_Q as u and v plane filter levels are
2440       // equal.
2441       int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
2442       av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, xd, 0, num_planes, 0,
2443                                mt_info->workers, num_workers,
2444                                &mt_info->lf_row_sync, lpf_opt_level);
2445     }
2446   }
2447 
2448 #if CONFIG_COLLECT_COMPONENT_TIMING
2449   end_timing(cpi, loop_filter_time);
2450 #endif
2451 
2452   cdef_restoration_frame(cpi, cm, xd, use_restoration, use_cdef,
2453                          skip_apply_postproc_filters);
2454 }
2455 
update_motion_stat(AV1_COMP * const cpi)2456 static void update_motion_stat(AV1_COMP *const cpi) {
2457   AV1_COMMON *const cm = &cpi->common;
2458   const CommonModeInfoParams *const mi_params = &cm->mi_params;
2459   RATE_CONTROL *const rc = &cpi->rc;
2460   SVC *const svc = &cpi->svc;
2461   const int avg_cnt_zeromv =
2462       100 * cpi->rc.cnt_zeromv / (mi_params->mi_rows * mi_params->mi_cols);
2463   if (!cpi->ppi->use_svc ||
2464       (cpi->ppi->use_svc &&
2465        !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
2466        cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) {
2467     rc->avg_frame_low_motion =
2468         (rc->avg_frame_low_motion == 0)
2469             ? avg_cnt_zeromv
2470             : (3 * rc->avg_frame_low_motion + avg_cnt_zeromv) / 4;
2471     // For SVC: set avg_frame_low_motion (only computed on top spatial layer)
2472     // to all lower spatial layers.
2473     if (cpi->ppi->use_svc &&
2474         svc->spatial_layer_id == svc->number_spatial_layers - 1) {
2475       for (int i = 0; i < svc->number_spatial_layers - 1; ++i) {
2476         const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
2477                                            svc->number_temporal_layers);
2478         LAYER_CONTEXT *const lc = &svc->layer_context[layer];
2479         RATE_CONTROL *const lrc = &lc->rc;
2480         lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
2481       }
2482     }
2483   }
2484 }
2485 
2486 /*!\brief Encode a frame without the recode loop, usually used in one-pass
2487  * encoding and realtime coding.
2488  *
2489  * \ingroup high_level_algo
2490  *
2491  * \param[in]    cpi             Top-level encoder structure
2492  *
2493  * \return Returns a value to indicate if the encoding is done successfully.
2494  * \retval #AOM_CODEC_OK
2495  * \retval #AOM_CODEC_ERROR
2496  */
encode_without_recode(AV1_COMP * cpi)2497 static int encode_without_recode(AV1_COMP *cpi) {
2498   AV1_COMMON *const cm = &cpi->common;
2499   const QuantizationCfg *const q_cfg = &cpi->oxcf.q_cfg;
2500   SVC *const svc = &cpi->svc;
2501   const int resize_pending = is_frame_resize_pending(cpi);
2502   int top_index = 0, bottom_index = 0, q = 0;
2503   YV12_BUFFER_CONFIG *unscaled = cpi->unscaled_source;
2504   InterpFilter filter_scaler =
2505       cpi->ppi->use_svc ? svc->downsample_filter_type[svc->spatial_layer_id]
2506                         : EIGHTTAP_SMOOTH;
2507   int phase_scaler = cpi->ppi->use_svc
2508                          ? svc->downsample_filter_phase[svc->spatial_layer_id]
2509                          : 0;
2510 
2511   if (cpi->rc.postencode_drop && allow_postencode_drop_rtc(cpi))
2512     av1_save_all_coding_context(cpi);
2513 
2514   set_size_independent_vars(cpi);
2515   av1_setup_frame_size(cpi);
2516   cm->prev_frame = get_primary_ref_frame_buf(cm);
2517   av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
2518   av1_set_mv_search_params(cpi);
2519 
2520   if (cm->current_frame.frame_number == 0 &&
2521       (cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) &&
2522       cpi->svc.temporal_layer_id == 0) {
2523     const SequenceHeader *seq_params = cm->seq_params;
2524     if (aom_alloc_frame_buffer(
2525             &cpi->svc.source_last_TL0, cpi->oxcf.frm_dim_cfg.width,
2526             cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x,
2527             seq_params->subsampling_y, seq_params->use_highbitdepth,
2528             cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false,
2529             0)) {
2530       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2531                          "Failed to allocate buffer for source_last_TL0");
2532     }
2533   }
2534 
2535   if (!cpi->ppi->use_svc) {
2536     phase_scaler = 8;
2537     // 2:1 scaling.
2538     if ((cm->width << 1) == unscaled->y_crop_width &&
2539         (cm->height << 1) == unscaled->y_crop_height) {
2540       filter_scaler = BILINEAR;
2541       // For lower resolutions use eighttap_smooth.
2542       if (cm->width * cm->height <= 320 * 180) filter_scaler = EIGHTTAP_SMOOTH;
2543     } else if ((cm->width << 2) == unscaled->y_crop_width &&
2544                (cm->height << 2) == unscaled->y_crop_height) {
2545       // 4:1 scaling.
2546       filter_scaler = EIGHTTAP_SMOOTH;
2547     } else if ((cm->width << 2) == 3 * unscaled->y_crop_width &&
2548                (cm->height << 2) == 3 * unscaled->y_crop_height) {
2549       // 4:3 scaling.
2550       filter_scaler = EIGHTTAP_REGULAR;
2551     }
2552   }
2553 
2554   allocate_gradient_info_for_hog(cpi);
2555 
2556   allocate_src_var_of_4x4_sub_block_buf(cpi);
2557 
2558   const SPEED_FEATURES *sf = &cpi->sf;
2559   if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION)
2560     variance_partition_alloc(cpi);
2561 
2562   if (cm->current_frame.frame_type == KEY_FRAME ||
2563       ((sf->inter_sf.extra_prune_warped && cpi->refresh_frame.golden_frame)))
2564     copy_frame_prob_info(cpi);
2565 
2566 #if CONFIG_COLLECT_COMPONENT_TIMING
2567   printf("\n Encoding a frame: \n");
2568 #endif
2569 
2570 #if CONFIG_TUNE_BUTTERAUGLI
2571   if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
2572     av1_setup_butteraugli_rdmult(cpi);
2573   }
2574 #endif
2575 
2576   cpi->source = av1_realloc_and_scale_if_required(
2577       cm, unscaled, &cpi->scaled_source, filter_scaler, phase_scaler, true,
2578       false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
2579   if (frame_is_intra_only(cm) || resize_pending != 0) {
2580     const int current_size =
2581         (cm->mi_params.mi_rows * cm->mi_params.mi_cols) >> 2;
2582     if (cpi->consec_zero_mv &&
2583         (cpi->consec_zero_mv_alloc_size < current_size)) {
2584       aom_free(cpi->consec_zero_mv);
2585       cpi->consec_zero_mv_alloc_size = 0;
2586       CHECK_MEM_ERROR(cm, cpi->consec_zero_mv,
2587                       aom_malloc(current_size * sizeof(*cpi->consec_zero_mv)));
2588       cpi->consec_zero_mv_alloc_size = current_size;
2589     }
2590     assert(cpi->consec_zero_mv != NULL);
2591     memset(cpi->consec_zero_mv, 0, current_size * sizeof(*cpi->consec_zero_mv));
2592   }
2593 
2594   if (cpi->scaled_last_source_available) {
2595     cpi->last_source = &cpi->scaled_last_source;
2596     cpi->scaled_last_source_available = 0;
2597   } else if (cpi->unscaled_last_source != NULL) {
2598     cpi->last_source = av1_realloc_and_scale_if_required(
2599         cm, cpi->unscaled_last_source, &cpi->scaled_last_source, filter_scaler,
2600         phase_scaler, true, false, cpi->oxcf.border_in_pixels,
2601         cpi->alloc_pyramid);
2602   }
2603 
2604   if (cpi->sf.rt_sf.use_temporal_noise_estimate) {
2605     av1_update_noise_estimate(cpi);
2606   }
2607 
2608 #if CONFIG_AV1_TEMPORAL_DENOISING
2609   if (cpi->oxcf.noise_sensitivity > 0 && cpi->ppi->use_svc)
2610     av1_denoiser_reset_on_first_frame(cpi);
2611 #endif
2612 
2613   // For 1 spatial layer encoding: if the (non-LAST) reference has different
2614   // resolution from the source then disable that reference. This is to avoid
2615   // significant increase in encode time from scaling the references in
2616   // av1_scale_references. Note GOLDEN is forced to update on the (first/tigger)
2617   // resized frame and ALTREF will be refreshed ~4 frames later, so both
2618   // references become available again after few frames.
2619   // For superres: don't disable golden reference.
2620   if (svc->number_spatial_layers == 1) {
2621     if (!cpi->oxcf.superres_cfg.enable_superres) {
2622       if (cpi->ref_frame_flags & av1_ref_frame_flag_list[GOLDEN_FRAME]) {
2623         const YV12_BUFFER_CONFIG *const ref =
2624             get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
2625         if (ref == NULL || ref->y_crop_width != cm->width ||
2626             ref->y_crop_height != cm->height) {
2627           cpi->ref_frame_flags ^= AOM_GOLD_FLAG;
2628         }
2629       }
2630     }
2631     if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]) {
2632       const YV12_BUFFER_CONFIG *const ref =
2633           get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
2634       if (ref == NULL || ref->y_crop_width != cm->width ||
2635           ref->y_crop_height != cm->height) {
2636         cpi->ref_frame_flags ^= AOM_ALT_FLAG;
2637       }
2638     }
2639   }
2640 
2641   int scale_references = 0;
2642 #if CONFIG_FPMT_TEST
2643   scale_references =
2644       cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0;
2645 #endif  // CONFIG_FPMT_TEST
2646   if (scale_references ||
2647       cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
2648     if (!frame_is_intra_only(cm)) {
2649       av1_scale_references(cpi, filter_scaler, phase_scaler, 1);
2650     }
2651   }
2652 
2653   av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q,
2654                     q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq);
2655   av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed);
2656   av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
2657                      cm->seq_params->bit_depth);
2658   av1_set_variance_partition_thresholds(cpi, q, 0);
2659   av1_setup_frame(cpi);
2660 
2661   // Check if this high_source_sad (scene/slide change) frame should be
2662   // encoded at high/max QP, and if so, set the q and adjust some rate
2663   // control parameters.
2664   if (cpi->sf.rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ &&
2665       cpi->rc.high_source_sad) {
2666     if (av1_encodedframe_overshoot_cbr(cpi, &q)) {
2667       av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q,
2668                         q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq);
2669       av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed);
2670       av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
2671                          cm->seq_params->bit_depth);
2672       av1_set_variance_partition_thresholds(cpi, q, 0);
2673       if (frame_is_intra_only(cm) || cm->features.error_resilient_mode ||
2674           cm->features.primary_ref_frame == PRIMARY_REF_NONE)
2675         av1_setup_frame(cpi);
2676     }
2677   }
2678   av1_apply_active_map(cpi);
2679   if (q_cfg->aq_mode == CYCLIC_REFRESH_AQ) av1_cyclic_refresh_setup(cpi);
2680   if (cm->seg.enabled) {
2681     if (!cm->seg.update_data && cm->prev_frame) {
2682       segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
2683       cm->seg.enabled = cm->prev_frame->seg.enabled;
2684     } else {
2685       av1_calculate_segdata(&cm->seg);
2686     }
2687   } else {
2688     memset(&cm->seg, 0, sizeof(cm->seg));
2689   }
2690   segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
2691   cm->cur_frame->seg.enabled = cm->seg.enabled;
2692 
2693   // This is for rtc temporal filtering case.
2694   if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) {
2695     const SequenceHeader *seq_params = cm->seq_params;
2696 
2697     if (cpi->orig_source.buffer_alloc_sz == 0 ||
2698         cpi->rc.prev_coded_width != cpi->oxcf.frm_dim_cfg.width ||
2699         cpi->rc.prev_coded_height != cpi->oxcf.frm_dim_cfg.height) {
2700       // Allocate a source buffer to store the true source for psnr calculation.
2701       if (aom_alloc_frame_buffer(
2702               &cpi->orig_source, cpi->oxcf.frm_dim_cfg.width,
2703               cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x,
2704               seq_params->subsampling_y, seq_params->use_highbitdepth,
2705               cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false,
2706               0))
2707         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2708                            "Failed to allocate scaled buffer");
2709     }
2710 
2711     aom_yv12_copy_y(cpi->source, &cpi->orig_source, 1);
2712     aom_yv12_copy_u(cpi->source, &cpi->orig_source, 1);
2713     aom_yv12_copy_v(cpi->source, &cpi->orig_source, 1);
2714   }
2715 
2716 #if CONFIG_COLLECT_COMPONENT_TIMING
2717   start_timing(cpi, av1_encode_frame_time);
2718 #endif
2719 
2720   // Set the motion vector precision based on mv stats from the last coded
2721   // frame.
2722   if (!frame_is_intra_only(cm)) av1_pick_and_set_high_precision_mv(cpi, q);
2723 
2724   // transform / motion compensation build reconstruction frame
2725   av1_encode_frame(cpi);
2726 
2727   if (!cpi->rc.rtc_external_ratectrl && !frame_is_intra_only(cm))
2728     update_motion_stat(cpi);
2729 
2730   // Adjust the refresh of the golden (longer-term) reference based on QP
2731   // selected for this frame. This is for CBR real-time mode, and only
2732   // for single layer without usage of the set_ref_frame_config (so
2733   // reference structure for 1 layer is set internally).
2734   if (!frame_is_intra_only(cm) && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
2735       cpi->oxcf.mode == REALTIME && svc->number_spatial_layers == 1 &&
2736       svc->number_temporal_layers == 1 && !cpi->rc.rtc_external_ratectrl &&
2737       !cpi->ppi->rtc_ref.set_ref_frame_config &&
2738       sf->rt_sf.gf_refresh_based_on_qp)
2739     av1_adjust_gf_refresh_qp_one_pass_rt(cpi);
2740 
2741   // For non-svc: if scaling is required, copy scaled_source
2742   // into scaled_last_source.
2743   if (cm->current_frame.frame_number > 1 && !cpi->ppi->use_svc &&
2744       cpi->scaled_source.y_buffer != NULL &&
2745       cpi->scaled_last_source.y_buffer != NULL &&
2746       cpi->scaled_source.y_crop_width == cpi->scaled_last_source.y_crop_width &&
2747       cpi->scaled_source.y_crop_height ==
2748           cpi->scaled_last_source.y_crop_height &&
2749       (cm->width != cpi->unscaled_source->y_crop_width ||
2750        cm->height != cpi->unscaled_source->y_crop_height)) {
2751     cpi->scaled_last_source_available = 1;
2752     aom_yv12_copy_y(&cpi->scaled_source, &cpi->scaled_last_source, 1);
2753     aom_yv12_copy_u(&cpi->scaled_source, &cpi->scaled_last_source, 1);
2754     aom_yv12_copy_v(&cpi->scaled_source, &cpi->scaled_last_source, 1);
2755   }
2756 
2757 #if CONFIG_COLLECT_COMPONENT_TIMING
2758   end_timing(cpi, av1_encode_frame_time);
2759 #endif
2760 #if CONFIG_INTERNAL_STATS
2761   ++cpi->frame_recode_hits;
2762 #endif
2763 
2764   return AOM_CODEC_OK;
2765 }
2766 
2767 #if !CONFIG_REALTIME_ONLY
2768 
2769 /*!\brief Recode loop for encoding one frame. the purpose of encoding one frame
2770  * for multiple times can be approaching a target bitrate or adjusting the usage
2771  * of global motions.
2772  *
2773  * \ingroup high_level_algo
2774  *
2775  * \param[in]    cpi             Top-level encoder structure
2776  * \param[in]    size            Bitstream size
2777  * \param[out]   dest            Bitstream output buffer
2778  * \param[in]    dest_size       Bitstream output buffer size
2779  *
2780  * \return Returns a value to indicate if the encoding is done successfully.
2781  * \retval #AOM_CODEC_OK
2782  * \retval -1
2783  * \retval #AOM_CODEC_ERROR
2784  */
encode_with_recode_loop(AV1_COMP * cpi,size_t * size,uint8_t * dest,size_t dest_size)2785 static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest,
2786                                    size_t dest_size) {
2787   AV1_COMMON *const cm = &cpi->common;
2788   RATE_CONTROL *const rc = &cpi->rc;
2789   GlobalMotionInfo *const gm_info = &cpi->gm_info;
2790   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2791   const QuantizationCfg *const q_cfg = &oxcf->q_cfg;
2792   const int allow_recode = (cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE);
2793   // Must allow recode if minimum compression ratio is set.
2794   assert(IMPLIES(oxcf->rc_cfg.min_cr > 0, allow_recode));
2795 
2796   set_size_independent_vars(cpi);
2797   if (is_stat_consumption_stage_twopass(cpi) &&
2798       cpi->sf.interp_sf.adaptive_interp_filter_search)
2799     cpi->interp_search_flags.interp_filter_search_mask =
2800         av1_setup_interp_filter_search_mask(cpi);
2801 
2802   av1_setup_frame_size(cpi);
2803 
2804   if (av1_superres_in_recode_allowed(cpi) &&
2805       cpi->superres_mode != AOM_SUPERRES_NONE &&
2806       cm->superres_scale_denominator == SCALE_NUMERATOR) {
2807     // Superres mode is currently enabled, but the denominator selected will
2808     // disable superres. So no need to continue, as we will go through another
2809     // recode loop for full-resolution after this anyway.
2810     return -1;
2811   }
2812 
2813   int top_index = 0, bottom_index = 0;
2814   int q = 0, q_low = 0, q_high = 0;
2815   av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
2816   q_low = bottom_index;
2817   q_high = top_index;
2818 
2819   av1_set_mv_search_params(cpi);
2820 
2821   allocate_gradient_info_for_hog(cpi);
2822 
2823   allocate_src_var_of_4x4_sub_block_buf(cpi);
2824 
2825   if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION)
2826     variance_partition_alloc(cpi);
2827 
2828   if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi);
2829 
2830 #if CONFIG_COLLECT_COMPONENT_TIMING
2831   printf("\n Encoding a frame: \n");
2832 #endif
2833 
2834 #if !CONFIG_RD_COMMAND
2835   // Determine whether to use screen content tools using two fast encoding.
2836   if (!cpi->sf.hl_sf.disable_extra_sc_testing && !cpi->use_ducky_encode)
2837     av1_determine_sc_tools_with_encoding(cpi, q);
2838 #endif  // !CONFIG_RD_COMMAND
2839 
2840 #if CONFIG_TUNE_VMAF
2841   if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
2842     av1_vmaf_neg_preprocessing(cpi, cpi->unscaled_source);
2843   }
2844 #endif
2845 
2846 #if CONFIG_TUNE_BUTTERAUGLI
2847   cpi->butteraugli_info.recon_set = false;
2848   int original_q = 0;
2849 #endif
2850 
2851   cpi->num_frame_recode = 0;
2852 
2853   // Loop variables
2854   int loop = 0;
2855   int loop_count = 0;
2856   int overshoot_seen = 0;
2857   int undershoot_seen = 0;
2858   int low_cr_seen = 0;
2859   int last_loop_allow_hp = 0;
2860 
2861   do {
2862     loop = 0;
2863     int do_mv_stats_collection = 1;
2864 
2865     // if frame was scaled calculate global_motion_search again if already
2866     // done
2867     if (loop_count > 0 && cpi->source && gm_info->search_done) {
2868       if (cpi->source->y_crop_width != cm->width ||
2869           cpi->source->y_crop_height != cm->height) {
2870         gm_info->search_done = 0;
2871       }
2872     }
2873     cpi->source = av1_realloc_and_scale_if_required(
2874         cm, cpi->unscaled_source, &cpi->scaled_source, EIGHTTAP_REGULAR, 0,
2875         false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
2876 
2877 #if CONFIG_TUNE_BUTTERAUGLI
2878     if (oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
2879       if (loop_count == 0) {
2880         original_q = q;
2881         // TODO(sdeng): different q here does not make big difference. Use a
2882         // faster pass instead.
2883         q = 96;
2884         av1_setup_butteraugli_source(cpi);
2885       } else {
2886         q = original_q;
2887       }
2888     }
2889 #endif
2890 
2891     if (cpi->unscaled_last_source != NULL) {
2892       cpi->last_source = av1_realloc_and_scale_if_required(
2893           cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
2894           EIGHTTAP_REGULAR, 0, false, false, cpi->oxcf.border_in_pixels,
2895           cpi->alloc_pyramid);
2896     }
2897 
2898     int scale_references = 0;
2899 #if CONFIG_FPMT_TEST
2900     scale_references =
2901         cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0;
2902 #endif  // CONFIG_FPMT_TEST
2903     if (scale_references ||
2904         cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
2905       if (!frame_is_intra_only(cm)) {
2906         if (loop_count > 0) {
2907           release_scaled_references(cpi);
2908         }
2909         av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0);
2910       }
2911     }
2912 
2913 #if CONFIG_TUNE_VMAF
2914     if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
2915         oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) {
2916       cpi->vmaf_info.original_qindex = q;
2917       q = av1_get_vmaf_base_qindex(cpi, q);
2918     }
2919 #endif
2920 
2921 #if CONFIG_RD_COMMAND
2922     RD_COMMAND *rd_command = &cpi->rd_command;
2923     RD_OPTION option = rd_command->option_ls[rd_command->frame_index];
2924     if (option == RD_OPTION_SET_Q || option == RD_OPTION_SET_Q_RDMULT) {
2925       q = rd_command->q_index_ls[rd_command->frame_index];
2926     }
2927 #endif  // CONFIG_RD_COMMAND
2928 
2929 #if CONFIG_BITRATE_ACCURACY
2930 #if CONFIG_THREE_PASS
2931     if (oxcf->pass == AOM_RC_THIRD_PASS && cpi->vbr_rc_info.ready == 1) {
2932       int frame_coding_idx =
2933           av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index);
2934       if (frame_coding_idx < cpi->vbr_rc_info.total_frame_count) {
2935         q = cpi->vbr_rc_info.q_index_list[frame_coding_idx];
2936       } else {
2937         // TODO(angiebird): Investigate why sometimes there is an extra frame
2938         // after the last GOP.
2939         q = cpi->vbr_rc_info.base_q_index;
2940       }
2941     }
2942 #else
2943     if (cpi->vbr_rc_info.q_index_list_ready) {
2944       q = cpi->vbr_rc_info.q_index_list[cpi->gf_frame_index];
2945     }
2946 #endif  // CONFIG_THREE_PASS
2947 #endif  // CONFIG_BITRATE_ACCURACY
2948 
2949 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
2950     // TODO(angiebird): Move this into a function.
2951     if (oxcf->pass == AOM_RC_THIRD_PASS) {
2952       int frame_coding_idx =
2953           av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index);
2954       double qstep_ratio = cpi->vbr_rc_info.qstep_ratio_list[frame_coding_idx];
2955       FRAME_UPDATE_TYPE update_type =
2956           cpi->vbr_rc_info.update_type_list[frame_coding_idx];
2957       rc_log_frame_encode_param(&cpi->rc_log, frame_coding_idx, qstep_ratio, q,
2958                                 update_type);
2959     }
2960 #endif  // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
2961 
2962     if (cpi->use_ducky_encode) {
2963       const DuckyEncodeFrameInfo *frame_info =
2964           &cpi->ducky_encode_info.frame_info;
2965       if (frame_info->qp_mode == DUCKY_ENCODE_FRAME_MODE_QINDEX) {
2966         q = frame_info->q_index;
2967         cm->delta_q_info.delta_q_present_flag = frame_info->delta_q_enabled;
2968       }
2969     }
2970 
2971     av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q,
2972                       q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq);
2973     av1_set_speed_features_qindex_dependent(cpi, oxcf->speed);
2974     av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
2975                        cm->seq_params->bit_depth);
2976 
2977     av1_set_variance_partition_thresholds(cpi, q, 0);
2978 
2979     // printf("Frame %d/%d: q = %d, frame_type = %d superres_denom = %d\n",
2980     //        cm->current_frame.frame_number, cm->show_frame, q,
2981     //        cm->current_frame.frame_type, cm->superres_scale_denominator);
2982 
2983     if (loop_count == 0) {
2984       av1_setup_frame(cpi);
2985     } else if (get_primary_ref_frame_buf(cm) == NULL) {
2986       // Base q-index may have changed, so we need to assign proper default coef
2987       // probs before every iteration.
2988       av1_default_coef_probs(cm);
2989       av1_setup_frame_contexts(cm);
2990     }
2991 
2992     if (q_cfg->aq_mode == VARIANCE_AQ) {
2993       av1_vaq_frame_setup(cpi);
2994     } else if (q_cfg->aq_mode == COMPLEXITY_AQ) {
2995       av1_setup_in_frame_q_adj(cpi);
2996     }
2997 
2998     if (cm->seg.enabled) {
2999       if (!cm->seg.update_data && cm->prev_frame) {
3000         segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
3001         cm->seg.enabled = cm->prev_frame->seg.enabled;
3002       } else {
3003         av1_calculate_segdata(&cm->seg);
3004       }
3005     } else {
3006       memset(&cm->seg, 0, sizeof(cm->seg));
3007     }
3008     segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
3009     cm->cur_frame->seg.enabled = cm->seg.enabled;
3010 
3011 #if CONFIG_COLLECT_COMPONENT_TIMING
3012     start_timing(cpi, av1_encode_frame_time);
3013 #endif
3014     // Set the motion vector precision based on mv stats from the last coded
3015     // frame.
3016     if (!frame_is_intra_only(cm)) {
3017       av1_pick_and_set_high_precision_mv(cpi, q);
3018 
3019       // If the precision has changed during different iteration of the loop,
3020       // then we need to reset the global motion vectors
3021       if (loop_count > 0 &&
3022           cm->features.allow_high_precision_mv != last_loop_allow_hp) {
3023         gm_info->search_done = 0;
3024       }
3025       last_loop_allow_hp = cm->features.allow_high_precision_mv;
3026     }
3027 
3028     // transform / motion compensation build reconstruction frame
3029     av1_encode_frame(cpi);
3030 
3031     // Disable mv_stats collection for parallel frames based on update flag.
3032     if (!cpi->do_frame_data_update) do_mv_stats_collection = 0;
3033 
3034     // Reset the mv_stats in case we are interrupted by an intraframe or an
3035     // overlay frame.
3036     if (cpi->mv_stats.valid && do_mv_stats_collection) av1_zero(cpi->mv_stats);
3037 
3038     // Gather the mv_stats for the next frame
3039     if (cpi->sf.hl_sf.high_precision_mv_usage == LAST_MV_DATA &&
3040         av1_frame_allows_smart_mv(cpi) && do_mv_stats_collection) {
3041       av1_collect_mv_stats(cpi, q);
3042     }
3043 
3044 #if CONFIG_COLLECT_COMPONENT_TIMING
3045     end_timing(cpi, av1_encode_frame_time);
3046 #endif
3047 
3048 #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND
3049     const int do_dummy_pack = 1;
3050 #else   // CONFIG_BITRATE_ACCURACY
3051     // Dummy pack of the bitstream using up to date stats to get an
3052     // accurate estimate of output frame size to determine if we need
3053     // to recode.
3054     const int do_dummy_pack =
3055         (cpi->sf.hl_sf.recode_loop >= ALLOW_RECODE_KFARFGF &&
3056          oxcf->rc_cfg.mode != AOM_Q) ||
3057         oxcf->rc_cfg.min_cr > 0;
3058 #endif  // CONFIG_BITRATE_ACCURACY
3059     if (do_dummy_pack) {
3060       av1_finalize_encoded_frame(cpi);
3061       int largest_tile_id = 0;  // Output from bitstream: unused here
3062       rc->coefficient_size = 0;
3063       if (av1_pack_bitstream(cpi, dest, dest_size, size, &largest_tile_id) !=
3064           AOM_CODEC_OK) {
3065         return AOM_CODEC_ERROR;
3066       }
3067 
3068       // bits used for this frame
3069       rc->projected_frame_size = (int)(*size) << 3;
3070 #if CONFIG_RD_COMMAND
3071       PSNR_STATS psnr;
3072       aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr);
3073       printf("q %d rdmult %d rate %d dist %" PRIu64 "\n", q, cpi->rd.RDMULT,
3074              rc->projected_frame_size, psnr.sse[0]);
3075       ++rd_command->frame_index;
3076       if (rd_command->frame_index == rd_command->frame_count) {
3077         return AOM_CODEC_ERROR;
3078       }
3079 #endif  // CONFIG_RD_COMMAND
3080 
3081 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
3082       if (oxcf->pass == AOM_RC_THIRD_PASS) {
3083         int frame_coding_idx =
3084             av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index);
3085         rc_log_frame_entropy(&cpi->rc_log, frame_coding_idx,
3086                              rc->projected_frame_size, rc->coefficient_size);
3087       }
3088 #endif  // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
3089     }
3090 
3091 #if CONFIG_TUNE_VMAF
3092     if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
3093         oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) {
3094       q = cpi->vmaf_info.original_qindex;
3095     }
3096 #endif
3097     if (allow_recode) {
3098       // Update q and decide whether to do a recode loop
3099       recode_loop_update_q(cpi, &loop, &q, &q_low, &q_high, top_index,
3100                            bottom_index, &undershoot_seen, &overshoot_seen,
3101                            &low_cr_seen, loop_count);
3102     }
3103 
3104 #if CONFIG_TUNE_BUTTERAUGLI
3105     if (loop_count == 0 && oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
3106       loop = 1;
3107       av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.4);
3108     }
3109 #endif
3110 
3111     if (cpi->use_ducky_encode) {
3112       // Ducky encode currently does not support recode loop.
3113       loop = 0;
3114     }
3115 #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND
3116     loop = 0;  // turn off recode loop when CONFIG_BITRATE_ACCURACY is on
3117 #endif         // CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND
3118 
3119     if (loop) {
3120       ++loop_count;
3121       cpi->num_frame_recode =
3122           (cpi->num_frame_recode < (NUM_RECODES_PER_FRAME - 1))
3123               ? (cpi->num_frame_recode + 1)
3124               : (NUM_RECODES_PER_FRAME - 1);
3125 #if CONFIG_INTERNAL_STATS
3126       ++cpi->frame_recode_hits;
3127 #endif
3128     }
3129 #if CONFIG_COLLECT_COMPONENT_TIMING
3130     if (loop) printf("\n Recoding:");
3131 #endif
3132   } while (loop);
3133 
3134   return AOM_CODEC_OK;
3135 }
3136 #endif  // !CONFIG_REALTIME_ONLY
3137 
3138 // TODO(jingning, paulwilkins): Set up high grain level to test
3139 // hardware decoders. Need to adapt the actual noise variance
3140 // according to the difference between reconstructed frame and the
3141 // source signal.
set_grain_syn_params(AV1_COMMON * cm)3142 static void set_grain_syn_params(AV1_COMMON *cm) {
3143   aom_film_grain_t *film_grain_params = &cm->film_grain_params;
3144   film_grain_params->apply_grain = 1;
3145   film_grain_params->update_parameters = 1;
3146   film_grain_params->random_seed = rand() & 0xffff;
3147 
3148   film_grain_params->num_y_points = 1;
3149   film_grain_params->scaling_points_y[0][0] = 128;
3150   film_grain_params->scaling_points_y[0][1] = 100;
3151 
3152   if (!cm->seq_params->monochrome) {
3153     film_grain_params->num_cb_points = 1;
3154     film_grain_params->scaling_points_cb[0][0] = 128;
3155     film_grain_params->scaling_points_cb[0][1] = 100;
3156 
3157     film_grain_params->num_cr_points = 1;
3158     film_grain_params->scaling_points_cr[0][0] = 128;
3159     film_grain_params->scaling_points_cr[0][1] = 100;
3160   } else {
3161     film_grain_params->num_cb_points = 0;
3162     film_grain_params->num_cr_points = 0;
3163   }
3164 
3165   film_grain_params->chroma_scaling_from_luma = 0;
3166 
3167   film_grain_params->scaling_shift = 1;
3168   film_grain_params->ar_coeff_lag = 0;
3169   film_grain_params->ar_coeff_shift = 1;
3170   film_grain_params->overlap_flag = 1;
3171   film_grain_params->grain_scale_shift = 0;
3172 }
3173 
3174 /*!\brief Recode loop or a single loop for encoding one frame, followed by
3175  * in-loop deblocking filters, CDEF filters, and restoration filters.
3176  *
3177  * \ingroup high_level_algo
3178  * \callgraph
3179  * \callergraph
3180  *
3181  * \param[in]    cpi             Top-level encoder structure
3182  * \param[in]    size            Bitstream size
3183  * \param[out]   dest            Bitstream output buffer
3184  * \param[in]    dest_size       Bitstream output buffer size
3185  * \param[in]    sse             Total distortion of the frame
3186  * \param[in]    rate            Total rate of the frame
3187  * \param[in]    largest_tile_id Tile id of the last tile
3188  *
3189  * \return Returns a value to indicate if the encoding is done successfully.
3190  * \retval #AOM_CODEC_OK
3191  * \retval #AOM_CODEC_ERROR
3192  */
encode_with_recode_loop_and_filter(AV1_COMP * cpi,size_t * size,uint8_t * dest,size_t dest_size,int64_t * sse,int64_t * rate,int * largest_tile_id)3193 static int encode_with_recode_loop_and_filter(AV1_COMP *cpi, size_t *size,
3194                                               uint8_t *dest, size_t dest_size,
3195                                               int64_t *sse, int64_t *rate,
3196                                               int *largest_tile_id) {
3197 #if CONFIG_COLLECT_COMPONENT_TIMING
3198   start_timing(cpi, encode_with_or_without_recode_time);
3199 #endif
3200   for (int i = 0; i < NUM_RECODES_PER_FRAME; i++) {
3201     cpi->do_update_frame_probs_txtype[i] = 0;
3202     cpi->do_update_frame_probs_obmc[i] = 0;
3203     cpi->do_update_frame_probs_warp[i] = 0;
3204     cpi->do_update_frame_probs_interpfilter[i] = 0;
3205   }
3206 
3207   cpi->do_update_vbr_bits_off_target_fast = 0;
3208   int err;
3209 #if CONFIG_REALTIME_ONLY
3210   err = encode_without_recode(cpi);
3211 #else
3212   if (cpi->sf.hl_sf.recode_loop == DISALLOW_RECODE)
3213     err = encode_without_recode(cpi);
3214   else
3215     err = encode_with_recode_loop(cpi, size, dest, dest_size);
3216 #endif
3217 #if CONFIG_COLLECT_COMPONENT_TIMING
3218   end_timing(cpi, encode_with_or_without_recode_time);
3219 #endif
3220   if (err != AOM_CODEC_OK) {
3221     if (err == -1) {
3222       // special case as described in encode_with_recode_loop().
3223       // Encoding was skipped.
3224       err = AOM_CODEC_OK;
3225       if (sse != NULL) *sse = INT64_MAX;
3226       if (rate != NULL) *rate = INT64_MAX;
3227       *largest_tile_id = 0;
3228     }
3229     return err;
3230   }
3231 
3232 #ifdef OUTPUT_YUV_DENOISED
3233   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3234   if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) {
3235     aom_write_yuv_frame(yuv_denoised_file,
3236                         &cpi->denoiser.running_avg_y[INTRA_FRAME]);
3237   }
3238 #endif
3239 
3240   AV1_COMMON *const cm = &cpi->common;
3241   SequenceHeader *const seq_params = cm->seq_params;
3242 
3243   // Special case code to reduce pulsing when key frames are forced at a
3244   // fixed interval. Note the reconstruction error if it is the frame before
3245   // the force key frame
3246   if (cpi->ppi->p_rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
3247 #if CONFIG_AV1_HIGHBITDEPTH
3248     if (seq_params->use_highbitdepth) {
3249       cpi->ambient_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf);
3250     } else {
3251       cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
3252     }
3253 #else
3254     cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
3255 #endif
3256   }
3257 
3258   cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
3259   cm->cur_frame->buf.transfer_characteristics =
3260       seq_params->transfer_characteristics;
3261   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
3262   cm->cur_frame->buf.monochrome = seq_params->monochrome;
3263   cm->cur_frame->buf.chroma_sample_position =
3264       seq_params->chroma_sample_position;
3265   cm->cur_frame->buf.color_range = seq_params->color_range;
3266   cm->cur_frame->buf.render_width = cm->render_width;
3267   cm->cur_frame->buf.render_height = cm->render_height;
3268 
3269   if (!cpi->mt_info.pipeline_lpf_mt_with_enc)
3270     set_postproc_filter_default_params(&cpi->common);
3271 
3272   if (!cm->features.allow_intrabc) {
3273     loopfilter_frame(cpi, cm);
3274   }
3275 
3276   if (cpi->oxcf.mode != ALLINTRA && !cpi->ppi->rtc_ref.non_reference_frame) {
3277     extend_frame_borders(cpi);
3278   }
3279 
3280 #ifdef OUTPUT_YUV_REC
3281   aom_write_one_yuv_frame(cm, &cm->cur_frame->buf);
3282 #endif
3283 
3284   if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_FILM) {
3285     set_grain_syn_params(cm);
3286   }
3287 
3288   av1_finalize_encoded_frame(cpi);
3289   // Build the bitstream
3290 #if CONFIG_COLLECT_COMPONENT_TIMING
3291   start_timing(cpi, av1_pack_bitstream_final_time);
3292 #endif
3293   cpi->rc.coefficient_size = 0;
3294   if (av1_pack_bitstream(cpi, dest, dest_size, size, largest_tile_id) !=
3295       AOM_CODEC_OK)
3296     return AOM_CODEC_ERROR;
3297 #if CONFIG_COLLECT_COMPONENT_TIMING
3298   end_timing(cpi, av1_pack_bitstream_final_time);
3299 #endif
3300 
3301   if (cpi->rc.postencode_drop && allow_postencode_drop_rtc(cpi) &&
3302       av1_postencode_drop_cbr(cpi, size)) {
3303     return AOM_CODEC_OK;
3304   }
3305 
3306   // Compute sse and rate.
3307   if (sse != NULL) {
3308 #if CONFIG_AV1_HIGHBITDEPTH
3309     *sse = (seq_params->use_highbitdepth)
3310                ? aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf)
3311                : aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
3312 #else
3313     *sse = aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
3314 #endif
3315   }
3316   if (rate != NULL) {
3317     const int64_t bits = (*size << 3);
3318     *rate = (bits << 5);  // To match scale.
3319   }
3320 
3321 #if !CONFIG_REALTIME_ONLY
3322   if (cpi->use_ducky_encode) {
3323     PSNR_STATS psnr;
3324     aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr);
3325     DuckyEncodeFrameResult *frame_result = &cpi->ducky_encode_info.frame_result;
3326     frame_result->global_order_idx = cm->cur_frame->display_order_hint;
3327     frame_result->q_index = cm->quant_params.base_qindex;
3328     frame_result->rdmult = cpi->rd.RDMULT;
3329     frame_result->rate = (int)(*size) * 8;
3330     frame_result->dist = psnr.sse[0];
3331     frame_result->psnr = psnr.psnr[0];
3332   }
3333 #endif  // !CONFIG_REALTIME_ONLY
3334 
3335   return AOM_CODEC_OK;
3336 }
3337 
encode_with_and_without_superres(AV1_COMP * cpi,size_t * size,uint8_t * dest,size_t dest_size,int * largest_tile_id)3338 static int encode_with_and_without_superres(AV1_COMP *cpi, size_t *size,
3339                                             uint8_t *dest, size_t dest_size,
3340                                             int *largest_tile_id) {
3341   const AV1_COMMON *const cm = &cpi->common;
3342   assert(cm->seq_params->enable_superres);
3343   assert(av1_superres_in_recode_allowed(cpi));
3344   aom_codec_err_t err = AOM_CODEC_OK;
3345   av1_save_all_coding_context(cpi);
3346 
3347   int64_t sse1 = INT64_MAX;
3348   int64_t rate1 = INT64_MAX;
3349   int largest_tile_id1 = 0;
3350   int64_t sse2 = INT64_MAX;
3351   int64_t rate2 = INT64_MAX;
3352   int largest_tile_id2;
3353   double proj_rdcost1 = DBL_MAX;
3354   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
3355   const FRAME_UPDATE_TYPE update_type =
3356       gf_group->update_type[cpi->gf_frame_index];
3357   const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth;
3358 
3359   // Encode with superres.
3360   if (cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_ALL) {
3361     SuperResCfg *const superres_cfg = &cpi->oxcf.superres_cfg;
3362     int64_t superres_sses[SCALE_NUMERATOR];
3363     int64_t superres_rates[SCALE_NUMERATOR];
3364     int superres_largest_tile_ids[SCALE_NUMERATOR];
3365     // Use superres for Key-frames and Alt-ref frames only.
3366     if (update_type != OVERLAY_UPDATE && update_type != INTNL_OVERLAY_UPDATE) {
3367       for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR;
3368            ++denom) {
3369         superres_cfg->superres_scale_denominator = denom;
3370         superres_cfg->superres_kf_scale_denominator = denom;
3371         const int this_index = denom - (SCALE_NUMERATOR + 1);
3372 
3373         cpi->superres_mode = AOM_SUPERRES_AUTO;  // Super-res on for this loop.
3374         err = encode_with_recode_loop_and_filter(
3375             cpi, size, dest, dest_size, &superres_sses[this_index],
3376             &superres_rates[this_index],
3377             &superres_largest_tile_ids[this_index]);
3378         cpi->superres_mode = AOM_SUPERRES_NONE;  // Reset to default (full-res).
3379         if (err != AOM_CODEC_OK) return err;
3380         restore_all_coding_context(cpi);
3381       }
3382       // Reset.
3383       superres_cfg->superres_scale_denominator = SCALE_NUMERATOR;
3384       superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR;
3385     } else {
3386       for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR;
3387            ++denom) {
3388         const int this_index = denom - (SCALE_NUMERATOR + 1);
3389         superres_sses[this_index] = INT64_MAX;
3390         superres_rates[this_index] = INT64_MAX;
3391       }
3392     }
3393     // Encode without superres.
3394     assert(cpi->superres_mode == AOM_SUPERRES_NONE);
3395     err = encode_with_recode_loop_and_filter(cpi, size, dest, dest_size, &sse2,
3396                                              &rate2, &largest_tile_id2);
3397     if (err != AOM_CODEC_OK) return err;
3398 
3399     // Note: Both use common rdmult based on base qindex of fullres.
3400     const int64_t rdmult = av1_compute_rd_mult_based_on_qindex(
3401         bit_depth, update_type, cm->quant_params.base_qindex);
3402 
3403     // Find the best rdcost among all superres denoms.
3404     int best_denom = -1;
3405     for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR;
3406          ++denom) {
3407       const int this_index = denom - (SCALE_NUMERATOR + 1);
3408       const int64_t this_sse = superres_sses[this_index];
3409       const int64_t this_rate = superres_rates[this_index];
3410       const int this_largest_tile_id = superres_largest_tile_ids[this_index];
3411       const double this_rdcost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
3412           rdmult, this_rate, this_sse, bit_depth);
3413       if (this_rdcost < proj_rdcost1) {
3414         sse1 = this_sse;
3415         rate1 = this_rate;
3416         largest_tile_id1 = this_largest_tile_id;
3417         proj_rdcost1 = this_rdcost;
3418         best_denom = denom;
3419       }
3420     }
3421     const double proj_rdcost2 =
3422         RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth);
3423     // Re-encode with superres if it's better.
3424     if (proj_rdcost1 < proj_rdcost2) {
3425       restore_all_coding_context(cpi);
3426       // TODO(urvang): We should avoid rerunning the recode loop by saving
3427       // previous output+state, or running encode only for the selected 'q' in
3428       // previous step.
3429       // Again, temporarily force the best denom.
3430       superres_cfg->superres_scale_denominator = best_denom;
3431       superres_cfg->superres_kf_scale_denominator = best_denom;
3432       int64_t sse3 = INT64_MAX;
3433       int64_t rate3 = INT64_MAX;
3434       cpi->superres_mode =
3435           AOM_SUPERRES_AUTO;  // Super-res on for this recode loop.
3436       err = encode_with_recode_loop_and_filter(cpi, size, dest, dest_size,
3437                                                &sse3, &rate3, largest_tile_id);
3438       cpi->superres_mode = AOM_SUPERRES_NONE;  // Reset to default (full-res).
3439       assert(sse1 == sse3);
3440       assert(rate1 == rate3);
3441       assert(largest_tile_id1 == *largest_tile_id);
3442       // Reset.
3443       superres_cfg->superres_scale_denominator = SCALE_NUMERATOR;
3444       superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR;
3445     } else {
3446       *largest_tile_id = largest_tile_id2;
3447     }
3448   } else {
3449     assert(cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_DUAL);
3450     cpi->superres_mode =
3451         AOM_SUPERRES_AUTO;  // Super-res on for this recode loop.
3452     err = encode_with_recode_loop_and_filter(cpi, size, dest, dest_size, &sse1,
3453                                              &rate1, &largest_tile_id1);
3454     cpi->superres_mode = AOM_SUPERRES_NONE;  // Reset to default (full-res).
3455     if (err != AOM_CODEC_OK) return err;
3456     restore_all_coding_context(cpi);
3457     // Encode without superres.
3458     assert(cpi->superres_mode == AOM_SUPERRES_NONE);
3459     err = encode_with_recode_loop_and_filter(cpi, size, dest, dest_size, &sse2,
3460                                              &rate2, &largest_tile_id2);
3461     if (err != AOM_CODEC_OK) return err;
3462 
3463     // Note: Both use common rdmult based on base qindex of fullres.
3464     const int64_t rdmult = av1_compute_rd_mult_based_on_qindex(
3465         bit_depth, update_type, cm->quant_params.base_qindex);
3466     proj_rdcost1 =
3467         RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate1, sse1, bit_depth);
3468     const double proj_rdcost2 =
3469         RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth);
3470     // Re-encode with superres if it's better.
3471     if (proj_rdcost1 < proj_rdcost2) {
3472       restore_all_coding_context(cpi);
3473       // TODO(urvang): We should avoid rerunning the recode loop by saving
3474       // previous output+state, or running encode only for the selected 'q' in
3475       // previous step.
3476       int64_t sse3 = INT64_MAX;
3477       int64_t rate3 = INT64_MAX;
3478       cpi->superres_mode =
3479           AOM_SUPERRES_AUTO;  // Super-res on for this recode loop.
3480       err = encode_with_recode_loop_and_filter(cpi, size, dest, dest_size,
3481                                                &sse3, &rate3, largest_tile_id);
3482       cpi->superres_mode = AOM_SUPERRES_NONE;  // Reset to default (full-res).
3483       assert(sse1 == sse3);
3484       assert(rate1 == rate3);
3485       assert(largest_tile_id1 == *largest_tile_id);
3486     } else {
3487       *largest_tile_id = largest_tile_id2;
3488     }
3489   }
3490 
3491   return err;
3492 }
3493 
3494 // Conditions to disable cdf_update mode in selective mode for real-time.
3495 // Handle case for layers, scene change, and resizing.
selective_disable_cdf_rtc(const AV1_COMP * cpi)3496 static inline int selective_disable_cdf_rtc(const AV1_COMP *cpi) {
3497   const AV1_COMMON *const cm = &cpi->common;
3498   const RATE_CONTROL *const rc = &cpi->rc;
3499   // For single layer.
3500   if (cpi->svc.number_spatial_layers == 1 &&
3501       cpi->svc.number_temporal_layers == 1) {
3502     // Don't disable on intra_only, scene change (high_source_sad = 1),
3503     // or resized frame. To avoid quality loss force enable at
3504     // for ~30 frames after key or scene/slide change, and
3505     // after 8 frames since last update if frame_source_sad > 0.
3506     if (frame_is_intra_only(cm) || is_frame_resize_pending(cpi) ||
3507         rc->high_source_sad || rc->frames_since_key < 30 ||
3508         (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
3509          cpi->cyclic_refresh->counter_encode_maxq_scene_change < 30) ||
3510         (cpi->frames_since_last_update > 8 && cpi->rc.frame_source_sad > 0))
3511       return 0;
3512     else
3513       return 1;
3514   } else if (cpi->svc.number_temporal_layers > 1) {
3515     // Disable only on top temporal enhancement layer for now.
3516     return cpi->svc.temporal_layer_id == cpi->svc.number_temporal_layers - 1;
3517   }
3518   return 1;
3519 }
3520 
3521 #if !CONFIG_REALTIME_ONLY
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)3522 static void subtract_stats(FIRSTPASS_STATS *section,
3523                            const FIRSTPASS_STATS *frame) {
3524   section->frame -= frame->frame;
3525   section->weight -= frame->weight;
3526   section->intra_error -= frame->intra_error;
3527   section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy;
3528   section->coded_error -= frame->coded_error;
3529   section->sr_coded_error -= frame->sr_coded_error;
3530   section->pcnt_inter -= frame->pcnt_inter;
3531   section->pcnt_motion -= frame->pcnt_motion;
3532   section->pcnt_second_ref -= frame->pcnt_second_ref;
3533   section->pcnt_neutral -= frame->pcnt_neutral;
3534   section->intra_skip_pct -= frame->intra_skip_pct;
3535   section->inactive_zone_rows -= frame->inactive_zone_rows;
3536   section->inactive_zone_cols -= frame->inactive_zone_cols;
3537   section->MVr -= frame->MVr;
3538   section->mvr_abs -= frame->mvr_abs;
3539   section->MVc -= frame->MVc;
3540   section->mvc_abs -= frame->mvc_abs;
3541   section->MVrv -= frame->MVrv;
3542   section->MVcv -= frame->MVcv;
3543   section->mv_in_out_count -= frame->mv_in_out_count;
3544   section->new_mv_count -= frame->new_mv_count;
3545   section->count -= frame->count;
3546   section->duration -= frame->duration;
3547 }
3548 
calculate_frame_avg_haar_energy(AV1_COMP * cpi)3549 static void calculate_frame_avg_haar_energy(AV1_COMP *cpi) {
3550   TWO_PASS *const twopass = &cpi->ppi->twopass;
3551   const FIRSTPASS_STATS *const total_stats =
3552       twopass->stats_buf_ctx->total_stats;
3553 
3554   if (is_one_pass_rt_params(cpi) ||
3555       (cpi->oxcf.q_cfg.deltaq_mode != DELTA_Q_PERCEPTUAL) ||
3556       (is_fp_wavelet_energy_invalid(total_stats) == 0))
3557     return;
3558 
3559   const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
3560                           ? cpi->initial_mbs
3561                           : cpi->common.mi_params.MBs;
3562   const YV12_BUFFER_CONFIG *const unfiltered_source = cpi->unfiltered_source;
3563   const uint8_t *const src = unfiltered_source->y_buffer;
3564   const int hbd = unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH;
3565   const int stride = unfiltered_source->y_stride;
3566   const BLOCK_SIZE fp_block_size =
3567       get_fp_block_size(cpi->is_screen_content_type);
3568   const int fp_block_size_width = block_size_wide[fp_block_size];
3569   const int fp_block_size_height = block_size_high[fp_block_size];
3570   const int num_unit_cols =
3571       get_num_blocks(unfiltered_source->y_crop_width, fp_block_size_width);
3572   const int num_unit_rows =
3573       get_num_blocks(unfiltered_source->y_crop_height, fp_block_size_height);
3574   const int num_8x8_cols = num_unit_cols * (fp_block_size_width / 8);
3575   const int num_8x8_rows = num_unit_rows * (fp_block_size_height / 8);
3576   int64_t frame_avg_wavelet_energy = av1_haar_ac_sad_mxn_uint8_input(
3577       src, stride, hbd, num_8x8_rows, num_8x8_cols);
3578 
3579   cpi->twopass_frame.frame_avg_haar_energy =
3580       log1p((double)frame_avg_wavelet_energy / num_mbs);
3581 }
3582 #endif
3583 
3584 /*!\brief Run the final pass encoding for 1-pass/2-pass encoding mode, and pack
3585  * the bitstream
3586  *
3587  * \ingroup high_level_algo
3588  * \callgraph
3589  * \callergraph
3590  *
3591  * \param[in]    cpi             Top-level encoder structure
3592  * \param[in]    size            Bitstream size
3593  * \param[out]   dest            Bitstream output buffer
3594  * \param[in]    dest_size       Bitstream output buffer size
3595  *
3596  * \return Returns a value to indicate if the encoding is done successfully.
3597  * \retval #AOM_CODEC_OK
3598  * \retval #AOM_CODEC_ERROR
3599  */
encode_frame_to_data_rate(AV1_COMP * cpi,size_t * size,uint8_t * dest,size_t dest_size)3600 static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest,
3601                                      size_t dest_size) {
3602   AV1_COMMON *const cm = &cpi->common;
3603   SequenceHeader *const seq_params = cm->seq_params;
3604   CurrentFrame *const current_frame = &cm->current_frame;
3605   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3606   struct segmentation *const seg = &cm->seg;
3607   FeatureFlags *const features = &cm->features;
3608   const TileConfig *const tile_cfg = &oxcf->tile_cfg;
3609   assert(cpi->source != NULL);
3610   cpi->td.mb.e_mbd.cur_buf = cpi->source;
3611 
3612 #if CONFIG_COLLECT_COMPONENT_TIMING
3613   start_timing(cpi, encode_frame_to_data_rate_time);
3614 #endif
3615 
3616 #if !CONFIG_REALTIME_ONLY
3617   calculate_frame_avg_haar_energy(cpi);
3618 #endif
3619 
3620   // frame type has been decided outside of this function call
3621   cm->cur_frame->frame_type = current_frame->frame_type;
3622 
3623   cm->tiles.large_scale = tile_cfg->enable_large_scale_tile;
3624   cm->tiles.single_tile_decoding = tile_cfg->enable_single_tile_decoding;
3625 
3626   features->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm);
3627   // features->allow_ref_frame_mvs needs to be written into the frame header
3628   // while cm->tiles.large_scale is 1, therefore, "cm->tiles.large_scale=1" case
3629   // is separated from frame_might_allow_ref_frame_mvs().
3630   features->allow_ref_frame_mvs &= !cm->tiles.large_scale;
3631 
3632   features->allow_warped_motion = oxcf->motion_mode_cfg.allow_warped_motion &&
3633                                   frame_might_allow_warped_motion(cm);
3634 
3635   cpi->last_frame_type = current_frame->frame_type;
3636 
3637   if (frame_is_intra_only(cm)) {
3638     cpi->frames_since_last_update = 0;
3639   }
3640 
3641   if (frame_is_sframe(cm)) {
3642     GF_GROUP *gf_group = &cpi->ppi->gf_group;
3643     // S frame will wipe out any previously encoded altref so we cannot place
3644     // an overlay frame
3645     gf_group->update_type[gf_group->size] = GF_UPDATE;
3646   }
3647 
3648   if (encode_show_existing_frame(cm)) {
3649 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
3650     // TODO(angiebird): Move this into a function.
3651     if (oxcf->pass == AOM_RC_THIRD_PASS) {
3652       int frame_coding_idx =
3653           av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index);
3654       rc_log_frame_encode_param(
3655           &cpi->rc_log, frame_coding_idx, 1, 255,
3656           cpi->ppi->gf_group.update_type[cpi->gf_frame_index]);
3657     }
3658 #endif
3659     av1_finalize_encoded_frame(cpi);
3660     // Build the bitstream
3661     int largest_tile_id = 0;  // Output from bitstream: unused here
3662     cpi->rc.coefficient_size = 0;
3663     if (av1_pack_bitstream(cpi, dest, dest_size, size, &largest_tile_id) !=
3664         AOM_CODEC_OK)
3665       return AOM_CODEC_ERROR;
3666 
3667     if (seq_params->frame_id_numbers_present_flag &&
3668         current_frame->frame_type == KEY_FRAME) {
3669       // Displaying a forward key-frame, so reset the ref buffer IDs
3670       int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
3671       for (int i = 0; i < REF_FRAMES; i++)
3672         cm->ref_frame_id[i] = display_frame_id;
3673     }
3674 
3675 #if DUMP_RECON_FRAMES == 1
3676     // NOTE(zoeliu): For debug - Output the filtered reconstructed video.
3677     av1_dump_filtered_recon_frames(cpi);
3678 #endif  // DUMP_RECON_FRAMES
3679 
3680     // NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
3681     //       for the purpose to verify no mismatch between encoder and decoder.
3682     if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame;
3683 
3684 #if CONFIG_AV1_TEMPORAL_DENOISING
3685     av1_denoiser_update_ref_frame(cpi);
3686 #endif
3687 
3688     // Since we allocate a spot for the OVERLAY frame in the gf group, we need
3689     // to do post-encoding update accordingly.
3690     av1_set_target_rate(cpi, cm->width, cm->height);
3691 
3692     if (is_psnr_calc_enabled(cpi)) {
3693       cpi->source =
3694           realloc_and_scale_source(cpi, cm->cur_frame->buf.y_crop_width,
3695                                    cm->cur_frame->buf.y_crop_height);
3696     }
3697 
3698 #if !CONFIG_REALTIME_ONLY
3699     if (cpi->use_ducky_encode) {
3700       PSNR_STATS psnr;
3701       aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr);
3702       DuckyEncodeFrameResult *frame_result =
3703           &cpi->ducky_encode_info.frame_result;
3704       frame_result->global_order_idx = cm->cur_frame->display_order_hint;
3705       frame_result->q_index = cm->quant_params.base_qindex;
3706       frame_result->rdmult = cpi->rd.RDMULT;
3707       frame_result->rate = (int)(*size) * 8;
3708       frame_result->dist = psnr.sse[0];
3709       frame_result->psnr = psnr.psnr[0];
3710     }
3711 #endif  // !CONFIG_REALTIME_ONLY
3712 
3713     update_counters_for_show_frame(cpi);
3714     return AOM_CODEC_OK;
3715   }
3716 
3717   // Work out whether to force_integer_mv this frame
3718   if (!is_stat_generation_stage(cpi) &&
3719       cpi->common.features.allow_screen_content_tools &&
3720       !frame_is_intra_only(cm) && !cpi->sf.rt_sf.use_nonrd_pick_mode) {
3721     if (cpi->common.seq_params->force_integer_mv == 2) {
3722       // Adaptive mode: see what previous frame encoded did
3723       if (cpi->unscaled_last_source != NULL) {
3724         features->cur_frame_force_integer_mv = av1_is_integer_mv(
3725             cpi->source, cpi->unscaled_last_source, &cpi->force_intpel_info);
3726       } else {
3727         cpi->common.features.cur_frame_force_integer_mv = 0;
3728       }
3729     } else {
3730       cpi->common.features.cur_frame_force_integer_mv =
3731           cpi->common.seq_params->force_integer_mv;
3732     }
3733   } else {
3734     cpi->common.features.cur_frame_force_integer_mv = 0;
3735   }
3736 
3737   // This is used by av1_pack_bitstream. So this needs to be set in case of
3738   // row-mt where the encoding code will use a temporary structure.
3739   cpi->td.mb.e_mbd.cur_frame_force_integer_mv =
3740       cpi->common.features.cur_frame_force_integer_mv;
3741 
3742   // Set default state for segment based loop filter update flags.
3743   cm->lf.mode_ref_delta_update = 0;
3744 
3745   // Set various flags etc to special state if it is a key frame.
3746   if (frame_is_intra_only(cm) || frame_is_sframe(cm)) {
3747     // Reset the loop filter deltas and segmentation map.
3748     av1_reset_segment_features(cm);
3749 
3750     // If segmentation is enabled force a map update for key frames.
3751     if (seg->enabled) {
3752       seg->update_map = 1;
3753       seg->update_data = 1;
3754     }
3755   }
3756   if (tile_cfg->mtu == 0) {
3757     cpi->num_tg = tile_cfg->num_tile_groups;
3758   } else {
3759     // Use a default value for the purposes of weighting costs in probability
3760     // updates
3761     cpi->num_tg = DEFAULT_MAX_NUM_TG;
3762   }
3763 
3764   // For 1 pass CBR mode: check if we are dropping this frame.
3765   if (has_no_stats_stage(cpi) && oxcf->rc_cfg.mode == AOM_CBR) {
3766     // Always drop for spatial enhancement layer if layer bandwidth is 0.
3767     // Otherwise check for frame-dropping based on buffer level in
3768     // av1_rc_drop_frame().
3769     if ((cpi->svc.spatial_layer_id > 0 &&
3770          cpi->oxcf.rc_cfg.target_bandwidth == 0) ||
3771         av1_rc_drop_frame(cpi)) {
3772       cpi->is_dropped_frame = true;
3773     }
3774     if (cpi->is_dropped_frame) {
3775       av1_setup_frame_size(cpi);
3776       av1_set_mv_search_params(cpi);
3777       av1_rc_postencode_update_drop_frame(cpi);
3778       release_scaled_references(cpi);
3779       cpi->ppi->gf_group.is_frame_dropped[cpi->gf_frame_index] = true;
3780       // A dropped frame might not be shown but it always takes a slot in the gf
3781       // group. Therefore, even when it is not shown, we still need to update
3782       // the relevant frame counters.
3783       if (cm->show_frame) {
3784         update_counters_for_show_frame(cpi);
3785       }
3786       return AOM_CODEC_OK;
3787     }
3788   }
3789 
3790   if (oxcf->tune_cfg.tuning == AOM_TUNE_SSIM) {
3791     av1_set_mb_ssim_rdmult_scaling(cpi);
3792   }
3793 #if CONFIG_SALIENCY_MAP
3794   else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP &&
3795            !(cpi->source->flags & YV12_FLAG_HIGHBITDEPTH)) {
3796     if (av1_set_saliency_map(cpi) == 0) {
3797       return AOM_CODEC_MEM_ERROR;
3798     }
3799 #if !CONFIG_REALTIME_ONLY
3800     double motion_ratio = av1_setup_motion_ratio(cpi);
3801 #else
3802     double motion_ratio = 1.0;
3803 #endif
3804     if (av1_setup_sm_rdmult_scaling_factor(cpi, motion_ratio) == 0) {
3805       return AOM_CODEC_MEM_ERROR;
3806     }
3807   }
3808 #endif
3809 #if CONFIG_TUNE_VMAF
3810   else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
3811            oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
3812            oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
3813     av1_set_mb_vmaf_rdmult_scaling(cpi);
3814   }
3815 #endif
3816 
3817   if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI &&
3818       cpi->sf.rt_sf.use_nonrd_pick_mode == 0) {
3819     av1_init_mb_wiener_var_buffer(cpi);
3820     av1_set_mb_wiener_variance(cpi);
3821   }
3822 
3823   if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) {
3824     av1_init_mb_ur_var_buffer(cpi);
3825     av1_set_mb_ur_variance(cpi);
3826   }
3827 
3828 #if CONFIG_INTERNAL_STATS
3829   memset(cpi->mode_chosen_counts, 0,
3830          MAX_MODES * sizeof(*cpi->mode_chosen_counts));
3831 #endif
3832 
3833   if (seq_params->frame_id_numbers_present_flag) {
3834     /* Non-normative definition of current_frame_id ("frame counter" with
3835      * wraparound) */
3836     if (cm->current_frame_id == -1) {
3837       int lsb, msb;
3838       /* quasi-random initialization of current_frame_id for a key frame */
3839       if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) {
3840         lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff;
3841         msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff;
3842       } else {
3843         lsb = cpi->source->y_buffer[0] & 0xff;
3844         msb = cpi->source->y_buffer[1] & 0xff;
3845       }
3846       cm->current_frame_id =
3847           ((msb << 8) + lsb) % (1 << seq_params->frame_id_length);
3848 
3849       // S_frame is meant for stitching different streams of different
3850       // resolutions together, so current_frame_id must be the
3851       // same across different streams of the same content current_frame_id
3852       // should be the same and not random. 0x37 is a chosen number as start
3853       // point
3854       if (oxcf->kf_cfg.sframe_dist != 0) cm->current_frame_id = 0x37;
3855     } else {
3856       cm->current_frame_id =
3857           (cm->current_frame_id + 1 + (1 << seq_params->frame_id_length)) %
3858           (1 << seq_params->frame_id_length);
3859     }
3860   }
3861 
3862   switch (oxcf->algo_cfg.cdf_update_mode) {
3863     case 0:  // No CDF update for any frames(4~6% compression loss).
3864       features->disable_cdf_update = 1;
3865       break;
3866     case 1:  // Enable CDF update for all frames.
3867       if (cpi->sf.rt_sf.disable_cdf_update_non_reference_frame &&
3868           cpi->ppi->rtc_ref.non_reference_frame && cpi->rc.frames_since_key > 2)
3869         features->disable_cdf_update = 1;
3870       else if (cpi->sf.rt_sf.selective_cdf_update)
3871         features->disable_cdf_update = selective_disable_cdf_rtc(cpi);
3872       else
3873         features->disable_cdf_update = 0;
3874       break;
3875     case 2:
3876       // Strategically determine at which frames to do CDF update.
3877       // Currently only enable CDF update for all-intra and no-show frames(1.5%
3878       // compression loss) for good qualiy or allintra mode.
3879       if (oxcf->mode == GOOD || oxcf->mode == ALLINTRA) {
3880         features->disable_cdf_update =
3881             (frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1;
3882       } else {
3883         features->disable_cdf_update = selective_disable_cdf_rtc(cpi);
3884       }
3885       break;
3886   }
3887 
3888   // Disable cdf update for the INTNL_ARF_UPDATE frame with
3889   // frame_parallel_level 1.
3890   if (!cpi->do_frame_data_update &&
3891       cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
3892     assert(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1);
3893     features->disable_cdf_update = 1;
3894   }
3895 
3896 #if !CONFIG_REALTIME_ONLY
3897   if (cpi->oxcf.tool_cfg.enable_global_motion && !frame_is_intra_only(cm)) {
3898     // Flush any stale global motion information, which may be left over
3899     // from a previous frame
3900     aom_invalidate_pyramid(cpi->source->y_pyramid);
3901     av1_invalidate_corner_list(cpi->source->corners);
3902   }
3903 #endif  // !CONFIG_REALTIME_ONLY
3904 
3905   int largest_tile_id = 0;
3906   if (av1_superres_in_recode_allowed(cpi)) {
3907     if (encode_with_and_without_superres(cpi, size, dest, dest_size,
3908                                          &largest_tile_id) != AOM_CODEC_OK) {
3909       return AOM_CODEC_ERROR;
3910     }
3911   } else {
3912     const aom_superres_mode orig_superres_mode = cpi->superres_mode;  // save
3913     cpi->superres_mode = cpi->oxcf.superres_cfg.superres_mode;
3914     if (encode_with_recode_loop_and_filter(cpi, size, dest, dest_size, NULL,
3915                                            NULL,
3916                                            &largest_tile_id) != AOM_CODEC_OK) {
3917       return AOM_CODEC_ERROR;
3918     }
3919     cpi->superres_mode = orig_superres_mode;  // restore
3920   }
3921 
3922   // Update reference frame ids for reference frames this frame will overwrite
3923   if (seq_params->frame_id_numbers_present_flag) {
3924     for (int i = 0; i < REF_FRAMES; i++) {
3925       if ((current_frame->refresh_frame_flags >> i) & 1) {
3926         cm->ref_frame_id[i] = cm->current_frame_id;
3927       }
3928     }
3929   }
3930 
3931   if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)
3932     cpi->svc.num_encoded_top_layer++;
3933 
3934 #if DUMP_RECON_FRAMES == 1
3935   // NOTE(zoeliu): For debug - Output the filtered reconstructed video.
3936   av1_dump_filtered_recon_frames(cpi);
3937 #endif  // DUMP_RECON_FRAMES
3938 
3939   if (cm->seg.enabled) {
3940     if (cm->seg.update_map == 0 && cm->last_frame_seg_map) {
3941       memcpy(cm->cur_frame->seg_map, cm->last_frame_seg_map,
3942              cm->cur_frame->mi_cols * cm->cur_frame->mi_rows *
3943                  sizeof(*cm->cur_frame->seg_map));
3944     }
3945   }
3946 
3947   int release_scaled_refs = 0;
3948 #if CONFIG_FPMT_TEST
3949   release_scaled_refs =
3950       (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0;
3951 #endif  // CONFIG_FPMT_TEST
3952   if (release_scaled_refs ||
3953       cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
3954     if (frame_is_intra_only(cm) == 0) {
3955       release_scaled_references(cpi);
3956     }
3957   }
3958 #if CONFIG_AV1_TEMPORAL_DENOISING
3959   av1_denoiser_update_ref_frame(cpi);
3960 #endif
3961 
3962   // NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
3963   //       for the purpose to verify no mismatch between encoder and decoder.
3964   if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame;
3965 
3966   if (features->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
3967     *cm->fc = cpi->tile_data[largest_tile_id].tctx;
3968     av1_reset_cdf_symbol_counters(cm->fc);
3969   }
3970   if (!cm->tiles.large_scale) {
3971     cm->cur_frame->frame_context = *cm->fc;
3972   }
3973 
3974   if (tile_cfg->enable_ext_tile_debug) {
3975     // (yunqing) This test ensures the correctness of large scale tile coding.
3976     if (cm->tiles.large_scale && is_stat_consumption_stage(cpi)) {
3977       char fn[20] = "./fc";
3978       fn[4] = current_frame->frame_number / 100 + '0';
3979       fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3980       fn[6] = (current_frame->frame_number % 10) + '0';
3981       fn[7] = '\0';
3982       av1_print_frame_contexts(cm->fc, fn);
3983     }
3984   }
3985 
3986   cpi->last_frame_type = current_frame->frame_type;
3987 
3988   if (cm->features.disable_cdf_update) {
3989     cpi->frames_since_last_update++;
3990   } else {
3991     cpi->frames_since_last_update = 1;
3992   }
3993 
3994   if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)
3995     cpi->svc.prev_number_spatial_layers = cpi->svc.number_spatial_layers;
3996 
3997   // Clear the one shot update flags for segmentation map and mode/ref loop
3998   // filter deltas.
3999   cm->seg.update_map = 0;
4000   cm->seg.update_data = 0;
4001   cm->lf.mode_ref_delta_update = 0;
4002 
4003   if (cm->show_frame) {
4004     update_counters_for_show_frame(cpi);
4005   }
4006 
4007 #if CONFIG_COLLECT_COMPONENT_TIMING
4008   end_timing(cpi, encode_frame_to_data_rate_time);
4009 #endif
4010 
4011   return AOM_CODEC_OK;
4012 }
4013 
av1_encode(AV1_COMP * const cpi,uint8_t * const dest,size_t dest_size,const EncodeFrameInput * const frame_input,const EncodeFrameParams * const frame_params,size_t * const frame_size)4014 int av1_encode(AV1_COMP *const cpi, uint8_t *const dest, size_t dest_size,
4015                const EncodeFrameInput *const frame_input,
4016                const EncodeFrameParams *const frame_params,
4017                size_t *const frame_size) {
4018   AV1_COMMON *const cm = &cpi->common;
4019   CurrentFrame *const current_frame = &cm->current_frame;
4020 
4021   cpi->unscaled_source = frame_input->source;
4022   cpi->source = frame_input->source;
4023   cpi->unscaled_last_source = frame_input->last_source;
4024 
4025   current_frame->refresh_frame_flags = frame_params->refresh_frame_flags;
4026   cm->features.error_resilient_mode = frame_params->error_resilient_mode;
4027   cm->features.primary_ref_frame = frame_params->primary_ref_frame;
4028   cm->current_frame.frame_type = frame_params->frame_type;
4029   cm->show_frame = frame_params->show_frame;
4030   cpi->ref_frame_flags = frame_params->ref_frame_flags;
4031   cpi->speed = frame_params->speed;
4032   cm->show_existing_frame = frame_params->show_existing_frame;
4033   cpi->existing_fb_idx_to_show = frame_params->existing_fb_idx_to_show;
4034 
4035   memcpy(cm->remapped_ref_idx, frame_params->remapped_ref_idx,
4036          REF_FRAMES * sizeof(*cm->remapped_ref_idx));
4037 
4038   memcpy(&cpi->refresh_frame, &frame_params->refresh_frame,
4039          sizeof(cpi->refresh_frame));
4040 
4041   if (current_frame->frame_type == KEY_FRAME &&
4042       cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
4043     current_frame->frame_number = 0;
4044   }
4045 
4046   current_frame->order_hint =
4047       current_frame->frame_number + frame_params->order_offset;
4048 
4049   current_frame->display_order_hint = current_frame->order_hint;
4050   current_frame->order_hint %=
4051       (1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1));
4052 
4053   current_frame->pyramid_level = get_true_pyr_level(
4054       cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index],
4055       current_frame->display_order_hint, cpi->ppi->gf_group.max_layer_depth);
4056 
4057   if (is_stat_generation_stage(cpi)) {
4058 #if !CONFIG_REALTIME_ONLY
4059     if (cpi->oxcf.q_cfg.use_fixed_qp_offsets)
4060       av1_noop_first_pass_frame(cpi, frame_input->ts_duration);
4061     else
4062       av1_first_pass(cpi, frame_input->ts_duration);
4063 #endif
4064   } else if (cpi->oxcf.pass == AOM_RC_ONE_PASS ||
4065              cpi->oxcf.pass >= AOM_RC_SECOND_PASS) {
4066     if (encode_frame_to_data_rate(cpi, frame_size, dest, dest_size) !=
4067         AOM_CODEC_OK) {
4068       return AOM_CODEC_ERROR;
4069     }
4070   } else {
4071     return AOM_CODEC_ERROR;
4072   }
4073 
4074   return AOM_CODEC_OK;
4075 }
4076 
4077 #if CONFIG_DENOISE && !CONFIG_REALTIME_ONLY
apply_denoise_2d(AV1_COMP * cpi,const YV12_BUFFER_CONFIG * sd,int block_size,float noise_level,int64_t time_stamp,int64_t end_time)4078 static int apply_denoise_2d(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *sd,
4079                             int block_size, float noise_level,
4080                             int64_t time_stamp, int64_t end_time) {
4081   AV1_COMMON *const cm = &cpi->common;
4082   if (!cpi->denoise_and_model) {
4083     cpi->denoise_and_model = aom_denoise_and_model_alloc(
4084         cm->seq_params->bit_depth, block_size, noise_level);
4085     if (!cpi->denoise_and_model) {
4086       aom_set_error(cm->error, AOM_CODEC_MEM_ERROR,
4087                     "Error allocating denoise and model");
4088       return -1;
4089     }
4090   }
4091   if (!cpi->film_grain_table) {
4092     cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table));
4093     if (!cpi->film_grain_table) {
4094       aom_set_error(cm->error, AOM_CODEC_MEM_ERROR,
4095                     "Error allocating grain table");
4096       return -1;
4097     }
4098     memset(cpi->film_grain_table, 0, sizeof(*cpi->film_grain_table));
4099   }
4100   if (aom_denoise_and_model_run(cpi->denoise_and_model, sd,
4101                                 &cm->film_grain_params,
4102                                 cpi->oxcf.enable_dnl_denoising)) {
4103     if (cm->film_grain_params.apply_grain) {
4104       aom_film_grain_table_append(cpi->film_grain_table, time_stamp, end_time,
4105                                   &cm->film_grain_params);
4106     }
4107   }
4108   return 0;
4109 }
4110 #endif
4111 
av1_receive_raw_frame(AV1_COMP * cpi,aom_enc_frame_flags_t frame_flags,const YV12_BUFFER_CONFIG * sd,int64_t time_stamp,int64_t end_time)4112 int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
4113                           const YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
4114                           int64_t end_time) {
4115   AV1_COMMON *const cm = &cpi->common;
4116   const SequenceHeader *const seq_params = cm->seq_params;
4117   int res = 0;
4118   const int subsampling_x = sd->subsampling_x;
4119   const int subsampling_y = sd->subsampling_y;
4120   const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
4121 
4122 #if CONFIG_TUNE_VMAF
4123   if (!is_stat_generation_stage(cpi) &&
4124       cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITH_PREPROCESSING) {
4125     av1_vmaf_frame_preprocessing(cpi, sd);
4126   }
4127   if (!is_stat_generation_stage(cpi) &&
4128       cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN) {
4129     av1_vmaf_blk_preprocessing(cpi, sd);
4130   }
4131 #endif
4132 
4133 #if CONFIG_INTERNAL_STATS
4134   struct aom_usec_timer timer;
4135   aom_usec_timer_start(&timer);
4136 #endif
4137 
4138 #if CONFIG_AV1_TEMPORAL_DENOISING
4139   setup_denoiser_buffer(cpi);
4140 #endif
4141 
4142 #if CONFIG_DENOISE
4143   // even if denoise_noise_level is > 0, we don't need need to denoise on pass
4144   // 1 of 2 if enable_dnl_denoising is disabled since the 2nd pass will be
4145   // encoding the original (non-denoised) frame
4146   if (cpi->oxcf.noise_level > 0 && !(cpi->oxcf.pass == AOM_RC_FIRST_PASS &&
4147                                      !cpi->oxcf.enable_dnl_denoising)) {
4148 #if !CONFIG_REALTIME_ONLY
4149     // Choose a synthetic noise level for still images for enhanced perceptual
4150     // quality based on an estimated noise level in the source, but only if
4151     // the noise level is set on the command line to > 0.
4152     if (cpi->oxcf.mode == ALLINTRA) {
4153       // No noise synthesis if source is very clean.
4154       // Uses a low edge threshold to focus on smooth areas.
4155       // Increase output noise setting a little compared to measured value.
4156       double y_noise_level = 0.0;
4157       av1_estimate_noise_level(sd, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y,
4158                                cm->seq_params->bit_depth, 16);
4159       cpi->oxcf.noise_level = (float)(y_noise_level - 0.1);
4160       cpi->oxcf.noise_level = (float)AOMMAX(0.0, cpi->oxcf.noise_level);
4161       if (cpi->oxcf.noise_level > 0.0) {
4162         cpi->oxcf.noise_level += (float)0.5;
4163       }
4164       cpi->oxcf.noise_level = (float)AOMMIN(5.0, cpi->oxcf.noise_level);
4165     }
4166 
4167     if (apply_denoise_2d(cpi, sd, cpi->oxcf.noise_block_size,
4168                          cpi->oxcf.noise_level, time_stamp, end_time) < 0)
4169       res = -1;
4170 #endif  // !CONFIG_REALTIME_ONLY
4171   }
4172 #endif  //  CONFIG_DENOISE
4173 
4174   if (av1_lookahead_push(cpi->ppi->lookahead, sd, time_stamp, end_time,
4175                          use_highbitdepth, cpi->alloc_pyramid, frame_flags)) {
4176     aom_set_error(cm->error, AOM_CODEC_ERROR, "av1_lookahead_push() failed");
4177     res = -1;
4178   }
4179 #if CONFIG_INTERNAL_STATS
4180   aom_usec_timer_mark(&timer);
4181   cpi->ppi->total_time_receive_data += aom_usec_timer_elapsed(&timer);
4182 #endif
4183 
4184   // Note: Regarding profile setting, the following checks are added to help
4185   // choose a proper profile for the input video. The criterion is that all
4186   // bitstreams must be designated as the lowest profile that match its content.
4187   // E.G. A bitstream that contains 4:4:4 video must be designated as High
4188   // Profile in the seq header, and likewise a bitstream that contains 4:2:2
4189   // bitstream must be designated as Professional Profile in the sequence
4190   // header.
4191   if ((seq_params->profile == PROFILE_0) && !seq_params->monochrome &&
4192       (subsampling_x != 1 || subsampling_y != 1)) {
4193     aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM,
4194                   "Non-4:2:0 color format requires profile 1 or 2");
4195     res = -1;
4196   }
4197   if ((seq_params->profile == PROFILE_1) &&
4198       !(subsampling_x == 0 && subsampling_y == 0)) {
4199     aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM,
4200                   "Profile 1 requires 4:4:4 color format");
4201     res = -1;
4202   }
4203   if ((seq_params->profile == PROFILE_2) &&
4204       (seq_params->bit_depth <= AOM_BITS_10) &&
4205       !(subsampling_x == 1 && subsampling_y == 0)) {
4206     aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM,
4207                   "Profile 2 bit-depth <= 10 requires 4:2:2 color format");
4208     res = -1;
4209   }
4210 
4211   return res;
4212 }
4213 
4214 #if CONFIG_ENTROPY_STATS
print_entropy_stats(AV1_PRIMARY * const ppi)4215 void print_entropy_stats(AV1_PRIMARY *const ppi) {
4216   if (!ppi->cpi) return;
4217 
4218   if (ppi->cpi->oxcf.pass != 1 &&
4219       ppi->cpi->common.current_frame.frame_number > 0) {
4220     fprintf(stderr, "Writing counts.stt\n");
4221     FILE *f = fopen("counts.stt", "wb");
4222     fwrite(&ppi->aggregate_fc, sizeof(ppi->aggregate_fc), 1, f);
4223     fclose(f);
4224   }
4225 }
4226 #endif  // CONFIG_ENTROPY_STATS
4227 
4228 #if CONFIG_INTERNAL_STATS
adjust_image_stat(double y,double u,double v,double all,ImageStat * s)4229 static void adjust_image_stat(double y, double u, double v, double all,
4230                               ImageStat *s) {
4231   s->stat[STAT_Y] += y;
4232   s->stat[STAT_U] += u;
4233   s->stat[STAT_V] += v;
4234   s->stat[STAT_ALL] += all;
4235   s->worst = AOMMIN(s->worst, all);
4236 }
4237 
compute_internal_stats(AV1_COMP * cpi,int frame_bytes)4238 static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) {
4239   AV1_PRIMARY *const ppi = cpi->ppi;
4240   AV1_COMMON *const cm = &cpi->common;
4241   double samples = 0.0;
4242   const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth;
4243   const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
4244 
4245   if (cpi->ppi->use_svc &&
4246       cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1)
4247     return;
4248 
4249 #if CONFIG_INTER_STATS_ONLY
4250   if (cm->current_frame.frame_type == KEY_FRAME) return;  // skip key frame
4251 #endif
4252   cpi->bytes += frame_bytes;
4253   if (cm->show_frame) {
4254     const YV12_BUFFER_CONFIG *orig = cpi->source;
4255     const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf;
4256     double y, u, v, frame_all;
4257 
4258     ppi->count[0]++;
4259     ppi->count[1]++;
4260     if (cpi->ppi->b_calculate_psnr) {
4261       PSNR_STATS psnr;
4262       double weight[2] = { 0.0, 0.0 };
4263       double frame_ssim2[2] = { 0.0, 0.0 };
4264 #if CONFIG_AV1_HIGHBITDEPTH
4265       aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
4266 #else
4267       aom_calc_psnr(orig, recon, &psnr);
4268 #endif
4269       adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0],
4270                         &(ppi->psnr[0]));
4271       ppi->total_sq_error[0] += psnr.sse[0];
4272       ppi->total_samples[0] += psnr.samples[0];
4273       samples = psnr.samples[0];
4274 
4275       aom_calc_ssim(orig, recon, bit_depth, in_bit_depth,
4276                     cm->seq_params->use_highbitdepth, weight, frame_ssim2);
4277 
4278       ppi->worst_ssim = AOMMIN(ppi->worst_ssim, frame_ssim2[0]);
4279       ppi->summed_quality += frame_ssim2[0] * weight[0];
4280       ppi->summed_weights += weight[0];
4281 
4282 #if CONFIG_AV1_HIGHBITDEPTH
4283       // Compute PSNR based on stream bit depth
4284       if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) &&
4285           (in_bit_depth < bit_depth)) {
4286         adjust_image_stat(psnr.psnr_hbd[1], psnr.psnr_hbd[2], psnr.psnr_hbd[3],
4287                           psnr.psnr_hbd[0], &ppi->psnr[1]);
4288         ppi->total_sq_error[1] += psnr.sse_hbd[0];
4289         ppi->total_samples[1] += psnr.samples_hbd[0];
4290 
4291         ppi->worst_ssim_hbd = AOMMIN(ppi->worst_ssim_hbd, frame_ssim2[1]);
4292         ppi->summed_quality_hbd += frame_ssim2[1] * weight[1];
4293         ppi->summed_weights_hbd += weight[1];
4294       }
4295 #endif
4296 
4297 #if 0
4298       {
4299         FILE *f = fopen("q_used.stt", "a");
4300         double y2 = psnr.psnr[1];
4301         double u2 = psnr.psnr[2];
4302         double v2 = psnr.psnr[3];
4303         double frame_psnr2 = psnr.psnr[0];
4304         fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
4305                 cm->current_frame.frame_number, y2, u2, v2,
4306                 frame_psnr2, frame_ssim2);
4307         fclose(f);
4308       }
4309 #endif
4310     }
4311     if (ppi->b_calculate_blockiness) {
4312       if (!cm->seq_params->use_highbitdepth) {
4313         const double frame_blockiness =
4314             av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer,
4315                                recon->y_stride, orig->y_width, orig->y_height);
4316         ppi->worst_blockiness = AOMMAX(ppi->worst_blockiness, frame_blockiness);
4317         ppi->total_blockiness += frame_blockiness;
4318       }
4319 
4320       if (ppi->b_calculate_consistency) {
4321         if (!cm->seq_params->use_highbitdepth) {
4322           const double this_inconsistency = aom_get_ssim_metrics(
4323               orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
4324               orig->y_width, orig->y_height, ppi->ssim_vars, &ppi->metrics, 1);
4325 
4326           const double peak = (double)((1 << in_bit_depth) - 1);
4327           const double consistency =
4328               aom_sse_to_psnr(samples, peak, ppi->total_inconsistency);
4329           if (consistency > 0.0)
4330             ppi->worst_consistency =
4331                 AOMMIN(ppi->worst_consistency, consistency);
4332           ppi->total_inconsistency += this_inconsistency;
4333         }
4334       }
4335     }
4336 
4337     frame_all =
4338         aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
4339     adjust_image_stat(y, u, v, frame_all, &ppi->fastssim);
4340     frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
4341     adjust_image_stat(y, u, v, frame_all, &ppi->psnrhvs);
4342   }
4343 }
4344 
print_internal_stats(AV1_PRIMARY * ppi)4345 void print_internal_stats(AV1_PRIMARY *ppi) {
4346   if (!ppi->cpi) return;
4347   AV1_COMP *const cpi = ppi->cpi;
4348 
4349   if (ppi->cpi->oxcf.pass != 1 &&
4350       ppi->cpi->common.current_frame.frame_number > 0) {
4351     char headings[512] = { 0 };
4352     char results[512] = { 0 };
4353     FILE *f = fopen("opsnr.stt", "a");
4354     double time_encoded =
4355         (cpi->time_stamps.prev_ts_end - cpi->time_stamps.first_ts_start) /
4356         10000000.000;
4357     double total_encode_time =
4358         (ppi->total_time_receive_data + ppi->total_time_compress_data) /
4359         1000.000;
4360     const double dr =
4361         (double)ppi->total_bytes * (double)8 / (double)1000 / time_encoded;
4362     const double peak =
4363         (double)((1 << ppi->cpi->oxcf.input_cfg.input_bit_depth) - 1);
4364     const double target_rate =
4365         (double)ppi->cpi->oxcf.rc_cfg.target_bandwidth / 1000;
4366     const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
4367 
4368     if (ppi->b_calculate_psnr) {
4369       const double total_psnr = aom_sse_to_psnr(
4370           (double)ppi->total_samples[0], peak, (double)ppi->total_sq_error[0]);
4371       const double total_ssim =
4372           100 * pow(ppi->summed_quality / ppi->summed_weights, 8.0);
4373       snprintf(headings, sizeof(headings),
4374                "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
4375                "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
4376                "WstPsnr\tWstSsim\tWstFast\tWstHVS\t"
4377                "AVPsrnY\tAPsnrCb\tAPsnrCr");
4378       snprintf(results, sizeof(results),
4379                "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
4380                "%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
4381                "%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
4382                "%7.3f\t%7.3f\t%7.3f",
4383                dr, ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr,
4384                ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr,
4385                total_ssim, total_ssim,
4386                ppi->fastssim.stat[STAT_ALL] / ppi->count[0],
4387                ppi->psnrhvs.stat[STAT_ALL] / ppi->count[0], ppi->psnr[0].worst,
4388                ppi->worst_ssim, ppi->fastssim.worst, ppi->psnrhvs.worst,
4389                ppi->psnr[0].stat[STAT_Y] / ppi->count[0],
4390                ppi->psnr[0].stat[STAT_U] / ppi->count[0],
4391                ppi->psnr[0].stat[STAT_V] / ppi->count[0]);
4392 
4393       if (ppi->b_calculate_blockiness) {
4394         SNPRINT(headings, "\t  Block\tWstBlck");
4395         SNPRINT2(results, "\t%7.3f", ppi->total_blockiness / ppi->count[0]);
4396         SNPRINT2(results, "\t%7.3f", ppi->worst_blockiness);
4397       }
4398 
4399       if (ppi->b_calculate_consistency) {
4400         double consistency =
4401             aom_sse_to_psnr((double)ppi->total_samples[0], peak,
4402                             (double)ppi->total_inconsistency);
4403 
4404         SNPRINT(headings, "\tConsist\tWstCons");
4405         SNPRINT2(results, "\t%7.3f", consistency);
4406         SNPRINT2(results, "\t%7.3f", ppi->worst_consistency);
4407       }
4408 
4409       SNPRINT(headings, "\t   Time\tRcErr\tAbsErr");
4410       SNPRINT2(results, "\t%8.0f", total_encode_time);
4411       SNPRINT2(results, " %7.2f", rate_err);
4412       SNPRINT2(results, " %7.2f", fabs(rate_err));
4413 
4414       SNPRINT(headings, "\tAPsnr611");
4415       SNPRINT2(results, " %7.3f",
4416                (6 * ppi->psnr[0].stat[STAT_Y] + ppi->psnr[0].stat[STAT_U] +
4417                 ppi->psnr[0].stat[STAT_V]) /
4418                    (ppi->count[0] * 8));
4419 
4420 #if CONFIG_AV1_HIGHBITDEPTH
4421       const uint32_t in_bit_depth = ppi->cpi->oxcf.input_cfg.input_bit_depth;
4422       const uint32_t bit_depth = ppi->seq_params.bit_depth;
4423       // Since cpi->source->flags is not available here, but total_samples[1]
4424       // will be non-zero if cpi->source->flags & YV12_FLAG_HIGHBITDEPTH was
4425       // true in compute_internal_stats
4426       if ((ppi->total_samples[1] > 0) && (in_bit_depth < bit_depth)) {
4427         const double peak_hbd = (double)((1 << bit_depth) - 1);
4428         const double total_psnr_hbd =
4429             aom_sse_to_psnr((double)ppi->total_samples[1], peak_hbd,
4430                             (double)ppi->total_sq_error[1]);
4431         const double total_ssim_hbd =
4432             100 * pow(ppi->summed_quality_hbd / ppi->summed_weights_hbd, 8.0);
4433         SNPRINT(headings,
4434                 "\t AVGPsnrH GLBPsnrH AVPsnrPH GLPsnrPH"
4435                 " AVPsnrYH APsnrCbH APsnrCrH WstPsnrH"
4436                 " AOMSSIMH VPSSIMPH WstSsimH");
4437         SNPRINT2(results, "\t%7.3f",
4438                  ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]);
4439         SNPRINT2(results, "  %7.3f", total_psnr_hbd);
4440         SNPRINT2(results, "  %7.3f",
4441                  ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]);
4442         SNPRINT2(results, "  %7.3f", total_psnr_hbd);
4443         SNPRINT2(results, "  %7.3f", ppi->psnr[1].stat[STAT_Y] / ppi->count[1]);
4444         SNPRINT2(results, "  %7.3f", ppi->psnr[1].stat[STAT_U] / ppi->count[1]);
4445         SNPRINT2(results, "  %7.3f", ppi->psnr[1].stat[STAT_V] / ppi->count[1]);
4446         SNPRINT2(results, "  %7.3f", ppi->psnr[1].worst);
4447         SNPRINT2(results, "  %7.3f", total_ssim_hbd);
4448         SNPRINT2(results, "  %7.3f", total_ssim_hbd);
4449         SNPRINT2(results, "  %7.3f", ppi->worst_ssim_hbd);
4450       }
4451 #endif
4452       fprintf(f, "%s\n", headings);
4453       fprintf(f, "%s\n", results);
4454     }
4455 
4456     fclose(f);
4457 
4458     aom_free(ppi->ssim_vars);
4459     ppi->ssim_vars = NULL;
4460   }
4461 }
4462 #endif  // CONFIG_INTERNAL_STATS
4463 
update_keyframe_counters(AV1_COMP * cpi)4464 static inline void update_keyframe_counters(AV1_COMP *cpi) {
4465   if (cpi->common.show_frame && cpi->rc.frames_to_key) {
4466 #if !CONFIG_REALTIME_ONLY
4467     FIRSTPASS_INFO *firstpass_info = &cpi->ppi->twopass.firstpass_info;
4468     if (firstpass_info->past_stats_count > FIRSTPASS_INFO_STATS_PAST_MIN) {
4469       av1_firstpass_info_move_cur_index_and_pop(firstpass_info);
4470     } else {
4471       // When there is not enough past stats, we move the current
4472       // index without popping the past stats
4473       av1_firstpass_info_move_cur_index(firstpass_info);
4474     }
4475 #endif
4476     if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
4477       cpi->rc.frames_since_key++;
4478       cpi->rc.frames_to_key--;
4479       cpi->rc.frames_to_fwd_kf--;
4480       cpi->rc.frames_since_scene_change++;
4481     }
4482   }
4483 }
4484 
update_frames_till_gf_update(AV1_COMP * cpi)4485 static inline void update_frames_till_gf_update(AV1_COMP *cpi) {
4486   // TODO(weitinglin): Updating this counter for is_frame_droppable
4487   // is a work-around to handle the condition when a frame is drop.
4488   // We should fix the cpi->common.show_frame flag
4489   // instead of checking the other condition to update the counter properly.
4490   if (cpi->common.show_frame ||
4491       is_frame_droppable(&cpi->ppi->rtc_ref, &cpi->ext_flags.refresh_frame)) {
4492     // Decrement count down till next gf
4493     if (cpi->rc.frames_till_gf_update_due > 0)
4494       cpi->rc.frames_till_gf_update_due--;
4495   }
4496 }
4497 
update_gf_group_index(AV1_COMP * cpi)4498 static inline void update_gf_group_index(AV1_COMP *cpi) {
4499   // Increment the gf group index ready for the next frame.
4500   if (is_one_pass_rt_params(cpi) &&
4501       cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
4502     ++cpi->gf_frame_index;
4503     // Reset gf_frame_index in case it reaches MAX_STATIC_GF_GROUP_LENGTH
4504     // for real time encoding.
4505     if (cpi->gf_frame_index == MAX_STATIC_GF_GROUP_LENGTH)
4506       cpi->gf_frame_index = 0;
4507   } else {
4508     ++cpi->gf_frame_index;
4509   }
4510 }
4511 
update_fb_of_context_type(const AV1_COMP * const cpi,int * const fb_of_context_type)4512 static void update_fb_of_context_type(const AV1_COMP *const cpi,
4513                                       int *const fb_of_context_type) {
4514   const AV1_COMMON *const cm = &cpi->common;
4515   const int current_frame_ref_type = get_current_frame_ref_type(cpi);
4516 
4517   if (frame_is_intra_only(cm) || cm->features.error_resilient_mode ||
4518       cpi->ext_flags.use_primary_ref_none) {
4519     for (int i = 0; i < REF_FRAMES; i++) {
4520       fb_of_context_type[i] = -1;
4521     }
4522     fb_of_context_type[current_frame_ref_type] =
4523         cm->show_frame ? get_ref_frame_map_idx(cm, GOLDEN_FRAME)
4524                        : get_ref_frame_map_idx(cm, ALTREF_FRAME);
4525   }
4526 
4527   if (!encode_show_existing_frame(cm)) {
4528     // Refresh fb_of_context_type[]: see encoder.h for explanation
4529     if (cm->current_frame.frame_type == KEY_FRAME) {
4530       // All ref frames are refreshed, pick one that will live long enough
4531       fb_of_context_type[current_frame_ref_type] = 0;
4532     } else {
4533       // If more than one frame is refreshed, it doesn't matter which one we
4534       // pick so pick the first.  LST sometimes doesn't refresh any: this is ok
4535 
4536       for (int i = 0; i < REF_FRAMES; i++) {
4537         if (cm->current_frame.refresh_frame_flags & (1 << i)) {
4538           fb_of_context_type[current_frame_ref_type] = i;
4539           break;
4540         }
4541       }
4542     }
4543   }
4544 }
4545 
update_rc_counts(AV1_COMP * cpi)4546 static void update_rc_counts(AV1_COMP *cpi) {
4547   update_keyframe_counters(cpi);
4548   update_frames_till_gf_update(cpi);
4549   update_gf_group_index(cpi);
4550 }
4551 
update_end_of_frame_stats(AV1_COMP * cpi)4552 static void update_end_of_frame_stats(AV1_COMP *cpi) {
4553   if (cpi->do_frame_data_update) {
4554     // Store current frame loopfilter levels in ppi, if update flag is set.
4555     if (!cpi->common.show_existing_frame) {
4556       AV1_COMMON *const cm = &cpi->common;
4557       struct loopfilter *const lf = &cm->lf;
4558       cpi->ppi->filter_level[0] = lf->filter_level[0];
4559       cpi->ppi->filter_level[1] = lf->filter_level[1];
4560       cpi->ppi->filter_level_u = lf->filter_level_u;
4561       cpi->ppi->filter_level_v = lf->filter_level_v;
4562     }
4563   }
4564   // Store frame level mv_stats from cpi to ppi.
4565   cpi->ppi->mv_stats = cpi->mv_stats;
4566 }
4567 
4568 // Updates frame level stats related to global motion
update_gm_stats(AV1_COMP * cpi)4569 static inline void update_gm_stats(AV1_COMP *cpi) {
4570   FRAME_UPDATE_TYPE update_type =
4571       cpi->ppi->gf_group.update_type[cpi->gf_frame_index];
4572   int i, is_gm_present = 0;
4573 
4574   // Check if the current frame has any valid global motion model across its
4575   // reference frames
4576   for (i = 0; i < REF_FRAMES; i++) {
4577     if (cpi->common.global_motion[i].wmtype != IDENTITY) {
4578       is_gm_present = 1;
4579       break;
4580     }
4581   }
4582   int update_actual_stats = 1;
4583 #if CONFIG_FPMT_TEST
4584   update_actual_stats =
4585       (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
4586   if (!update_actual_stats) {
4587     if (cpi->ppi->temp_valid_gm_model_found[update_type] == INT32_MAX) {
4588       cpi->ppi->temp_valid_gm_model_found[update_type] = is_gm_present;
4589     } else {
4590       cpi->ppi->temp_valid_gm_model_found[update_type] |= is_gm_present;
4591     }
4592     int show_existing_between_parallel_frames =
4593         (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
4594              INTNL_OVERLAY_UPDATE &&
4595          cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
4596     if (cpi->do_frame_data_update == 1 &&
4597         !show_existing_between_parallel_frames) {
4598       for (i = 0; i < FRAME_UPDATE_TYPES; i++) {
4599         cpi->ppi->valid_gm_model_found[i] =
4600             cpi->ppi->temp_valid_gm_model_found[i];
4601       }
4602     }
4603   }
4604 #endif
4605   if (update_actual_stats) {
4606     if (cpi->ppi->valid_gm_model_found[update_type] == INT32_MAX) {
4607       cpi->ppi->valid_gm_model_found[update_type] = is_gm_present;
4608     } else {
4609       cpi->ppi->valid_gm_model_found[update_type] |= is_gm_present;
4610     }
4611   }
4612 }
4613 
av1_post_encode_updates(AV1_COMP * const cpi,const AV1_COMP_DATA * const cpi_data)4614 void av1_post_encode_updates(AV1_COMP *const cpi,
4615                              const AV1_COMP_DATA *const cpi_data) {
4616   AV1_PRIMARY *const ppi = cpi->ppi;
4617   AV1_COMMON *const cm = &cpi->common;
4618 
4619   update_gm_stats(cpi);
4620 
4621 #if !CONFIG_REALTIME_ONLY
4622   // Update the total stats remaining structure.
4623   if (cpi->twopass_frame.this_frame != NULL &&
4624       ppi->twopass.stats_buf_ctx->total_left_stats) {
4625     subtract_stats(ppi->twopass.stats_buf_ctx->total_left_stats,
4626                    cpi->twopass_frame.this_frame);
4627   }
4628 #endif
4629 
4630 #if CONFIG_OUTPUT_FRAME_SIZE
4631   FILE *f = fopen("frame_sizes.csv", "a");
4632   fprintf(f, "%d,", 8 * (int)cpi_data->frame_size);
4633   fprintf(f, "%d\n", cm->quant_params.base_qindex);
4634   fclose(f);
4635 #endif  // CONFIG_OUTPUT_FRAME_SIZE
4636 
4637   if (!is_stat_generation_stage(cpi) && !cpi->is_dropped_frame) {
4638     // Before calling refresh_reference_frames(), copy ppi->ref_frame_map_copy
4639     // to cm->ref_frame_map for frame_parallel_level 2 frame in a parallel
4640     // encode set of lower layer frames.
4641     // TODO(Remya): Move ref_frame_map from AV1_COMMON to AV1_PRIMARY to avoid
4642     // copy.
4643     if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 2 &&
4644         ppi->gf_group.frame_parallel_level[cpi->gf_frame_index - 1] == 1 &&
4645         ppi->gf_group.update_type[cpi->gf_frame_index - 1] ==
4646             INTNL_ARF_UPDATE) {
4647       memcpy(cm->ref_frame_map, ppi->ref_frame_map_copy,
4648              sizeof(cm->ref_frame_map));
4649     }
4650     refresh_reference_frames(cpi);
4651     // For frame_parallel_level 1 frame in a parallel encode set of lower layer
4652     // frames, store the updated cm->ref_frame_map in ppi->ref_frame_map_copy.
4653     if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1 &&
4654         ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
4655       memcpy(ppi->ref_frame_map_copy, cm->ref_frame_map,
4656              sizeof(cm->ref_frame_map));
4657     }
4658     av1_rc_postencode_update(cpi, cpi_data->frame_size);
4659   }
4660 
4661   if (cpi_data->pop_lookahead == 1) {
4662     av1_lookahead_pop(cpi->ppi->lookahead, cpi_data->flush,
4663                       cpi->compressor_stage);
4664   }
4665   if (cpi->common.show_frame) {
4666     cpi->ppi->ts_start_last_show_frame = cpi_data->ts_frame_start;
4667     cpi->ppi->ts_end_last_show_frame = cpi_data->ts_frame_end;
4668   }
4669   if (ppi->level_params.keep_level_stats && !is_stat_generation_stage(cpi)) {
4670     // Initialize level info. at the beginning of each sequence.
4671     if (cm->current_frame.frame_type == KEY_FRAME &&
4672         ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
4673       av1_init_level_info(cpi);
4674     }
4675     av1_update_level_info(cpi, cpi_data->frame_size, cpi_data->ts_frame_start,
4676                           cpi_data->ts_frame_end);
4677   }
4678 
4679   if (!is_stat_generation_stage(cpi)) {
4680 #if !CONFIG_REALTIME_ONLY
4681     if (!has_no_stats_stage(cpi)) av1_twopass_postencode_update(cpi);
4682 #endif
4683     update_fb_of_context_type(cpi, ppi->fb_of_context_type);
4684     update_rc_counts(cpi);
4685     update_end_of_frame_stats(cpi);
4686   }
4687 
4688 #if CONFIG_THREE_PASS
4689   if (cpi->oxcf.pass == AOM_RC_THIRD_PASS && cpi->third_pass_ctx) {
4690     av1_pop_third_pass_info(cpi->third_pass_ctx);
4691   }
4692 #endif
4693 
4694   if (ppi->rtc_ref.set_ref_frame_config && !cpi->is_dropped_frame) {
4695     av1_svc_update_buffer_slot_refreshed(cpi);
4696     av1_svc_set_reference_was_previous(cpi);
4697   }
4698 
4699   if (ppi->use_svc) av1_save_layer_context(cpi);
4700 
4701   // Note *size = 0 indicates a dropped frame for which psnr is not calculated
4702   if (ppi->b_calculate_psnr && cpi_data->frame_size > 0) {
4703     if (cm->show_existing_frame ||
4704         (!is_stat_generation_stage(cpi) && cm->show_frame)) {
4705       generate_psnr_packet(cpi);
4706     }
4707   }
4708 
4709 #if CONFIG_INTERNAL_STATS
4710   if (!is_stat_generation_stage(cpi)) {
4711     compute_internal_stats(cpi, (int)cpi_data->frame_size);
4712   }
4713 #endif  // CONFIG_INTERNAL_STATS
4714 
4715 #if CONFIG_THREE_PASS
4716   // Write frame info. Subtract 1 from frame index since if was incremented in
4717   // update_rc_counts.
4718   av1_write_second_pass_per_frame_info(cpi, cpi->gf_frame_index - 1);
4719 #endif
4720 }
4721 
av1_get_compressed_data(AV1_COMP * cpi,AV1_COMP_DATA * const cpi_data)4722 int av1_get_compressed_data(AV1_COMP *cpi, AV1_COMP_DATA *const cpi_data) {
4723   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
4724   AV1_COMMON *const cm = &cpi->common;
4725 
4726   // The jmp_buf is valid only for the duration of the function that calls
4727   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
4728   // before it returns.
4729   if (setjmp(cm->error->jmp)) {
4730     cm->error->setjmp = 0;
4731     return cm->error->error_code;
4732   }
4733   cm->error->setjmp = 1;
4734 
4735 #if CONFIG_INTERNAL_STATS
4736   cpi->frame_recode_hits = 0;
4737   cpi->time_compress_data = 0;
4738   cpi->bytes = 0;
4739 #endif
4740 #if CONFIG_ENTROPY_STATS
4741   if (cpi->compressor_stage == ENCODE_STAGE) {
4742     av1_zero(cpi->counts);
4743   }
4744 #endif
4745 
4746 #if CONFIG_BITSTREAM_DEBUG
4747   assert(cpi->oxcf.max_threads <= 1 &&
4748          "bitstream debug tool does not support multithreading");
4749   bitstream_queue_record_write();
4750 
4751   if (cm->seq_params->order_hint_info.enable_order_hint) {
4752     aom_bitstream_queue_set_frame_write(cm->current_frame.order_hint * 2 +
4753                                         cm->show_frame);
4754   } else {
4755     // This is currently used in RTC encoding. cm->show_frame is always 1.
4756     aom_bitstream_queue_set_frame_write(cm->current_frame.frame_number);
4757   }
4758 #endif
4759   if (cpi->ppi->use_svc) {
4760     av1_one_pass_cbr_svc_start_layer(cpi);
4761   }
4762 
4763   cpi->is_dropped_frame = false;
4764   cm->showable_frame = 0;
4765   cpi_data->frame_size = 0;
4766   cpi->available_bs_size = cpi_data->cx_data_sz;
4767 #if CONFIG_INTERNAL_STATS
4768   struct aom_usec_timer cmptimer;
4769   aom_usec_timer_start(&cmptimer);
4770 #endif
4771   av1_set_high_precision_mv(cpi, 1, 0);
4772 
4773   // Normal defaults
4774   cm->features.refresh_frame_context =
4775       oxcf->tool_cfg.frame_parallel_decoding_mode
4776           ? REFRESH_FRAME_CONTEXT_DISABLED
4777           : REFRESH_FRAME_CONTEXT_BACKWARD;
4778   if (oxcf->tile_cfg.enable_large_scale_tile)
4779     cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
4780 
4781   if (assign_cur_frame_new_fb(cm) == NULL) {
4782     aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4783                        "Failed to allocate new cur_frame");
4784   }
4785 
4786 #if CONFIG_COLLECT_COMPONENT_TIMING
4787   // Accumulate 2nd pass time in 2-pass case or 1 pass time in 1-pass case.
4788   if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0)
4789     start_timing(cpi, av1_encode_strategy_time);
4790 #endif
4791 
4792   const int result = av1_encode_strategy(
4793       cpi, &cpi_data->frame_size, cpi_data->cx_data, cpi_data->cx_data_sz,
4794       &cpi_data->lib_flags, &cpi_data->ts_frame_start, &cpi_data->ts_frame_end,
4795       cpi_data->timestamp_ratio, &cpi_data->pop_lookahead, cpi_data->flush);
4796 
4797 #if CONFIG_COLLECT_COMPONENT_TIMING
4798   if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0)
4799     end_timing(cpi, av1_encode_strategy_time);
4800 
4801   // Print out timing information.
4802   // Note: Use "cpi->frame_component_time[0] > 100 us" to avoid showing of
4803   // show_existing_frame and lag-in-frames.
4804   if ((cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) &&
4805       cpi->frame_component_time[0] > 100) {
4806     int i;
4807     uint64_t frame_total = 0, total = 0;
4808     const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
4809     FRAME_UPDATE_TYPE frame_update_type =
4810         get_frame_update_type(gf_group, cpi->gf_frame_index);
4811 
4812     fprintf(stderr,
4813             "\n Frame number: %d, Frame type: %s, Show Frame: %d, Frame Update "
4814             "Type: %d, Q: %d\n",
4815             cm->current_frame.frame_number,
4816             get_frame_type_enum(cm->current_frame.frame_type), cm->show_frame,
4817             frame_update_type, cm->quant_params.base_qindex);
4818     for (i = 0; i < kTimingComponents; i++) {
4819       cpi->component_time[i] += cpi->frame_component_time[i];
4820       // Use av1_encode_strategy_time (i = 0) as the total time.
4821       if (i == 0) {
4822         frame_total = cpi->frame_component_time[0];
4823         total = cpi->component_time[0];
4824       }
4825       fprintf(stderr,
4826               " %50s:  %15" PRId64 " us [%6.2f%%] (total: %15" PRId64
4827               " us [%6.2f%%])\n",
4828               get_component_name(i), cpi->frame_component_time[i],
4829               (float)((float)cpi->frame_component_time[i] * 100.0 /
4830                       (float)frame_total),
4831               cpi->component_time[i],
4832               (float)((float)cpi->component_time[i] * 100.0 / (float)total));
4833       cpi->frame_component_time[i] = 0;
4834     }
4835   }
4836 #endif
4837 
4838   // Reset the flag to 0 afer encoding.
4839   cpi->rc.use_external_qp_one_pass = 0;
4840 
4841   if (result == -1) {
4842     cm->error->setjmp = 0;
4843     // Returning -1 indicates no frame encoded; more input is required
4844     return -1;
4845   }
4846   if (result != AOM_CODEC_OK) {
4847     aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4848                        "Failed to encode frame");
4849   }
4850 #if CONFIG_INTERNAL_STATS
4851   aom_usec_timer_mark(&cmptimer);
4852   cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer);
4853 #endif  // CONFIG_INTERNAL_STATS
4854 
4855 #if CONFIG_SPEED_STATS
4856   if (!is_stat_generation_stage(cpi) && !cm->show_existing_frame) {
4857     cpi->tx_search_count += cpi->td.mb.txfm_search_info.tx_search_count;
4858     cpi->td.mb.txfm_search_info.tx_search_count = 0;
4859   }
4860 #endif  // CONFIG_SPEED_STATS
4861 
4862   cm->error->setjmp = 0;
4863   return AOM_CODEC_OK;
4864 }
4865 
4866 // Populates cpi->scaled_ref_buf corresponding to frames in a parallel encode
4867 // set. Also sets the bitmask 'ref_buffers_used_map'.
scale_references_fpmt(AV1_COMP * cpi,int * ref_buffers_used_map)4868 static void scale_references_fpmt(AV1_COMP *cpi, int *ref_buffers_used_map) {
4869   AV1_COMMON *cm = &cpi->common;
4870   MV_REFERENCE_FRAME ref_frame;
4871 
4872   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
4873     // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
4874     if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
4875       const YV12_BUFFER_CONFIG *const ref =
4876           get_ref_frame_yv12_buf(cm, ref_frame);
4877 
4878       if (ref == NULL) {
4879         cpi->scaled_ref_buf[ref_frame - 1] = NULL;
4880         continue;
4881       }
4882 
4883       // FPMT does not support scaling yet.
4884       assert(ref->y_crop_width == cm->width &&
4885              ref->y_crop_height == cm->height);
4886 
4887       RefCntBuffer *buf = get_ref_frame_buf(cm, ref_frame);
4888       cpi->scaled_ref_buf[ref_frame - 1] = buf;
4889       for (int i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) {
4890         if (&cm->buffer_pool->frame_bufs[i] == buf) {
4891           *ref_buffers_used_map |= (1 << i);
4892         }
4893       }
4894     } else {
4895       if (!has_no_stats_stage(cpi)) cpi->scaled_ref_buf[ref_frame - 1] = NULL;
4896     }
4897   }
4898 }
4899 
4900 // Increments the ref_count of frame buffers referenced by cpi->scaled_ref_buf
4901 // corresponding to frames in a parallel encode set.
increment_scaled_ref_counts_fpmt(BufferPool * buffer_pool,int ref_buffers_used_map)4902 static void increment_scaled_ref_counts_fpmt(BufferPool *buffer_pool,
4903                                              int ref_buffers_used_map) {
4904   for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) {
4905     if (ref_buffers_used_map & (1 << i)) {
4906       ++buffer_pool->frame_bufs[i].ref_count;
4907     }
4908   }
4909 }
4910 
4911 // Releases cpi->scaled_ref_buf corresponding to frames in a parallel encode
4912 // set.
av1_release_scaled_references_fpmt(AV1_COMP * cpi)4913 void av1_release_scaled_references_fpmt(AV1_COMP *cpi) {
4914   // TODO(isbs): only refresh the necessary frames, rather than all of them
4915   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4916     RefCntBuffer *const buf = cpi->scaled_ref_buf[i];
4917     if (buf != NULL) {
4918       cpi->scaled_ref_buf[i] = NULL;
4919     }
4920   }
4921 }
4922 
4923 // Decrements the ref_count of frame buffers referenced by cpi->scaled_ref_buf
4924 // corresponding to frames in a parallel encode set.
av1_decrement_ref_counts_fpmt(BufferPool * buffer_pool,int ref_buffers_used_map)4925 void av1_decrement_ref_counts_fpmt(BufferPool *buffer_pool,
4926                                    int ref_buffers_used_map) {
4927   for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) {
4928     if (ref_buffers_used_map & (1 << i)) {
4929       --buffer_pool->frame_bufs[i].ref_count;
4930     }
4931   }
4932 }
4933 
4934 // Initialize parallel frame contexts with screen content decisions.
av1_init_sc_decisions(AV1_PRIMARY * const ppi)4935 void av1_init_sc_decisions(AV1_PRIMARY *const ppi) {
4936   AV1_COMP *const first_cpi = ppi->cpi;
4937   for (int i = 1; i < ppi->num_fp_contexts; ++i) {
4938     AV1_COMP *cur_cpi = ppi->parallel_cpi[i];
4939     cur_cpi->common.features.allow_screen_content_tools =
4940         first_cpi->common.features.allow_screen_content_tools;
4941     cur_cpi->common.features.allow_intrabc =
4942         first_cpi->common.features.allow_intrabc;
4943     cur_cpi->use_screen_content_tools = first_cpi->use_screen_content_tools;
4944     cur_cpi->is_screen_content_type = first_cpi->is_screen_content_type;
4945   }
4946 }
4947 
av1_get_parallel_frame_enc_data(AV1_PRIMARY * const ppi,AV1_COMP_DATA * const first_cpi_data)4948 AV1_COMP *av1_get_parallel_frame_enc_data(AV1_PRIMARY *const ppi,
4949                                           AV1_COMP_DATA *const first_cpi_data) {
4950   int cpi_idx = 0;
4951 
4952   // Loop over parallel_cpi to find the cpi that processed the current
4953   // gf_frame_index ahead of time.
4954   for (int i = 1; i < ppi->num_fp_contexts; i++) {
4955     if (ppi->cpi->gf_frame_index == ppi->parallel_cpi[i]->gf_frame_index) {
4956       cpi_idx = i;
4957       break;
4958     }
4959   }
4960 
4961   assert(cpi_idx > 0);
4962   assert(!ppi->parallel_cpi[cpi_idx]->common.show_existing_frame);
4963 
4964   // Release the previously-used frame-buffer.
4965   if (ppi->cpi->common.cur_frame != NULL) {
4966     --ppi->cpi->common.cur_frame->ref_count;
4967     ppi->cpi->common.cur_frame = NULL;
4968   }
4969 
4970   // Swap the appropriate parallel_cpi with the parallel_cpi[0].
4971   ppi->cpi = ppi->parallel_cpi[cpi_idx];
4972   ppi->parallel_cpi[cpi_idx] = ppi->parallel_cpi[0];
4973   ppi->parallel_cpi[0] = ppi->cpi;
4974 
4975   // Copy appropriate parallel_frames_data to local data.
4976   {
4977     AV1_COMP_DATA *data = &ppi->parallel_frames_data[cpi_idx - 1];
4978     assert(data->frame_size > 0);
4979     if (data->frame_size > first_cpi_data->cx_data_sz) {
4980       aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
4981                          "first_cpi_data->cx_data buffer full");
4982     }
4983 
4984     first_cpi_data->lib_flags = data->lib_flags;
4985     first_cpi_data->ts_frame_start = data->ts_frame_start;
4986     first_cpi_data->ts_frame_end = data->ts_frame_end;
4987     memcpy(first_cpi_data->cx_data, data->cx_data, data->frame_size);
4988     first_cpi_data->frame_size = data->frame_size;
4989     if (ppi->cpi->common.show_frame) {
4990       first_cpi_data->pop_lookahead = 1;
4991     }
4992   }
4993 
4994   return ppi->cpi;
4995 }
4996 
4997 // Initialises frames belonging to a parallel encode set.
av1_init_parallel_frame_context(const AV1_COMP_DATA * const first_cpi_data,AV1_PRIMARY * const ppi,int * ref_buffers_used_map)4998 int av1_init_parallel_frame_context(const AV1_COMP_DATA *const first_cpi_data,
4999                                     AV1_PRIMARY *const ppi,
5000                                     int *ref_buffers_used_map) {
5001   AV1_COMP *const first_cpi = ppi->cpi;
5002   GF_GROUP *const gf_group = &ppi->gf_group;
5003   int gf_index_start = first_cpi->gf_frame_index;
5004   assert(gf_group->frame_parallel_level[gf_index_start] == 1);
5005   int parallel_frame_count = 0;
5006   int cur_frame_num = first_cpi->common.current_frame.frame_number;
5007   int show_frame_count = first_cpi->frame_index_set.show_frame_count;
5008   int frames_since_key = first_cpi->rc.frames_since_key;
5009   int frames_to_key = first_cpi->rc.frames_to_key;
5010   int frames_to_fwd_kf = first_cpi->rc.frames_to_fwd_kf;
5011   int cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[gf_index_start];
5012   const FIRSTPASS_STATS *stats_in = first_cpi->twopass_frame.stats_in;
5013 
5014   assert(*ref_buffers_used_map == 0);
5015 
5016   // Release the previously used frame-buffer by a frame_parallel_level 1 frame.
5017   if (first_cpi->common.cur_frame != NULL) {
5018     --first_cpi->common.cur_frame->ref_count;
5019     first_cpi->common.cur_frame = NULL;
5020   }
5021 
5022   RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
5023   RefFrameMapPair first_ref_frame_map_pairs[REF_FRAMES];
5024   init_ref_map_pair(first_cpi, first_ref_frame_map_pairs);
5025   memcpy(ref_frame_map_pairs, first_ref_frame_map_pairs,
5026          sizeof(RefFrameMapPair) * REF_FRAMES);
5027 
5028   // Store the reference refresh index of frame_parallel_level 1 frame in a
5029   // parallel encode set of lower layer frames.
5030   if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) {
5031     first_cpi->ref_refresh_index = av1_calc_refresh_idx_for_intnl_arf(
5032         first_cpi, ref_frame_map_pairs, gf_index_start);
5033     assert(first_cpi->ref_refresh_index != INVALID_IDX &&
5034            first_cpi->ref_refresh_index < REF_FRAMES);
5035     first_cpi->refresh_idx_available = true;
5036     // Update ref_frame_map_pairs.
5037     ref_frame_map_pairs[first_cpi->ref_refresh_index].disp_order =
5038         gf_group->display_idx[gf_index_start];
5039     ref_frame_map_pairs[first_cpi->ref_refresh_index].pyr_level =
5040         gf_group->layer_depth[gf_index_start];
5041   }
5042 
5043   // Set do_frame_data_update flag as false for frame_parallel_level 1 frame.
5044   first_cpi->do_frame_data_update = false;
5045   if (gf_group->arf_src_offset[gf_index_start] == 0) {
5046     first_cpi->time_stamps.prev_ts_start = ppi->ts_start_last_show_frame;
5047     first_cpi->time_stamps.prev_ts_end = ppi->ts_end_last_show_frame;
5048   }
5049 
5050   av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, first_cpi,
5051                      gf_index_start, 1, first_cpi->common.remapped_ref_idx);
5052 
5053   scale_references_fpmt(first_cpi, ref_buffers_used_map);
5054   parallel_frame_count++;
5055 
5056   // Iterate through the GF_GROUP to find the remaining frame_parallel_level 2
5057   // frames which are part of the current parallel encode set and initialize the
5058   // required cpi elements.
5059   for (int i = gf_index_start + 1; i < gf_group->size; i++) {
5060     // Update frame counters if previous frame was show frame or show existing
5061     // frame.
5062     if (gf_group->arf_src_offset[i - 1] == 0) {
5063       cur_frame_num++;
5064       show_frame_count++;
5065       if (frames_to_fwd_kf <= 0)
5066         frames_to_fwd_kf = first_cpi->oxcf.kf_cfg.fwd_kf_dist;
5067       if (frames_to_key) {
5068         frames_since_key++;
5069         frames_to_key--;
5070         frames_to_fwd_kf--;
5071       }
5072       stats_in++;
5073     }
5074     cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[i];
5075     if (gf_group->frame_parallel_level[i] == 2) {
5076       AV1_COMP *cur_cpi = ppi->parallel_cpi[parallel_frame_count];
5077       AV1_COMP_DATA *cur_cpi_data =
5078           &ppi->parallel_frames_data[parallel_frame_count - 1];
5079       cur_cpi->gf_frame_index = i;
5080       cur_cpi->framerate = first_cpi->framerate;
5081       cur_cpi->common.current_frame.frame_number = cur_frame_num;
5082       cur_cpi->common.current_frame.frame_type = gf_group->frame_type[i];
5083       cur_cpi->frame_index_set.show_frame_count = show_frame_count;
5084       cur_cpi->rc.frames_since_key = frames_since_key;
5085       cur_cpi->rc.frames_to_key = frames_to_key;
5086       cur_cpi->rc.frames_to_fwd_kf = frames_to_fwd_kf;
5087       cur_cpi->rc.active_worst_quality = first_cpi->rc.active_worst_quality;
5088       cur_cpi->rc.avg_frame_bandwidth = first_cpi->rc.avg_frame_bandwidth;
5089       cur_cpi->rc.max_frame_bandwidth = first_cpi->rc.max_frame_bandwidth;
5090       cur_cpi->rc.min_frame_bandwidth = first_cpi->rc.min_frame_bandwidth;
5091       cur_cpi->rc.intervals_till_gf_calculate_due =
5092           first_cpi->rc.intervals_till_gf_calculate_due;
5093       cur_cpi->mv_search_params.max_mv_magnitude =
5094           first_cpi->mv_search_params.max_mv_magnitude;
5095       if (gf_group->update_type[cur_cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
5096         cur_cpi->common.lf.mode_ref_delta_enabled = 1;
5097       }
5098       cur_cpi->do_frame_data_update = false;
5099       // Initialize prev_ts_start and prev_ts_end for show frame(s) and show
5100       // existing frame(s).
5101       if (gf_group->arf_src_offset[i] == 0) {
5102         // Choose source of prev frame.
5103         int src_index = gf_group->src_offset[i];
5104         struct lookahead_entry *prev_source = av1_lookahead_peek(
5105             ppi->lookahead, src_index - 1, cur_cpi->compressor_stage);
5106         // Save timestamps of prev frame.
5107         cur_cpi->time_stamps.prev_ts_start = prev_source->ts_start;
5108         cur_cpi->time_stamps.prev_ts_end = prev_source->ts_end;
5109       }
5110       cur_cpi->time_stamps.first_ts_start =
5111           first_cpi->time_stamps.first_ts_start;
5112 
5113       memcpy(cur_cpi->common.ref_frame_map, first_cpi->common.ref_frame_map,
5114              sizeof(first_cpi->common.ref_frame_map));
5115       cur_cpi_data->lib_flags = 0;
5116       cur_cpi_data->timestamp_ratio = first_cpi_data->timestamp_ratio;
5117       cur_cpi_data->flush = first_cpi_data->flush;
5118       cur_cpi_data->frame_size = 0;
5119       if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) {
5120         // If the first frame in a parallel encode set is INTNL_ARF_UPDATE
5121         // frame, initialize lib_flags of frame_parallel_level 2 frame in the
5122         // set with that of frame_parallel_level 1 frame.
5123         cur_cpi_data->lib_flags = first_cpi_data->lib_flags;
5124         // Store the reference refresh index of frame_parallel_level 2 frame in
5125         // a parallel encode set of lower layer frames.
5126         cur_cpi->ref_refresh_index =
5127             av1_calc_refresh_idx_for_intnl_arf(cur_cpi, ref_frame_map_pairs, i);
5128         cur_cpi->refresh_idx_available = true;
5129         // Skip the reference frame which will be refreshed by
5130         // frame_parallel_level 1 frame in a parallel encode set of lower layer
5131         // frames.
5132         cur_cpi->ref_idx_to_skip = first_cpi->ref_refresh_index;
5133       } else {
5134         cur_cpi->ref_idx_to_skip = INVALID_IDX;
5135         cur_cpi->ref_refresh_index = INVALID_IDX;
5136         cur_cpi->refresh_idx_available = false;
5137       }
5138       cur_cpi->twopass_frame.stats_in = stats_in;
5139 
5140       av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, cur_cpi, i,
5141                          1, cur_cpi->common.remapped_ref_idx);
5142       scale_references_fpmt(cur_cpi, ref_buffers_used_map);
5143       parallel_frame_count++;
5144     }
5145 
5146     // Set do_frame_data_update to true for the last frame_parallel_level 2
5147     // frame in the current parallel encode set.
5148     if (i == (gf_group->size - 1) ||
5149         (gf_group->frame_parallel_level[i + 1] == 0 &&
5150          (gf_group->update_type[i + 1] == ARF_UPDATE ||
5151           gf_group->update_type[i + 1] == INTNL_ARF_UPDATE)) ||
5152         gf_group->frame_parallel_level[i + 1] == 1) {
5153       ppi->parallel_cpi[parallel_frame_count - 1]->do_frame_data_update = true;
5154       break;
5155     }
5156   }
5157 
5158   increment_scaled_ref_counts_fpmt(first_cpi->common.buffer_pool,
5159                                    *ref_buffers_used_map);
5160 
5161   // Return the number of frames in the parallel encode set.
5162   return parallel_frame_count;
5163 }
5164 
av1_get_preview_raw_frame(AV1_COMP * cpi,YV12_BUFFER_CONFIG * dest)5165 int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
5166   AV1_COMMON *cm = &cpi->common;
5167   if (!cm->show_frame) {
5168     return -1;
5169   } else {
5170     int ret;
5171     if (cm->cur_frame != NULL && !cpi->oxcf.algo_cfg.skip_postproc_filtering) {
5172       *dest = cm->cur_frame->buf;
5173       dest->y_width = cm->width;
5174       dest->y_height = cm->height;
5175       dest->uv_width = cm->width >> cm->seq_params->subsampling_x;
5176       dest->uv_height = cm->height >> cm->seq_params->subsampling_y;
5177       ret = 0;
5178     } else {
5179       ret = -1;
5180     }
5181     return ret;
5182   }
5183 }
5184 
av1_get_last_show_frame(AV1_COMP * cpi,YV12_BUFFER_CONFIG * frame)5185 int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
5186   if (cpi->last_show_frame_buf == NULL ||
5187       cpi->oxcf.algo_cfg.skip_postproc_filtering)
5188     return -1;
5189 
5190   *frame = cpi->last_show_frame_buf->buf;
5191   return 0;
5192 }
5193 
av1_copy_new_frame_enc(AV1_COMMON * cm,YV12_BUFFER_CONFIG * new_frame,YV12_BUFFER_CONFIG * sd)5194 aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm,
5195                                        YV12_BUFFER_CONFIG *new_frame,
5196                                        YV12_BUFFER_CONFIG *sd) {
5197   const int num_planes = av1_num_planes(cm);
5198   if (!equal_dimensions_and_border(new_frame, sd))
5199     aom_internal_error(cm->error, AOM_CODEC_ERROR,
5200                        "Incorrect buffer dimensions");
5201   else
5202     aom_yv12_copy_frame(new_frame, sd, num_planes);
5203 
5204   return cm->error->error_code;
5205 }
5206 
av1_set_internal_size(AV1EncoderConfig * const oxcf,ResizePendingParams * resize_pending_params,AOM_SCALING_MODE horiz_mode,AOM_SCALING_MODE vert_mode)5207 int av1_set_internal_size(AV1EncoderConfig *const oxcf,
5208                           ResizePendingParams *resize_pending_params,
5209                           AOM_SCALING_MODE horiz_mode,
5210                           AOM_SCALING_MODE vert_mode) {
5211   int hr = 0, hs = 0, vr = 0, vs = 0;
5212 
5213   // Checks for invalid AOM_SCALING_MODE values.
5214   if (horiz_mode > AOME_ONETHREE || vert_mode > AOME_ONETHREE) return -1;
5215 
5216   Scale2Ratio(horiz_mode, &hr, &hs);
5217   Scale2Ratio(vert_mode, &vr, &vs);
5218 
5219   // always go to the next whole number
5220   resize_pending_params->width = (hs - 1 + oxcf->frm_dim_cfg.width * hr) / hs;
5221   resize_pending_params->height = (vs - 1 + oxcf->frm_dim_cfg.height * vr) / vs;
5222 
5223   if (horiz_mode != AOME_NORMAL || vert_mode != AOME_NORMAL) {
5224     oxcf->resize_cfg.resize_mode = RESIZE_FIXED;
5225     oxcf->algo_cfg.enable_tpl_model = 0;
5226   }
5227   return 0;
5228 }
5229 
av1_get_quantizer(AV1_COMP * cpi)5230 int av1_get_quantizer(AV1_COMP *cpi) {
5231   return cpi->common.quant_params.base_qindex;
5232 }
5233 
av1_convert_sect5obus_to_annexb(uint8_t * buffer,size_t buffer_size,size_t * frame_size)5234 int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t buffer_size,
5235                                     size_t *frame_size) {
5236   assert(*frame_size <= buffer_size);
5237   size_t output_size = 0;
5238   size_t remaining_size = *frame_size;
5239   uint8_t *buff_ptr = buffer;
5240 
5241   // go through each OBUs
5242   while (remaining_size > 0) {
5243     uint8_t saved_obu_header[2];
5244     uint64_t obu_payload_size;
5245     size_t length_of_payload_size;
5246     size_t length_of_obu_size;
5247     const uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1;
5248     size_t obu_bytes_read = obu_header_size;  // bytes read for current obu
5249 
5250     // save the obu header (1 or 2 bytes)
5251     memcpy(saved_obu_header, buff_ptr, obu_header_size);
5252     // clear the obu_has_size_field
5253     saved_obu_header[0] &= ~0x2;
5254 
5255     // get the payload_size and length of payload_size
5256     if (aom_uleb_decode(buff_ptr + obu_header_size,
5257                         remaining_size - obu_header_size, &obu_payload_size,
5258                         &length_of_payload_size) != 0) {
5259       return AOM_CODEC_ERROR;
5260     }
5261     obu_bytes_read += length_of_payload_size;
5262 
5263     // calculate the length of size of the obu header plus payload
5264     const uint64_t obu_size = obu_header_size + obu_payload_size;
5265     length_of_obu_size = aom_uleb_size_in_bytes(obu_size);
5266 
5267     if (length_of_obu_size + obu_header_size >
5268         buffer_size - output_size - (remaining_size - obu_bytes_read)) {
5269       return AOM_CODEC_ERROR;
5270     }
5271     // move the rest of data to new location
5272     memmove(buff_ptr + length_of_obu_size + obu_header_size,
5273             buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read);
5274     obu_bytes_read += (size_t)obu_payload_size;
5275 
5276     // write the new obu size
5277     size_t coded_obu_size;
5278     if (aom_uleb_encode(obu_size, length_of_obu_size, buff_ptr,
5279                         &coded_obu_size) != 0 ||
5280         coded_obu_size != length_of_obu_size) {
5281       return AOM_CODEC_ERROR;
5282     }
5283 
5284     // write the saved (modified) obu_header following obu size
5285     memcpy(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size);
5286 
5287     remaining_size -= obu_bytes_read;
5288     buff_ptr += length_of_obu_size + (size_t)obu_size;
5289     output_size += length_of_obu_size + (size_t)obu_size;
5290   }
5291 
5292   *frame_size = output_size;
5293   return AOM_CODEC_OK;
5294 }
5295 
rtc_set_updates_ref_frame_config(ExtRefreshFrameFlagsInfo * const ext_refresh_frame_flags,RTC_REF * const rtc_ref)5296 static void rtc_set_updates_ref_frame_config(
5297     ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags,
5298     RTC_REF *const rtc_ref) {
5299   ext_refresh_frame_flags->update_pending = 1;
5300   ext_refresh_frame_flags->last_frame = rtc_ref->refresh[rtc_ref->ref_idx[0]];
5301   ext_refresh_frame_flags->golden_frame = rtc_ref->refresh[rtc_ref->ref_idx[3]];
5302   ext_refresh_frame_flags->bwd_ref_frame =
5303       rtc_ref->refresh[rtc_ref->ref_idx[4]];
5304   ext_refresh_frame_flags->alt2_ref_frame =
5305       rtc_ref->refresh[rtc_ref->ref_idx[5]];
5306   ext_refresh_frame_flags->alt_ref_frame =
5307       rtc_ref->refresh[rtc_ref->ref_idx[6]];
5308   rtc_ref->non_reference_frame = 1;
5309   for (int i = 0; i < REF_FRAMES; i++) {
5310     if (rtc_ref->refresh[i] == 1) {
5311       rtc_ref->non_reference_frame = 0;
5312       break;
5313     }
5314   }
5315 }
5316 
rtc_set_references_external_ref_frame_config(AV1_COMP * cpi)5317 static int rtc_set_references_external_ref_frame_config(AV1_COMP *cpi) {
5318   // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
5319   // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
5320   int ref = AOM_REFFRAME_ALL;
5321   for (int i = 0; i < INTER_REFS_PER_FRAME; i++) {
5322     if (!cpi->ppi->rtc_ref.reference[i]) ref ^= (1 << i);
5323   }
5324   return ref;
5325 }
5326 
av1_apply_encoding_flags(AV1_COMP * cpi,aom_enc_frame_flags_t flags)5327 void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) {
5328   // TODO(yunqingwang): For what references to use, external encoding flags
5329   // should be consistent with internal reference frame selection. Need to
5330   // ensure that there is not conflict between the two. In AV1 encoder, the
5331   // priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3,
5332   // GOLDEN, BWDREF, ALTREF2.
5333 
5334   ExternalFlags *const ext_flags = &cpi->ext_flags;
5335   ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
5336       &ext_flags->refresh_frame;
5337   ext_flags->ref_frame_flags = AOM_REFFRAME_ALL;
5338   if (flags &
5339       (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
5340        AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD |
5341        AOM_EFLAG_NO_REF_ARF2)) {
5342     int ref = AOM_REFFRAME_ALL;
5343 
5344     if (flags & AOM_EFLAG_NO_REF_LAST) ref ^= AOM_LAST_FLAG;
5345     if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG;
5346     if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG;
5347 
5348     if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG;
5349 
5350     if (flags & AOM_EFLAG_NO_REF_ARF) {
5351       ref ^= AOM_ALT_FLAG;
5352       ref ^= AOM_BWD_FLAG;
5353       ref ^= AOM_ALT2_FLAG;
5354     } else {
5355       if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG;
5356       if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG;
5357     }
5358 
5359     av1_use_as_reference(&ext_flags->ref_frame_flags, ref);
5360   } else {
5361     if (cpi->ppi->rtc_ref.set_ref_frame_config) {
5362       int ref = rtc_set_references_external_ref_frame_config(cpi);
5363       av1_use_as_reference(&ext_flags->ref_frame_flags, ref);
5364     }
5365   }
5366 
5367   if (flags &
5368       (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) {
5369     int upd = AOM_REFFRAME_ALL;
5370 
5371     // Refreshing LAST/LAST2/LAST3 is handled by 1 common flag.
5372     if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG;
5373 
5374     if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG;
5375 
5376     if (flags & AOM_EFLAG_NO_UPD_ARF) {
5377       upd ^= AOM_ALT_FLAG;
5378       upd ^= AOM_BWD_FLAG;
5379       upd ^= AOM_ALT2_FLAG;
5380     }
5381 
5382     ext_refresh_frame_flags->last_frame = (upd & AOM_LAST_FLAG) != 0;
5383     ext_refresh_frame_flags->golden_frame = (upd & AOM_GOLD_FLAG) != 0;
5384     ext_refresh_frame_flags->alt_ref_frame = (upd & AOM_ALT_FLAG) != 0;
5385     ext_refresh_frame_flags->bwd_ref_frame = (upd & AOM_BWD_FLAG) != 0;
5386     ext_refresh_frame_flags->alt2_ref_frame = (upd & AOM_ALT2_FLAG) != 0;
5387     ext_refresh_frame_flags->update_pending = 1;
5388   } else {
5389     if (cpi->ppi->rtc_ref.set_ref_frame_config)
5390       rtc_set_updates_ref_frame_config(ext_refresh_frame_flags,
5391                                        &cpi->ppi->rtc_ref);
5392     else
5393       ext_refresh_frame_flags->update_pending = 0;
5394   }
5395 
5396   ext_flags->use_ref_frame_mvs = cpi->oxcf.tool_cfg.enable_ref_frame_mvs &
5397                                  ((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0);
5398   ext_flags->use_error_resilient = cpi->oxcf.tool_cfg.error_resilient_mode |
5399                                    ((flags & AOM_EFLAG_ERROR_RESILIENT) != 0);
5400   ext_flags->use_s_frame =
5401       cpi->oxcf.kf_cfg.enable_sframe | ((flags & AOM_EFLAG_SET_S_FRAME) != 0);
5402   ext_flags->use_primary_ref_none =
5403       (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0;
5404 
5405   if (flags & AOM_EFLAG_NO_UPD_ENTROPY) {
5406     update_entropy(&ext_flags->refresh_frame_context,
5407                    &ext_flags->refresh_frame_context_pending, 0);
5408   }
5409 }
5410 
av1_get_global_headers(AV1_PRIMARY * ppi)5411 aom_fixed_buf_t *av1_get_global_headers(AV1_PRIMARY *ppi) {
5412   if (!ppi) return NULL;
5413 
5414   uint8_t header_buf[512] = { 0 };
5415   const uint32_t sequence_header_size = av1_write_sequence_header_obu(
5416       &ppi->seq_params, &header_buf[0], sizeof(header_buf));
5417   assert(sequence_header_size <= sizeof(header_buf));
5418   if (sequence_header_size == 0) return NULL;
5419 
5420   const size_t obu_header_size = 1;
5421   const size_t size_field_size = aom_uleb_size_in_bytes(sequence_header_size);
5422   const size_t payload_offset = obu_header_size + size_field_size;
5423 
5424   if (payload_offset + sequence_header_size > sizeof(header_buf)) return NULL;
5425   memmove(&header_buf[payload_offset], &header_buf[0], sequence_header_size);
5426 
5427   if (av1_write_obu_header(&ppi->level_params, &ppi->cpi->frame_header_count,
5428                            OBU_SEQUENCE_HEADER,
5429                            ppi->seq_params.has_nonzero_operating_point_idc, 0,
5430                            &header_buf[0]) != obu_header_size) {
5431     return NULL;
5432   }
5433 
5434   size_t coded_size_field_size = 0;
5435   if (aom_uleb_encode(sequence_header_size, size_field_size,
5436                       &header_buf[obu_header_size],
5437                       &coded_size_field_size) != 0) {
5438     return NULL;
5439   }
5440   assert(coded_size_field_size == size_field_size);
5441 
5442   aom_fixed_buf_t *global_headers =
5443       (aom_fixed_buf_t *)malloc(sizeof(*global_headers));
5444   if (!global_headers) return NULL;
5445 
5446   const size_t global_header_buf_size =
5447       obu_header_size + size_field_size + sequence_header_size;
5448 
5449   global_headers->buf = malloc(global_header_buf_size);
5450   if (!global_headers->buf) {
5451     free(global_headers);
5452     return NULL;
5453   }
5454 
5455   memcpy(global_headers->buf, &header_buf[0], global_header_buf_size);
5456   global_headers->sz = global_header_buf_size;
5457   return global_headers;
5458 }
5459