xref: /aosp_15_r20/external/libaom/av1/encoder/ethread.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <stdbool.h>
14 
15 #include "aom_util/aom_pthread.h"
16 
17 #include "av1/common/warped_motion.h"
18 #include "av1/common/thread_common.h"
19 
20 #include "av1/encoder/allintra_vis.h"
21 #include "av1/encoder/bitstream.h"
22 #include "av1/encoder/enc_enums.h"
23 #include "av1/encoder/encodeframe.h"
24 #include "av1/encoder/encodeframe_utils.h"
25 #include "av1/encoder/encoder.h"
26 #include "av1/encoder/encoder_alloc.h"
27 #include "av1/encoder/ethread.h"
28 #if !CONFIG_REALTIME_ONLY
29 #include "av1/encoder/firstpass.h"
30 #endif
31 #include "av1/encoder/global_motion.h"
32 #include "av1/encoder/global_motion_facade.h"
33 #include "av1/encoder/intra_mode_search_utils.h"
34 #include "av1/encoder/picklpf.h"
35 #include "av1/encoder/rdopt.h"
36 #include "aom_dsp/aom_dsp_common.h"
37 #include "av1/encoder/temporal_filter.h"
38 #include "av1/encoder/tpl_model.h"
39 
accumulate_rd_opt(ThreadData * td,ThreadData * td_t)40 static inline void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
41   td->rd_counts.compound_ref_used_flag |=
42       td_t->rd_counts.compound_ref_used_flag;
43   td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
44 
45   for (int i = 0; i < TX_SIZES_ALL; i++) {
46     for (int j = 0; j < TX_TYPES; j++)
47       td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
48   }
49 
50   for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
51     for (int j = 0; j < 2; j++) {
52       td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
53     }
54   }
55 
56   for (int i = 0; i < 2; i++) {
57     td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
58   }
59 
60   td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
61   td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];
62 
63   td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
64 }
65 
update_delta_lf_for_row_mt(AV1_COMP * cpi)66 static inline void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
67   AV1_COMMON *cm = &cpi->common;
68   MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
69   const int mib_size = cm->seq_params->mib_size;
70   const int frame_lf_count =
71       av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
72   for (int row = 0; row < cm->tiles.rows; row++) {
73     for (int col = 0; col < cm->tiles.cols; col++) {
74       TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
75       const TileInfo *const tile_info = &tile_data->tile_info;
76       for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
77            mi_row += mib_size) {
78         if (mi_row == tile_info->mi_row_start)
79           av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
80         for (int mi_col = tile_info->mi_col_start;
81              mi_col < tile_info->mi_col_end; mi_col += mib_size) {
82           const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
83           MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
84           MB_MODE_INFO *mbmi = mi[0];
85           if (mbmi->skip_txfm == 1 &&
86               (mbmi->bsize == cm->seq_params->sb_size)) {
87             for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
88               mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
89             mbmi->delta_lf_from_base = xd->delta_lf_from_base;
90           } else {
91             if (cm->delta_q_info.delta_lf_multi) {
92               for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
93                 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
94             } else {
95               xd->delta_lf_from_base = mbmi->delta_lf_from_base;
96             }
97           }
98         }
99       }
100     }
101   }
102 }
103 
av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)104 void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
105                                 int c) {
106   (void)row_mt_sync;
107   (void)r;
108   (void)c;
109 }
110 
av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)111 void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
112                                  int c, int cols) {
113   (void)row_mt_sync;
114   (void)r;
115   (void)c;
116   (void)cols;
117 }
118 
av1_row_mt_sync_read(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)119 void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
120 #if CONFIG_MULTITHREAD
121   const int nsync = row_mt_sync->sync_range;
122 
123   if (r) {
124     pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
125     pthread_mutex_lock(mutex);
126 
127     while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
128                    row_mt_sync->intrabc_extra_top_right_sb_delay) {
129       pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
130     }
131     pthread_mutex_unlock(mutex);
132   }
133 #else
134   (void)row_mt_sync;
135   (void)r;
136   (void)c;
137 #endif  // CONFIG_MULTITHREAD
138 }
139 
av1_row_mt_sync_write(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)140 void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
141                            int cols) {
142 #if CONFIG_MULTITHREAD
143   const int nsync = row_mt_sync->sync_range;
144   int cur;
145   // Only signal when there are enough encoded blocks for next row to run.
146   int sig = 1;
147 
148   if (c < cols - 1) {
149     cur = c;
150     if (c % nsync) sig = 0;
151   } else {
152     cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
153   }
154 
155   if (sig) {
156     pthread_mutex_lock(&row_mt_sync->mutex_[r]);
157 
158     // When a thread encounters an error, num_finished_cols[r] is set to maximum
159     // column number. In this case, the AOMMAX operation here ensures that
160     // num_finished_cols[r] is not overwritten with a smaller value thus
161     // preventing the infinite waiting of threads in the relevant sync_read()
162     // function.
163     row_mt_sync->num_finished_cols[r] =
164         AOMMAX(row_mt_sync->num_finished_cols[r], cur);
165 
166     pthread_cond_signal(&row_mt_sync->cond_[r]);
167     pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
168   }
169 #else
170   (void)row_mt_sync;
171   (void)r;
172   (void)c;
173   (void)cols;
174 #endif  // CONFIG_MULTITHREAD
175 }
176 
177 // Allocate memory for row synchronization
row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync * row_mt_sync,AV1_COMMON * cm,int rows)178 static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
179                                   AV1_COMMON *cm, int rows) {
180 #if CONFIG_MULTITHREAD
181   int i;
182 
183   CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
184                   aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
185   if (row_mt_sync->mutex_) {
186     for (i = 0; i < rows; ++i) {
187       pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
188     }
189   }
190 
191   CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
192                   aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
193   if (row_mt_sync->cond_) {
194     for (i = 0; i < rows; ++i) {
195       pthread_cond_init(&row_mt_sync->cond_[i], NULL);
196     }
197   }
198 #endif  // CONFIG_MULTITHREAD
199 
200   CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
201                   aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
202 
203   row_mt_sync->rows = rows;
204   // Set up nsync.
205   row_mt_sync->sync_range = 1;
206 }
207 
208 // Deallocate row based multi-threading synchronization related mutex and data
av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync * row_mt_sync)209 void av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
210   if (row_mt_sync != NULL) {
211 #if CONFIG_MULTITHREAD
212     int i;
213 
214     if (row_mt_sync->mutex_ != NULL) {
215       for (i = 0; i < row_mt_sync->rows; ++i) {
216         pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
217       }
218       aom_free(row_mt_sync->mutex_);
219     }
220     if (row_mt_sync->cond_ != NULL) {
221       for (i = 0; i < row_mt_sync->rows; ++i) {
222         pthread_cond_destroy(&row_mt_sync->cond_[i]);
223       }
224       aom_free(row_mt_sync->cond_);
225     }
226 #endif  // CONFIG_MULTITHREAD
227     aom_free(row_mt_sync->num_finished_cols);
228 
229     // clear the structure as the source of this call may be dynamic change
230     // in tiles in which case this call will be followed by an _alloc()
231     // which may fail.
232     av1_zero(*row_mt_sync);
233   }
234 }
235 
get_sb_rows_in_frame(AV1_COMMON * cm)236 static inline int get_sb_rows_in_frame(AV1_COMMON *cm) {
237   return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
238                            cm->seq_params->mib_size_log2);
239 }
240 
row_mt_mem_alloc(AV1_COMP * cpi,int max_rows,int max_cols,int alloc_row_ctx)241 static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
242                              int alloc_row_ctx) {
243   struct AV1Common *cm = &cpi->common;
244   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
245   const int tile_cols = cm->tiles.cols;
246   const int tile_rows = cm->tiles.rows;
247   int tile_col, tile_row;
248 
249   av1_row_mt_mem_dealloc(cpi);
250 
251   // Allocate memory for row based multi-threading
252   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
253     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
254       int tile_index = tile_row * tile_cols + tile_col;
255       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
256 
257       row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
258 
259       if (alloc_row_ctx) {
260         assert(max_cols > 0);
261         const int num_row_ctx = AOMMAX(1, (max_cols - 1));
262         CHECK_MEM_ERROR(cm, this_tile->row_ctx,
263                         (FRAME_CONTEXT *)aom_memalign(
264                             16, num_row_ctx * sizeof(*this_tile->row_ctx)));
265       }
266     }
267   }
268   const int sb_rows = get_sb_rows_in_frame(cm);
269   CHECK_MEM_ERROR(
270       cm, enc_row_mt->num_tile_cols_done,
271       aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));
272 
273   enc_row_mt->allocated_rows = max_rows;
274   enc_row_mt->allocated_cols = max_cols - 1;
275   enc_row_mt->allocated_sb_rows = sb_rows;
276 }
277 
av1_row_mt_mem_dealloc(AV1_COMP * cpi)278 void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
279   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
280   const int tile_cols = enc_row_mt->allocated_tile_cols;
281   const int tile_rows = enc_row_mt->allocated_tile_rows;
282   int tile_col, tile_row;
283 
284   // Free row based multi-threading sync memory
285   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
286     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
287       int tile_index = tile_row * tile_cols + tile_col;
288       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
289 
290       av1_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
291 
292       if (cpi->oxcf.algo_cfg.cdf_update_mode) {
293         aom_free(this_tile->row_ctx);
294         this_tile->row_ctx = NULL;
295       }
296     }
297   }
298   aom_free(enc_row_mt->num_tile_cols_done);
299   enc_row_mt->num_tile_cols_done = NULL;
300   enc_row_mt->allocated_rows = 0;
301   enc_row_mt->allocated_cols = 0;
302   enc_row_mt->allocated_sb_rows = 0;
303 }
304 
assign_tile_to_thread(int * thread_id_to_tile_id,int num_tiles,int num_workers)305 static inline void assign_tile_to_thread(int *thread_id_to_tile_id,
306                                          int num_tiles, int num_workers) {
307   int tile_id = 0;
308   int i;
309 
310   for (i = 0; i < num_workers; i++) {
311     thread_id_to_tile_id[i] = tile_id++;
312     if (tile_id == num_tiles) tile_id = 0;
313   }
314 }
315 
get_next_job(TileDataEnc * const tile_data,int * current_mi_row,int mib_size)316 static inline int get_next_job(TileDataEnc *const tile_data,
317                                int *current_mi_row, int mib_size) {
318   AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
319   const int mi_row_end = tile_data->tile_info.mi_row_end;
320 
321   if (row_mt_sync->next_mi_row < mi_row_end) {
322     *current_mi_row = row_mt_sync->next_mi_row;
323     row_mt_sync->num_threads_working++;
324     row_mt_sync->next_mi_row += mib_size;
325     return 1;
326   }
327   return 0;
328 }
329 
switch_tile_and_get_next_job(AV1_COMMON * const cm,TileDataEnc * const tile_data,int * cur_tile_id,int * current_mi_row,int * end_of_frame,int is_firstpass,const BLOCK_SIZE fp_block_size)330 static inline void switch_tile_and_get_next_job(
331     AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
332     int *current_mi_row, int *end_of_frame, int is_firstpass,
333     const BLOCK_SIZE fp_block_size) {
334   const int tile_cols = cm->tiles.cols;
335   const int tile_rows = cm->tiles.rows;
336 
337   int tile_id = -1;  // Stores the tile ID with minimum proc done
338   int max_mis_to_encode = 0;
339   int min_num_threads_working = INT_MAX;
340 
341   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
342     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
343       int tile_index = tile_row * tile_cols + tile_col;
344       TileDataEnc *const this_tile = &tile_data[tile_index];
345       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
346 
347 #if CONFIG_REALTIME_ONLY
348       int num_b_rows_in_tile =
349           av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
350       int num_b_cols_in_tile =
351           av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
352 #else
353       int num_b_rows_in_tile =
354           is_firstpass
355               ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
356               : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
357       int num_b_cols_in_tile =
358           is_firstpass
359               ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
360               : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
361 #endif
362       int theoretical_limit_on_threads =
363           AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
364       int num_threads_working = row_mt_sync->num_threads_working;
365 
366       if (num_threads_working < theoretical_limit_on_threads) {
367         int num_mis_to_encode =
368             this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
369 
370         // Tile to be processed by this thread is selected on the basis of
371         // availability of jobs:
372         // 1) If jobs are available, tile to be processed is chosen on the
373         // basis of minimum number of threads working for that tile. If two or
374         // more tiles have same number of threads working for them, then the
375         // tile with maximum number of jobs available will be chosen.
376         // 2) If no jobs are available, then end_of_frame is reached.
377         if (num_mis_to_encode > 0) {
378           if (num_threads_working < min_num_threads_working) {
379             min_num_threads_working = num_threads_working;
380             max_mis_to_encode = 0;
381           }
382           if (num_threads_working == min_num_threads_working &&
383               num_mis_to_encode > max_mis_to_encode) {
384             tile_id = tile_index;
385             max_mis_to_encode = num_mis_to_encode;
386           }
387         }
388       }
389     }
390   }
391   if (tile_id == -1) {
392     *end_of_frame = 1;
393   } else {
394     // Update the current tile id to the tile id that will be processed next,
395     // which will be the least processed tile.
396     *cur_tile_id = tile_id;
397     const int unit_height = mi_size_high[fp_block_size];
398     get_next_job(&tile_data[tile_id], current_mi_row,
399                  is_firstpass ? unit_height : cm->seq_params->mib_size);
400   }
401 }
402 
403 #if !CONFIG_REALTIME_ONLY
set_firstpass_encode_done(AV1_COMP * cpi)404 static void set_firstpass_encode_done(AV1_COMP *cpi) {
405   AV1_COMMON *const cm = &cpi->common;
406   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
407   const int tile_cols = cm->tiles.cols;
408   const int tile_rows = cm->tiles.rows;
409   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
410   const int unit_height = mi_size_high[fp_block_size];
411 
412   // In case of multithreading of firstpass encode, due to top-right
413   // dependency, the worker on a firstpass row waits for the completion of the
414   // firstpass processing of the top and top-right fp_blocks. Hence, in case a
415   // thread (main/worker) encounters an error, update the firstpass processing
416   // of every row in the frame to indicate that it is complete in order to avoid
417   // dependent workers waiting indefinitely.
418   for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
419     for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
420       TileDataEnc *const tile_data =
421           &cpi->tile_data[tile_row * tile_cols + tile_col];
422       TileInfo *tile = &tile_data->tile_info;
423       AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
424       const int unit_cols_in_tile =
425           av1_get_unit_cols_in_tile(tile, fp_block_size);
426       for (int mi_row = tile->mi_row_start, unit_row_in_tile = 0;
427            mi_row < tile->mi_row_end;
428            mi_row += unit_height, unit_row_in_tile++) {
429         enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile,
430                                    unit_cols_in_tile - 1, unit_cols_in_tile);
431       }
432     }
433   }
434 }
435 
fp_enc_row_mt_worker_hook(void * arg1,void * unused)436 static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
437   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
438   AV1_COMP *const cpi = thread_data->cpi;
439   int thread_id = thread_data->thread_id;
440   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
441 #if CONFIG_MULTITHREAD
442   pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
443 #endif
444   (void)unused;
445   struct aom_internal_error_info *const error_info = &thread_data->error_info;
446   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
447   xd->error_info = error_info;
448 
449   // The jmp_buf is valid only for the duration of the function that calls
450   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
451   // before it returns.
452   if (setjmp(error_info->jmp)) {
453     error_info->setjmp = 0;
454 #if CONFIG_MULTITHREAD
455     pthread_mutex_lock(enc_row_mt_mutex_);
456     enc_row_mt->firstpass_mt_exit = true;
457     pthread_mutex_unlock(enc_row_mt_mutex_);
458 #endif
459     set_firstpass_encode_done(cpi);
460     return 0;
461   }
462   error_info->setjmp = 1;
463 
464   AV1_COMMON *const cm = &cpi->common;
465   int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
466   assert(cur_tile_id != -1);
467 
468   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
469   const int unit_height = mi_size_high[fp_block_size];
470   int end_of_frame = 0;
471   while (1) {
472     int current_mi_row = -1;
473 #if CONFIG_MULTITHREAD
474     pthread_mutex_lock(enc_row_mt_mutex_);
475 #endif
476     bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
477     if (!firstpass_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id],
478                                             &current_mi_row, unit_height)) {
479       // No jobs are available for the current tile. Query for the status of
480       // other tiles and get the next job if available
481       switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
482                                    &current_mi_row, &end_of_frame, 1,
483                                    fp_block_size);
484     }
485 #if CONFIG_MULTITHREAD
486     pthread_mutex_unlock(enc_row_mt_mutex_);
487 #endif
488     // When firstpass_mt_exit is set to true, other workers need not pursue any
489     // further jobs.
490     if (firstpass_mt_exit || end_of_frame) break;
491 
492     TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
493     AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
494     ThreadData *td = thread_data->td;
495 
496     assert(current_mi_row != -1 &&
497            current_mi_row < this_tile->tile_info.mi_row_end);
498 
499     const int unit_height_log2 = mi_size_high_log2[fp_block_size];
500     av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
501                        fp_block_size);
502 #if CONFIG_MULTITHREAD
503     pthread_mutex_lock(enc_row_mt_mutex_);
504 #endif
505     row_mt_sync->num_threads_working--;
506 #if CONFIG_MULTITHREAD
507     pthread_mutex_unlock(enc_row_mt_mutex_);
508 #endif
509   }
510   error_info->setjmp = 0;
511   return 1;
512 }
513 #endif
514 
launch_loop_filter_rows(AV1_COMMON * cm,EncWorkerData * thread_data,AV1EncRowMultiThreadInfo * enc_row_mt,int mib_size_log2)515 static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
516                                     AV1EncRowMultiThreadInfo *enc_row_mt,
517                                     int mib_size_log2) {
518   AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
519   const int sb_rows = get_sb_rows_in_frame(cm);
520   AV1LfMTInfo *cur_job_info;
521   bool row_mt_exit = false;
522   (void)enc_row_mt;
523 #if CONFIG_MULTITHREAD
524   pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
525 #endif
526 
527   while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
528     LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
529     const int lpf_opt_level = cur_job_info->lpf_opt_level;
530     (void)sb_rows;
531 #if CONFIG_MULTITHREAD
532     const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
533     const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
534     // Wait for current and next superblock row to finish encoding.
535     pthread_mutex_lock(enc_row_mt_mutex_);
536     while (!enc_row_mt->row_mt_exit &&
537            (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
538             enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols)) {
539       pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
540     }
541     row_mt_exit = enc_row_mt->row_mt_exit;
542     pthread_mutex_unlock(enc_row_mt_mutex_);
543 #endif
544     if (row_mt_exit) return;
545 
546     av1_thread_loop_filter_rows(
547         lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
548         cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
549         lpf_opt_level, lf_sync, &thread_data->error_info, lf_data->params_buf,
550         lf_data->tx_buf, mib_size_log2);
551   }
552 }
553 
set_encoding_done(AV1_COMP * cpi)554 static void set_encoding_done(AV1_COMP *cpi) {
555   AV1_COMMON *const cm = &cpi->common;
556   const int tile_cols = cm->tiles.cols;
557   const int tile_rows = cm->tiles.rows;
558   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
559   const int mib_size = cm->seq_params->mib_size;
560 
561   // In case of row-multithreading, due to top-right dependency, the worker on
562   // an SB row waits for the completion of the encode of the top and top-right
563   // SBs. Hence, in case a thread (main/worker) encounters an error, update that
564   // encoding of every SB row in the frame is complete in order to avoid the
565   // dependent workers of every tile from waiting indefinitely.
566   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
567     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
568       TileDataEnc *const this_tile =
569           &cpi->tile_data[tile_row * tile_cols + tile_col];
570       const TileInfo *const tile_info = &this_tile->tile_info;
571       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
572       const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
573       for (int mi_row = tile_info->mi_row_start, sb_row_in_tile = 0;
574            mi_row < tile_info->mi_row_end;
575            mi_row += mib_size, sb_row_in_tile++) {
576         enc_row_mt->sync_write_ptr(row_mt_sync, sb_row_in_tile,
577                                    sb_cols_in_tile - 1, sb_cols_in_tile);
578       }
579     }
580   }
581 }
582 
lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,const int filter_level[2])583 static bool lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,
584                                     const int filter_level[2]) {
585   return pipeline_lpf_mt_with_enc && (filter_level[0] || filter_level[1]);
586 }
587 
enc_row_mt_worker_hook(void * arg1,void * unused)588 static int enc_row_mt_worker_hook(void *arg1, void *unused) {
589   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
590   AV1_COMP *const cpi = thread_data->cpi;
591   int thread_id = thread_data->thread_id;
592   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
593 #if CONFIG_MULTITHREAD
594   pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
595 #endif
596   (void)unused;
597 
598   struct aom_internal_error_info *const error_info = &thread_data->error_info;
599   AV1LfSync *const lf_sync = thread_data->lf_sync;
600   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
601   xd->error_info = error_info;
602   AV1_COMMON *volatile const cm = &cpi->common;
603   volatile const bool do_pipelined_lpf_mt_with_enc = lpf_mt_with_enc_enabled(
604       cpi->mt_info.pipeline_lpf_mt_with_enc, cm->lf.filter_level);
605 
606   // The jmp_buf is valid only for the duration of the function that calls
607   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
608   // before it returns.
609   if (setjmp(error_info->jmp)) {
610     error_info->setjmp = 0;
611 #if CONFIG_MULTITHREAD
612     pthread_mutex_lock(enc_row_mt_mutex_);
613     enc_row_mt->row_mt_exit = true;
614     // Wake up all the workers waiting in launch_loop_filter_rows() to exit in
615     // case of an error.
616     pthread_cond_broadcast(enc_row_mt->cond_);
617     pthread_mutex_unlock(enc_row_mt_mutex_);
618 #endif
619     set_encoding_done(cpi);
620 
621     if (do_pipelined_lpf_mt_with_enc) {
622 #if CONFIG_MULTITHREAD
623       pthread_mutex_lock(lf_sync->job_mutex);
624       lf_sync->lf_mt_exit = true;
625       pthread_mutex_unlock(lf_sync->job_mutex);
626 #endif
627       av1_set_vert_loop_filter_done(&cpi->common, lf_sync,
628                                     cpi->common.seq_params->mib_size_log2);
629     }
630     return 0;
631   }
632   error_info->setjmp = 1;
633 
634   const int mib_size_log2 = cm->seq_params->mib_size_log2;
635   int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
636 
637   // Preallocate the pc_tree for realtime coding to reduce the cost of memory
638   // allocation.
639   if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
640     thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
641     if (!thread_data->td->pc_root)
642       aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
643                          "Failed to allocate PC_TREE");
644   } else {
645     thread_data->td->pc_root = NULL;
646   }
647 
648   assert(cur_tile_id != -1);
649 
650   const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
651   int end_of_frame = 0;
652   bool row_mt_exit = false;
653 
654   // When master thread does not have a valid job to process, xd->tile_ctx
655   // is not set and it contains NULL pointer. This can result in NULL pointer
656   // access violation if accessed beyond the encode stage. Hence, updating
657   // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
658   // context to avoid NULL pointer access in subsequent stages.
659   thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
660   while (1) {
661     int current_mi_row = -1;
662 #if CONFIG_MULTITHREAD
663     pthread_mutex_lock(enc_row_mt_mutex_);
664 #endif
665     row_mt_exit = enc_row_mt->row_mt_exit;
666     // row_mt_exit check here can be avoided as it is checked after
667     // sync_read_ptr() in encode_sb_row(). However, checking row_mt_exit here,
668     // tries to return before calling the function get_next_job().
669     if (!row_mt_exit &&
670         !get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
671                       cm->seq_params->mib_size)) {
672       // No jobs are available for the current tile. Query for the status of
673       // other tiles and get the next job if available
674       switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
675                                    &current_mi_row, &end_of_frame, 0,
676                                    fp_block_size);
677     }
678 #if CONFIG_MULTITHREAD
679     pthread_mutex_unlock(enc_row_mt_mutex_);
680 #endif
681     // When row_mt_exit is set to true, other workers need not pursue any
682     // further jobs.
683     if (row_mt_exit) {
684       error_info->setjmp = 0;
685       return 1;
686     }
687 
688     if (end_of_frame) break;
689 
690     TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
691     AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
692     const TileInfo *const tile_info = &this_tile->tile_info;
693     const int tile_row = tile_info->tile_row;
694     const int tile_col = tile_info->tile_col;
695     ThreadData *td = thread_data->td;
696     const int sb_row = current_mi_row >> mib_size_log2;
697 
698     assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
699 
700     td->mb.e_mbd.tile_ctx = td->tctx;
701     td->mb.tile_pb_ctx = &this_tile->tctx;
702     td->abs_sum_level = 0;
703 
704     if (this_tile->allow_update_cdf) {
705       td->mb.row_ctx = this_tile->row_ctx;
706       if (current_mi_row == tile_info->mi_row_start)
707         memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
708     } else {
709       memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
710     }
711 
712     av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
713                            &td->mb.e_mbd);
714 #if !CONFIG_REALTIME_ONLY
715     cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
716 #endif
717     if (td->mb.txfm_search_info.mb_rd_record != NULL) {
718       av1_crc32c_calculator_init(
719           &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
720     }
721 
722     av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
723 #if CONFIG_MULTITHREAD
724     pthread_mutex_lock(enc_row_mt_mutex_);
725 #endif
726     this_tile->abs_sum_level += td->abs_sum_level;
727     row_mt_sync->num_threads_working--;
728     enc_row_mt->num_tile_cols_done[sb_row]++;
729 #if CONFIG_MULTITHREAD
730     pthread_cond_broadcast(enc_row_mt->cond_);
731     pthread_mutex_unlock(enc_row_mt_mutex_);
732 #endif
733   }
734   if (do_pipelined_lpf_mt_with_enc) {
735     // Loop-filter a superblock row if encoding of the current and next
736     // superblock row is complete.
737     // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
738     // encoding and loop filter stage.
739     launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
740   }
741   av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
742                              cpi->sf.part_sf.partition_search_type);
743   thread_data->td->pc_root = NULL;
744   error_info->setjmp = 0;
745   return 1;
746 }
747 
enc_worker_hook(void * arg1,void * unused)748 static int enc_worker_hook(void *arg1, void *unused) {
749   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
750   AV1_COMP *const cpi = thread_data->cpi;
751   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
752   struct aom_internal_error_info *const error_info = &thread_data->error_info;
753   const AV1_COMMON *const cm = &cpi->common;
754   const int tile_cols = cm->tiles.cols;
755   const int tile_rows = cm->tiles.rows;
756   int t;
757 
758   (void)unused;
759 
760   xd->error_info = error_info;
761 
762   // The jmp_buf is valid only for the duration of the function that calls
763   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
764   // before it returns.
765   if (setjmp(error_info->jmp)) {
766     error_info->setjmp = 0;
767     return 0;
768   }
769   error_info->setjmp = 1;
770 
771   // Preallocate the pc_tree for realtime coding to reduce the cost of memory
772   // allocation.
773   if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
774     thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
775     if (!thread_data->td->pc_root)
776       aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
777                          "Failed to allocate PC_TREE");
778   } else {
779     thread_data->td->pc_root = NULL;
780   }
781 
782   for (t = thread_data->start; t < tile_rows * tile_cols;
783        t += cpi->mt_info.num_workers) {
784     int tile_row = t / tile_cols;
785     int tile_col = t % tile_cols;
786 
787     TileDataEnc *const this_tile =
788         &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
789     thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
790     thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
791     av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
792   }
793 
794   av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
795                              cpi->sf.part_sf.partition_search_type);
796   thread_data->td->pc_root = NULL;
797   error_info->setjmp = 0;
798   return 1;
799 }
800 
av1_init_frame_mt(AV1_PRIMARY * ppi,AV1_COMP * cpi)801 void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
802   cpi->mt_info.workers = ppi->p_mt_info.workers;
803   cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
804   cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
805   int i;
806   for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
807     cpi->mt_info.num_mod_workers[i] =
808         AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
809   }
810 }
811 
av1_init_cdef_worker(AV1_COMP * cpi)812 void av1_init_cdef_worker(AV1_COMP *cpi) {
813   // The allocation is done only for level 0 parallel frames. No change
814   // in config is supported in the middle of a parallel encode set, since the
815   // rest of the MT modules also do not support dynamic change of config.
816   if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
817   PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
818   int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);
819 
820   av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
821                          &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
822   cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
823 }
824 
825 #if !CONFIG_REALTIME_ONLY
av1_init_lr_mt_buffers(AV1_COMP * cpi)826 void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
827   AV1_COMMON *const cm = &cpi->common;
828   AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
829   if (lr_sync->sync_range) {
830     if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
831       return;
832     int num_lr_workers =
833         av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
834     assert(num_lr_workers <= lr_sync->num_workers);
835     lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
836     lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
837   }
838 }
839 #endif
840 
841 #if CONFIG_MULTITHREAD
av1_init_mt_sync(AV1_COMP * cpi,int is_first_pass)842 void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
843   AV1_COMMON *const cm = &cpi->common;
844   MultiThreadInfo *const mt_info = &cpi->mt_info;
845 
846   if (setjmp(cm->error->jmp)) {
847     cm->error->setjmp = 0;
848     aom_internal_error_copy(&cpi->ppi->error, cm->error);
849   }
850   cm->error->setjmp = 1;
851   // Initialize enc row MT object.
852   if (is_first_pass || cpi->oxcf.row_mt == 1) {
853     AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
854     if (enc_row_mt->mutex_ == NULL) {
855       CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
856                       aom_malloc(sizeof(*(enc_row_mt->mutex_))));
857       if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
858     }
859     if (enc_row_mt->cond_ == NULL) {
860       CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
861                       aom_malloc(sizeof(*(enc_row_mt->cond_))));
862       if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
863     }
864   }
865 
866   if (!is_first_pass) {
867     // Initialize global motion MT object.
868     AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
869     if (gm_sync->mutex_ == NULL) {
870       CHECK_MEM_ERROR(cm, gm_sync->mutex_,
871                       aom_malloc(sizeof(*(gm_sync->mutex_))));
872       if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
873     }
874 #if !CONFIG_REALTIME_ONLY
875     // Initialize temporal filtering MT object.
876     AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
877     if (tf_sync->mutex_ == NULL) {
878       CHECK_MEM_ERROR(cm, tf_sync->mutex_,
879                       aom_malloc(sizeof(*tf_sync->mutex_)));
880       if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
881     }
882 #endif  // !CONFIG_REALTIME_ONLY
883         // Initialize CDEF MT object.
884     AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
885     if (cdef_sync->mutex_ == NULL) {
886       CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
887                       aom_malloc(sizeof(*(cdef_sync->mutex_))));
888       if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
889     }
890 
891     // Initialize loop filter MT object.
892     AV1LfSync *lf_sync = &mt_info->lf_row_sync;
893     // Number of superblock rows
894     const int sb_rows =
895         CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
896     PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
897     int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);
898 
899     if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
900         num_lf_workers > lf_sync->num_workers) {
901       av1_loop_filter_dealloc(lf_sync);
902       av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
903     }
904 
905     // Initialize tpl MT object.
906     AV1TplRowMultiThreadInfo *tpl_row_mt = &mt_info->tpl_row_mt;
907     if (tpl_row_mt->mutex_ == NULL) {
908       CHECK_MEM_ERROR(cm, tpl_row_mt->mutex_,
909                       aom_malloc(sizeof(*(tpl_row_mt->mutex_))));
910       if (tpl_row_mt->mutex_) pthread_mutex_init(tpl_row_mt->mutex_, NULL);
911     }
912 
913 #if !CONFIG_REALTIME_ONLY
914     if (is_restoration_used(cm)) {
915       // Initialize loop restoration MT object.
916       AV1LrSync *lr_sync = &mt_info->lr_row_sync;
917       int rst_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
918       int num_rows_lr = av1_lr_count_units(rst_unit_size, cm->height);
919       int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
920       if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
921           num_lr_workers > lr_sync->num_workers ||
922           MAX_MB_PLANE > lr_sync->num_planes) {
923         av1_loop_restoration_dealloc(lr_sync);
924         av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
925                                    MAX_MB_PLANE, cm->width);
926       }
927     }
928 #endif
929 
930     // Initialization of pack bitstream MT object.
931     AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
932     if (pack_bs_sync->mutex_ == NULL) {
933       CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
934                       aom_malloc(sizeof(*pack_bs_sync->mutex_)));
935       if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
936     }
937   }
938   cm->error->setjmp = 0;
939 }
940 #endif  // CONFIG_MULTITHREAD
941 
942 // Computes the number of workers to be considered while allocating memory for a
943 // multi-threaded module under FPMT.
av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo * p_mt_info,MULTI_THREADED_MODULES mod_name)944 int av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo *p_mt_info,
945                                       MULTI_THREADED_MODULES mod_name) {
946   int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
947   if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
948     // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
949     // As frame parallel jobs will only perform multi-threading for the encode
950     // stage, we can limit the allocations according to num_enc_workers per
951     // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
952     num_mod_workers = p_mt_info->num_workers;
953   }
954   return num_mod_workers;
955 }
956 
av1_init_tile_thread_data(AV1_PRIMARY * ppi,int is_first_pass)957 void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
958   PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
959 
960   assert(p_mt_info->workers != NULL);
961   assert(p_mt_info->tile_thr_data != NULL);
962 
963   int num_workers = p_mt_info->num_workers;
964   int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
965   assert(num_enc_workers <= num_workers);
966   for (int i = num_workers - 1; i >= 0; i--) {
967     EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
968 
969     if (i > 0) {
970       // Allocate thread data.
971       ThreadData *td;
972       AOM_CHECK_MEM_ERROR(&ppi->error, td, aom_memalign(32, sizeof(*td)));
973       av1_zero(*td);
974       thread_data->original_td = thread_data->td = td;
975 
976       // Set up shared coeff buffers.
977       av1_setup_shared_coeff_buffer(&ppi->seq_params, &td->shared_coeff_buf,
978                                     &ppi->error);
979       AOM_CHECK_MEM_ERROR(&ppi->error, td->tmp_conv_dst,
980                           aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
981                                                sizeof(*td->tmp_conv_dst)));
982 
983       if (i < p_mt_info->num_mod_workers[MOD_FP]) {
984         // Set up firstpass PICK_MODE_CONTEXT.
985         td->firstpass_ctx =
986             av1_alloc_pmc(ppi->cpi, BLOCK_16X16, &td->shared_coeff_buf);
987         if (!td->firstpass_ctx)
988           aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
989                              "Failed to allocate PICK_MODE_CONTEXT");
990       }
991 
992       if (!is_first_pass && i < num_enc_workers) {
993         // Set up sms_tree.
994         if (av1_setup_sms_tree(ppi->cpi, td)) {
995           aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
996                              "Failed to allocate SMS tree");
997         }
998 
999         for (int x = 0; x < 2; x++)
1000           for (int y = 0; y < 2; y++)
1001             AOM_CHECK_MEM_ERROR(
1002                 &ppi->error, td->hash_value_buffer[x][y],
1003                 (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1004                                        sizeof(*td->hash_value_buffer[0][0])));
1005 
1006         // Allocate frame counters in thread data.
1007         AOM_CHECK_MEM_ERROR(&ppi->error, td->counts,
1008                             aom_calloc(1, sizeof(*td->counts)));
1009 
1010         // Allocate buffers used by palette coding mode.
1011         AOM_CHECK_MEM_ERROR(&ppi->error, td->palette_buffer,
1012                             aom_memalign(16, sizeof(*td->palette_buffer)));
1013 
1014         // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
1015         // used in inter frames to store intermediate inter mode prediction
1016         // results and are not required for allintra encoding mode. Hence, the
1017         // memory allocations for these buffers are avoided for allintra
1018         // encoding mode.
1019         if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
1020           alloc_obmc_buffers(&td->obmc_buffer, &ppi->error);
1021 
1022           alloc_compound_type_rd_buffers(&ppi->error, &td->comp_rd_buffer);
1023 
1024           for (int j = 0; j < 2; ++j) {
1025             AOM_CHECK_MEM_ERROR(
1026                 &ppi->error, td->tmp_pred_bufs[j],
1027                 aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
1028                                      sizeof(*td->tmp_pred_bufs[j])));
1029           }
1030         }
1031 
1032         if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
1033           const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
1034           AOM_CHECK_MEM_ERROR(&ppi->error, td->pixel_gradient_info,
1035                               aom_malloc(sizeof(*td->pixel_gradient_info) *
1036                                          plane_types * MAX_SB_SQUARE));
1037         }
1038 
1039         if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
1040           const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
1041           const int mi_count_in_sb =
1042               mi_size_wide[sb_size] * mi_size_high[sb_size];
1043 
1044           AOM_CHECK_MEM_ERROR(
1045               &ppi->error, td->src_var_info_of_4x4_sub_blocks,
1046               aom_malloc(sizeof(*td->src_var_info_of_4x4_sub_blocks) *
1047                          mi_count_in_sb));
1048         }
1049 
1050         if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
1051           const int num_64x64_blocks =
1052               (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
1053           AOM_CHECK_MEM_ERROR(
1054               &ppi->error, td->vt64x64,
1055               aom_malloc(sizeof(*td->vt64x64) * num_64x64_blocks));
1056         }
1057       }
1058     }
1059 
1060     if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
1061       if (i == 0) {
1062         for (int j = 0; j < ppi->num_fp_contexts; j++) {
1063           AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
1064                               (FRAME_CONTEXT *)aom_memalign(
1065                                   16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
1066         }
1067       } else {
1068         AOM_CHECK_MEM_ERROR(
1069             &ppi->error, thread_data->td->tctx,
1070             (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
1071       }
1072     }
1073   }
1074 
1075   // Record the number of workers in encode stage multi-threading for which
1076   // allocation is done.
1077   p_mt_info->prev_num_enc_workers = num_enc_workers;
1078 }
1079 
av1_create_workers(AV1_PRIMARY * ppi,int num_workers)1080 void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
1081   PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1082   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1083   assert(p_mt_info->num_workers == 0);
1084 
1085   AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
1086                       aom_malloc(num_workers * sizeof(*p_mt_info->workers)));
1087 
1088   AOM_CHECK_MEM_ERROR(
1089       &ppi->error, p_mt_info->tile_thr_data,
1090       aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));
1091 
1092   for (int i = 0; i < num_workers; ++i) {
1093     AVxWorker *const worker = &p_mt_info->workers[i];
1094     EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
1095 
1096     winterface->init(worker);
1097     worker->thread_name = "aom enc worker";
1098 
1099     thread_data->thread_id = i;
1100     // Set the starting tile for each thread.
1101     thread_data->start = i;
1102 
1103     if (i > 0) {
1104       // Create threads
1105       if (!winterface->reset(worker))
1106         aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
1107                            "Tile encoder thread creation failed");
1108     }
1109     winterface->sync(worker);
1110 
1111     ++p_mt_info->num_workers;
1112   }
1113 }
1114 
1115 // This function will change the state and free the mutex of corresponding
1116 // workers and terminate the object. The object can not be re-used unless a call
1117 // to reset() is made.
av1_terminate_workers(AV1_PRIMARY * ppi)1118 void av1_terminate_workers(AV1_PRIMARY *ppi) {
1119   PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1120   for (int t = 0; t < p_mt_info->num_workers; ++t) {
1121     AVxWorker *const worker = &p_mt_info->workers[t];
1122     aom_get_worker_interface()->end(worker);
1123   }
1124 }
1125 
1126 // This function returns 1 if frame parallel encode is supported for
1127 // the current configuration. Returns 0 otherwise.
is_fpmt_config(const AV1_PRIMARY * ppi,const AV1EncoderConfig * oxcf)1128 static inline int is_fpmt_config(const AV1_PRIMARY *ppi,
1129                                  const AV1EncoderConfig *oxcf) {
1130   // FPMT is enabled for AOM_Q and AOM_VBR.
1131   // TODO(Tarun): Test and enable resize config.
1132   if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
1133     return 0;
1134   }
1135   if (ppi->use_svc) {
1136     return 0;
1137   }
1138   if (oxcf->tile_cfg.enable_large_scale_tile) {
1139     return 0;
1140   }
1141   if (oxcf->dec_model_cfg.timing_info_present) {
1142     return 0;
1143   }
1144   if (oxcf->mode != GOOD) {
1145     return 0;
1146   }
1147   if (oxcf->tool_cfg.error_resilient_mode) {
1148     return 0;
1149   }
1150   if (oxcf->resize_cfg.resize_mode) {
1151     return 0;
1152   }
1153   if (oxcf->pass != AOM_RC_SECOND_PASS) {
1154     return 0;
1155   }
1156   if (oxcf->max_threads < 2) {
1157     return 0;
1158   }
1159   if (!oxcf->fp_mt) {
1160     return 0;
1161   }
1162 
1163   return 1;
1164 }
1165 
av1_check_fpmt_config(AV1_PRIMARY * const ppi,const AV1EncoderConfig * const oxcf)1166 int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
1167                           const AV1EncoderConfig *const oxcf) {
1168   if (is_fpmt_config(ppi, oxcf)) return 1;
1169   // Reset frame parallel configuration for unsupported config
1170   if (ppi->num_fp_contexts > 1) {
1171     for (int i = 1; i < ppi->num_fp_contexts; i++) {
1172       // Release the previously-used frame-buffer
1173       if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
1174         --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
1175         ppi->parallel_cpi[i]->common.cur_frame = NULL;
1176       }
1177     }
1178 
1179     int cur_gf_index = ppi->cpi->gf_frame_index;
1180     int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
1181     av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
1182                    reset_size);
1183     av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
1184     av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
1185     memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
1186            sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
1187                reset_size * REF_FRAMES);
1188     memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
1189            sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
1190     ppi->num_fp_contexts = 1;
1191   }
1192   return 0;
1193 }
1194 
1195 // A large value for threads used to compute the max num_enc_workers
1196 // possible for each resolution.
1197 #define MAX_THREADS 100
1198 
1199 // Computes the max number of enc workers possible for each resolution.
compute_max_num_enc_workers(CommonModeInfoParams * const mi_params,int mib_size_log2)1200 static inline int compute_max_num_enc_workers(
1201     CommonModeInfoParams *const mi_params, int mib_size_log2) {
1202   int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
1203   int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);
1204 
1205   return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
1206 }
1207 
1208 // Computes the number of frame parallel(fp) contexts to be created
1209 // based on the number of max_enc_workers.
av1_compute_num_fp_contexts(AV1_PRIMARY * ppi,AV1EncoderConfig * oxcf)1210 int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
1211   ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
1212   if (!av1_check_fpmt_config(ppi, oxcf)) {
1213     return 1;
1214   }
1215   int max_num_enc_workers = compute_max_num_enc_workers(
1216       &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
1217   // Scaling factors and rounding factors used to tune worker_per_frame
1218   // computation.
1219   int rounding_factor[2] = { 2, 4 };
1220   int scaling_factor[2] = { 4, 8 };
1221   int is_480p_or_lesser =
1222       AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
1223   int is_sb_64 = 0;
1224   if (ppi->cpi != NULL)
1225     is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
1226   // A parallel frame encode has at least 1/4th the
1227   // theoretical limit of max enc workers in default case. For resolutions
1228   // larger than 480p, if SB size is 64x64, optimal performance is obtained with
1229   // limit of 1/8.
1230   int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
1231   int workers_per_frame =
1232       AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
1233                     scaling_factor[index]);
1234   int max_threads = oxcf->max_threads;
1235   int num_fp_contexts = max_threads / workers_per_frame;
1236   // Based on empirical results, FPMT gains with multi-tile are significant when
1237   // more parallel frames are available. Use FPMT with multi-tile encode only
1238   // when sufficient threads are available for parallel encode of
1239   // MAX_PARALLEL_FRAMES frames.
1240   if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
1241     if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
1242   }
1243 
1244   num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
1245   // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
1246   num_fp_contexts = (ppi->num_fp_contexts == 1)
1247                         ? num_fp_contexts
1248                         : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
1249   if (num_fp_contexts > 1) {
1250     ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
1251         AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
1252   }
1253   return num_fp_contexts;
1254 }
1255 
1256 // Computes the number of workers to process each of the parallel frames.
compute_num_workers_per_frame(const int num_workers,const int parallel_frame_count)1257 static inline int compute_num_workers_per_frame(
1258     const int num_workers, const int parallel_frame_count) {
1259   // Number of level 2 workers per frame context (floor division).
1260   int workers_per_frame = (num_workers / parallel_frame_count);
1261   return workers_per_frame;
1262 }
1263 
1264 static inline void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
1265                                               int parallel_frame_count,
1266                                               int num_fpmt_workers_prepared);
1267 
1268 // Prepare level 1 workers. This function is only called for
1269 // parallel_frame_count > 1. This function populates the mt_info structure of
1270 // frame level contexts appropriately by dividing the total number of available
1271 // workers amongst the frames as level 2 workers. It also populates the hook and
1272 // data members of level 1 workers.
prepare_fpmt_workers(AV1_PRIMARY * ppi,AV1_COMP_DATA * first_cpi_data,AVxWorkerHook hook,int parallel_frame_count)1273 static inline void prepare_fpmt_workers(AV1_PRIMARY *ppi,
1274                                         AV1_COMP_DATA *first_cpi_data,
1275                                         AVxWorkerHook hook,
1276                                         int parallel_frame_count) {
1277   assert(parallel_frame_count <= ppi->num_fp_contexts &&
1278          parallel_frame_count > 1);
1279 
1280   PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1281   int num_workers = p_mt_info->num_workers;
1282 
1283   volatile int frame_idx = 0;
1284   volatile int i = 0;
1285   while (i < num_workers) {
1286     // Assign level 1 worker
1287     AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
1288         &p_mt_info->workers[i];
1289     AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1290     MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1291     // This 'aom_internal_error_info' pointer is not derived from the local
1292     // pointer ('AV1_COMMON *const cm') to silence the compiler warning
1293     // "variable 'cm' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]".
1294     struct aom_internal_error_info *const error = cur_cpi->common.error;
1295 
1296     // The jmp_buf is valid only within the scope of the function that calls
1297     // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1298     // before it returns.
1299     if (setjmp(error->jmp)) {
1300       error->setjmp = 0;
1301       restore_workers_after_fpmt(ppi, parallel_frame_count, i);
1302       aom_internal_error_copy(&ppi->error, error);
1303     }
1304     error->setjmp = 1;
1305 
1306     AV1_COMMON *const cm = &cur_cpi->common;
1307     // Assign start of level 2 worker pool
1308     mt_info->workers = &p_mt_info->workers[i];
1309     mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
1310     // Assign number of workers for each frame in the parallel encode set.
1311     mt_info->num_workers = compute_num_workers_per_frame(
1312         num_workers - i, parallel_frame_count - frame_idx);
1313     for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
1314       mt_info->num_mod_workers[j] =
1315           AOMMIN(mt_info->num_workers, p_mt_info->num_mod_workers[j]);
1316     }
1317     if (p_mt_info->cdef_worker != NULL) {
1318       mt_info->cdef_worker = &p_mt_info->cdef_worker[i];
1319 
1320       // Back up the original cdef_worker pointers.
1321       mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
1322       const int num_planes = av1_num_planes(cm);
1323       for (int plane = 0; plane < num_planes; plane++)
1324         mt_info->restore_state_buf.cdef_colbuf[plane] =
1325             mt_info->cdef_worker->colbuf[plane];
1326     }
1327 #if !CONFIG_REALTIME_ONLY
1328     if (is_restoration_used(cm)) {
1329       // Back up the original LR buffers before update.
1330       int idx = i + mt_info->num_workers - 1;
1331       assert(idx < mt_info->lr_row_sync.num_workers);
1332       mt_info->restore_state_buf.rst_tmpbuf =
1333           mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
1334       mt_info->restore_state_buf.rlbs =
1335           mt_info->lr_row_sync.lrworkerdata[idx].rlbs;
1336 
1337       // Update LR buffers.
1338       mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
1339       mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
1340     }
1341 #endif
1342 
1343     i += mt_info->num_workers;
1344 
1345     // At this stage, the thread specific CDEF buffers for the current frame's
1346     // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
1347     // already been allocated across parallel frames.
1348     av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
1349                            p_mt_info->num_workers, 0);
1350 
1351     frame_worker->hook = hook;
1352     frame_worker->data1 = cur_cpi;
1353     frame_worker->data2 = (frame_idx == 0)
1354                               ? first_cpi_data
1355                               : &ppi->parallel_frames_data[frame_idx - 1];
1356     frame_idx++;
1357     error->setjmp = 0;
1358   }
1359   p_mt_info->p_num_workers = parallel_frame_count;
1360 }
1361 
1362 // Launch level 1 workers to perform frame parallel encode.
launch_fpmt_workers(AV1_PRIMARY * ppi)1363 static inline void launch_fpmt_workers(AV1_PRIMARY *ppi) {
1364   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1365   int num_workers = ppi->p_mt_info.p_num_workers;
1366 
1367   for (int i = num_workers - 1; i >= 0; i--) {
1368     AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1369     if (i == 0)
1370       winterface->execute(worker);
1371     else
1372       winterface->launch(worker);
1373   }
1374 }
1375 
1376 // Restore worker states after parallel encode.
restore_workers_after_fpmt(AV1_PRIMARY * ppi,int parallel_frame_count,int num_fpmt_workers_prepared)1377 static inline void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
1378                                               int parallel_frame_count,
1379                                               int num_fpmt_workers_prepared) {
1380   assert(parallel_frame_count <= ppi->num_fp_contexts &&
1381          parallel_frame_count > 1);
1382   (void)parallel_frame_count;
1383 
1384   PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1385 
1386   int frame_idx = 0;
1387   int i = 0;
1388   while (i < num_fpmt_workers_prepared) {
1389     AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1390     MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1391     const AV1_COMMON *const cm = &cur_cpi->common;
1392     const int num_planes = av1_num_planes(cm);
1393 
1394     // Restore the original cdef_worker pointers.
1395     if (p_mt_info->cdef_worker != NULL) {
1396       mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
1397       for (int plane = 0; plane < num_planes; plane++)
1398         mt_info->cdef_worker->colbuf[plane] =
1399             mt_info->restore_state_buf.cdef_colbuf[plane];
1400     }
1401 #if !CONFIG_REALTIME_ONLY
1402     if (is_restoration_used(cm)) {
1403       // Restore the original LR buffers.
1404       int idx = i + mt_info->num_workers - 1;
1405       assert(idx < mt_info->lr_row_sync.num_workers);
1406       mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
1407           mt_info->restore_state_buf.rst_tmpbuf;
1408       mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
1409           mt_info->restore_state_buf.rlbs;
1410     }
1411 #endif
1412 
1413     frame_idx++;
1414     i += mt_info->num_workers;
1415   }
1416 }
1417 
1418 // Synchronize level 1 workers.
sync_fpmt_workers(AV1_PRIMARY * ppi,int frames_in_parallel_set)1419 static inline void sync_fpmt_workers(AV1_PRIMARY *ppi,
1420                                      int frames_in_parallel_set) {
1421   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1422   int num_workers = ppi->p_mt_info.p_num_workers;
1423   int had_error = 0;
1424   // Points to error in the earliest display order frame in the parallel set.
1425   const struct aom_internal_error_info *error = NULL;
1426 
1427   // Encoding ends.
1428   for (int i = num_workers - 1; i >= 0; --i) {
1429     AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1430     if (!winterface->sync(worker)) {
1431       had_error = 1;
1432       error = ppi->parallel_cpi[i]->common.error;
1433     }
1434   }
1435 
1436   restore_workers_after_fpmt(ppi, frames_in_parallel_set,
1437                              ppi->p_mt_info.num_workers);
1438 
1439   if (had_error) aom_internal_error_copy(&ppi->error, error);
1440 }
1441 
get_compressed_data_hook(void * arg1,void * arg2)1442 static int get_compressed_data_hook(void *arg1, void *arg2) {
1443   AV1_COMP *cpi = (AV1_COMP *)arg1;
1444   AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
1445   int status = av1_get_compressed_data(cpi, cpi_data);
1446 
1447   // AOM_CODEC_OK(0) means no error.
1448   return !status;
1449 }
1450 
1451 // This function encodes the raw frame data for each frame in parallel encode
1452 // set, and outputs the frame bit stream to the designated buffers.
av1_compress_parallel_frames(AV1_PRIMARY * const ppi,AV1_COMP_DATA * const first_cpi_data)1453 void av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
1454                                   AV1_COMP_DATA *const first_cpi_data) {
1455   // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
1456   // corresponding to frames in the current parallel encode set.
1457   int ref_buffers_used_map = 0;
1458   int frames_in_parallel_set = av1_init_parallel_frame_context(
1459       first_cpi_data, ppi, &ref_buffers_used_map);
1460   prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
1461                        frames_in_parallel_set);
1462   launch_fpmt_workers(ppi);
1463   sync_fpmt_workers(ppi, frames_in_parallel_set);
1464 
1465   // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
1466   // encode set.
1467   for (int i = 0; i < frames_in_parallel_set; ++i) {
1468     av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
1469   }
1470   av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
1471                                 ref_buffers_used_map);
1472 }
1473 
launch_workers(MultiThreadInfo * const mt_info,int num_workers)1474 static inline void launch_workers(MultiThreadInfo *const mt_info,
1475                                   int num_workers) {
1476   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1477   for (int i = num_workers - 1; i >= 0; i--) {
1478     AVxWorker *const worker = &mt_info->workers[i];
1479     worker->had_error = 0;
1480     if (i == 0)
1481       winterface->execute(worker);
1482     else
1483       winterface->launch(worker);
1484   }
1485 }
1486 
sync_enc_workers(MultiThreadInfo * const mt_info,AV1_COMMON * const cm,int num_workers)1487 static inline void sync_enc_workers(MultiThreadInfo *const mt_info,
1488                                     AV1_COMMON *const cm, int num_workers) {
1489   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1490   const AVxWorker *const worker_main = &mt_info->workers[0];
1491   int had_error = worker_main->had_error;
1492   struct aom_internal_error_info error_info;
1493 
1494   // Read the error_info of main thread.
1495   if (had_error) {
1496     error_info = ((EncWorkerData *)worker_main->data1)->error_info;
1497   }
1498 
1499   // Encoding ends.
1500   for (int i = num_workers - 1; i > 0; i--) {
1501     AVxWorker *const worker = &mt_info->workers[i];
1502     if (!winterface->sync(worker)) {
1503       had_error = 1;
1504       error_info = ((EncWorkerData *)worker->data1)->error_info;
1505     }
1506   }
1507 
1508   if (had_error) aom_internal_error_copy(cm->error, &error_info);
1509 
1510   // Restore xd->error_info of the main thread back to cm->error so that the
1511   // multithreaded code, when executed using a single thread, has a valid
1512   // xd->error_info.
1513   MACROBLOCKD *const xd = &((EncWorkerData *)worker_main->data1)->td->mb.e_mbd;
1514   xd->error_info = cm->error;
1515 }
1516 
accumulate_counters_enc_workers(AV1_COMP * cpi,int num_workers)1517 static inline void accumulate_counters_enc_workers(AV1_COMP *cpi,
1518                                                    int num_workers) {
1519   for (int i = num_workers - 1; i >= 0; i--) {
1520     AVxWorker *const worker = &cpi->mt_info.workers[i];
1521     EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
1522     cpi->intrabc_used |= thread_data->td->intrabc_used;
1523     cpi->deltaq_used |= thread_data->td->deltaq_used;
1524     // Accumulate rtc counters.
1525     if (!frame_is_intra_only(&cpi->common))
1526       av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
1527     cpi->palette_pixel_num += thread_data->td->mb.palette_pixels;
1528     if (thread_data->td != &cpi->td) {
1529       // Keep these conditional expressions in sync with the corresponding ones
1530       // in prepare_enc_workers().
1531       if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1532         aom_free(thread_data->td->mv_costs_alloc);
1533         thread_data->td->mv_costs_alloc = NULL;
1534       }
1535       if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1536         aom_free(thread_data->td->dv_costs_alloc);
1537         thread_data->td->dv_costs_alloc = NULL;
1538       }
1539     }
1540     av1_dealloc_mb_data(&thread_data->td->mb, av1_num_planes(&cpi->common));
1541 
1542     // Accumulate counters.
1543     if (i > 0) {
1544       av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
1545       accumulate_rd_opt(&cpi->td, thread_data->td);
1546       cpi->td.mb.txfm_search_info.txb_split_count +=
1547           thread_data->td->mb.txfm_search_info.txb_split_count;
1548 #if CONFIG_SPEED_STATS
1549       cpi->td.mb.txfm_search_info.tx_search_count +=
1550           thread_data->td->mb.txfm_search_info.tx_search_count;
1551 #endif  // CONFIG_SPEED_STATS
1552     }
1553   }
1554 }
1555 
prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1556 static inline void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1557                                        int num_workers) {
1558   MultiThreadInfo *const mt_info = &cpi->mt_info;
1559   AV1_COMMON *const cm = &cpi->common;
1560   for (int i = num_workers - 1; i >= 0; i--) {
1561     AVxWorker *const worker = &mt_info->workers[i];
1562     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1563 
1564     worker->hook = hook;
1565     worker->data1 = thread_data;
1566     worker->data2 = NULL;
1567 
1568     thread_data->thread_id = i;
1569     // Set the starting tile for each thread.
1570     thread_data->start = i;
1571 
1572     thread_data->cpi = cpi;
1573     if (i == 0) {
1574       thread_data->td = &cpi->td;
1575     } else {
1576       thread_data->td = thread_data->original_td;
1577     }
1578 
1579     thread_data->td->intrabc_used = 0;
1580     thread_data->td->deltaq_used = 0;
1581     thread_data->td->abs_sum_level = 0;
1582     thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
1583     thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;
1584 
1585     // Before encoding a frame, copy the thread data from cpi.
1586     if (thread_data->td != &cpi->td) {
1587       thread_data->td->mb = cpi->td.mb;
1588       thread_data->td->rd_counts = cpi->td.rd_counts;
1589       thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
1590 
1591       for (int x = 0; x < 2; x++) {
1592         for (int y = 0; y < 2; y++) {
1593           memcpy(thread_data->td->hash_value_buffer[x][y],
1594                  cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
1595                  AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1596                      sizeof(*thread_data->td->hash_value_buffer[0][0]));
1597           thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
1598               thread_data->td->hash_value_buffer[x][y];
1599         }
1600       }
1601       // Keep these conditional expressions in sync with the corresponding ones
1602       // in accumulate_counters_enc_workers().
1603       if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1604         CHECK_MEM_ERROR(
1605             cm, thread_data->td->mv_costs_alloc,
1606             (MvCosts *)aom_malloc(sizeof(*thread_data->td->mv_costs_alloc)));
1607         thread_data->td->mb.mv_costs = thread_data->td->mv_costs_alloc;
1608         memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
1609                sizeof(MvCosts));
1610       }
1611       if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1612         // Reset dv_costs to NULL for worker threads when dv cost update is
1613         // enabled so that only dv_cost_upd_level needs to be checked before the
1614         // aom_free() call for the same.
1615         thread_data->td->mb.dv_costs = NULL;
1616         if (av1_need_dv_costs(cpi)) {
1617           CHECK_MEM_ERROR(cm, thread_data->td->dv_costs_alloc,
1618                           (IntraBCMVCosts *)aom_malloc(
1619                               sizeof(*thread_data->td->dv_costs_alloc)));
1620           thread_data->td->mb.dv_costs = thread_data->td->dv_costs_alloc;
1621           memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
1622                  sizeof(IntraBCMVCosts));
1623         }
1624       }
1625     }
1626     av1_alloc_mb_data(cpi, &thread_data->td->mb);
1627 
1628     // Reset rtc counters.
1629     av1_init_rtc_counters(&thread_data->td->mb);
1630 
1631     thread_data->td->mb.palette_pixels = 0;
1632 
1633     if (thread_data->td->counts != &cpi->counts) {
1634       memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
1635     }
1636 
1637     if (i > 0) {
1638       thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
1639       thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
1640       thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
1641       for (int j = 0; j < 2; ++j) {
1642         thread_data->td->mb.tmp_pred_bufs[j] =
1643             thread_data->td->tmp_pred_bufs[j];
1644       }
1645       thread_data->td->mb.pixel_gradient_info =
1646           thread_data->td->pixel_gradient_info;
1647 
1648       thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
1649           thread_data->td->src_var_info_of_4x4_sub_blocks;
1650 
1651       thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
1652       for (int j = 0; j < 2; ++j) {
1653         thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
1654             thread_data->td->mb.tmp_pred_bufs[j];
1655       }
1656     }
1657   }
1658 }
1659 
1660 #if !CONFIG_REALTIME_ONLY
fp_prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1661 static inline void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1662                                           int num_workers) {
1663   AV1_COMMON *const cm = &cpi->common;
1664   MultiThreadInfo *const mt_info = &cpi->mt_info;
1665   for (int i = num_workers - 1; i >= 0; i--) {
1666     AVxWorker *const worker = &mt_info->workers[i];
1667     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1668 
1669     worker->hook = hook;
1670     worker->data1 = thread_data;
1671     worker->data2 = NULL;
1672 
1673     thread_data->thread_id = i;
1674     // Set the starting tile for each thread.
1675     thread_data->start = i;
1676 
1677     thread_data->cpi = cpi;
1678     if (i == 0) {
1679       thread_data->td = &cpi->td;
1680     } else {
1681       thread_data->td = thread_data->original_td;
1682       // Before encoding a frame, copy the thread data from cpi.
1683       thread_data->td->mb = cpi->td.mb;
1684     }
1685     av1_alloc_src_diff_buf(cm, &thread_data->td->mb);
1686   }
1687 }
1688 #endif
1689 
1690 // Computes the number of workers for row multi-threading of encoding stage
compute_num_enc_row_mt_workers(const AV1_COMMON * cm,int max_threads)1691 static inline int compute_num_enc_row_mt_workers(const AV1_COMMON *cm,
1692                                                  int max_threads) {
1693   TileInfo tile_info;
1694   const int tile_cols = cm->tiles.cols;
1695   const int tile_rows = cm->tiles.rows;
1696   int total_num_threads_row_mt = 0;
1697   for (int row = 0; row < tile_rows; row++) {
1698     for (int col = 0; col < tile_cols; col++) {
1699       av1_tile_init(&tile_info, cm, row, col);
1700       const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
1701       const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
1702       total_num_threads_row_mt +=
1703           AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
1704     }
1705   }
1706   return AOMMIN(max_threads, total_num_threads_row_mt);
1707 }
1708 
1709 // Computes the number of workers for tile multi-threading of encoding stage
compute_num_enc_tile_mt_workers(const AV1_COMMON * cm,int max_threads)1710 static inline int compute_num_enc_tile_mt_workers(const AV1_COMMON *cm,
1711                                                   int max_threads) {
1712   const int tile_cols = cm->tiles.cols;
1713   const int tile_rows = cm->tiles.rows;
1714   return AOMMIN(max_threads, tile_cols * tile_rows);
1715 }
1716 
1717 // Find max worker of all MT stages
av1_get_max_num_workers(const AV1_COMP * cpi)1718 int av1_get_max_num_workers(const AV1_COMP *cpi) {
1719   int max_num_workers = 0;
1720   for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
1721     max_num_workers =
1722         AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
1723   assert(max_num_workers >= 1);
1724   return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
1725 }
1726 
1727 // Computes the number of workers for encoding stage (row/tile multi-threading)
compute_num_enc_workers(const AV1_COMP * cpi,int max_workers)1728 static int compute_num_enc_workers(const AV1_COMP *cpi, int max_workers) {
1729   if (max_workers <= 1) return 1;
1730   if (cpi->oxcf.row_mt)
1731     return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
1732   else
1733     return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
1734 }
1735 
av1_encode_tiles_mt(AV1_COMP * cpi)1736 void av1_encode_tiles_mt(AV1_COMP *cpi) {
1737   AV1_COMMON *const cm = &cpi->common;
1738   MultiThreadInfo *const mt_info = &cpi->mt_info;
1739   const int tile_cols = cm->tiles.cols;
1740   const int tile_rows = cm->tiles.rows;
1741   int num_workers = mt_info->num_mod_workers[MOD_ENC];
1742 
1743   assert(IMPLIES(cpi->tile_data == NULL,
1744                  cpi->allocated_tiles < tile_cols * tile_rows));
1745   if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
1746 
1747   av1_init_tile_data(cpi);
1748   num_workers = AOMMIN(num_workers, mt_info->num_workers);
1749 
1750   prepare_enc_workers(cpi, enc_worker_hook, num_workers);
1751   launch_workers(&cpi->mt_info, num_workers);
1752   sync_enc_workers(&cpi->mt_info, cm, num_workers);
1753   accumulate_counters_enc_workers(cpi, num_workers);
1754 }
1755 
1756 // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
1757 // members, so we treat it as an array, and sum over the whole length.
av1_accumulate_frame_counts(FRAME_COUNTS * acc_counts,const FRAME_COUNTS * counts)1758 void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
1759                                  const FRAME_COUNTS *counts) {
1760   unsigned int *const acc = (unsigned int *)acc_counts;
1761   const unsigned int *const cnt = (const unsigned int *)counts;
1762 
1763   const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
1764 
1765   for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
1766 }
1767 
1768 // Computes the maximum number of sb rows and sb_cols across tiles which are
1769 // used to allocate memory for multi-threaded encoding with row-mt=1.
compute_max_sb_rows_cols(const AV1_COMMON * cm,int * max_sb_rows_in_tile,int * max_sb_cols_in_tile)1770 static inline void compute_max_sb_rows_cols(const AV1_COMMON *cm,
1771                                             int *max_sb_rows_in_tile,
1772                                             int *max_sb_cols_in_tile) {
1773   const int tile_rows = cm->tiles.rows;
1774   const int mib_size_log2 = cm->seq_params->mib_size_log2;
1775   const int num_mi_rows = cm->mi_params.mi_rows;
1776   const int *const row_start_sb = cm->tiles.row_start_sb;
1777   for (int row = 0; row < tile_rows; row++) {
1778     const int mi_row_start = row_start_sb[row] << mib_size_log2;
1779     const int mi_row_end =
1780         AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1781     const int num_sb_rows_in_tile =
1782         CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
1783     *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
1784   }
1785 
1786   const int tile_cols = cm->tiles.cols;
1787   const int num_mi_cols = cm->mi_params.mi_cols;
1788   const int *const col_start_sb = cm->tiles.col_start_sb;
1789   for (int col = 0; col < tile_cols; col++) {
1790     const int mi_col_start = col_start_sb[col] << mib_size_log2;
1791     const int mi_col_end =
1792         AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
1793     const int num_sb_cols_in_tile =
1794         CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
1795     *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
1796   }
1797 }
1798 
1799 #if !CONFIG_REALTIME_ONLY
1800 // Computes the number of workers for firstpass stage (row/tile multi-threading)
av1_fp_compute_num_enc_workers(AV1_COMP * cpi)1801 int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
1802   AV1_COMMON *cm = &cpi->common;
1803   const int tile_cols = cm->tiles.cols;
1804   const int tile_rows = cm->tiles.rows;
1805   int total_num_threads_row_mt = 0;
1806   TileInfo tile_info;
1807 
1808   if (cpi->oxcf.max_threads <= 1) return 1;
1809 
1810   for (int row = 0; row < tile_rows; row++) {
1811     for (int col = 0; col < tile_cols; col++) {
1812       av1_tile_init(&tile_info, cm, row, col);
1813       const int num_mb_rows_in_tile =
1814           av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
1815       const int num_mb_cols_in_tile =
1816           av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
1817       total_num_threads_row_mt +=
1818           AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
1819     }
1820   }
1821   return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
1822 }
1823 
1824 // Computes the maximum number of mb_rows for row multi-threading of firstpass
1825 // stage
fp_compute_max_mb_rows(const AV1_COMMON * cm,BLOCK_SIZE fp_block_size)1826 static inline int fp_compute_max_mb_rows(const AV1_COMMON *cm,
1827                                          BLOCK_SIZE fp_block_size) {
1828   const int tile_rows = cm->tiles.rows;
1829   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1830   const int mib_size_log2 = cm->seq_params->mib_size_log2;
1831   const int num_mi_rows = cm->mi_params.mi_rows;
1832   const int *const row_start_sb = cm->tiles.row_start_sb;
1833   int max_mb_rows = 0;
1834 
1835   for (int row = 0; row < tile_rows; row++) {
1836     const int mi_row_start = row_start_sb[row] << mib_size_log2;
1837     const int mi_row_end =
1838         AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1839     const int num_mb_rows_in_tile =
1840         CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
1841     max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
1842   }
1843   return max_mb_rows;
1844 }
1845 #endif
1846 
lpf_pipeline_mt_init(AV1_COMP * cpi,int num_workers)1847 static void lpf_pipeline_mt_init(AV1_COMP *cpi, int num_workers) {
1848   // Pipelining of loop-filtering after encoding is enabled when loop-filter
1849   // level is chosen based on quantizer and frame type. It is disabled in case
1850   // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
1851   // decides the filter level. Loop-filtering is disabled in case
1852   // of non-reference frames and for frames with intra block copy tool enabled.
1853   AV1_COMMON *cm = &cpi->common;
1854   const int use_loopfilter = is_loopfilter_used(cm);
1855   const int use_superres = av1_superres_scaled(cm);
1856   const int use_cdef = is_cdef_used(cm);
1857   const int use_restoration = is_restoration_used(cm);
1858   MultiThreadInfo *const mt_info = &cpi->mt_info;
1859   MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
1860 
1861   const unsigned int skip_apply_postproc_filters =
1862       derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
1863                                          use_superres, use_restoration);
1864   mt_info->pipeline_lpf_mt_with_enc =
1865       (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
1866       (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
1867       (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
1868       !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
1869       ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);
1870 
1871   if (!mt_info->pipeline_lpf_mt_with_enc) return;
1872 
1873   set_postproc_filter_default_params(cm);
1874 
1875   if (!use_loopfilter) return;
1876 
1877   const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
1878   assert(method == LPF_PICK_FROM_Q);
1879   assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);
1880 
1881   av1_pick_filter_level(cpi->source, cpi, method);
1882 
1883   struct loopfilter *lf = &cm->lf;
1884   const int plane_start = 0;
1885   const int plane_end = av1_num_planes(cm);
1886   int planes_to_lf[MAX_MB_PLANE];
1887   if (lpf_mt_with_enc_enabled(cpi->mt_info.pipeline_lpf_mt_with_enc,
1888                               lf->filter_level)) {
1889     set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end);
1890     int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
1891     assert(lpf_opt_level == 2);
1892 
1893     const int start_mi_row = 0;
1894     const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;
1895 
1896     av1_loop_filter_frame_init(cm, plane_start, plane_end);
1897 
1898     assert(mt_info->num_mod_workers[MOD_ENC] ==
1899            mt_info->num_mod_workers[MOD_LPF]);
1900     loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
1901                               mt_info->num_mod_workers[MOD_LPF],
1902                               &mt_info->lf_row_sync, lpf_opt_level,
1903                               cm->seq_params->mib_size_log2);
1904 
1905     for (int i = num_workers - 1; i >= 0; i--) {
1906       EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1907       // Initialize loopfilter data
1908       thread_data->lf_sync = &mt_info->lf_row_sync;
1909       thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
1910       loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);
1911     }
1912   }
1913 }
1914 
av1_encode_tiles_row_mt(AV1_COMP * cpi)1915 void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
1916   AV1_COMMON *const cm = &cpi->common;
1917   MultiThreadInfo *const mt_info = &cpi->mt_info;
1918   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1919   const int tile_cols = cm->tiles.cols;
1920   const int tile_rows = cm->tiles.rows;
1921   const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
1922   int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1923   int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
1924   int num_workers = mt_info->num_mod_workers[MOD_ENC];
1925 
1926   compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
1927   const bool alloc_row_mt_mem =
1928       (enc_row_mt->allocated_tile_cols != tile_cols ||
1929        enc_row_mt->allocated_tile_rows != tile_rows ||
1930        enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
1931        enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
1932        enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
1933   const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
1934 
1935   assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
1936   if (alloc_tile_data) {
1937     av1_alloc_tile_data(cpi);
1938   }
1939 
1940   assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
1941   if (alloc_row_mt_mem) {
1942     row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
1943                      cpi->oxcf.algo_cfg.cdf_update_mode);
1944   }
1945 
1946   num_workers = AOMMIN(num_workers, mt_info->num_workers);
1947   lpf_pipeline_mt_init(cpi, num_workers);
1948 
1949   av1_init_tile_data(cpi);
1950 
1951   memset(thread_id_to_tile_id, -1,
1952          sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1953   memset(enc_row_mt->num_tile_cols_done, 0,
1954          sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);
1955   enc_row_mt->row_mt_exit = false;
1956 
1957   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1958     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1959       int tile_index = tile_row * tile_cols + tile_col;
1960       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1961       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1962 
1963       // Initialize num_finished_cols to -1 for all rows.
1964       memset(row_mt_sync->num_finished_cols, -1,
1965              sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
1966       row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1967       row_mt_sync->num_threads_working = 0;
1968       row_mt_sync->intrabc_extra_top_right_sb_delay =
1969           av1_get_intrabc_extra_top_right_sb_delay(cm);
1970 
1971       av1_inter_mode_data_init(this_tile);
1972       av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
1973                              this_tile->tile_info.mi_col_start,
1974                              this_tile->tile_info.mi_col_end, tile_row);
1975     }
1976   }
1977 
1978   assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1979                         num_workers);
1980   prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
1981   launch_workers(&cpi->mt_info, num_workers);
1982   sync_enc_workers(&cpi->mt_info, cm, num_workers);
1983   if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
1984   accumulate_counters_enc_workers(cpi, num_workers);
1985 }
1986 
1987 #if !CONFIG_REALTIME_ONLY
dealloc_thread_data_src_diff_buf(AV1_COMP * cpi,int num_workers)1988 static void dealloc_thread_data_src_diff_buf(AV1_COMP *cpi, int num_workers) {
1989   for (int i = num_workers - 1; i >= 0; --i) {
1990     EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
1991     if (thread_data->td != &cpi->td)
1992       av1_dealloc_src_diff_buf(&thread_data->td->mb,
1993                                av1_num_planes(&cpi->common));
1994   }
1995 }
1996 
av1_fp_encode_tiles_row_mt(AV1_COMP * cpi)1997 void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
1998   AV1_COMMON *const cm = &cpi->common;
1999   MultiThreadInfo *const mt_info = &cpi->mt_info;
2000   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
2001   const int tile_cols = cm->tiles.cols;
2002   const int tile_rows = cm->tiles.rows;
2003   int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
2004   int num_workers = 0;
2005   int max_mb_rows = 0;
2006 
2007   max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
2008   const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
2009                                 enc_row_mt->allocated_tile_rows != tile_rows ||
2010                                 enc_row_mt->allocated_rows != max_mb_rows;
2011   const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
2012 
2013   assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
2014   if (alloc_tile_data) {
2015     av1_alloc_tile_data(cpi);
2016   }
2017 
2018   assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
2019   if (alloc_row_mt_mem) {
2020     row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
2021   }
2022 
2023   av1_init_tile_data(cpi);
2024 
2025   // For pass = 1, compute the no. of workers needed. For single-pass encode
2026   // (pass = 0), no. of workers are already computed.
2027   if (mt_info->num_mod_workers[MOD_FP] == 0)
2028     num_workers = av1_fp_compute_num_enc_workers(cpi);
2029   else
2030     num_workers = mt_info->num_mod_workers[MOD_FP];
2031 
2032   memset(thread_id_to_tile_id, -1,
2033          sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
2034   enc_row_mt->firstpass_mt_exit = false;
2035 
2036   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
2037     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
2038       int tile_index = tile_row * tile_cols + tile_col;
2039       TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
2040       AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
2041 
2042       // Initialize num_finished_cols to -1 for all rows.
2043       memset(row_mt_sync->num_finished_cols, -1,
2044              sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
2045       row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
2046       row_mt_sync->num_threads_working = 0;
2047 
2048       // intraBC mode is not evaluated during first-pass encoding. Hence, no
2049       // additional top-right delay is required.
2050       row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2051     }
2052   }
2053 
2054   num_workers = AOMMIN(num_workers, mt_info->num_workers);
2055   assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
2056                         num_workers);
2057   fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
2058   launch_workers(&cpi->mt_info, num_workers);
2059   sync_enc_workers(&cpi->mt_info, cm, num_workers);
2060   dealloc_thread_data_src_diff_buf(cpi, num_workers);
2061 }
2062 
av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c)2063 void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2064                                     int r, int c) {
2065   (void)tpl_mt_sync;
2066   (void)r;
2067   (void)c;
2068 }
2069 
av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c,int cols)2070 void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2071                                      int r, int c, int cols) {
2072   (void)tpl_mt_sync;
2073   (void)r;
2074   (void)c;
2075   (void)cols;
2076 }
2077 
av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c)2078 void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2079                               int c) {
2080 #if CONFIG_MULTITHREAD
2081   int nsync = tpl_row_mt_sync->sync_range;
2082 
2083   if (r) {
2084     pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
2085     pthread_mutex_lock(mutex);
2086 
2087     while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
2088       pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
2089     pthread_mutex_unlock(mutex);
2090   }
2091 #else
2092   (void)tpl_row_mt_sync;
2093   (void)r;
2094   (void)c;
2095 #endif  // CONFIG_MULTITHREAD
2096 }
2097 
av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c,int cols)2098 void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2099                                int c, int cols) {
2100 #if CONFIG_MULTITHREAD
2101   int nsync = tpl_row_mt_sync->sync_range;
2102   int cur;
2103   // Only signal when there are enough encoded blocks for next row to run.
2104   int sig = 1;
2105 
2106   if (c < cols - 1) {
2107     cur = c;
2108     if (c % nsync) sig = 0;
2109   } else {
2110     cur = cols + nsync;
2111   }
2112 
2113   if (sig) {
2114     pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
2115 
2116     // When a thread encounters an error, num_finished_cols[r] is set to maximum
2117     // column number. In this case, the AOMMAX operation here ensures that
2118     // num_finished_cols[r] is not overwritten with a smaller value thus
2119     // preventing the infinite waiting of threads in the relevant sync_read()
2120     // function.
2121     tpl_row_mt_sync->num_finished_cols[r] =
2122         AOMMAX(tpl_row_mt_sync->num_finished_cols[r], cur);
2123 
2124     pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
2125     pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
2126   }
2127 #else
2128   (void)tpl_row_mt_sync;
2129   (void)r;
2130   (void)c;
2131   (void)cols;
2132 #endif  // CONFIG_MULTITHREAD
2133 }
2134 
set_mode_estimation_done(AV1_COMP * cpi)2135 static inline void set_mode_estimation_done(AV1_COMP *cpi) {
2136   const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2137   TplParams *const tpl_data = &cpi->ppi->tpl_data;
2138   const BLOCK_SIZE bsize =
2139       convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2140   const int mi_height = mi_size_high[bsize];
2141   AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2142   const int tplb_cols_in_tile =
2143       ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
2144   // In case of tpl row-multithreading, due to top-right dependency, the worker
2145   // on an mb_row waits for the completion of the tpl processing of the top and
2146   // top-right blocks. Hence, in case a thread (main/worker) encounters an
2147   // error, update that the tpl processing of every mb_row in the frame is
2148   // complete in order to avoid dependent workers waiting indefinitely.
2149   for (int mi_row = 0, tplb_row = 0; mi_row < mi_params->mi_rows;
2150        mi_row += mi_height, tplb_row++) {
2151     (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
2152                                   tplb_cols_in_tile - 1, tplb_cols_in_tile);
2153   }
2154 }
2155 
2156 // Each worker calls tpl_worker_hook() and computes the tpl data.
tpl_worker_hook(void * arg1,void * unused)2157 static int tpl_worker_hook(void *arg1, void *unused) {
2158   (void)unused;
2159   EncWorkerData *thread_data = (EncWorkerData *)arg1;
2160   AV1_COMP *cpi = thread_data->cpi;
2161   AV1_COMMON *cm = &cpi->common;
2162   MACROBLOCK *x = &thread_data->td->mb;
2163   MACROBLOCKD *xd = &x->e_mbd;
2164   TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
2165   TplBuffers *tpl_tmp_buffers = &thread_data->td->tpl_tmp_buffers;
2166   CommonModeInfoParams *mi_params = &cm->mi_params;
2167   int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;
2168 
2169   struct aom_internal_error_info *const error_info = &thread_data->error_info;
2170   xd->error_info = error_info;
2171   AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2172   (void)tpl_row_mt;
2173 #if CONFIG_MULTITHREAD
2174   pthread_mutex_t *tpl_error_mutex_ = tpl_row_mt->mutex_;
2175 #endif
2176 
2177   // The jmp_buf is valid only for the duration of the function that calls
2178   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2179   // before it returns.
2180   if (setjmp(error_info->jmp)) {
2181     error_info->setjmp = 0;
2182 #if CONFIG_MULTITHREAD
2183     pthread_mutex_lock(tpl_error_mutex_);
2184     tpl_row_mt->tpl_mt_exit = true;
2185     pthread_mutex_unlock(tpl_error_mutex_);
2186 #endif
2187     set_mode_estimation_done(cpi);
2188     return 0;
2189   }
2190   error_info->setjmp = 1;
2191 
2192   BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2193   TX_SIZE tx_size = max_txsize_lookup[bsize];
2194   int mi_height = mi_size_high[bsize];
2195 
2196   av1_init_tpl_txfm_stats(tpl_txfm_stats);
2197 
2198   for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
2199        mi_row += num_active_workers * mi_height) {
2200     // Motion estimation row boundary
2201     av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
2202                           cpi->oxcf.border_in_pixels);
2203     xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
2204     xd->mb_to_bottom_edge =
2205         GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
2206     av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row,
2207                               bsize, tx_size);
2208   }
2209   error_info->setjmp = 0;
2210   return 1;
2211 }
2212 
2213 // Deallocate tpl synchronization related mutex and data.
av1_tpl_dealloc(AV1TplRowMultiThreadSync * tpl_sync)2214 void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
2215   assert(tpl_sync != NULL);
2216 
2217 #if CONFIG_MULTITHREAD
2218   if (tpl_sync->mutex_ != NULL) {
2219     for (int i = 0; i < tpl_sync->rows; ++i)
2220       pthread_mutex_destroy(&tpl_sync->mutex_[i]);
2221     aom_free(tpl_sync->mutex_);
2222   }
2223   if (tpl_sync->cond_ != NULL) {
2224     for (int i = 0; i < tpl_sync->rows; ++i)
2225       pthread_cond_destroy(&tpl_sync->cond_[i]);
2226     aom_free(tpl_sync->cond_);
2227   }
2228 #endif  // CONFIG_MULTITHREAD
2229 
2230   aom_free(tpl_sync->num_finished_cols);
2231   // clear the structure as the source of this call may be a resize in which
2232   // case this call will be followed by an _alloc() which may fail.
2233   av1_zero(*tpl_sync);
2234 }
2235 
2236 // Allocate memory for tpl row synchronization.
av1_tpl_alloc(AV1TplRowMultiThreadSync * tpl_sync,AV1_COMMON * cm,int mb_rows)2237 static void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
2238                           int mb_rows) {
2239   tpl_sync->rows = mb_rows;
2240 #if CONFIG_MULTITHREAD
2241   {
2242     CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
2243                     aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
2244     if (tpl_sync->mutex_) {
2245       for (int i = 0; i < mb_rows; ++i)
2246         pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
2247     }
2248 
2249     CHECK_MEM_ERROR(cm, tpl_sync->cond_,
2250                     aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
2251     if (tpl_sync->cond_) {
2252       for (int i = 0; i < mb_rows; ++i)
2253         pthread_cond_init(&tpl_sync->cond_[i], NULL);
2254     }
2255   }
2256 #endif  // CONFIG_MULTITHREAD
2257   CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
2258                   aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
2259 
2260   // Set up nsync.
2261   tpl_sync->sync_range = 1;
2262 }
2263 
2264 // Each worker is prepared by assigning the hook function and individual thread
2265 // data.
prepare_tpl_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)2266 static inline void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2267                                        int num_workers) {
2268   MultiThreadInfo *mt_info = &cpi->mt_info;
2269   for (int i = num_workers - 1; i >= 0; i--) {
2270     AVxWorker *worker = &mt_info->workers[i];
2271     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2272 
2273     worker->hook = hook;
2274     worker->data1 = thread_data;
2275     worker->data2 = NULL;
2276 
2277     thread_data->thread_id = i;
2278     // Set the starting tile for each thread.
2279     thread_data->start = i;
2280 
2281     thread_data->cpi = cpi;
2282     if (i == 0) {
2283       thread_data->td = &cpi->td;
2284     } else {
2285       thread_data->td = thread_data->original_td;
2286     }
2287 
2288     // Before encoding a frame, copy the thread data from cpi.
2289     if (thread_data->td != &cpi->td) {
2290       thread_data->td->mb = cpi->td.mb;
2291       // OBMC buffers are used only to init MS params and remain unused when
2292       // called from tpl, hence set the buffers to defaults.
2293       av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2294       if (!tpl_alloc_temp_buffers(&thread_data->td->tpl_tmp_buffers,
2295                                   cpi->ppi->tpl_data.tpl_bsize_1d)) {
2296         aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2297                            "Error allocating tpl data");
2298       }
2299       thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
2300       thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
2301     }
2302   }
2303 }
2304 
2305 #if CONFIG_BITRATE_ACCURACY
2306 // Accumulate transform stats after tpl.
tpl_accumulate_txfm_stats(ThreadData * main_td,const MultiThreadInfo * mt_info,int num_workers)2307 static void tpl_accumulate_txfm_stats(ThreadData *main_td,
2308                                       const MultiThreadInfo *mt_info,
2309                                       int num_workers) {
2310   TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
2311   for (int i = num_workers - 1; i >= 0; i--) {
2312     AVxWorker *const worker = &mt_info->workers[i];
2313     EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2314     ThreadData *td = thread_data->td;
2315     if (td != main_td) {
2316       const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
2317       av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
2318     }
2319   }
2320 }
2321 #endif  // CONFIG_BITRATE_ACCURACY
2322 
2323 // Implements multi-threading for tpl.
av1_mc_flow_dispenser_mt(AV1_COMP * cpi)2324 void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
2325   AV1_COMMON *cm = &cpi->common;
2326   CommonModeInfoParams *mi_params = &cm->mi_params;
2327   MultiThreadInfo *mt_info = &cpi->mt_info;
2328   TplParams *tpl_data = &cpi->ppi->tpl_data;
2329   AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
2330   int mb_rows = mi_params->mb_rows;
2331   int num_workers =
2332       AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
2333 
2334   if (mb_rows != tpl_sync->rows) {
2335     av1_tpl_dealloc(tpl_sync);
2336     av1_tpl_alloc(tpl_sync, cm, mb_rows);
2337   }
2338   tpl_sync->num_threads_working = num_workers;
2339   mt_info->tpl_row_mt.tpl_mt_exit = false;
2340 
2341   // Initialize cur_mb_col to -1 for all MB rows.
2342   memset(tpl_sync->num_finished_cols, -1,
2343          sizeof(*tpl_sync->num_finished_cols) * mb_rows);
2344 
2345   prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
2346   launch_workers(&cpi->mt_info, num_workers);
2347   sync_enc_workers(&cpi->mt_info, cm, num_workers);
2348 #if CONFIG_BITRATE_ACCURACY
2349   tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
2350 #endif  // CONFIG_BITRATE_ACCURACY
2351   for (int i = num_workers - 1; i >= 0; i--) {
2352     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2353     ThreadData *td = thread_data->td;
2354     if (td != &cpi->td) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers);
2355   }
2356 }
2357 
2358 // Deallocate memory for temporal filter multi-thread synchronization.
av1_tf_mt_dealloc(AV1TemporalFilterSync * tf_sync)2359 void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
2360   assert(tf_sync != NULL);
2361 #if CONFIG_MULTITHREAD
2362   if (tf_sync->mutex_ != NULL) {
2363     pthread_mutex_destroy(tf_sync->mutex_);
2364     aom_free(tf_sync->mutex_);
2365   }
2366 #endif  // CONFIG_MULTITHREAD
2367   tf_sync->next_tf_row = 0;
2368 }
2369 
2370 // Checks if a job is available. If job is available,
2371 // populates next_tf_row and returns 1, else returns 0.
tf_get_next_job(AV1TemporalFilterSync * tf_mt_sync,int * current_mb_row,int mb_rows)2372 static inline int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
2373                                   int *current_mb_row, int mb_rows) {
2374   int do_next_row = 0;
2375 #if CONFIG_MULTITHREAD
2376   pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
2377   pthread_mutex_lock(tf_mutex_);
2378 #endif
2379   if (!tf_mt_sync->tf_mt_exit && tf_mt_sync->next_tf_row < mb_rows) {
2380     *current_mb_row = tf_mt_sync->next_tf_row;
2381     tf_mt_sync->next_tf_row++;
2382     do_next_row = 1;
2383   }
2384 #if CONFIG_MULTITHREAD
2385   pthread_mutex_unlock(tf_mutex_);
2386 #endif
2387   return do_next_row;
2388 }
2389 
2390 // Hook function for each thread in temporal filter multi-threading.
tf_worker_hook(void * arg1,void * unused)2391 static int tf_worker_hook(void *arg1, void *unused) {
2392   (void)unused;
2393   EncWorkerData *thread_data = (EncWorkerData *)arg1;
2394   AV1_COMP *cpi = thread_data->cpi;
2395   ThreadData *td = thread_data->td;
2396   TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
2397   AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
2398   const struct scale_factors *scale = &cpi->tf_ctx.sf;
2399 
2400 #if CONFIG_MULTITHREAD
2401   pthread_mutex_t *tf_mutex_ = tf_sync->mutex_;
2402 #endif
2403   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2404   struct aom_internal_error_info *const error_info = &thread_data->error_info;
2405   xd->error_info = error_info;
2406 
2407   // The jmp_buf is valid only for the duration of the function that calls
2408   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2409   // before it returns.
2410   if (setjmp(error_info->jmp)) {
2411     error_info->setjmp = 0;
2412 #if CONFIG_MULTITHREAD
2413     pthread_mutex_lock(tf_mutex_);
2414     tf_sync->tf_mt_exit = true;
2415     pthread_mutex_unlock(tf_mutex_);
2416 #endif
2417     return 0;
2418   }
2419   error_info->setjmp = 1;
2420 
2421   const int num_planes = av1_num_planes(&cpi->common);
2422   assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
2423 
2424   MACROBLOCKD *mbd = &td->mb.e_mbd;
2425   uint8_t *input_buffer[MAX_MB_PLANE];
2426   MB_MODE_INFO **input_mb_mode_info;
2427   tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
2428   tf_setup_macroblockd(mbd, &td->tf_data, scale);
2429 
2430   int current_mb_row = -1;
2431 
2432   while (tf_get_next_job(tf_sync, &current_mb_row, tf_ctx->mb_rows))
2433     av1_tf_do_filtering_row(cpi, td, current_mb_row);
2434 
2435   tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
2436 
2437   error_info->setjmp = 0;
2438   return 1;
2439 }
2440 
2441 // Assigns temporal filter hook function and thread data to each worker.
prepare_tf_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers,int is_highbitdepth)2442 static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2443                                int num_workers, int is_highbitdepth) {
2444   MultiThreadInfo *mt_info = &cpi->mt_info;
2445   mt_info->tf_sync.next_tf_row = 0;
2446   mt_info->tf_sync.tf_mt_exit = false;
2447   for (int i = num_workers - 1; i >= 0; i--) {
2448     AVxWorker *worker = &mt_info->workers[i];
2449     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2450 
2451     worker->hook = hook;
2452     worker->data1 = thread_data;
2453     worker->data2 = NULL;
2454 
2455     thread_data->thread_id = i;
2456     // Set the starting tile for each thread.
2457     thread_data->start = i;
2458 
2459     thread_data->cpi = cpi;
2460     if (i == 0) {
2461       thread_data->td = &cpi->td;
2462     } else {
2463       thread_data->td = thread_data->original_td;
2464     }
2465 
2466     // Before encoding a frame, copy the thread data from cpi.
2467     if (thread_data->td != &cpi->td) {
2468       thread_data->td->mb = cpi->td.mb;
2469       // OBMC buffers are used only to init MS params and remain unused when
2470       // called from tf, hence set the buffers to defaults.
2471       av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2472       if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
2473                                    cpi->tf_ctx.num_pels, is_highbitdepth)) {
2474         aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2475                            "Error allocating temporal filter data");
2476       }
2477     }
2478   }
2479 }
2480 
2481 // Deallocate thread specific data for temporal filter.
tf_dealloc_thread_data(AV1_COMP * cpi,int num_workers,int is_highbitdepth)2482 static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
2483                                    int is_highbitdepth) {
2484   MultiThreadInfo *mt_info = &cpi->mt_info;
2485   for (int i = num_workers - 1; i >= 0; i--) {
2486     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2487     ThreadData *td = thread_data->td;
2488     if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
2489   }
2490 }
2491 
2492 // Accumulate sse and sum after temporal filtering.
tf_accumulate_frame_diff(AV1_COMP * cpi,int num_workers)2493 static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
2494   FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
2495   for (int i = num_workers - 1; i >= 0; i--) {
2496     AVxWorker *const worker = &cpi->mt_info.workers[i];
2497     EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2498     ThreadData *td = thread_data->td;
2499     FRAME_DIFF *diff = &td->tf_data.diff;
2500     if (td != &cpi->td) {
2501       total_diff->sse += diff->sse;
2502       total_diff->sum += diff->sum;
2503     }
2504   }
2505 }
2506 
2507 // Implements multi-threading for temporal filter.
av1_tf_do_filtering_mt(AV1_COMP * cpi)2508 void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
2509   AV1_COMMON *cm = &cpi->common;
2510   MultiThreadInfo *mt_info = &cpi->mt_info;
2511   const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
2512 
2513   int num_workers =
2514       AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
2515 
2516   prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
2517   launch_workers(mt_info, num_workers);
2518   sync_enc_workers(mt_info, cm, num_workers);
2519   tf_accumulate_frame_diff(cpi, num_workers);
2520   tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
2521 }
2522 
2523 // Checks if a job is available in the current direction. If a job is available,
2524 // frame_idx will be populated and returns 1, else returns 0.
get_next_gm_job(AV1_COMP * cpi,int * frame_idx,int cur_dir)2525 static inline int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, int cur_dir) {
2526   GlobalMotionInfo *gm_info = &cpi->gm_info;
2527   GlobalMotionJobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2528 
2529   int total_refs = gm_info->num_ref_frames[cur_dir];
2530   int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
2531 
2532   if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
2533     *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
2534     job_info->next_frame_to_process[cur_dir] += 1;
2535     return 1;
2536   }
2537   return 0;
2538 }
2539 
2540 // Switches the current direction and calls the function get_next_gm_job() if
2541 // the speed feature 'prune_ref_frame_for_gm_search' is not set.
switch_direction(AV1_COMP * cpi,int * frame_idx,int * cur_dir)2542 static inline void switch_direction(AV1_COMP *cpi, int *frame_idx,
2543                                     int *cur_dir) {
2544   if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
2545   // Switch the direction and get next job
2546   *cur_dir = !(*cur_dir);
2547   get_next_gm_job(cpi, frame_idx, *(cur_dir));
2548 }
2549 
2550 // Hook function for each thread in global motion multi-threading.
gm_mt_worker_hook(void * arg1,void * unused)2551 static int gm_mt_worker_hook(void *arg1, void *unused) {
2552   (void)unused;
2553 
2554   EncWorkerData *thread_data = (EncWorkerData *)arg1;
2555   AV1_COMP *cpi = thread_data->cpi;
2556   GlobalMotionInfo *gm_info = &cpi->gm_info;
2557   AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
2558   GlobalMotionJobInfo *job_info = &gm_sync->job_info;
2559   int thread_id = thread_data->thread_id;
2560   GlobalMotionData *gm_thread_data = &thread_data->td->gm_data;
2561 #if CONFIG_MULTITHREAD
2562   pthread_mutex_t *gm_mt_mutex_ = gm_sync->mutex_;
2563 #endif
2564 
2565   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2566   struct aom_internal_error_info *const error_info = &thread_data->error_info;
2567   xd->error_info = error_info;
2568 
2569   // The jmp_buf is valid only for the duration of the function that calls
2570   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2571   // before it returns.
2572   if (setjmp(error_info->jmp)) {
2573     error_info->setjmp = 0;
2574 #if CONFIG_MULTITHREAD
2575     pthread_mutex_lock(gm_mt_mutex_);
2576     gm_sync->gm_mt_exit = true;
2577     pthread_mutex_unlock(gm_mt_mutex_);
2578 #endif
2579     return 0;
2580   }
2581   error_info->setjmp = 1;
2582 
2583   int cur_dir = job_info->thread_id_to_dir[thread_id];
2584   bool gm_mt_exit = false;
2585   while (1) {
2586     int ref_buf_idx = -1;
2587 
2588 #if CONFIG_MULTITHREAD
2589     pthread_mutex_lock(gm_mt_mutex_);
2590 #endif
2591 
2592     gm_mt_exit = gm_sync->gm_mt_exit;
2593     // Populates ref_buf_idx(the reference frame type) for which global motion
2594     // estimation will be done.
2595     if (!gm_mt_exit && !get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
2596       // No jobs are available for the current direction. Switch
2597       // to other direction and get the next job, if available.
2598       switch_direction(cpi, &ref_buf_idx, &cur_dir);
2599     }
2600 
2601 #if CONFIG_MULTITHREAD
2602     pthread_mutex_unlock(gm_mt_mutex_);
2603 #endif
2604 
2605     // When gm_mt_exit is set to true, other workers need not pursue any
2606     // further jobs.
2607     if (gm_mt_exit || ref_buf_idx == -1) break;
2608 
2609     // Compute global motion for the given ref_buf_idx.
2610     av1_compute_gm_for_valid_ref_frames(
2611         cpi, error_info, gm_info->ref_buf, ref_buf_idx,
2612         gm_thread_data->motion_models, gm_thread_data->segment_map,
2613         gm_info->segment_map_w, gm_info->segment_map_h);
2614 
2615 #if CONFIG_MULTITHREAD
2616     pthread_mutex_lock(gm_mt_mutex_);
2617 #endif
2618     // If global motion w.r.t. current ref frame is
2619     // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
2620     // the remaining ref frames in that direction.
2621     if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
2622         cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION)
2623       job_info->early_exit[cur_dir] = 1;
2624 
2625 #if CONFIG_MULTITHREAD
2626     pthread_mutex_unlock(gm_mt_mutex_);
2627 #endif
2628   }
2629   error_info->setjmp = 0;
2630   return 1;
2631 }
2632 
2633 // Assigns global motion hook function and thread data to each worker.
prepare_gm_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)2634 static inline void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2635                                       int num_workers) {
2636   MultiThreadInfo *mt_info = &cpi->mt_info;
2637   mt_info->gm_sync.gm_mt_exit = false;
2638   for (int i = num_workers - 1; i >= 0; i--) {
2639     AVxWorker *worker = &mt_info->workers[i];
2640     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2641 
2642     worker->hook = hook;
2643     worker->data1 = thread_data;
2644     worker->data2 = NULL;
2645 
2646     thread_data->thread_id = i;
2647     // Set the starting tile for each thread.
2648     thread_data->start = i;
2649 
2650     thread_data->cpi = cpi;
2651     if (i == 0) {
2652       thread_data->td = &cpi->td;
2653     } else {
2654       thread_data->td = thread_data->original_td;
2655     }
2656 
2657     if (thread_data->td != &cpi->td)
2658       gm_alloc_data(cpi, &thread_data->td->gm_data);
2659   }
2660 }
2661 
2662 // Assigns available threads to past/future direction.
assign_thread_to_dir(int8_t * thread_id_to_dir,int num_workers)2663 static inline void assign_thread_to_dir(int8_t *thread_id_to_dir,
2664                                         int num_workers) {
2665   int8_t frame_dir_idx = 0;
2666 
2667   for (int i = 0; i < num_workers; i++) {
2668     thread_id_to_dir[i] = frame_dir_idx++;
2669     if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
2670   }
2671 }
2672 
2673 // Computes number of workers for global motion multi-threading.
compute_gm_workers(const AV1_COMP * cpi)2674 static inline int compute_gm_workers(const AV1_COMP *cpi) {
2675   int total_refs =
2676       cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
2677   int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
2678                            ? AOMMIN(MAX_DIRECTIONS, total_refs)
2679                            : total_refs;
2680   num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
2681   return (num_gm_workers);
2682 }
2683 
2684 // Frees the memory allocated for each worker in global motion multi-threading.
gm_dealloc_thread_data(AV1_COMP * cpi,int num_workers)2685 static inline void gm_dealloc_thread_data(AV1_COMP *cpi, int num_workers) {
2686   MultiThreadInfo *mt_info = &cpi->mt_info;
2687   for (int j = 0; j < num_workers; j++) {
2688     EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2689     ThreadData *td = thread_data->td;
2690     if (td != &cpi->td) gm_dealloc_data(&td->gm_data);
2691   }
2692 }
2693 
2694 // Implements multi-threading for global motion.
av1_global_motion_estimation_mt(AV1_COMP * cpi)2695 void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
2696   GlobalMotionJobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2697 
2698   av1_zero(*job_info);
2699 
2700   int num_workers = compute_gm_workers(cpi);
2701 
2702   assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
2703   prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
2704   launch_workers(&cpi->mt_info, num_workers);
2705   sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
2706   gm_dealloc_thread_data(cpi, num_workers);
2707 }
2708 #endif  // !CONFIG_REALTIME_ONLY
2709 
get_next_job_allintra(AV1EncRowMultiThreadSync * const row_mt_sync,const int mi_row_end,int * current_mi_row,int mib_size)2710 static inline int get_next_job_allintra(
2711     AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end,
2712     int *current_mi_row, int mib_size) {
2713   if (row_mt_sync->next_mi_row < mi_row_end) {
2714     *current_mi_row = row_mt_sync->next_mi_row;
2715     row_mt_sync->num_threads_working++;
2716     row_mt_sync->next_mi_row += mib_size;
2717     return 1;
2718   }
2719   return 0;
2720 }
2721 
prepare_wiener_var_workers(AV1_COMP * const cpi,AVxWorkerHook hook,const int num_workers)2722 static inline void prepare_wiener_var_workers(AV1_COMP *const cpi,
2723                                               AVxWorkerHook hook,
2724                                               const int num_workers) {
2725   MultiThreadInfo *const mt_info = &cpi->mt_info;
2726   for (int i = num_workers - 1; i >= 0; i--) {
2727     AVxWorker *const worker = &mt_info->workers[i];
2728     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
2729 
2730     worker->hook = hook;
2731     worker->data1 = thread_data;
2732     worker->data2 = NULL;
2733 
2734     thread_data->thread_id = i;
2735     // Set the starting tile for each thread, in this case the preprocessing
2736     // stage does not need tiles. So we set it to 0.
2737     thread_data->start = 0;
2738 
2739     thread_data->cpi = cpi;
2740     if (i == 0) {
2741       thread_data->td = &cpi->td;
2742     } else {
2743       thread_data->td = thread_data->original_td;
2744     }
2745 
2746     if (thread_data->td != &cpi->td) {
2747       thread_data->td->mb = cpi->td.mb;
2748       av1_alloc_mb_wiener_var_pred_buf(&cpi->common, thread_data->td);
2749     }
2750   }
2751 }
2752 
set_mb_wiener_var_calc_done(AV1_COMP * const cpi)2753 static void set_mb_wiener_var_calc_done(AV1_COMP *const cpi) {
2754   const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2755   const BLOCK_SIZE bsize = cpi->weber_bsize;
2756   const int mb_step = mi_size_wide[bsize];
2757   assert(MB_WIENER_MT_UNIT_SIZE < BLOCK_SIZES_ALL);
2758   const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
2759   const int mt_unit_cols =
2760       (mi_params->mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
2761   const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt;
2762   AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2763       &cpi->ppi->intra_row_mt_sync;
2764 
2765   // Update the wiener variance computation of every row in the frame to
2766   // indicate that it is complete in order to avoid dependent workers waiting
2767   // indefinitely.
2768   for (int mi_row = 0, mt_thread_id = 0; mi_row < mi_params->mi_rows;
2769        mi_row += mb_step, ++mt_thread_id) {
2770     intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
2771                                    mt_unit_cols - 1, mt_unit_cols);
2772   }
2773 }
2774 
cal_mb_wiener_var_hook(void * arg1,void * unused)2775 static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
2776   (void)unused;
2777   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
2778   AV1_COMP *const cpi = thread_data->cpi;
2779   MACROBLOCK *x = &thread_data->td->mb;
2780   MACROBLOCKD *xd = &x->e_mbd;
2781   const BLOCK_SIZE bsize = cpi->weber_bsize;
2782   const int mb_step = mi_size_wide[bsize];
2783   AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2784       &cpi->ppi->intra_row_mt_sync;
2785   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
2786   (void)enc_row_mt;
2787 #if CONFIG_MULTITHREAD
2788   pthread_mutex_t *enc_row_mt_mutex = enc_row_mt->mutex_;
2789 #endif
2790 
2791   struct aom_internal_error_info *const error_info = &thread_data->error_info;
2792   xd->error_info = error_info;
2793 
2794   // The jmp_buf is valid only for the duration of the function that calls
2795   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2796   // before it returns.
2797   if (setjmp(error_info->jmp)) {
2798     error_info->setjmp = 0;
2799 #if CONFIG_MULTITHREAD
2800     pthread_mutex_lock(enc_row_mt_mutex);
2801     enc_row_mt->mb_wiener_mt_exit = true;
2802     pthread_mutex_unlock(enc_row_mt_mutex);
2803 #endif
2804     set_mb_wiener_var_calc_done(cpi);
2805     return 0;
2806   }
2807   error_info->setjmp = 1;
2808   DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
2809   DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
2810   DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
2811   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
2812   double sum_rec_distortion = 0;
2813   double sum_est_rate = 0;
2814   while (1) {
2815     int current_mi_row = -1;
2816 #if CONFIG_MULTITHREAD
2817     pthread_mutex_lock(enc_row_mt_mutex);
2818 #endif
2819     int has_jobs = enc_row_mt->mb_wiener_mt_exit
2820                        ? 0
2821                        : get_next_job_allintra(intra_row_mt_sync,
2822                                                cpi->common.mi_params.mi_rows,
2823                                                &current_mi_row, mb_step);
2824 #if CONFIG_MULTITHREAD
2825     pthread_mutex_unlock(enc_row_mt_mutex);
2826 #endif
2827     if (!has_jobs) break;
2828     // TODO(chengchen): properly accumulate the distortion and rate.
2829     av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
2830                                qcoeff, dqcoeff, &sum_rec_distortion,
2831                                &sum_est_rate,
2832                                thread_data->td->wiener_tmp_pred_buf);
2833 #if CONFIG_MULTITHREAD
2834     pthread_mutex_lock(enc_row_mt_mutex);
2835 #endif
2836     intra_row_mt_sync->num_threads_working--;
2837 #if CONFIG_MULTITHREAD
2838     pthread_mutex_unlock(enc_row_mt_mutex);
2839 #endif
2840   }
2841   error_info->setjmp = 0;
2842   return 1;
2843 }
2844 
dealloc_mb_wiener_var_mt_data(AV1_COMP * cpi,int num_workers)2845 static void dealloc_mb_wiener_var_mt_data(AV1_COMP *cpi, int num_workers) {
2846   av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync);
2847 
2848   MultiThreadInfo *mt_info = &cpi->mt_info;
2849   for (int j = 0; j < num_workers; ++j) {
2850     EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2851     ThreadData *td = thread_data->td;
2852     if (td != &cpi->td) av1_dealloc_mb_wiener_var_pred_buf(td);
2853   }
2854 }
2855 
2856 // This function is the multi-threading version of computing the wiener
2857 // variance.
2858 // Note that the wiener variance is used for allintra mode (1 pass) and its
2859 // computation is before the frame encoding, so we don't need to consider
2860 // the number of tiles, instead we allocate all available threads to
2861 // the computation.
av1_calc_mb_wiener_var_mt(AV1_COMP * cpi,int num_workers,double * sum_rec_distortion,double * sum_est_rate)2862 void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
2863                                double *sum_rec_distortion,
2864                                double *sum_est_rate) {
2865   (void)sum_rec_distortion;
2866   (void)sum_est_rate;
2867   AV1_COMMON *const cm = &cpi->common;
2868   MultiThreadInfo *const mt_info = &cpi->mt_info;
2869   AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2870       &cpi->ppi->intra_row_mt_sync;
2871 
2872   // TODO(chengchen): the memory usage could be improved.
2873   const int mi_rows = cm->mi_params.mi_rows;
2874   row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows);
2875 
2876   intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2877   intra_row_mt_sync->num_threads_working = num_workers;
2878   intra_row_mt_sync->next_mi_row = 0;
2879   memset(intra_row_mt_sync->num_finished_cols, -1,
2880          sizeof(*intra_row_mt_sync->num_finished_cols) * mi_rows);
2881   mt_info->enc_row_mt.mb_wiener_mt_exit = false;
2882 
2883   prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
2884   launch_workers(mt_info, num_workers);
2885   sync_enc_workers(mt_info, cm, num_workers);
2886   dealloc_mb_wiener_var_mt_data(cpi, num_workers);
2887 }
2888 
2889 // Compare and order tiles based on absolute sum of tx coeffs.
compare_tile_order(const void * a,const void * b)2890 static int compare_tile_order(const void *a, const void *b) {
2891   const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
2892   const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;
2893 
2894   if (tile_a->abs_sum_level > tile_b->abs_sum_level)
2895     return -1;
2896   else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
2897     return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
2898   else
2899     return 1;
2900 }
2901 
2902 // Get next tile index to be processed for pack bitstream
get_next_pack_bs_tile_idx(AV1EncPackBSSync * const pack_bs_sync,const int num_tiles)2903 static inline int get_next_pack_bs_tile_idx(
2904     AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
2905   assert(pack_bs_sync->next_job_idx <= num_tiles);
2906   if (pack_bs_sync->next_job_idx == num_tiles) return -1;
2907 
2908   return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
2909       .tile_idx;
2910 }
2911 
2912 // Calculates bitstream chunk size based on total buffer size and tile or tile
2913 // group size.
get_bs_chunk_size(int tg_or_tile_size,const int frame_or_tg_size,size_t * remain_buf_size,size_t max_buf_size,int is_last_chunk)2914 static inline size_t get_bs_chunk_size(int tg_or_tile_size,
2915                                        const int frame_or_tg_size,
2916                                        size_t *remain_buf_size,
2917                                        size_t max_buf_size, int is_last_chunk) {
2918   size_t this_chunk_size;
2919   assert(*remain_buf_size > 0);
2920   if (is_last_chunk) {
2921     this_chunk_size = *remain_buf_size;
2922     *remain_buf_size = 0;
2923   } else {
2924     const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
2925     this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
2926     *remain_buf_size -= this_chunk_size;
2927     assert(*remain_buf_size > 0);
2928   }
2929   assert(this_chunk_size > 0);
2930   return this_chunk_size;
2931 }
2932 
2933 // Initializes params required for pack bitstream tile.
init_tile_pack_bs_params(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,PackBSParams * const pack_bs_params_arr,uint8_t obu_extn_header)2934 static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
2935                                      struct aom_write_bit_buffer *saved_wb,
2936                                      PackBSParams *const pack_bs_params_arr,
2937                                      uint8_t obu_extn_header) {
2938   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2939   AV1_COMMON *const cm = &cpi->common;
2940   const CommonTileParams *const tiles = &cm->tiles;
2941   const int num_tiles = tiles->cols * tiles->rows;
2942   // Fixed size tile groups for the moment
2943   const int num_tg_hdrs = cpi->num_tg;
2944   // Tile group size in terms of number of tiles.
2945   const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
2946   uint8_t *tile_dst = dst;
2947   uint8_t *tile_data_curr = dst;
2948   // Max tile group count can not be more than MAX_TILES.
2949   int tg_size_mi[MAX_TILES] = { 0 };  // Size of tile group in mi units
2950   int tile_idx;
2951   int tg_idx = 0;
2952   int tile_count_in_tg = 0;
2953   int new_tg = 1;
2954 
2955   // Populate pack bitstream params of all tiles.
2956   for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2957     const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
2958     PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2959     // Calculate tile size in mi units.
2960     const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
2961                              (tile_info->mi_row_end - tile_info->mi_row_start);
2962     int is_last_tile_in_tg = 0;
2963     tile_count_in_tg++;
2964     if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
2965       is_last_tile_in_tg = 1;
2966 
2967     // Populate pack bitstream params of this tile.
2968     pack_bs_params->curr_tg_hdr_size = 0;
2969     pack_bs_params->obu_extn_header = obu_extn_header;
2970     pack_bs_params->saved_wb = saved_wb;
2971     pack_bs_params->obu_header_size = 0;
2972     pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
2973     pack_bs_params->new_tg = new_tg;
2974     pack_bs_params->tile_col = tile_info->tile_col;
2975     pack_bs_params->tile_row = tile_info->tile_row;
2976     pack_bs_params->tile_size_mi = tile_size_mi;
2977     tg_size_mi[tg_idx] += tile_size_mi;
2978 
2979     if (new_tg) new_tg = 0;
2980     if (is_last_tile_in_tg) {
2981       tile_count_in_tg = 0;
2982       new_tg = 1;
2983       tg_idx++;
2984     }
2985   }
2986 
2987   assert(cpi->available_bs_size > 0);
2988   size_t tg_buf_size[MAX_TILES] = { 0 };
2989   size_t max_buf_size = cpi->available_bs_size;
2990   size_t remain_buf_size = max_buf_size;
2991   const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;
2992 
2993   tile_idx = 0;
2994   // Prepare obu, tile group and frame header of each tile group.
2995   for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
2996     PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2997     int is_last_tg = tg_idx == cpi->num_tg - 1;
2998     // Prorate bitstream buffer size based on tile group size and available
2999     // buffer size. This buffer will be used to store headers and tile data.
3000     tg_buf_size[tg_idx] =
3001         get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
3002                           max_buf_size, is_last_tg);
3003 
3004     pack_bs_params->dst = tile_dst;
3005     pack_bs_params->tile_data_curr = tile_dst;
3006 
3007     // Write obu, tile group and frame header at first tile in the tile
3008     // group.
3009     av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
3010     tile_dst += tg_buf_size[tg_idx];
3011 
3012     // Exclude headers from tile group buffer size.
3013     tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
3014     tile_idx += tg_size_in_tiles;
3015   }
3016 
3017   tg_idx = 0;
3018   // Calculate bitstream buffer size of each tile in the tile group.
3019   for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3020     PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3021 
3022     if (pack_bs_params->new_tg) {
3023       max_buf_size = tg_buf_size[tg_idx];
3024       remain_buf_size = max_buf_size;
3025     }
3026 
3027     // Prorate bitstream buffer size of this tile based on tile size and
3028     // available buffer size. For this proration, header size is not accounted.
3029     const size_t tile_buf_size = get_bs_chunk_size(
3030         pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
3031         max_buf_size, pack_bs_params->is_last_tile_in_tg);
3032     pack_bs_params->tile_buf_size = tile_buf_size;
3033 
3034     // Update base address of bitstream buffer for tile and tile group.
3035     if (pack_bs_params->new_tg) {
3036       tile_dst = pack_bs_params->dst;
3037       tile_data_curr = pack_bs_params->tile_data_curr;
3038       // Account header size in first tile of a tile group.
3039       pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
3040     } else {
3041       pack_bs_params->dst = tile_dst;
3042       pack_bs_params->tile_data_curr = tile_data_curr;
3043     }
3044 
3045     if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
3046     tile_dst += pack_bs_params->tile_buf_size;
3047   }
3048 }
3049 
3050 // Worker hook function of pack bitsteam multithreading.
pack_bs_worker_hook(void * arg1,void * arg2)3051 static int pack_bs_worker_hook(void *arg1, void *arg2) {
3052   EncWorkerData *const thread_data = (EncWorkerData *)arg1;
3053   PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
3054   AV1_COMP *const cpi = thread_data->cpi;
3055   AV1_COMMON *const cm = &cpi->common;
3056   AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
3057   const CommonTileParams *const tiles = &cm->tiles;
3058   const int num_tiles = tiles->cols * tiles->rows;
3059 
3060 #if CONFIG_MULTITHREAD
3061   pthread_mutex_t *const pack_bs_mutex = pack_bs_sync->mutex_;
3062 #endif
3063   MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
3064   struct aom_internal_error_info *const error_info = &thread_data->error_info;
3065   xd->error_info = error_info;
3066 
3067   // The jmp_buf is valid only for the duration of the function that calls
3068   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3069   // before it returns.
3070   if (setjmp(error_info->jmp)) {
3071     error_info->setjmp = 0;
3072 #if CONFIG_MULTITHREAD
3073     pthread_mutex_lock(pack_bs_mutex);
3074     pack_bs_sync->pack_bs_mt_exit = true;
3075     pthread_mutex_unlock(pack_bs_mutex);
3076 #endif
3077     return 0;
3078   }
3079   error_info->setjmp = 1;
3080 
3081   while (1) {
3082 #if CONFIG_MULTITHREAD
3083     pthread_mutex_lock(pack_bs_mutex);
3084 #endif
3085     const int tile_idx =
3086         pack_bs_sync->pack_bs_mt_exit
3087             ? -1
3088             : get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
3089 #if CONFIG_MULTITHREAD
3090     pthread_mutex_unlock(pack_bs_mutex);
3091 #endif
3092     // When pack_bs_mt_exit is set to true, other workers need not pursue any
3093     // further jobs.
3094     if (tile_idx == -1) break;
3095     TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3096     thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
3097 
3098     av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
3099   }
3100 
3101   error_info->setjmp = 0;
3102   return 1;
3103 }
3104 
3105 // Prepares thread data and workers of pack bitsteam multithreading.
prepare_pack_bs_workers(AV1_COMP * const cpi,PackBSParams * const pack_bs_params,AVxWorkerHook hook,const int num_workers)3106 static void prepare_pack_bs_workers(AV1_COMP *const cpi,
3107                                     PackBSParams *const pack_bs_params,
3108                                     AVxWorkerHook hook, const int num_workers) {
3109   MultiThreadInfo *const mt_info = &cpi->mt_info;
3110   for (int i = num_workers - 1; i >= 0; i--) {
3111     AVxWorker *worker = &mt_info->workers[i];
3112     EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
3113     if (i == 0) {
3114       thread_data->td = &cpi->td;
3115     } else {
3116       thread_data->td = thread_data->original_td;
3117     }
3118 
3119     if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;
3120 
3121     thread_data->cpi = cpi;
3122     thread_data->start = i;
3123     thread_data->thread_id = i;
3124     av1_reset_pack_bs_thread_data(thread_data->td);
3125 
3126     worker->hook = hook;
3127     worker->data1 = thread_data;
3128     worker->data2 = pack_bs_params;
3129   }
3130 
3131   AV1_COMMON *const cm = &cpi->common;
3132   AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
3133   const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
3134   pack_bs_sync->next_job_idx = 0;
3135   pack_bs_sync->pack_bs_mt_exit = false;
3136 
3137   PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
3138   // Reset tile order data of pack bitstream
3139   av1_zero_array(pack_bs_tile_order, num_tiles);
3140 
3141   // Populate pack bitstream tile order structure
3142   for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3143     pack_bs_tile_order[tile_idx].abs_sum_level =
3144         cpi->tile_data[tile_idx].abs_sum_level;
3145     pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
3146   }
3147 
3148   // Sort tiles in descending order based on tile area.
3149   qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
3150         compare_tile_order);
3151 }
3152 
3153 // Accumulates data after pack bitsteam processing.
accumulate_pack_bs_data(AV1_COMP * const cpi,const PackBSParams * const pack_bs_params_arr,uint8_t * const dst,uint32_t * total_size,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)3154 static void accumulate_pack_bs_data(
3155     AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
3156     uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
3157     int *const largest_tile_id, unsigned int *max_tile_size,
3158     uint32_t *const obu_header_size, uint8_t **tile_data_start,
3159     const int num_workers) {
3160   const AV1_COMMON *const cm = &cpi->common;
3161   const CommonTileParams *const tiles = &cm->tiles;
3162   const int tile_count = tiles->cols * tiles->rows;
3163   // Fixed size tile groups for the moment
3164   size_t curr_tg_data_size = 0;
3165   int is_first_tg = 1;
3166   uint8_t *curr_tg_start = dst;
3167   size_t src_offset = 0;
3168   size_t dst_offset = 0;
3169 
3170   for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
3171     // PackBSParams stores all parameters required to pack tile and header
3172     // info.
3173     const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3174     uint32_t tile_size = 0;
3175 
3176     if (pack_bs_params->new_tg) {
3177       curr_tg_start = dst + *total_size;
3178       curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
3179       *tile_data_start += pack_bs_params->curr_tg_hdr_size;
3180       *obu_header_size = pack_bs_params->obu_header_size;
3181     }
3182     curr_tg_data_size +=
3183         pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);
3184 
3185     if (pack_bs_params->buf.size > *max_tile_size) {
3186       *largest_tile_id = tile_idx;
3187       *max_tile_size = (unsigned int)pack_bs_params->buf.size;
3188     }
3189     tile_size +=
3190         (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;
3191 
3192     // Pack all the chunks of tile bitstreams together
3193     if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);
3194 
3195     if (pack_bs_params->is_last_tile_in_tg)
3196       av1_write_last_tile_info(
3197           cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
3198           curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
3199           &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
3200     src_offset += pack_bs_params->tile_buf_size;
3201     dst_offset += tile_size;
3202     *total_size += tile_size;
3203   }
3204 
3205   // Accumulate thread data
3206   MultiThreadInfo *const mt_info = &cpi->mt_info;
3207   for (int idx = num_workers - 1; idx >= 0; idx--) {
3208     ThreadData const *td = mt_info->tile_thr_data[idx].td;
3209     av1_accumulate_pack_bs_thread_data(cpi, td);
3210   }
3211 }
3212 
av1_write_tile_obu_mt(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)3213 void av1_write_tile_obu_mt(
3214     AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3215     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3216     const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3217     unsigned int *max_tile_size, uint32_t *const obu_header_size,
3218     uint8_t **tile_data_start, const int num_workers) {
3219   MultiThreadInfo *const mt_info = &cpi->mt_info;
3220 
3221   PackBSParams pack_bs_params[MAX_TILES];
3222   uint32_t tile_size[MAX_TILES] = { 0 };
3223 
3224   for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
3225     pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];
3226 
3227   init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
3228   prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
3229                           num_workers);
3230   launch_workers(mt_info, num_workers);
3231   sync_enc_workers(mt_info, &cpi->common, num_workers);
3232   accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
3233                           largest_tile_id, max_tile_size, obu_header_size,
3234                           tile_data_start, num_workers);
3235 }
3236 
3237 // Deallocate memory for CDEF search multi-thread synchronization.
av1_cdef_mt_dealloc(AV1CdefSync * cdef_sync)3238 void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
3239   (void)cdef_sync;
3240   assert(cdef_sync != NULL);
3241 #if CONFIG_MULTITHREAD
3242   if (cdef_sync->mutex_ != NULL) {
3243     pthread_mutex_destroy(cdef_sync->mutex_);
3244     aom_free(cdef_sync->mutex_);
3245   }
3246 #endif  // CONFIG_MULTITHREAD
3247 }
3248 
3249 // Updates the row and column indices of the next job to be processed.
3250 // Also updates end_of_frame flag when the processing of all blocks is complete.
update_next_job_info(AV1CdefSync * cdef_sync,int nvfb,int nhfb)3251 static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
3252   cdef_sync->fbc++;
3253   if (cdef_sync->fbc == nhfb) {
3254     cdef_sync->fbr++;
3255     if (cdef_sync->fbr == nvfb) {
3256       cdef_sync->end_of_frame = 1;
3257     } else {
3258       cdef_sync->fbc = 0;
3259     }
3260   }
3261 }
3262 
3263 // Initializes cdef_sync parameters.
cdef_reset_job_info(AV1CdefSync * cdef_sync)3264 static inline void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
3265 #if CONFIG_MULTITHREAD
3266   if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
3267 #endif  // CONFIG_MULTITHREAD
3268   cdef_sync->end_of_frame = 0;
3269   cdef_sync->fbr = 0;
3270   cdef_sync->fbc = 0;
3271   cdef_sync->cdef_mt_exit = false;
3272 }
3273 
3274 // Checks if a job is available. If job is available,
3275 // populates next job information and returns 1, else returns 0.
cdef_get_next_job(AV1CdefSync * cdef_sync,CdefSearchCtx * cdef_search_ctx,volatile int * cur_fbr,volatile int * cur_fbc,volatile int * sb_count)3276 static inline int cdef_get_next_job(AV1CdefSync *cdef_sync,
3277                                     CdefSearchCtx *cdef_search_ctx,
3278                                     volatile int *cur_fbr,
3279                                     volatile int *cur_fbc,
3280                                     volatile int *sb_count) {
3281 #if CONFIG_MULTITHREAD
3282   pthread_mutex_lock(cdef_sync->mutex_);
3283 #endif  // CONFIG_MULTITHREAD
3284   int do_next_block = 0;
3285   const int nvfb = cdef_search_ctx->nvfb;
3286   const int nhfb = cdef_search_ctx->nhfb;
3287 
3288   // If a block is skip, do not process the block and
3289   // check the skip condition for the next block.
3290   while (!cdef_sync->cdef_mt_exit && !cdef_sync->end_of_frame &&
3291          cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
3292                       cdef_sync->fbc)) {
3293     update_next_job_info(cdef_sync, nvfb, nhfb);
3294   }
3295 
3296   // Populates information needed for current job and update the row,
3297   // column indices of the next block to be processed.
3298   if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
3299     do_next_block = 1;
3300     *cur_fbr = cdef_sync->fbr;
3301     *cur_fbc = cdef_sync->fbc;
3302     *sb_count = cdef_search_ctx->sb_count;
3303     cdef_search_ctx->sb_count++;
3304     update_next_job_info(cdef_sync, nvfb, nhfb);
3305   }
3306 #if CONFIG_MULTITHREAD
3307   pthread_mutex_unlock(cdef_sync->mutex_);
3308 #endif  // CONFIG_MULTITHREAD
3309   return do_next_block;
3310 }
3311 
3312 // Hook function for each thread in CDEF search multi-threading.
cdef_filter_block_worker_hook(void * arg1,void * arg2)3313 static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
3314   EncWorkerData *thread_data = (EncWorkerData *)arg1;
3315   AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg2;
3316 
3317 #if CONFIG_MULTITHREAD
3318   pthread_mutex_t *cdef_mutex_ = cdef_sync->mutex_;
3319 #endif
3320   struct aom_internal_error_info *const error_info = &thread_data->error_info;
3321   CdefSearchCtx *cdef_search_ctx = thread_data->cpi->cdef_search_ctx;
3322 
3323   // The jmp_buf is valid only for the duration of the function that calls
3324   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3325   // before it returns.
3326   if (setjmp(error_info->jmp)) {
3327     error_info->setjmp = 0;
3328 #if CONFIG_MULTITHREAD
3329     pthread_mutex_lock(cdef_mutex_);
3330     cdef_sync->cdef_mt_exit = true;
3331     pthread_mutex_unlock(cdef_mutex_);
3332 #endif
3333     return 0;
3334   }
3335   error_info->setjmp = 1;
3336 
3337   volatile int cur_fbr, cur_fbc, sb_count;
3338   while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
3339                            &sb_count)) {
3340     av1_cdef_mse_calc_block(cdef_search_ctx, error_info, cur_fbr, cur_fbc,
3341                             sb_count);
3342   }
3343   error_info->setjmp = 0;
3344   return 1;
3345 }
3346 
3347 // Assigns CDEF search hook function and thread data to each worker.
prepare_cdef_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)3348 static void prepare_cdef_workers(AV1_COMP *cpi, AVxWorkerHook hook,
3349                                  int num_workers) {
3350   MultiThreadInfo *mt_info = &cpi->mt_info;
3351   for (int i = num_workers - 1; i >= 0; i--) {
3352     AVxWorker *worker = &mt_info->workers[i];
3353     EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
3354 
3355     thread_data->cpi = cpi;
3356     worker->hook = hook;
3357     worker->data1 = thread_data;
3358     worker->data2 = &mt_info->cdef_sync;
3359   }
3360 }
3361 
3362 // Implements multi-threading for CDEF search.
av1_cdef_mse_calc_frame_mt(AV1_COMP * cpi)3363 void av1_cdef_mse_calc_frame_mt(AV1_COMP *cpi) {
3364   MultiThreadInfo *mt_info = &cpi->mt_info;
3365   AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
3366   const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
3367 
3368   cdef_reset_job_info(cdef_sync);
3369   prepare_cdef_workers(cpi, cdef_filter_block_worker_hook, num_workers);
3370   launch_workers(mt_info, num_workers);
3371   sync_enc_workers(mt_info, &cpi->common, num_workers);
3372 }
3373 
3374 // Computes num_workers for temporal filter multi-threading.
compute_num_tf_workers(const AV1_COMP * cpi)3375 static inline int compute_num_tf_workers(const AV1_COMP *cpi) {
3376   // For single-pass encode, using no. of workers as per tf block size was not
3377   // found to improve speed. Hence the thread assignment for single-pass encode
3378   // is kept based on compute_num_enc_workers().
3379   if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
3380     return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3381 
3382   if (cpi->oxcf.max_threads <= 1) return 1;
3383 
3384   const int frame_height = cpi->common.height;
3385   const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
3386   const int mb_height = block_size_high[block_size];
3387   const int mb_rows = get_num_blocks(frame_height, mb_height);
3388   return AOMMIN(cpi->oxcf.max_threads, mb_rows);
3389 }
3390 
3391 // Computes num_workers for tpl multi-threading.
compute_num_tpl_workers(AV1_COMP * cpi)3392 static inline int compute_num_tpl_workers(AV1_COMP *cpi) {
3393   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3394 }
3395 
3396 // Computes num_workers for loop filter multi-threading.
compute_num_lf_workers(AV1_COMP * cpi)3397 static inline int compute_num_lf_workers(AV1_COMP *cpi) {
3398   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3399 }
3400 
3401 // Computes num_workers for cdef multi-threading.
compute_num_cdef_workers(AV1_COMP * cpi)3402 static inline int compute_num_cdef_workers(AV1_COMP *cpi) {
3403   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3404 }
3405 
3406 // Computes num_workers for loop-restoration multi-threading.
compute_num_lr_workers(AV1_COMP * cpi)3407 static inline int compute_num_lr_workers(AV1_COMP *cpi) {
3408   return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3409 }
3410 
3411 // Computes num_workers for pack bitstream multi-threading.
compute_num_pack_bs_workers(AV1_COMP * cpi)3412 static inline int compute_num_pack_bs_workers(AV1_COMP *cpi) {
3413   if (cpi->oxcf.max_threads <= 1) return 1;
3414   return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
3415 }
3416 
3417 // Computes num_workers for all intra multi-threading.
compute_num_ai_workers(AV1_COMP * cpi)3418 static inline int compute_num_ai_workers(AV1_COMP *cpi) {
3419   if (cpi->oxcf.max_threads <= 1) return 1;
3420   // The multi-threading implementation of deltaq-mode = 3 in allintra
3421   // mode is based on row multi threading.
3422   if (!cpi->oxcf.row_mt) return 1;
3423   cpi->weber_bsize = BLOCK_8X8;
3424   const BLOCK_SIZE bsize = cpi->weber_bsize;
3425   const int mb_step = mi_size_wide[bsize];
3426   const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
3427   return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
3428 }
3429 
compute_num_mod_workers(AV1_COMP * cpi,MULTI_THREADED_MODULES mod_name)3430 static int compute_num_mod_workers(AV1_COMP *cpi,
3431                                    MULTI_THREADED_MODULES mod_name) {
3432   int num_mod_workers = 0;
3433   switch (mod_name) {
3434     case MOD_FP:
3435       if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
3436         num_mod_workers = 0;
3437       else
3438         num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3439       break;
3440     case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
3441     case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
3442     case MOD_GME: num_mod_workers = 1; break;
3443     case MOD_ENC:
3444       num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3445       break;
3446     case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
3447     case MOD_CDEF_SEARCH:
3448       num_mod_workers = compute_num_cdef_workers(cpi);
3449       break;
3450     case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
3451     case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
3452     case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
3453     case MOD_FRAME_ENC:
3454       num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
3455       break;
3456     case MOD_AI:
3457       if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
3458         num_mod_workers = compute_num_ai_workers(cpi);
3459       } else {
3460         num_mod_workers = 0;
3461       }
3462       break;
3463     default: assert(0); break;
3464   }
3465   return (num_mod_workers);
3466 }
3467 // Computes the number of workers for each MT modules in the encoder
av1_compute_num_workers_for_mt(AV1_COMP * cpi)3468 void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
3469   for (int i = MOD_FP; i < NUM_MT_MODULES; i++) {
3470     cpi->ppi->p_mt_info.num_mod_workers[i] =
3471         compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
3472   }
3473 }
3474