1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <[email protected]>
13  *	Alexei Starovoitov <[email protected]>
14  *	Daniel Borkmann <[email protected]>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *
126  * Run the eBPF program and then cut skb->data to correct size returned by
127  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128  * than pkt_len we keep whole skb->data. This is the socket level
129  * wrapper to bpf_prog_run. It returns 0 if the packet should
130  * be accepted or -EPERM if the packet should be tossed.
131  *
132  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 	int err;
136 	struct sk_filter *filter;
137 
138 	/*
139 	 * If the skb was allocated from pfmemalloc reserves, only
140 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 	 * helping free memory
142 	 */
143 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 		return -ENOMEM;
146 	}
147 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 	if (err)
149 		return err;
150 
151 	err = security_sock_rcv_skb(sk, skb);
152 	if (err)
153 		return err;
154 
155 	rcu_read_lock();
156 	filter = rcu_dereference(sk->sk_filter);
157 	if (filter) {
158 		struct sock *save_sk = skb->sk;
159 		unsigned int pkt_len;
160 
161 		skb->sk = sk;
162 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 		skb->sk = save_sk;
164 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 	}
166 	rcu_read_unlock();
167 
168 	return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 	return skb_get_poff(skb);
175 }
176 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 	struct nlattr *nla;
180 
181 	if (skb_is_nonlinear(skb))
182 		return 0;
183 
184 	if (skb->len < sizeof(struct nlattr))
185 		return 0;
186 
187 	if (a > skb->len - sizeof(struct nlattr))
188 		return 0;
189 
190 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 	if (nla)
192 		return (void *) nla - (void *) skb->data;
193 
194 	return 0;
195 }
196 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 	struct nlattr *nla;
200 
201 	if (skb_is_nonlinear(skb))
202 		return 0;
203 
204 	if (skb->len < sizeof(struct nlattr))
205 		return 0;
206 
207 	if (a > skb->len - sizeof(struct nlattr))
208 		return 0;
209 
210 	nla = (struct nlattr *) &skb->data[a];
211 	if (!nla_ok(nla, skb->len - a))
212 		return 0;
213 
214 	nla = nla_find_nested(nla, x);
215 	if (nla)
216 		return (void *) nla - (void *) skb->data;
217 
218 	return 0;
219 }
220 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)221 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
222 {
223 	if (likely(offset >= 0))
224 		return offset;
225 
226 	if (offset >= SKF_NET_OFF)
227 		return offset - SKF_NET_OFF + skb_network_offset(skb);
228 
229 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
230 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
231 
232 	return INT_MIN;
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u8 tmp;
239 	const int len = sizeof(tmp);
240 
241 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
242 	if (offset == INT_MIN)
243 		return -EFAULT;
244 
245 	if (headlen - offset >= len)
246 		return *(u8 *)(data + offset);
247 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248 		return tmp;
249 	else
250 		return -EFAULT;
251 }
252 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)253 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
254 	   int, offset)
255 {
256 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
257 					 offset);
258 }
259 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)260 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
261 	   data, int, headlen, int, offset)
262 {
263 	__be16 tmp;
264 	const int len = sizeof(tmp);
265 
266 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
267 	if (offset == INT_MIN)
268 		return -EFAULT;
269 
270 	if (headlen - offset >= len)
271 		return get_unaligned_be16(data + offset);
272 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 		return be16_to_cpu(tmp);
274 	else
275 		return -EFAULT;
276 }
277 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)278 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
279 	   int, offset)
280 {
281 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
282 					  offset);
283 }
284 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)285 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
286 	   data, int, headlen, int, offset)
287 {
288 	__be32 tmp;
289 	const int len = sizeof(tmp);
290 
291 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
292 	if (offset == INT_MIN)
293 		return -EFAULT;
294 
295 	if (headlen - offset >= len)
296 		return get_unaligned_be32(data + offset);
297 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
298 		return be32_to_cpu(tmp);
299 	else
300 		return -EFAULT;
301 }
302 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)303 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
304 	   int, offset)
305 {
306 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
307 					  offset);
308 }
309 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)310 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
311 			      struct bpf_insn *insn_buf)
312 {
313 	struct bpf_insn *insn = insn_buf;
314 
315 	switch (skb_field) {
316 	case SKF_AD_MARK:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, mark));
321 		break;
322 
323 	case SKF_AD_PKTTYPE:
324 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
325 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
326 #ifdef __BIG_ENDIAN_BITFIELD
327 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
328 #endif
329 		break;
330 
331 	case SKF_AD_QUEUE:
332 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
333 
334 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 				      offsetof(struct sk_buff, queue_mapping));
336 		break;
337 
338 	case SKF_AD_VLAN_TAG:
339 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
340 
341 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
342 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
343 				      offsetof(struct sk_buff, vlan_tci));
344 		break;
345 	case SKF_AD_VLAN_TAG_PRESENT:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
347 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
348 				      offsetof(struct sk_buff, vlan_all));
349 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
350 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
351 		break;
352 	}
353 
354 	return insn - insn_buf;
355 }
356 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)357 static bool convert_bpf_extensions(struct sock_filter *fp,
358 				   struct bpf_insn **insnp)
359 {
360 	struct bpf_insn *insn = *insnp;
361 	u32 cnt;
362 
363 	switch (fp->k) {
364 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
365 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
366 
367 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
368 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, protocol));
370 		/* A = ntohs(A) [emitting a nop or swap16] */
371 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
372 		break;
373 
374 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
375 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
376 		insn += cnt - 1;
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_IFINDEX:
380 	case SKF_AD_OFF + SKF_AD_HATYPE:
381 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
382 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
383 
384 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
385 				      BPF_REG_TMP, BPF_REG_CTX,
386 				      offsetof(struct sk_buff, dev));
387 		/* if (tmp != 0) goto pc + 1 */
388 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
389 		*insn++ = BPF_EXIT_INSN();
390 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
391 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
392 					    offsetof(struct net_device, ifindex));
393 		else
394 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
395 					    offsetof(struct net_device, type));
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_MARK:
399 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
400 		insn += cnt - 1;
401 		break;
402 
403 	case SKF_AD_OFF + SKF_AD_RXHASH:
404 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
405 
406 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
407 				    offsetof(struct sk_buff, hash));
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_QUEUE:
411 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
412 		insn += cnt - 1;
413 		break;
414 
415 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
416 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
417 					 BPF_REG_A, BPF_REG_CTX, insn);
418 		insn += cnt - 1;
419 		break;
420 
421 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
422 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
423 					 BPF_REG_A, BPF_REG_CTX, insn);
424 		insn += cnt - 1;
425 		break;
426 
427 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
428 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
429 
430 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
431 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
432 				      offsetof(struct sk_buff, vlan_proto));
433 		/* A = ntohs(A) [emitting a nop or swap16] */
434 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
435 		break;
436 
437 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
438 	case SKF_AD_OFF + SKF_AD_NLATTR:
439 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 	case SKF_AD_OFF + SKF_AD_CPU:
441 	case SKF_AD_OFF + SKF_AD_RANDOM:
442 		/* arg1 = CTX */
443 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
444 		/* arg2 = A */
445 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
446 		/* arg3 = X */
447 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
448 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
449 		switch (fp->k) {
450 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
451 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
452 			break;
453 		case SKF_AD_OFF + SKF_AD_NLATTR:
454 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
455 			break;
456 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
457 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
458 			break;
459 		case SKF_AD_OFF + SKF_AD_CPU:
460 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_RANDOM:
463 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
464 			bpf_user_rnd_init_once();
465 			break;
466 		}
467 		break;
468 
469 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
470 		/* A ^= X */
471 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
472 		break;
473 
474 	default:
475 		/* This is just a dummy call to avoid letting the compiler
476 		 * evict __bpf_call_base() as an optimization. Placed here
477 		 * where no-one bothers.
478 		 */
479 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
480 		return false;
481 	}
482 
483 	*insnp = insn;
484 	return true;
485 }
486 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)487 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
488 {
489 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
490 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
491 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
492 		      BPF_SIZE(fp->code) == BPF_W;
493 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
494 	const int ip_align = NET_IP_ALIGN;
495 	struct bpf_insn *insn = *insnp;
496 	int offset = fp->k;
497 
498 	if (!indirect &&
499 	    ((unaligned_ok && offset >= 0) ||
500 	     (!unaligned_ok && offset >= 0 &&
501 	      offset + ip_align >= 0 &&
502 	      offset + ip_align % size == 0))) {
503 		bool ldx_off_ok = offset <= S16_MAX;
504 
505 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
506 		if (offset)
507 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
508 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
509 				      size, 2 + endian + (!ldx_off_ok * 2));
510 		if (ldx_off_ok) {
511 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
512 					      BPF_REG_D, offset);
513 		} else {
514 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
516 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
517 					      BPF_REG_TMP, 0);
518 		}
519 		if (endian)
520 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
521 		*insn++ = BPF_JMP_A(8);
522 	}
523 
524 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
525 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
526 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
527 	if (!indirect) {
528 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
529 	} else {
530 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
531 		if (fp->k)
532 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
533 	}
534 
535 	switch (BPF_SIZE(fp->code)) {
536 	case BPF_B:
537 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
538 		break;
539 	case BPF_H:
540 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
541 		break;
542 	case BPF_W:
543 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
544 		break;
545 	default:
546 		return false;
547 	}
548 
549 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
550 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
551 	*insn   = BPF_EXIT_INSN();
552 
553 	*insnp = insn;
554 	return true;
555 }
556 
557 /**
558  *	bpf_convert_filter - convert filter program
559  *	@prog: the user passed filter program
560  *	@len: the length of the user passed filter program
561  *	@new_prog: allocated 'struct bpf_prog' or NULL
562  *	@new_len: pointer to store length of converted program
563  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
564  *
565  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
566  * style extended BPF (eBPF).
567  * Conversion workflow:
568  *
569  * 1) First pass for calculating the new program length:
570  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
571  *
572  * 2) 2nd pass to remap in two passes: 1st pass finds new
573  *    jump offsets, 2nd pass remapping:
574  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
575  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)576 static int bpf_convert_filter(struct sock_filter *prog, int len,
577 			      struct bpf_prog *new_prog, int *new_len,
578 			      bool *seen_ld_abs)
579 {
580 	int new_flen = 0, pass = 0, target, i, stack_off;
581 	struct bpf_insn *new_insn, *first_insn = NULL;
582 	struct sock_filter *fp;
583 	int *addrs = NULL;
584 	u8 bpf_src;
585 
586 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
587 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
588 
589 	if (len <= 0 || len > BPF_MAXINSNS)
590 		return -EINVAL;
591 
592 	if (new_prog) {
593 		first_insn = new_prog->insnsi;
594 		addrs = kcalloc(len, sizeof(*addrs),
595 				GFP_KERNEL | __GFP_NOWARN);
596 		if (!addrs)
597 			return -ENOMEM;
598 	}
599 
600 do_pass:
601 	new_insn = first_insn;
602 	fp = prog;
603 
604 	/* Classic BPF related prologue emission. */
605 	if (new_prog) {
606 		/* Classic BPF expects A and X to be reset first. These need
607 		 * to be guaranteed to be the first two instructions.
608 		 */
609 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
610 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
611 
612 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
613 		 * In eBPF case it's done by the compiler, here we need to
614 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
615 		 */
616 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
617 		if (*seen_ld_abs) {
618 			/* For packet access in classic BPF, cache skb->data
619 			 * in callee-saved BPF R8 and skb->len - skb->data_len
620 			 * (headlen) in BPF R9. Since classic BPF is read-only
621 			 * on CTX, we only need to cache it once.
622 			 */
623 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
624 						  BPF_REG_D, BPF_REG_CTX,
625 						  offsetof(struct sk_buff, data));
626 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
627 						  offsetof(struct sk_buff, len));
628 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
629 						  offsetof(struct sk_buff, data_len));
630 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
631 		}
632 	} else {
633 		new_insn += 3;
634 	}
635 
636 	for (i = 0; i < len; fp++, i++) {
637 		struct bpf_insn tmp_insns[32] = { };
638 		struct bpf_insn *insn = tmp_insns;
639 
640 		if (addrs)
641 			addrs[i] = new_insn - first_insn;
642 
643 		switch (fp->code) {
644 		/* All arithmetic insns and skb loads map as-is. */
645 		case BPF_ALU | BPF_ADD | BPF_X:
646 		case BPF_ALU | BPF_ADD | BPF_K:
647 		case BPF_ALU | BPF_SUB | BPF_X:
648 		case BPF_ALU | BPF_SUB | BPF_K:
649 		case BPF_ALU | BPF_AND | BPF_X:
650 		case BPF_ALU | BPF_AND | BPF_K:
651 		case BPF_ALU | BPF_OR | BPF_X:
652 		case BPF_ALU | BPF_OR | BPF_K:
653 		case BPF_ALU | BPF_LSH | BPF_X:
654 		case BPF_ALU | BPF_LSH | BPF_K:
655 		case BPF_ALU | BPF_RSH | BPF_X:
656 		case BPF_ALU | BPF_RSH | BPF_K:
657 		case BPF_ALU | BPF_XOR | BPF_X:
658 		case BPF_ALU | BPF_XOR | BPF_K:
659 		case BPF_ALU | BPF_MUL | BPF_X:
660 		case BPF_ALU | BPF_MUL | BPF_K:
661 		case BPF_ALU | BPF_DIV | BPF_X:
662 		case BPF_ALU | BPF_DIV | BPF_K:
663 		case BPF_ALU | BPF_MOD | BPF_X:
664 		case BPF_ALU | BPF_MOD | BPF_K:
665 		case BPF_ALU | BPF_NEG:
666 		case BPF_LD | BPF_ABS | BPF_W:
667 		case BPF_LD | BPF_ABS | BPF_H:
668 		case BPF_LD | BPF_ABS | BPF_B:
669 		case BPF_LD | BPF_IND | BPF_W:
670 		case BPF_LD | BPF_IND | BPF_H:
671 		case BPF_LD | BPF_IND | BPF_B:
672 			/* Check for overloaded BPF extension and
673 			 * directly convert it if found, otherwise
674 			 * just move on with mapping.
675 			 */
676 			if (BPF_CLASS(fp->code) == BPF_LD &&
677 			    BPF_MODE(fp->code) == BPF_ABS &&
678 			    convert_bpf_extensions(fp, &insn))
679 				break;
680 			if (BPF_CLASS(fp->code) == BPF_LD &&
681 			    convert_bpf_ld_abs(fp, &insn)) {
682 				*seen_ld_abs = true;
683 				break;
684 			}
685 
686 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
687 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
688 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
689 				/* Error with exception code on div/mod by 0.
690 				 * For cBPF programs, this was always return 0.
691 				 */
692 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
693 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
694 				*insn++ = BPF_EXIT_INSN();
695 			}
696 
697 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
698 			break;
699 
700 		/* Jump transformation cannot use BPF block macros
701 		 * everywhere as offset calculation and target updates
702 		 * require a bit more work than the rest, i.e. jump
703 		 * opcodes map as-is, but offsets need adjustment.
704 		 */
705 
706 #define BPF_EMIT_JMP							\
707 	do {								\
708 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
709 		s32 off;						\
710 									\
711 		if (target >= len || target < 0)			\
712 			goto err;					\
713 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
714 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
715 		off -= insn - tmp_insns;				\
716 		/* Reject anything not fitting into insn->off. */	\
717 		if (off < off_min || off > off_max)			\
718 			goto err;					\
719 		insn->off = off;					\
720 	} while (0)
721 
722 		case BPF_JMP | BPF_JA:
723 			target = i + fp->k + 1;
724 			insn->code = fp->code;
725 			BPF_EMIT_JMP;
726 			break;
727 
728 		case BPF_JMP | BPF_JEQ | BPF_K:
729 		case BPF_JMP | BPF_JEQ | BPF_X:
730 		case BPF_JMP | BPF_JSET | BPF_K:
731 		case BPF_JMP | BPF_JSET | BPF_X:
732 		case BPF_JMP | BPF_JGT | BPF_K:
733 		case BPF_JMP | BPF_JGT | BPF_X:
734 		case BPF_JMP | BPF_JGE | BPF_K:
735 		case BPF_JMP | BPF_JGE | BPF_X:
736 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
737 				/* BPF immediates are signed, zero extend
738 				 * immediate into tmp register and use it
739 				 * in compare insn.
740 				 */
741 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
742 
743 				insn->dst_reg = BPF_REG_A;
744 				insn->src_reg = BPF_REG_TMP;
745 				bpf_src = BPF_X;
746 			} else {
747 				insn->dst_reg = BPF_REG_A;
748 				insn->imm = fp->k;
749 				bpf_src = BPF_SRC(fp->code);
750 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
751 			}
752 
753 			/* Common case where 'jump_false' is next insn. */
754 			if (fp->jf == 0) {
755 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
756 				target = i + fp->jt + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 
761 			/* Convert some jumps when 'jump_true' is next insn. */
762 			if (fp->jt == 0) {
763 				switch (BPF_OP(fp->code)) {
764 				case BPF_JEQ:
765 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
766 					break;
767 				case BPF_JGT:
768 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
769 					break;
770 				case BPF_JGE:
771 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
772 					break;
773 				default:
774 					goto jmp_rest;
775 				}
776 
777 				target = i + fp->jf + 1;
778 				BPF_EMIT_JMP;
779 				break;
780 			}
781 jmp_rest:
782 			/* Other jumps are mapped into two insns: Jxx and JA. */
783 			target = i + fp->jt + 1;
784 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
785 			BPF_EMIT_JMP;
786 			insn++;
787 
788 			insn->code = BPF_JMP | BPF_JA;
789 			target = i + fp->jf + 1;
790 			BPF_EMIT_JMP;
791 			break;
792 
793 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
794 		case BPF_LDX | BPF_MSH | BPF_B: {
795 			struct sock_filter tmp = {
796 				.code	= BPF_LD | BPF_ABS | BPF_B,
797 				.k	= fp->k,
798 			};
799 
800 			*seen_ld_abs = true;
801 
802 			/* X = A */
803 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
804 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
805 			convert_bpf_ld_abs(&tmp, &insn);
806 			insn++;
807 			/* A &= 0xf */
808 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
809 			/* A <<= 2 */
810 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
811 			/* tmp = X */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
813 			/* X = A */
814 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
815 			/* A = tmp */
816 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
817 			break;
818 		}
819 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
820 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
821 		 */
822 		case BPF_RET | BPF_A:
823 		case BPF_RET | BPF_K:
824 			if (BPF_RVAL(fp->code) == BPF_K)
825 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
826 							0, fp->k);
827 			*insn = BPF_EXIT_INSN();
828 			break;
829 
830 		/* Store to stack. */
831 		case BPF_ST:
832 		case BPF_STX:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
835 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
836 					    -stack_off);
837 			/* check_load_and_stores() verifies that classic BPF can
838 			 * load from stack only after write, so tracking
839 			 * stack_depth for ST|STX insns is enough
840 			 */
841 			if (new_prog && new_prog->aux->stack_depth < stack_off)
842 				new_prog->aux->stack_depth = stack_off;
843 			break;
844 
845 		/* Load from stack. */
846 		case BPF_LD | BPF_MEM:
847 		case BPF_LDX | BPF_MEM:
848 			stack_off = fp->k * 4  + 4;
849 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
850 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
851 					    -stack_off);
852 			break;
853 
854 		/* A = K or X = K */
855 		case BPF_LD | BPF_IMM:
856 		case BPF_LDX | BPF_IMM:
857 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
858 					      BPF_REG_A : BPF_REG_X, fp->k);
859 			break;
860 
861 		/* X = A */
862 		case BPF_MISC | BPF_TAX:
863 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
864 			break;
865 
866 		/* A = X */
867 		case BPF_MISC | BPF_TXA:
868 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
869 			break;
870 
871 		/* A = skb->len or X = skb->len */
872 		case BPF_LD | BPF_W | BPF_LEN:
873 		case BPF_LDX | BPF_W | BPF_LEN:
874 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
875 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
876 					    offsetof(struct sk_buff, len));
877 			break;
878 
879 		/* Access seccomp_data fields. */
880 		case BPF_LDX | BPF_ABS | BPF_W:
881 			/* A = *(u32 *) (ctx + K) */
882 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
883 			break;
884 
885 		/* Unknown instruction. */
886 		default:
887 			goto err;
888 		}
889 
890 		insn++;
891 		if (new_prog)
892 			memcpy(new_insn, tmp_insns,
893 			       sizeof(*insn) * (insn - tmp_insns));
894 		new_insn += insn - tmp_insns;
895 	}
896 
897 	if (!new_prog) {
898 		/* Only calculating new length. */
899 		*new_len = new_insn - first_insn;
900 		if (*seen_ld_abs)
901 			*new_len += 4; /* Prologue bits. */
902 		return 0;
903 	}
904 
905 	pass++;
906 	if (new_flen != new_insn - first_insn) {
907 		new_flen = new_insn - first_insn;
908 		if (pass > 2)
909 			goto err;
910 		goto do_pass;
911 	}
912 
913 	kfree(addrs);
914 	BUG_ON(*new_len != new_flen);
915 	return 0;
916 err:
917 	kfree(addrs);
918 	return -EINVAL;
919 }
920 
921 /* Security:
922  *
923  * As we dont want to clear mem[] array for each packet going through
924  * __bpf_prog_run(), we check that filter loaded by user never try to read
925  * a cell if not previously written, and we check all branches to be sure
926  * a malicious user doesn't try to abuse us.
927  */
check_load_and_stores(const struct sock_filter * filter,int flen)928 static int check_load_and_stores(const struct sock_filter *filter, int flen)
929 {
930 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
931 	int pc, ret = 0;
932 
933 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
934 
935 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
936 	if (!masks)
937 		return -ENOMEM;
938 
939 	memset(masks, 0xff, flen * sizeof(*masks));
940 
941 	for (pc = 0; pc < flen; pc++) {
942 		memvalid &= masks[pc];
943 
944 		switch (filter[pc].code) {
945 		case BPF_ST:
946 		case BPF_STX:
947 			memvalid |= (1 << filter[pc].k);
948 			break;
949 		case BPF_LD | BPF_MEM:
950 		case BPF_LDX | BPF_MEM:
951 			if (!(memvalid & (1 << filter[pc].k))) {
952 				ret = -EINVAL;
953 				goto error;
954 			}
955 			break;
956 		case BPF_JMP | BPF_JA:
957 			/* A jump must set masks on target */
958 			masks[pc + 1 + filter[pc].k] &= memvalid;
959 			memvalid = ~0;
960 			break;
961 		case BPF_JMP | BPF_JEQ | BPF_K:
962 		case BPF_JMP | BPF_JEQ | BPF_X:
963 		case BPF_JMP | BPF_JGE | BPF_K:
964 		case BPF_JMP | BPF_JGE | BPF_X:
965 		case BPF_JMP | BPF_JGT | BPF_K:
966 		case BPF_JMP | BPF_JGT | BPF_X:
967 		case BPF_JMP | BPF_JSET | BPF_K:
968 		case BPF_JMP | BPF_JSET | BPF_X:
969 			/* A jump must set masks on targets */
970 			masks[pc + 1 + filter[pc].jt] &= memvalid;
971 			masks[pc + 1 + filter[pc].jf] &= memvalid;
972 			memvalid = ~0;
973 			break;
974 		}
975 	}
976 error:
977 	kfree(masks);
978 	return ret;
979 }
980 
chk_code_allowed(u16 code_to_probe)981 static bool chk_code_allowed(u16 code_to_probe)
982 {
983 	static const bool codes[] = {
984 		/* 32 bit ALU operations */
985 		[BPF_ALU | BPF_ADD | BPF_K] = true,
986 		[BPF_ALU | BPF_ADD | BPF_X] = true,
987 		[BPF_ALU | BPF_SUB | BPF_K] = true,
988 		[BPF_ALU | BPF_SUB | BPF_X] = true,
989 		[BPF_ALU | BPF_MUL | BPF_K] = true,
990 		[BPF_ALU | BPF_MUL | BPF_X] = true,
991 		[BPF_ALU | BPF_DIV | BPF_K] = true,
992 		[BPF_ALU | BPF_DIV | BPF_X] = true,
993 		[BPF_ALU | BPF_MOD | BPF_K] = true,
994 		[BPF_ALU | BPF_MOD | BPF_X] = true,
995 		[BPF_ALU | BPF_AND | BPF_K] = true,
996 		[BPF_ALU | BPF_AND | BPF_X] = true,
997 		[BPF_ALU | BPF_OR | BPF_K] = true,
998 		[BPF_ALU | BPF_OR | BPF_X] = true,
999 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1000 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1001 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1002 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1003 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1004 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1005 		[BPF_ALU | BPF_NEG] = true,
1006 		/* Load instructions */
1007 		[BPF_LD | BPF_W | BPF_ABS] = true,
1008 		[BPF_LD | BPF_H | BPF_ABS] = true,
1009 		[BPF_LD | BPF_B | BPF_ABS] = true,
1010 		[BPF_LD | BPF_W | BPF_LEN] = true,
1011 		[BPF_LD | BPF_W | BPF_IND] = true,
1012 		[BPF_LD | BPF_H | BPF_IND] = true,
1013 		[BPF_LD | BPF_B | BPF_IND] = true,
1014 		[BPF_LD | BPF_IMM] = true,
1015 		[BPF_LD | BPF_MEM] = true,
1016 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1017 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1018 		[BPF_LDX | BPF_IMM] = true,
1019 		[BPF_LDX | BPF_MEM] = true,
1020 		/* Store instructions */
1021 		[BPF_ST] = true,
1022 		[BPF_STX] = true,
1023 		/* Misc instructions */
1024 		[BPF_MISC | BPF_TAX] = true,
1025 		[BPF_MISC | BPF_TXA] = true,
1026 		/* Return instructions */
1027 		[BPF_RET | BPF_K] = true,
1028 		[BPF_RET | BPF_A] = true,
1029 		/* Jump instructions */
1030 		[BPF_JMP | BPF_JA] = true,
1031 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1032 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1033 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1034 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1035 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1036 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1037 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1038 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1039 	};
1040 
1041 	if (code_to_probe >= ARRAY_SIZE(codes))
1042 		return false;
1043 
1044 	return codes[code_to_probe];
1045 }
1046 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1047 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1048 				unsigned int flen)
1049 {
1050 	if (filter == NULL)
1051 		return false;
1052 	if (flen == 0 || flen > BPF_MAXINSNS)
1053 		return false;
1054 
1055 	return true;
1056 }
1057 
1058 /**
1059  *	bpf_check_classic - verify socket filter code
1060  *	@filter: filter to verify
1061  *	@flen: length of filter
1062  *
1063  * Check the user's filter code. If we let some ugly
1064  * filter code slip through kaboom! The filter must contain
1065  * no references or jumps that are out of range, no illegal
1066  * instructions, and must end with a RET instruction.
1067  *
1068  * All jumps are forward as they are not signed.
1069  *
1070  * Returns 0 if the rule set is legal or -EINVAL if not.
1071  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1072 static int bpf_check_classic(const struct sock_filter *filter,
1073 			     unsigned int flen)
1074 {
1075 	bool anc_found;
1076 	int pc;
1077 
1078 	/* Check the filter code now */
1079 	for (pc = 0; pc < flen; pc++) {
1080 		const struct sock_filter *ftest = &filter[pc];
1081 
1082 		/* May we actually operate on this code? */
1083 		if (!chk_code_allowed(ftest->code))
1084 			return -EINVAL;
1085 
1086 		/* Some instructions need special checks */
1087 		switch (ftest->code) {
1088 		case BPF_ALU | BPF_DIV | BPF_K:
1089 		case BPF_ALU | BPF_MOD | BPF_K:
1090 			/* Check for division by zero */
1091 			if (ftest->k == 0)
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_ALU | BPF_LSH | BPF_K:
1095 		case BPF_ALU | BPF_RSH | BPF_K:
1096 			if (ftest->k >= 32)
1097 				return -EINVAL;
1098 			break;
1099 		case BPF_LD | BPF_MEM:
1100 		case BPF_LDX | BPF_MEM:
1101 		case BPF_ST:
1102 		case BPF_STX:
1103 			/* Check for invalid memory addresses */
1104 			if (ftest->k >= BPF_MEMWORDS)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_JMP | BPF_JA:
1108 			/* Note, the large ftest->k might cause loops.
1109 			 * Compare this with conditional jumps below,
1110 			 * where offsets are limited. --ANK (981016)
1111 			 */
1112 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1113 				return -EINVAL;
1114 			break;
1115 		case BPF_JMP | BPF_JEQ | BPF_K:
1116 		case BPF_JMP | BPF_JEQ | BPF_X:
1117 		case BPF_JMP | BPF_JGE | BPF_K:
1118 		case BPF_JMP | BPF_JGE | BPF_X:
1119 		case BPF_JMP | BPF_JGT | BPF_K:
1120 		case BPF_JMP | BPF_JGT | BPF_X:
1121 		case BPF_JMP | BPF_JSET | BPF_K:
1122 		case BPF_JMP | BPF_JSET | BPF_X:
1123 			/* Both conditionals must be safe */
1124 			if (pc + ftest->jt + 1 >= flen ||
1125 			    pc + ftest->jf + 1 >= flen)
1126 				return -EINVAL;
1127 			break;
1128 		case BPF_LD | BPF_W | BPF_ABS:
1129 		case BPF_LD | BPF_H | BPF_ABS:
1130 		case BPF_LD | BPF_B | BPF_ABS:
1131 			anc_found = false;
1132 			if (bpf_anc_helper(ftest) & BPF_ANC)
1133 				anc_found = true;
1134 			/* Ancillary operation unknown or unsupported */
1135 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1136 				return -EINVAL;
1137 		}
1138 	}
1139 
1140 	/* Last instruction must be a RET code */
1141 	switch (filter[flen - 1].code) {
1142 	case BPF_RET | BPF_K:
1143 	case BPF_RET | BPF_A:
1144 		return check_load_and_stores(filter, flen);
1145 	}
1146 
1147 	return -EINVAL;
1148 }
1149 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1150 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1151 				      const struct sock_fprog *fprog)
1152 {
1153 	unsigned int fsize = bpf_classic_proglen(fprog);
1154 	struct sock_fprog_kern *fkprog;
1155 
1156 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1157 	if (!fp->orig_prog)
1158 		return -ENOMEM;
1159 
1160 	fkprog = fp->orig_prog;
1161 	fkprog->len = fprog->len;
1162 
1163 	fkprog->filter = kmemdup(fp->insns, fsize,
1164 				 GFP_KERNEL | __GFP_NOWARN);
1165 	if (!fkprog->filter) {
1166 		kfree(fp->orig_prog);
1167 		return -ENOMEM;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
bpf_release_orig_filter(struct bpf_prog * fp)1173 static void bpf_release_orig_filter(struct bpf_prog *fp)
1174 {
1175 	struct sock_fprog_kern *fprog = fp->orig_prog;
1176 
1177 	if (fprog) {
1178 		kfree(fprog->filter);
1179 		kfree(fprog);
1180 	}
1181 }
1182 
__bpf_prog_release(struct bpf_prog * prog)1183 static void __bpf_prog_release(struct bpf_prog *prog)
1184 {
1185 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1186 		bpf_prog_put(prog);
1187 	} else {
1188 		bpf_release_orig_filter(prog);
1189 		bpf_prog_free(prog);
1190 	}
1191 }
1192 
__sk_filter_release(struct sk_filter * fp)1193 static void __sk_filter_release(struct sk_filter *fp)
1194 {
1195 	__bpf_prog_release(fp->prog);
1196 	kfree(fp);
1197 }
1198 
1199 /**
1200  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1201  *	@rcu: rcu_head that contains the sk_filter to free
1202  */
sk_filter_release_rcu(struct rcu_head * rcu)1203 static void sk_filter_release_rcu(struct rcu_head *rcu)
1204 {
1205 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1206 
1207 	__sk_filter_release(fp);
1208 }
1209 
1210 /**
1211  *	sk_filter_release - release a socket filter
1212  *	@fp: filter to remove
1213  *
1214  *	Remove a filter from a socket and release its resources.
1215  */
sk_filter_release(struct sk_filter * fp)1216 static void sk_filter_release(struct sk_filter *fp)
1217 {
1218 	if (refcount_dec_and_test(&fp->refcnt))
1219 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1220 }
1221 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1222 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1223 {
1224 	u32 filter_size = bpf_prog_size(fp->prog->len);
1225 
1226 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1227 	sk_filter_release(fp);
1228 }
1229 
1230 /* try to charge the socket memory if there is space available
1231  * return true on success
1232  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1233 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1234 {
1235 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1236 	u32 filter_size = bpf_prog_size(fp->prog->len);
1237 
1238 	/* same check as in sock_kmalloc() */
1239 	if (filter_size <= optmem_max &&
1240 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1241 		atomic_add(filter_size, &sk->sk_omem_alloc);
1242 		return true;
1243 	}
1244 	return false;
1245 }
1246 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1247 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1248 {
1249 	if (!refcount_inc_not_zero(&fp->refcnt))
1250 		return false;
1251 
1252 	if (!__sk_filter_charge(sk, fp)) {
1253 		sk_filter_release(fp);
1254 		return false;
1255 	}
1256 	return true;
1257 }
1258 
bpf_migrate_filter(struct bpf_prog * fp)1259 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1260 {
1261 	struct sock_filter *old_prog;
1262 	struct bpf_prog *old_fp;
1263 	int err, new_len, old_len = fp->len;
1264 	bool seen_ld_abs = false;
1265 
1266 	/* We are free to overwrite insns et al right here as it won't be used at
1267 	 * this point in time anymore internally after the migration to the eBPF
1268 	 * instruction representation.
1269 	 */
1270 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1271 		     sizeof(struct bpf_insn));
1272 
1273 	/* Conversion cannot happen on overlapping memory areas,
1274 	 * so we need to keep the user BPF around until the 2nd
1275 	 * pass. At this time, the user BPF is stored in fp->insns.
1276 	 */
1277 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1278 				 GFP_KERNEL | __GFP_NOWARN);
1279 	if (!old_prog) {
1280 		err = -ENOMEM;
1281 		goto out_err;
1282 	}
1283 
1284 	/* 1st pass: calculate the new program length. */
1285 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		goto out_err_free;
1289 
1290 	/* Expand fp for appending the new filter representation. */
1291 	old_fp = fp;
1292 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1293 	if (!fp) {
1294 		/* The old_fp is still around in case we couldn't
1295 		 * allocate new memory, so uncharge on that one.
1296 		 */
1297 		fp = old_fp;
1298 		err = -ENOMEM;
1299 		goto out_err_free;
1300 	}
1301 
1302 	fp->len = new_len;
1303 
1304 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1305 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1306 				 &seen_ld_abs);
1307 	if (err)
1308 		/* 2nd bpf_convert_filter() can fail only if it fails
1309 		 * to allocate memory, remapping must succeed. Note,
1310 		 * that at this time old_fp has already been released
1311 		 * by krealloc().
1312 		 */
1313 		goto out_err_free;
1314 
1315 	fp = bpf_prog_select_runtime(fp, &err);
1316 	if (err)
1317 		goto out_err_free;
1318 
1319 	kfree(old_prog);
1320 	return fp;
1321 
1322 out_err_free:
1323 	kfree(old_prog);
1324 out_err:
1325 	__bpf_prog_release(fp);
1326 	return ERR_PTR(err);
1327 }
1328 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1329 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1330 					   bpf_aux_classic_check_t trans)
1331 {
1332 	int err;
1333 
1334 	fp->bpf_func = NULL;
1335 	fp->jited = 0;
1336 
1337 	err = bpf_check_classic(fp->insns, fp->len);
1338 	if (err) {
1339 		__bpf_prog_release(fp);
1340 		return ERR_PTR(err);
1341 	}
1342 
1343 	/* There might be additional checks and transformations
1344 	 * needed on classic filters, f.e. in case of seccomp.
1345 	 */
1346 	if (trans) {
1347 		err = trans(fp->insns, fp->len);
1348 		if (err) {
1349 			__bpf_prog_release(fp);
1350 			return ERR_PTR(err);
1351 		}
1352 	}
1353 
1354 	/* Probe if we can JIT compile the filter and if so, do
1355 	 * the compilation of the filter.
1356 	 */
1357 	bpf_jit_compile(fp);
1358 
1359 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1360 	 * for the optimized interpreter.
1361 	 */
1362 	if (!fp->jited)
1363 		fp = bpf_migrate_filter(fp);
1364 
1365 	return fp;
1366 }
1367 
1368 /**
1369  *	bpf_prog_create - create an unattached filter
1370  *	@pfp: the unattached filter that is created
1371  *	@fprog: the filter program
1372  *
1373  * Create a filter independent of any socket. We first run some
1374  * sanity checks on it to make sure it does not explode on us later.
1375  * If an error occurs or there is insufficient memory for the filter
1376  * a negative errno code is returned. On success the return is zero.
1377  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1378 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1379 {
1380 	unsigned int fsize = bpf_classic_proglen(fprog);
1381 	struct bpf_prog *fp;
1382 
1383 	/* Make sure new filter is there and in the right amounts. */
1384 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1385 		return -EINVAL;
1386 
1387 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1388 	if (!fp)
1389 		return -ENOMEM;
1390 
1391 	memcpy(fp->insns, fprog->filter, fsize);
1392 
1393 	fp->len = fprog->len;
1394 	/* Since unattached filters are not copied back to user
1395 	 * space through sk_get_filter(), we do not need to hold
1396 	 * a copy here, and can spare us the work.
1397 	 */
1398 	fp->orig_prog = NULL;
1399 
1400 	/* bpf_prepare_filter() already takes care of freeing
1401 	 * memory in case something goes wrong.
1402 	 */
1403 	fp = bpf_prepare_filter(fp, NULL);
1404 	if (IS_ERR(fp))
1405 		return PTR_ERR(fp);
1406 
1407 	*pfp = fp;
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(bpf_prog_create);
1411 
1412 /**
1413  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1414  *	@pfp: the unattached filter that is created
1415  *	@fprog: the filter program
1416  *	@trans: post-classic verifier transformation handler
1417  *	@save_orig: save classic BPF program
1418  *
1419  * This function effectively does the same as bpf_prog_create(), only
1420  * that it builds up its insns buffer from user space provided buffer.
1421  * It also allows for passing a bpf_aux_classic_check_t handler.
1422  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1423 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1424 			      bpf_aux_classic_check_t trans, bool save_orig)
1425 {
1426 	unsigned int fsize = bpf_classic_proglen(fprog);
1427 	struct bpf_prog *fp;
1428 	int err;
1429 
1430 	/* Make sure new filter is there and in the right amounts. */
1431 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1432 		return -EINVAL;
1433 
1434 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1435 	if (!fp)
1436 		return -ENOMEM;
1437 
1438 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1439 		__bpf_prog_free(fp);
1440 		return -EFAULT;
1441 	}
1442 
1443 	fp->len = fprog->len;
1444 	fp->orig_prog = NULL;
1445 
1446 	if (save_orig) {
1447 		err = bpf_prog_store_orig_filter(fp, fprog);
1448 		if (err) {
1449 			__bpf_prog_free(fp);
1450 			return -ENOMEM;
1451 		}
1452 	}
1453 
1454 	/* bpf_prepare_filter() already takes care of freeing
1455 	 * memory in case something goes wrong.
1456 	 */
1457 	fp = bpf_prepare_filter(fp, trans);
1458 	if (IS_ERR(fp))
1459 		return PTR_ERR(fp);
1460 
1461 	*pfp = fp;
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1465 
bpf_prog_destroy(struct bpf_prog * fp)1466 void bpf_prog_destroy(struct bpf_prog *fp)
1467 {
1468 	__bpf_prog_release(fp);
1469 }
1470 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1471 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1472 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1473 {
1474 	struct sk_filter *fp, *old_fp;
1475 
1476 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1477 	if (!fp)
1478 		return -ENOMEM;
1479 
1480 	fp->prog = prog;
1481 
1482 	if (!__sk_filter_charge(sk, fp)) {
1483 		kfree(fp);
1484 		return -ENOMEM;
1485 	}
1486 	refcount_set(&fp->refcnt, 1);
1487 
1488 	old_fp = rcu_dereference_protected(sk->sk_filter,
1489 					   lockdep_sock_is_held(sk));
1490 	rcu_assign_pointer(sk->sk_filter, fp);
1491 
1492 	if (old_fp)
1493 		sk_filter_uncharge(sk, old_fp);
1494 
1495 	return 0;
1496 }
1497 
1498 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1499 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1500 {
1501 	unsigned int fsize = bpf_classic_proglen(fprog);
1502 	struct bpf_prog *prog;
1503 	int err;
1504 
1505 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 		return ERR_PTR(-EPERM);
1507 
1508 	/* Make sure new filter is there and in the right amounts. */
1509 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1510 		return ERR_PTR(-EINVAL);
1511 
1512 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1513 	if (!prog)
1514 		return ERR_PTR(-ENOMEM);
1515 
1516 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1517 		__bpf_prog_free(prog);
1518 		return ERR_PTR(-EFAULT);
1519 	}
1520 
1521 	prog->len = fprog->len;
1522 
1523 	err = bpf_prog_store_orig_filter(prog, fprog);
1524 	if (err) {
1525 		__bpf_prog_free(prog);
1526 		return ERR_PTR(-ENOMEM);
1527 	}
1528 
1529 	/* bpf_prepare_filter() already takes care of freeing
1530 	 * memory in case something goes wrong.
1531 	 */
1532 	return bpf_prepare_filter(prog, NULL);
1533 }
1534 
1535 /**
1536  *	sk_attach_filter - attach a socket filter
1537  *	@fprog: the filter program
1538  *	@sk: the socket to use
1539  *
1540  * Attach the user's filter code. We first run some sanity checks on
1541  * it to make sure it does not explode on us later. If an error
1542  * occurs or there is insufficient memory for the filter a negative
1543  * errno code is returned. On success the return is zero.
1544  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1545 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547 	struct bpf_prog *prog = __get_filter(fprog, sk);
1548 	int err;
1549 
1550 	if (IS_ERR(prog))
1551 		return PTR_ERR(prog);
1552 
1553 	err = __sk_attach_prog(prog, sk);
1554 	if (err < 0) {
1555 		__bpf_prog_release(prog);
1556 		return err;
1557 	}
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(sk_attach_filter);
1562 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1563 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1564 {
1565 	struct bpf_prog *prog = __get_filter(fprog, sk);
1566 	int err, optmem_max;
1567 
1568 	if (IS_ERR(prog))
1569 		return PTR_ERR(prog);
1570 
1571 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1572 	if (bpf_prog_size(prog->len) > optmem_max)
1573 		err = -ENOMEM;
1574 	else
1575 		err = reuseport_attach_prog(sk, prog);
1576 
1577 	if (err)
1578 		__bpf_prog_release(prog);
1579 
1580 	return err;
1581 }
1582 
__get_bpf(u32 ufd,struct sock * sk)1583 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1584 {
1585 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1586 		return ERR_PTR(-EPERM);
1587 
1588 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1589 }
1590 
sk_attach_bpf(u32 ufd,struct sock * sk)1591 int sk_attach_bpf(u32 ufd, struct sock *sk)
1592 {
1593 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1594 	int err;
1595 
1596 	if (IS_ERR(prog))
1597 		return PTR_ERR(prog);
1598 
1599 	err = __sk_attach_prog(prog, sk);
1600 	if (err < 0) {
1601 		bpf_prog_put(prog);
1602 		return err;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1608 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1609 {
1610 	struct bpf_prog *prog;
1611 	int err, optmem_max;
1612 
1613 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1614 		return -EPERM;
1615 
1616 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1617 	if (PTR_ERR(prog) == -EINVAL)
1618 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1619 	if (IS_ERR(prog))
1620 		return PTR_ERR(prog);
1621 
1622 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1623 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1624 		 * bpf prog (e.g. sockmap).  It depends on the
1625 		 * limitation imposed by bpf_prog_load().
1626 		 * Hence, sysctl_optmem_max is not checked.
1627 		 */
1628 		if ((sk->sk_type != SOCK_STREAM &&
1629 		     sk->sk_type != SOCK_DGRAM) ||
1630 		    (sk->sk_protocol != IPPROTO_UDP &&
1631 		     sk->sk_protocol != IPPROTO_TCP) ||
1632 		    (sk->sk_family != AF_INET &&
1633 		     sk->sk_family != AF_INET6)) {
1634 			err = -ENOTSUPP;
1635 			goto err_prog_put;
1636 		}
1637 	} else {
1638 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1639 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1640 		if (bpf_prog_size(prog->len) > optmem_max) {
1641 			err = -ENOMEM;
1642 			goto err_prog_put;
1643 		}
1644 	}
1645 
1646 	err = reuseport_attach_prog(sk, prog);
1647 err_prog_put:
1648 	if (err)
1649 		bpf_prog_put(prog);
1650 
1651 	return err;
1652 }
1653 
sk_reuseport_prog_free(struct bpf_prog * prog)1654 void sk_reuseport_prog_free(struct bpf_prog *prog)
1655 {
1656 	if (!prog)
1657 		return;
1658 
1659 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1660 		bpf_prog_put(prog);
1661 	else
1662 		bpf_prog_destroy(prog);
1663 }
1664 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1665 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1666 					  unsigned int write_len)
1667 {
1668 #ifdef CONFIG_DEBUG_NET
1669 	/* Avoid a splat in pskb_may_pull_reason() */
1670 	if (write_len > INT_MAX)
1671 		return -EINVAL;
1672 #endif
1673 	return skb_ensure_writable(skb, write_len);
1674 }
1675 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1676 static inline int bpf_try_make_writable(struct sk_buff *skb,
1677 					unsigned int write_len)
1678 {
1679 	int err = __bpf_try_make_writable(skb, write_len);
1680 
1681 	bpf_compute_data_pointers(skb);
1682 	return err;
1683 }
1684 
bpf_try_make_head_writable(struct sk_buff * skb)1685 static int bpf_try_make_head_writable(struct sk_buff *skb)
1686 {
1687 	return bpf_try_make_writable(skb, skb_headlen(skb));
1688 }
1689 
bpf_push_mac_rcsum(struct sk_buff * skb)1690 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1691 {
1692 	if (skb_at_tc_ingress(skb))
1693 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1694 }
1695 
bpf_pull_mac_rcsum(struct sk_buff * skb)1696 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1697 {
1698 	if (skb_at_tc_ingress(skb))
1699 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1700 }
1701 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1702 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1703 	   const void *, from, u32, len, u64, flags)
1704 {
1705 	void *ptr;
1706 
1707 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1708 		return -EINVAL;
1709 	if (unlikely(offset > INT_MAX))
1710 		return -EFAULT;
1711 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1712 		return -EFAULT;
1713 
1714 	ptr = skb->data + offset;
1715 	if (flags & BPF_F_RECOMPUTE_CSUM)
1716 		__skb_postpull_rcsum(skb, ptr, len, offset);
1717 
1718 	memcpy(ptr, from, len);
1719 
1720 	if (flags & BPF_F_RECOMPUTE_CSUM)
1721 		__skb_postpush_rcsum(skb, ptr, len, offset);
1722 	if (flags & BPF_F_INVALIDATE_HASH)
1723 		skb_clear_hash(skb);
1724 
1725 	return 0;
1726 }
1727 
1728 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1729 	.func		= bpf_skb_store_bytes,
1730 	.gpl_only	= false,
1731 	.ret_type	= RET_INTEGER,
1732 	.arg1_type	= ARG_PTR_TO_CTX,
1733 	.arg2_type	= ARG_ANYTHING,
1734 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1735 	.arg4_type	= ARG_CONST_SIZE,
1736 	.arg5_type	= ARG_ANYTHING,
1737 };
1738 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1739 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1740 			  u32 len, u64 flags)
1741 {
1742 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1743 }
1744 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1745 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1746 	   void *, to, u32, len)
1747 {
1748 	void *ptr;
1749 
1750 	if (unlikely(offset > INT_MAX))
1751 		goto err_clear;
1752 
1753 	ptr = skb_header_pointer(skb, offset, len, to);
1754 	if (unlikely(!ptr))
1755 		goto err_clear;
1756 	if (ptr != to)
1757 		memcpy(to, ptr, len);
1758 
1759 	return 0;
1760 err_clear:
1761 	memset(to, 0, len);
1762 	return -EFAULT;
1763 }
1764 
1765 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1766 	.func		= bpf_skb_load_bytes,
1767 	.gpl_only	= false,
1768 	.ret_type	= RET_INTEGER,
1769 	.arg1_type	= ARG_PTR_TO_CTX,
1770 	.arg2_type	= ARG_ANYTHING,
1771 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1772 	.arg4_type	= ARG_CONST_SIZE,
1773 };
1774 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1775 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1776 {
1777 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1778 }
1779 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1780 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1781 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1782 	   void *, to, u32, len)
1783 {
1784 	void *ptr;
1785 
1786 	if (unlikely(offset > 0xffff))
1787 		goto err_clear;
1788 
1789 	if (unlikely(!ctx->skb))
1790 		goto err_clear;
1791 
1792 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1793 	if (unlikely(!ptr))
1794 		goto err_clear;
1795 	if (ptr != to)
1796 		memcpy(to, ptr, len);
1797 
1798 	return 0;
1799 err_clear:
1800 	memset(to, 0, len);
1801 	return -EFAULT;
1802 }
1803 
1804 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1805 	.func		= bpf_flow_dissector_load_bytes,
1806 	.gpl_only	= false,
1807 	.ret_type	= RET_INTEGER,
1808 	.arg1_type	= ARG_PTR_TO_CTX,
1809 	.arg2_type	= ARG_ANYTHING,
1810 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1811 	.arg4_type	= ARG_CONST_SIZE,
1812 };
1813 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1814 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1815 	   u32, offset, void *, to, u32, len, u32, start_header)
1816 {
1817 	u8 *end = skb_tail_pointer(skb);
1818 	u8 *start, *ptr;
1819 
1820 	if (unlikely(offset > 0xffff))
1821 		goto err_clear;
1822 
1823 	switch (start_header) {
1824 	case BPF_HDR_START_MAC:
1825 		if (unlikely(!skb_mac_header_was_set(skb)))
1826 			goto err_clear;
1827 		start = skb_mac_header(skb);
1828 		break;
1829 	case BPF_HDR_START_NET:
1830 		start = skb_network_header(skb);
1831 		break;
1832 	default:
1833 		goto err_clear;
1834 	}
1835 
1836 	ptr = start + offset;
1837 
1838 	if (likely(ptr + len <= end)) {
1839 		memcpy(to, ptr, len);
1840 		return 0;
1841 	}
1842 
1843 err_clear:
1844 	memset(to, 0, len);
1845 	return -EFAULT;
1846 }
1847 
1848 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1849 	.func		= bpf_skb_load_bytes_relative,
1850 	.gpl_only	= false,
1851 	.ret_type	= RET_INTEGER,
1852 	.arg1_type	= ARG_PTR_TO_CTX,
1853 	.arg2_type	= ARG_ANYTHING,
1854 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1855 	.arg4_type	= ARG_CONST_SIZE,
1856 	.arg5_type	= ARG_ANYTHING,
1857 };
1858 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1859 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1860 {
1861 	/* Idea is the following: should the needed direct read/write
1862 	 * test fail during runtime, we can pull in more data and redo
1863 	 * again, since implicitly, we invalidate previous checks here.
1864 	 *
1865 	 * Or, since we know how much we need to make read/writeable,
1866 	 * this can be done once at the program beginning for direct
1867 	 * access case. By this we overcome limitations of only current
1868 	 * headroom being accessible.
1869 	 */
1870 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1871 }
1872 
1873 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1874 	.func		= bpf_skb_pull_data,
1875 	.gpl_only	= false,
1876 	.ret_type	= RET_INTEGER,
1877 	.arg1_type	= ARG_PTR_TO_CTX,
1878 	.arg2_type	= ARG_ANYTHING,
1879 };
1880 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1881 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1882 {
1883 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1884 }
1885 
1886 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1887 	.func		= bpf_sk_fullsock,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1890 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1891 };
1892 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1893 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1894 					   unsigned int write_len)
1895 {
1896 	return __bpf_try_make_writable(skb, write_len);
1897 }
1898 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1899 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1900 {
1901 	/* Idea is the following: should the needed direct read/write
1902 	 * test fail during runtime, we can pull in more data and redo
1903 	 * again, since implicitly, we invalidate previous checks here.
1904 	 *
1905 	 * Or, since we know how much we need to make read/writeable,
1906 	 * this can be done once at the program beginning for direct
1907 	 * access case. By this we overcome limitations of only current
1908 	 * headroom being accessible.
1909 	 */
1910 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1911 }
1912 
1913 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1914 	.func		= sk_skb_pull_data,
1915 	.gpl_only	= false,
1916 	.ret_type	= RET_INTEGER,
1917 	.arg1_type	= ARG_PTR_TO_CTX,
1918 	.arg2_type	= ARG_ANYTHING,
1919 };
1920 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1921 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1922 	   u64, from, u64, to, u64, flags)
1923 {
1924 	__sum16 *ptr;
1925 
1926 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1935 	case 0:
1936 		if (unlikely(from != 0))
1937 			return -EINVAL;
1938 
1939 		csum_replace_by_diff(ptr, to);
1940 		break;
1941 	case 2:
1942 		csum_replace2(ptr, from, to);
1943 		break;
1944 	case 4:
1945 		csum_replace4(ptr, from, to);
1946 		break;
1947 	default:
1948 		return -EINVAL;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1955 	.func		= bpf_l3_csum_replace,
1956 	.gpl_only	= false,
1957 	.ret_type	= RET_INTEGER,
1958 	.arg1_type	= ARG_PTR_TO_CTX,
1959 	.arg2_type	= ARG_ANYTHING,
1960 	.arg3_type	= ARG_ANYTHING,
1961 	.arg4_type	= ARG_ANYTHING,
1962 	.arg5_type	= ARG_ANYTHING,
1963 };
1964 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1965 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1966 	   u64, from, u64, to, u64, flags)
1967 {
1968 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1969 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1970 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1971 	__sum16 *ptr;
1972 
1973 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1974 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1975 		return -EINVAL;
1976 	if (unlikely(offset > 0xffff || offset & 1))
1977 		return -EFAULT;
1978 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1979 		return -EFAULT;
1980 
1981 	ptr = (__sum16 *)(skb->data + offset);
1982 	if (is_mmzero && !do_mforce && !*ptr)
1983 		return 0;
1984 
1985 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1986 	case 0:
1987 		if (unlikely(from != 0))
1988 			return -EINVAL;
1989 
1990 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1991 		break;
1992 	case 2:
1993 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1994 		break;
1995 	case 4:
1996 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1997 		break;
1998 	default:
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (is_mmzero && !*ptr)
2003 		*ptr = CSUM_MANGLED_0;
2004 	return 0;
2005 }
2006 
2007 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2008 	.func		= bpf_l4_csum_replace,
2009 	.gpl_only	= false,
2010 	.ret_type	= RET_INTEGER,
2011 	.arg1_type	= ARG_PTR_TO_CTX,
2012 	.arg2_type	= ARG_ANYTHING,
2013 	.arg3_type	= ARG_ANYTHING,
2014 	.arg4_type	= ARG_ANYTHING,
2015 	.arg5_type	= ARG_ANYTHING,
2016 };
2017 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2018 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2019 	   __be32 *, to, u32, to_size, __wsum, seed)
2020 {
2021 	/* This is quite flexible, some examples:
2022 	 *
2023 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2024 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2025 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2026 	 *
2027 	 * Even for diffing, from_size and to_size don't need to be equal.
2028 	 */
2029 
2030 	__wsum ret = seed;
2031 
2032 	if (from_size && to_size)
2033 		ret = csum_sub(csum_partial(to, to_size, ret),
2034 			       csum_partial(from, from_size, 0));
2035 	else if (to_size)
2036 		ret = csum_partial(to, to_size, ret);
2037 
2038 	else if (from_size)
2039 		ret = ~csum_partial(from, from_size, ~ret);
2040 
2041 	return csum_from32to16((__force unsigned int)ret);
2042 }
2043 
2044 static const struct bpf_func_proto bpf_csum_diff_proto = {
2045 	.func		= bpf_csum_diff,
2046 	.gpl_only	= false,
2047 	.pkt_access	= true,
2048 	.ret_type	= RET_INTEGER,
2049 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2050 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2051 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2052 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2053 	.arg5_type	= ARG_ANYTHING,
2054 };
2055 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2056 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2057 {
2058 	/* The interface is to be used in combination with bpf_csum_diff()
2059 	 * for direct packet writes. csum rotation for alignment as well
2060 	 * as emulating csum_sub() can be done from the eBPF program.
2061 	 */
2062 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2063 		return (skb->csum = csum_add(skb->csum, csum));
2064 
2065 	return -ENOTSUPP;
2066 }
2067 
2068 static const struct bpf_func_proto bpf_csum_update_proto = {
2069 	.func		= bpf_csum_update,
2070 	.gpl_only	= false,
2071 	.ret_type	= RET_INTEGER,
2072 	.arg1_type	= ARG_PTR_TO_CTX,
2073 	.arg2_type	= ARG_ANYTHING,
2074 };
2075 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2076 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2077 {
2078 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2079 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2080 	 * is passed as flags, for example.
2081 	 */
2082 	switch (level) {
2083 	case BPF_CSUM_LEVEL_INC:
2084 		__skb_incr_checksum_unnecessary(skb);
2085 		break;
2086 	case BPF_CSUM_LEVEL_DEC:
2087 		__skb_decr_checksum_unnecessary(skb);
2088 		break;
2089 	case BPF_CSUM_LEVEL_RESET:
2090 		__skb_reset_checksum_unnecessary(skb);
2091 		break;
2092 	case BPF_CSUM_LEVEL_QUERY:
2093 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2094 		       skb->csum_level : -EACCES;
2095 	default:
2096 		return -EINVAL;
2097 	}
2098 
2099 	return 0;
2100 }
2101 
2102 static const struct bpf_func_proto bpf_csum_level_proto = {
2103 	.func		= bpf_csum_level,
2104 	.gpl_only	= false,
2105 	.ret_type	= RET_INTEGER,
2106 	.arg1_type	= ARG_PTR_TO_CTX,
2107 	.arg2_type	= ARG_ANYTHING,
2108 };
2109 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2110 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2111 {
2112 	return dev_forward_skb_nomtu(dev, skb);
2113 }
2114 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2115 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2116 				      struct sk_buff *skb)
2117 {
2118 	int ret = ____dev_forward_skb(dev, skb, false);
2119 
2120 	if (likely(!ret)) {
2121 		skb->dev = dev;
2122 		ret = netif_rx(skb);
2123 	}
2124 
2125 	return ret;
2126 }
2127 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2128 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2129 {
2130 	int ret;
2131 
2132 	if (dev_xmit_recursion()) {
2133 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2134 		kfree_skb(skb);
2135 		return -ENETDOWN;
2136 	}
2137 
2138 	skb->dev = dev;
2139 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2140 	skb_clear_tstamp(skb);
2141 
2142 	dev_xmit_recursion_inc();
2143 	ret = dev_queue_xmit(skb);
2144 	dev_xmit_recursion_dec();
2145 
2146 	return ret;
2147 }
2148 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2149 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2150 				 u32 flags)
2151 {
2152 	unsigned int mlen = skb_network_offset(skb);
2153 
2154 	if (unlikely(skb->len <= mlen)) {
2155 		kfree_skb(skb);
2156 		return -ERANGE;
2157 	}
2158 
2159 	if (mlen) {
2160 		__skb_pull(skb, mlen);
2161 
2162 		/* At ingress, the mac header has already been pulled once.
2163 		 * At egress, skb_pospull_rcsum has to be done in case that
2164 		 * the skb is originated from ingress (i.e. a forwarded skb)
2165 		 * to ensure that rcsum starts at net header.
2166 		 */
2167 		if (!skb_at_tc_ingress(skb))
2168 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2169 	}
2170 	skb_pop_mac_header(skb);
2171 	skb_reset_mac_len(skb);
2172 	return flags & BPF_F_INGRESS ?
2173 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2176 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2177 				 u32 flags)
2178 {
2179 	/* Verify that a link layer header is carried */
2180 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2181 		kfree_skb(skb);
2182 		return -ERANGE;
2183 	}
2184 
2185 	bpf_push_mac_rcsum(skb);
2186 	return flags & BPF_F_INGRESS ?
2187 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2188 }
2189 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2190 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2191 			  u32 flags)
2192 {
2193 	if (dev_is_mac_header_xmit(dev))
2194 		return __bpf_redirect_common(skb, dev, flags);
2195 	else
2196 		return __bpf_redirect_no_mac(skb, dev, flags);
2197 }
2198 
2199 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2200 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2201 			    struct net_device *dev, struct bpf_nh_params *nh)
2202 {
2203 	u32 hh_len = LL_RESERVED_SPACE(dev);
2204 	const struct in6_addr *nexthop;
2205 	struct dst_entry *dst = NULL;
2206 	struct neighbour *neigh;
2207 
2208 	if (dev_xmit_recursion()) {
2209 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2210 		goto out_drop;
2211 	}
2212 
2213 	skb->dev = dev;
2214 	skb_clear_tstamp(skb);
2215 
2216 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2217 		skb = skb_expand_head(skb, hh_len);
2218 		if (!skb)
2219 			return -ENOMEM;
2220 	}
2221 
2222 	rcu_read_lock();
2223 	if (!nh) {
2224 		dst = skb_dst(skb);
2225 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2226 				      &ipv6_hdr(skb)->daddr);
2227 	} else {
2228 		nexthop = &nh->ipv6_nh;
2229 	}
2230 	neigh = ip_neigh_gw6(dev, nexthop);
2231 	if (likely(!IS_ERR(neigh))) {
2232 		int ret;
2233 
2234 		sock_confirm_neigh(skb, neigh);
2235 		local_bh_disable();
2236 		dev_xmit_recursion_inc();
2237 		ret = neigh_output(neigh, skb, false);
2238 		dev_xmit_recursion_dec();
2239 		local_bh_enable();
2240 		rcu_read_unlock();
2241 		return ret;
2242 	}
2243 	rcu_read_unlock();
2244 	if (dst)
2245 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2246 out_drop:
2247 	kfree_skb(skb);
2248 	return -ENETDOWN;
2249 }
2250 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2251 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2252 				   struct bpf_nh_params *nh)
2253 {
2254 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2255 	struct net *net = dev_net(dev);
2256 	int err, ret = NET_XMIT_DROP;
2257 
2258 	if (!nh) {
2259 		struct dst_entry *dst;
2260 		struct flowi6 fl6 = {
2261 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2262 			.flowi6_mark  = skb->mark,
2263 			.flowlabel    = ip6_flowinfo(ip6h),
2264 			.flowi6_oif   = dev->ifindex,
2265 			.flowi6_proto = ip6h->nexthdr,
2266 			.daddr	      = ip6h->daddr,
2267 			.saddr	      = ip6h->saddr,
2268 		};
2269 
2270 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2271 		if (IS_ERR(dst))
2272 			goto out_drop;
2273 
2274 		skb_dst_set(skb, dst);
2275 	} else if (nh->nh_family != AF_INET6) {
2276 		goto out_drop;
2277 	}
2278 
2279 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2280 	if (unlikely(net_xmit_eval(err)))
2281 		DEV_STATS_INC(dev, tx_errors);
2282 	else
2283 		ret = NET_XMIT_SUCCESS;
2284 	goto out_xmit;
2285 out_drop:
2286 	DEV_STATS_INC(dev, tx_errors);
2287 	kfree_skb(skb);
2288 out_xmit:
2289 	return ret;
2290 }
2291 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2292 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2293 				   struct bpf_nh_params *nh)
2294 {
2295 	kfree_skb(skb);
2296 	return NET_XMIT_DROP;
2297 }
2298 #endif /* CONFIG_IPV6 */
2299 
2300 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2301 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2302 			    struct net_device *dev, struct bpf_nh_params *nh)
2303 {
2304 	u32 hh_len = LL_RESERVED_SPACE(dev);
2305 	struct neighbour *neigh;
2306 	bool is_v6gw = false;
2307 
2308 	if (dev_xmit_recursion()) {
2309 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2310 		goto out_drop;
2311 	}
2312 
2313 	skb->dev = dev;
2314 	skb_clear_tstamp(skb);
2315 
2316 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2317 		skb = skb_expand_head(skb, hh_len);
2318 		if (!skb)
2319 			return -ENOMEM;
2320 	}
2321 
2322 	rcu_read_lock();
2323 	if (!nh) {
2324 		struct rtable *rt = skb_rtable(skb);
2325 
2326 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2327 	} else if (nh->nh_family == AF_INET6) {
2328 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2329 		is_v6gw = true;
2330 	} else if (nh->nh_family == AF_INET) {
2331 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2332 	} else {
2333 		rcu_read_unlock();
2334 		goto out_drop;
2335 	}
2336 
2337 	if (likely(!IS_ERR(neigh))) {
2338 		int ret;
2339 
2340 		sock_confirm_neigh(skb, neigh);
2341 		local_bh_disable();
2342 		dev_xmit_recursion_inc();
2343 		ret = neigh_output(neigh, skb, is_v6gw);
2344 		dev_xmit_recursion_dec();
2345 		local_bh_enable();
2346 		rcu_read_unlock();
2347 		return ret;
2348 	}
2349 	rcu_read_unlock();
2350 out_drop:
2351 	kfree_skb(skb);
2352 	return -ENETDOWN;
2353 }
2354 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2355 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2356 				   struct bpf_nh_params *nh)
2357 {
2358 	const struct iphdr *ip4h = ip_hdr(skb);
2359 	struct net *net = dev_net(dev);
2360 	int err, ret = NET_XMIT_DROP;
2361 
2362 	if (!nh) {
2363 		struct flowi4 fl4 = {
2364 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2365 			.flowi4_mark  = skb->mark,
2366 			.flowi4_tos   = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2367 			.flowi4_oif   = dev->ifindex,
2368 			.flowi4_proto = ip4h->protocol,
2369 			.daddr	      = ip4h->daddr,
2370 			.saddr	      = ip4h->saddr,
2371 		};
2372 		struct rtable *rt;
2373 
2374 		rt = ip_route_output_flow(net, &fl4, NULL);
2375 		if (IS_ERR(rt))
2376 			goto out_drop;
2377 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2378 			ip_rt_put(rt);
2379 			goto out_drop;
2380 		}
2381 
2382 		skb_dst_set(skb, &rt->dst);
2383 	}
2384 
2385 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2386 	if (unlikely(net_xmit_eval(err)))
2387 		DEV_STATS_INC(dev, tx_errors);
2388 	else
2389 		ret = NET_XMIT_SUCCESS;
2390 	goto out_xmit;
2391 out_drop:
2392 	DEV_STATS_INC(dev, tx_errors);
2393 	kfree_skb(skb);
2394 out_xmit:
2395 	return ret;
2396 }
2397 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2399 				   struct bpf_nh_params *nh)
2400 {
2401 	kfree_skb(skb);
2402 	return NET_XMIT_DROP;
2403 }
2404 #endif /* CONFIG_INET */
2405 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2406 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2407 				struct bpf_nh_params *nh)
2408 {
2409 	struct ethhdr *ethh = eth_hdr(skb);
2410 
2411 	if (unlikely(skb->mac_header >= skb->network_header))
2412 		goto out;
2413 	bpf_push_mac_rcsum(skb);
2414 	if (is_multicast_ether_addr(ethh->h_dest))
2415 		goto out;
2416 
2417 	skb_pull(skb, sizeof(*ethh));
2418 	skb_unset_mac_header(skb);
2419 	skb_reset_network_header(skb);
2420 
2421 	if (skb->protocol == htons(ETH_P_IP))
2422 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2423 	else if (skb->protocol == htons(ETH_P_IPV6))
2424 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2425 out:
2426 	kfree_skb(skb);
2427 	return -ENOTSUPP;
2428 }
2429 
2430 /* Internal, non-exposed redirect flags. */
2431 enum {
2432 	BPF_F_NEIGH	= (1ULL << 16),
2433 	BPF_F_PEER	= (1ULL << 17),
2434 	BPF_F_NEXTHOP	= (1ULL << 18),
2435 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2436 };
2437 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2438 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2439 {
2440 	struct net_device *dev;
2441 	struct sk_buff *clone;
2442 	int ret;
2443 
2444 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2445 
2446 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2447 		return -EINVAL;
2448 
2449 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2450 	if (unlikely(!dev))
2451 		return -EINVAL;
2452 
2453 	clone = skb_clone(skb, GFP_ATOMIC);
2454 	if (unlikely(!clone))
2455 		return -ENOMEM;
2456 
2457 	/* For direct write, we need to keep the invariant that the skbs
2458 	 * we're dealing with need to be uncloned. Should uncloning fail
2459 	 * here, we need to free the just generated clone to unclone once
2460 	 * again.
2461 	 */
2462 	ret = bpf_try_make_head_writable(skb);
2463 	if (unlikely(ret)) {
2464 		kfree_skb(clone);
2465 		return -ENOMEM;
2466 	}
2467 
2468 	return __bpf_redirect(clone, dev, flags);
2469 }
2470 
2471 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2472 	.func           = bpf_clone_redirect,
2473 	.gpl_only       = false,
2474 	.ret_type       = RET_INTEGER,
2475 	.arg1_type      = ARG_PTR_TO_CTX,
2476 	.arg2_type      = ARG_ANYTHING,
2477 	.arg3_type      = ARG_ANYTHING,
2478 };
2479 
skb_get_peer_dev(struct net_device * dev)2480 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2481 {
2482 	const struct net_device_ops *ops = dev->netdev_ops;
2483 
2484 	if (likely(ops->ndo_get_peer_dev))
2485 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2486 				       netkit_peer_dev, dev);
2487 	return NULL;
2488 }
2489 
skb_do_redirect(struct sk_buff * skb)2490 int skb_do_redirect(struct sk_buff *skb)
2491 {
2492 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2493 	struct net *net = dev_net(skb->dev);
2494 	struct net_device *dev;
2495 	u32 flags = ri->flags;
2496 
2497 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2498 	ri->tgt_index = 0;
2499 	ri->flags = 0;
2500 	if (unlikely(!dev))
2501 		goto out_drop;
2502 	if (flags & BPF_F_PEER) {
2503 		if (unlikely(!skb_at_tc_ingress(skb)))
2504 			goto out_drop;
2505 		dev = skb_get_peer_dev(dev);
2506 		if (unlikely(!dev ||
2507 			     !(dev->flags & IFF_UP) ||
2508 			     net_eq(net, dev_net(dev))))
2509 			goto out_drop;
2510 		skb->dev = dev;
2511 		dev_sw_netstats_rx_add(dev, skb->len);
2512 		return -EAGAIN;
2513 	}
2514 	return flags & BPF_F_NEIGH ?
2515 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2516 				    &ri->nh : NULL) :
2517 	       __bpf_redirect(skb, dev, flags);
2518 out_drop:
2519 	kfree_skb(skb);
2520 	return -EINVAL;
2521 }
2522 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2523 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2524 {
2525 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2526 
2527 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2528 		return TC_ACT_SHOT;
2529 
2530 	ri->flags = flags;
2531 	ri->tgt_index = ifindex;
2532 
2533 	return TC_ACT_REDIRECT;
2534 }
2535 
2536 static const struct bpf_func_proto bpf_redirect_proto = {
2537 	.func           = bpf_redirect,
2538 	.gpl_only       = false,
2539 	.ret_type       = RET_INTEGER,
2540 	.arg1_type      = ARG_ANYTHING,
2541 	.arg2_type      = ARG_ANYTHING,
2542 };
2543 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2544 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2545 {
2546 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2547 
2548 	if (unlikely(flags))
2549 		return TC_ACT_SHOT;
2550 
2551 	ri->flags = BPF_F_PEER;
2552 	ri->tgt_index = ifindex;
2553 
2554 	return TC_ACT_REDIRECT;
2555 }
2556 
2557 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2558 	.func           = bpf_redirect_peer,
2559 	.gpl_only       = false,
2560 	.ret_type       = RET_INTEGER,
2561 	.arg1_type      = ARG_ANYTHING,
2562 	.arg2_type      = ARG_ANYTHING,
2563 };
2564 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2565 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2566 	   int, plen, u64, flags)
2567 {
2568 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2569 
2570 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2571 		return TC_ACT_SHOT;
2572 
2573 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2574 	ri->tgt_index = ifindex;
2575 
2576 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2577 	if (plen)
2578 		memcpy(&ri->nh, params, sizeof(ri->nh));
2579 
2580 	return TC_ACT_REDIRECT;
2581 }
2582 
2583 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2584 	.func		= bpf_redirect_neigh,
2585 	.gpl_only	= false,
2586 	.ret_type	= RET_INTEGER,
2587 	.arg1_type	= ARG_ANYTHING,
2588 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2589 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2590 	.arg4_type	= ARG_ANYTHING,
2591 };
2592 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2593 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2594 {
2595 	msg->apply_bytes = bytes;
2596 	return 0;
2597 }
2598 
2599 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2600 	.func           = bpf_msg_apply_bytes,
2601 	.gpl_only       = false,
2602 	.ret_type       = RET_INTEGER,
2603 	.arg1_type	= ARG_PTR_TO_CTX,
2604 	.arg2_type      = ARG_ANYTHING,
2605 };
2606 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2607 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2608 {
2609 	msg->cork_bytes = bytes;
2610 	return 0;
2611 }
2612 
sk_msg_reset_curr(struct sk_msg * msg)2613 static void sk_msg_reset_curr(struct sk_msg *msg)
2614 {
2615 	if (!msg->sg.size) {
2616 		msg->sg.curr = msg->sg.start;
2617 		msg->sg.copybreak = 0;
2618 	} else {
2619 		u32 i = msg->sg.end;
2620 
2621 		sk_msg_iter_var_prev(i);
2622 		msg->sg.curr = i;
2623 		msg->sg.copybreak = msg->sg.data[i].length;
2624 	}
2625 }
2626 
2627 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2628 	.func           = bpf_msg_cork_bytes,
2629 	.gpl_only       = false,
2630 	.ret_type       = RET_INTEGER,
2631 	.arg1_type	= ARG_PTR_TO_CTX,
2632 	.arg2_type      = ARG_ANYTHING,
2633 };
2634 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2635 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2636 	   u32, end, u64, flags)
2637 {
2638 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2639 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2640 	struct scatterlist *sge;
2641 	u8 *raw, *to, *from;
2642 	struct page *page;
2643 
2644 	if (unlikely(flags || end <= start))
2645 		return -EINVAL;
2646 
2647 	/* First find the starting scatterlist element */
2648 	i = msg->sg.start;
2649 	do {
2650 		offset += len;
2651 		len = sk_msg_elem(msg, i)->length;
2652 		if (start < offset + len)
2653 			break;
2654 		sk_msg_iter_var_next(i);
2655 	} while (i != msg->sg.end);
2656 
2657 	if (unlikely(start >= offset + len))
2658 		return -EINVAL;
2659 
2660 	first_sge = i;
2661 	/* The start may point into the sg element so we need to also
2662 	 * account for the headroom.
2663 	 */
2664 	bytes_sg_total = start - offset + bytes;
2665 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2666 		goto out;
2667 
2668 	/* At this point we need to linearize multiple scatterlist
2669 	 * elements or a single shared page. Either way we need to
2670 	 * copy into a linear buffer exclusively owned by BPF. Then
2671 	 * place the buffer in the scatterlist and fixup the original
2672 	 * entries by removing the entries now in the linear buffer
2673 	 * and shifting the remaining entries. For now we do not try
2674 	 * to copy partial entries to avoid complexity of running out
2675 	 * of sg_entry slots. The downside is reading a single byte
2676 	 * will copy the entire sg entry.
2677 	 */
2678 	do {
2679 		copy += sk_msg_elem(msg, i)->length;
2680 		sk_msg_iter_var_next(i);
2681 		if (bytes_sg_total <= copy)
2682 			break;
2683 	} while (i != msg->sg.end);
2684 	last_sge = i;
2685 
2686 	if (unlikely(bytes_sg_total > copy))
2687 		return -EINVAL;
2688 
2689 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2690 			   get_order(copy));
2691 	if (unlikely(!page))
2692 		return -ENOMEM;
2693 
2694 	raw = page_address(page);
2695 	i = first_sge;
2696 	do {
2697 		sge = sk_msg_elem(msg, i);
2698 		from = sg_virt(sge);
2699 		len = sge->length;
2700 		to = raw + poffset;
2701 
2702 		memcpy(to, from, len);
2703 		poffset += len;
2704 		sge->length = 0;
2705 		put_page(sg_page(sge));
2706 
2707 		sk_msg_iter_var_next(i);
2708 	} while (i != last_sge);
2709 
2710 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2711 
2712 	/* To repair sg ring we need to shift entries. If we only
2713 	 * had a single entry though we can just replace it and
2714 	 * be done. Otherwise walk the ring and shift the entries.
2715 	 */
2716 	WARN_ON_ONCE(last_sge == first_sge);
2717 	shift = last_sge > first_sge ?
2718 		last_sge - first_sge - 1 :
2719 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2720 	if (!shift)
2721 		goto out;
2722 
2723 	i = first_sge;
2724 	sk_msg_iter_var_next(i);
2725 	do {
2726 		u32 move_from;
2727 
2728 		if (i + shift >= NR_MSG_FRAG_IDS)
2729 			move_from = i + shift - NR_MSG_FRAG_IDS;
2730 		else
2731 			move_from = i + shift;
2732 		if (move_from == msg->sg.end)
2733 			break;
2734 
2735 		msg->sg.data[i] = msg->sg.data[move_from];
2736 		msg->sg.data[move_from].length = 0;
2737 		msg->sg.data[move_from].page_link = 0;
2738 		msg->sg.data[move_from].offset = 0;
2739 		sk_msg_iter_var_next(i);
2740 	} while (1);
2741 
2742 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2743 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2744 		      msg->sg.end - shift;
2745 out:
2746 	sk_msg_reset_curr(msg);
2747 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2748 	msg->data_end = msg->data + bytes;
2749 	return 0;
2750 }
2751 
2752 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2753 	.func		= bpf_msg_pull_data,
2754 	.gpl_only	= false,
2755 	.ret_type	= RET_INTEGER,
2756 	.arg1_type	= ARG_PTR_TO_CTX,
2757 	.arg2_type	= ARG_ANYTHING,
2758 	.arg3_type	= ARG_ANYTHING,
2759 	.arg4_type	= ARG_ANYTHING,
2760 };
2761 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2762 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2763 	   u32, len, u64, flags)
2764 {
2765 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2766 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2767 	u8 *raw, *to, *from;
2768 	struct page *page;
2769 
2770 	if (unlikely(flags))
2771 		return -EINVAL;
2772 
2773 	if (unlikely(len == 0))
2774 		return 0;
2775 
2776 	/* First find the starting scatterlist element */
2777 	i = msg->sg.start;
2778 	do {
2779 		offset += l;
2780 		l = sk_msg_elem(msg, i)->length;
2781 
2782 		if (start < offset + l)
2783 			break;
2784 		sk_msg_iter_var_next(i);
2785 	} while (i != msg->sg.end);
2786 
2787 	if (start > offset + l)
2788 		return -EINVAL;
2789 
2790 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2791 
2792 	/* If no space available will fallback to copy, we need at
2793 	 * least one scatterlist elem available to push data into
2794 	 * when start aligns to the beginning of an element or two
2795 	 * when it falls inside an element. We handle the start equals
2796 	 * offset case because its the common case for inserting a
2797 	 * header.
2798 	 */
2799 	if (!space || (space == 1 && start != offset))
2800 		copy = msg->sg.data[i].length;
2801 
2802 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2803 			   get_order(copy + len));
2804 	if (unlikely(!page))
2805 		return -ENOMEM;
2806 
2807 	if (copy) {
2808 		int front, back;
2809 
2810 		raw = page_address(page);
2811 
2812 		if (i == msg->sg.end)
2813 			sk_msg_iter_var_prev(i);
2814 		psge = sk_msg_elem(msg, i);
2815 		front = start - offset;
2816 		back = psge->length - front;
2817 		from = sg_virt(psge);
2818 
2819 		if (front)
2820 			memcpy(raw, from, front);
2821 
2822 		if (back) {
2823 			from += front;
2824 			to = raw + front + len;
2825 
2826 			memcpy(to, from, back);
2827 		}
2828 
2829 		put_page(sg_page(psge));
2830 		new = i;
2831 		goto place_new;
2832 	}
2833 
2834 	if (start - offset) {
2835 		if (i == msg->sg.end)
2836 			sk_msg_iter_var_prev(i);
2837 		psge = sk_msg_elem(msg, i);
2838 		rsge = sk_msg_elem_cpy(msg, i);
2839 
2840 		psge->length = start - offset;
2841 		rsge.length -= psge->length;
2842 		rsge.offset += start;
2843 
2844 		sk_msg_iter_var_next(i);
2845 		sg_unmark_end(psge);
2846 		sg_unmark_end(&rsge);
2847 	}
2848 
2849 	/* Slot(s) to place newly allocated data */
2850 	sk_msg_iter_next(msg, end);
2851 	new = i;
2852 	sk_msg_iter_var_next(i);
2853 
2854 	if (i == msg->sg.end) {
2855 		if (!rsge.length)
2856 			goto place_new;
2857 		sk_msg_iter_next(msg, end);
2858 		goto place_new;
2859 	}
2860 
2861 	/* Shift one or two slots as needed */
2862 	sge = sk_msg_elem_cpy(msg, new);
2863 	sg_unmark_end(&sge);
2864 
2865 	nsge = sk_msg_elem_cpy(msg, i);
2866 	if (rsge.length) {
2867 		sk_msg_iter_var_next(i);
2868 		nnsge = sk_msg_elem_cpy(msg, i);
2869 		sk_msg_iter_next(msg, end);
2870 	}
2871 
2872 	while (i != msg->sg.end) {
2873 		msg->sg.data[i] = sge;
2874 		sge = nsge;
2875 		sk_msg_iter_var_next(i);
2876 		if (rsge.length) {
2877 			nsge = nnsge;
2878 			nnsge = sk_msg_elem_cpy(msg, i);
2879 		} else {
2880 			nsge = sk_msg_elem_cpy(msg, i);
2881 		}
2882 	}
2883 
2884 place_new:
2885 	/* Place newly allocated data buffer */
2886 	sk_mem_charge(msg->sk, len);
2887 	msg->sg.size += len;
2888 	__clear_bit(new, msg->sg.copy);
2889 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2890 	if (rsge.length) {
2891 		get_page(sg_page(&rsge));
2892 		sk_msg_iter_var_next(new);
2893 		msg->sg.data[new] = rsge;
2894 	}
2895 
2896 	sk_msg_reset_curr(msg);
2897 	sk_msg_compute_data_pointers(msg);
2898 	return 0;
2899 }
2900 
2901 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2902 	.func		= bpf_msg_push_data,
2903 	.gpl_only	= false,
2904 	.ret_type	= RET_INTEGER,
2905 	.arg1_type	= ARG_PTR_TO_CTX,
2906 	.arg2_type	= ARG_ANYTHING,
2907 	.arg3_type	= ARG_ANYTHING,
2908 	.arg4_type	= ARG_ANYTHING,
2909 };
2910 
sk_msg_shift_left(struct sk_msg * msg,int i)2911 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2912 {
2913 	struct scatterlist *sge = sk_msg_elem(msg, i);
2914 	int prev;
2915 
2916 	put_page(sg_page(sge));
2917 	do {
2918 		prev = i;
2919 		sk_msg_iter_var_next(i);
2920 		msg->sg.data[prev] = msg->sg.data[i];
2921 	} while (i != msg->sg.end);
2922 
2923 	sk_msg_iter_prev(msg, end);
2924 }
2925 
sk_msg_shift_right(struct sk_msg * msg,int i)2926 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2927 {
2928 	struct scatterlist tmp, sge;
2929 
2930 	sk_msg_iter_next(msg, end);
2931 	sge = sk_msg_elem_cpy(msg, i);
2932 	sk_msg_iter_var_next(i);
2933 	tmp = sk_msg_elem_cpy(msg, i);
2934 
2935 	while (i != msg->sg.end) {
2936 		msg->sg.data[i] = sge;
2937 		sk_msg_iter_var_next(i);
2938 		sge = tmp;
2939 		tmp = sk_msg_elem_cpy(msg, i);
2940 	}
2941 }
2942 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2943 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2944 	   u32, len, u64, flags)
2945 {
2946 	u32 i = 0, l = 0, space, offset = 0;
2947 	u64 last = start + len;
2948 	int pop;
2949 
2950 	if (unlikely(flags))
2951 		return -EINVAL;
2952 
2953 	if (unlikely(len == 0))
2954 		return 0;
2955 
2956 	/* First find the starting scatterlist element */
2957 	i = msg->sg.start;
2958 	do {
2959 		offset += l;
2960 		l = sk_msg_elem(msg, i)->length;
2961 
2962 		if (start < offset + l)
2963 			break;
2964 		sk_msg_iter_var_next(i);
2965 	} while (i != msg->sg.end);
2966 
2967 	/* Bounds checks: start and pop must be inside message */
2968 	if (start >= offset + l || last > msg->sg.size)
2969 		return -EINVAL;
2970 
2971 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2972 
2973 	pop = len;
2974 	/* --------------| offset
2975 	 * -| start      |-------- len -------|
2976 	 *
2977 	 *  |----- a ----|-------- pop -------|----- b ----|
2978 	 *  |______________________________________________| length
2979 	 *
2980 	 *
2981 	 * a:   region at front of scatter element to save
2982 	 * b:   region at back of scatter element to save when length > A + pop
2983 	 * pop: region to pop from element, same as input 'pop' here will be
2984 	 *      decremented below per iteration.
2985 	 *
2986 	 * Two top-level cases to handle when start != offset, first B is non
2987 	 * zero and second B is zero corresponding to when a pop includes more
2988 	 * than one element.
2989 	 *
2990 	 * Then if B is non-zero AND there is no space allocate space and
2991 	 * compact A, B regions into page. If there is space shift ring to
2992 	 * the right free'ing the next element in ring to place B, leaving
2993 	 * A untouched except to reduce length.
2994 	 */
2995 	if (start != offset) {
2996 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2997 		int a = start - offset;
2998 		int b = sge->length - pop - a;
2999 
3000 		sk_msg_iter_var_next(i);
3001 
3002 		if (b > 0) {
3003 			if (space) {
3004 				sge->length = a;
3005 				sk_msg_shift_right(msg, i);
3006 				nsge = sk_msg_elem(msg, i);
3007 				get_page(sg_page(sge));
3008 				sg_set_page(nsge,
3009 					    sg_page(sge),
3010 					    b, sge->offset + pop + a);
3011 			} else {
3012 				struct page *page, *orig;
3013 				u8 *to, *from;
3014 
3015 				page = alloc_pages(__GFP_NOWARN |
3016 						   __GFP_COMP   | GFP_ATOMIC,
3017 						   get_order(a + b));
3018 				if (unlikely(!page))
3019 					return -ENOMEM;
3020 
3021 				orig = sg_page(sge);
3022 				from = sg_virt(sge);
3023 				to = page_address(page);
3024 				memcpy(to, from, a);
3025 				memcpy(to + a, from + a + pop, b);
3026 				sg_set_page(sge, page, a + b, 0);
3027 				put_page(orig);
3028 			}
3029 			pop = 0;
3030 		} else {
3031 			pop -= (sge->length - a);
3032 			sge->length = a;
3033 		}
3034 	}
3035 
3036 	/* From above the current layout _must_ be as follows,
3037 	 *
3038 	 * -| offset
3039 	 * -| start
3040 	 *
3041 	 *  |---- pop ---|---------------- b ------------|
3042 	 *  |____________________________________________| length
3043 	 *
3044 	 * Offset and start of the current msg elem are equal because in the
3045 	 * previous case we handled offset != start and either consumed the
3046 	 * entire element and advanced to the next element OR pop == 0.
3047 	 *
3048 	 * Two cases to handle here are first pop is less than the length
3049 	 * leaving some remainder b above. Simply adjust the element's layout
3050 	 * in this case. Or pop >= length of the element so that b = 0. In this
3051 	 * case advance to next element decrementing pop.
3052 	 */
3053 	while (pop) {
3054 		struct scatterlist *sge = sk_msg_elem(msg, i);
3055 
3056 		if (pop < sge->length) {
3057 			sge->length -= pop;
3058 			sge->offset += pop;
3059 			pop = 0;
3060 		} else {
3061 			pop -= sge->length;
3062 			sk_msg_shift_left(msg, i);
3063 		}
3064 	}
3065 
3066 	sk_mem_uncharge(msg->sk, len - pop);
3067 	msg->sg.size -= (len - pop);
3068 	sk_msg_reset_curr(msg);
3069 	sk_msg_compute_data_pointers(msg);
3070 	return 0;
3071 }
3072 
3073 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3074 	.func		= bpf_msg_pop_data,
3075 	.gpl_only	= false,
3076 	.ret_type	= RET_INTEGER,
3077 	.arg1_type	= ARG_PTR_TO_CTX,
3078 	.arg2_type	= ARG_ANYTHING,
3079 	.arg3_type	= ARG_ANYTHING,
3080 	.arg4_type	= ARG_ANYTHING,
3081 };
3082 
3083 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3084 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3085 {
3086 	return __task_get_classid(current);
3087 }
3088 
3089 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3090 	.func		= bpf_get_cgroup_classid_curr,
3091 	.gpl_only	= false,
3092 	.ret_type	= RET_INTEGER,
3093 };
3094 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3095 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3096 {
3097 	struct sock *sk = skb_to_full_sk(skb);
3098 
3099 	if (!sk || !sk_fullsock(sk))
3100 		return 0;
3101 
3102 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3103 }
3104 
3105 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3106 	.func		= bpf_skb_cgroup_classid,
3107 	.gpl_only	= false,
3108 	.ret_type	= RET_INTEGER,
3109 	.arg1_type	= ARG_PTR_TO_CTX,
3110 };
3111 #endif
3112 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3113 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3114 {
3115 	return task_get_classid(skb);
3116 }
3117 
3118 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3119 	.func           = bpf_get_cgroup_classid,
3120 	.gpl_only       = false,
3121 	.ret_type       = RET_INTEGER,
3122 	.arg1_type      = ARG_PTR_TO_CTX,
3123 };
3124 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3125 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3126 {
3127 	return dst_tclassid(skb);
3128 }
3129 
3130 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3131 	.func           = bpf_get_route_realm,
3132 	.gpl_only       = false,
3133 	.ret_type       = RET_INTEGER,
3134 	.arg1_type      = ARG_PTR_TO_CTX,
3135 };
3136 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3137 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3138 {
3139 	/* If skb_clear_hash() was called due to mangling, we can
3140 	 * trigger SW recalculation here. Later access to hash
3141 	 * can then use the inline skb->hash via context directly
3142 	 * instead of calling this helper again.
3143 	 */
3144 	return skb_get_hash(skb);
3145 }
3146 
3147 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3148 	.func		= bpf_get_hash_recalc,
3149 	.gpl_only	= false,
3150 	.ret_type	= RET_INTEGER,
3151 	.arg1_type	= ARG_PTR_TO_CTX,
3152 };
3153 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3154 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3155 {
3156 	/* After all direct packet write, this can be used once for
3157 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3158 	 */
3159 	skb_clear_hash(skb);
3160 	return 0;
3161 }
3162 
3163 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3164 	.func		= bpf_set_hash_invalid,
3165 	.gpl_only	= false,
3166 	.ret_type	= RET_INTEGER,
3167 	.arg1_type	= ARG_PTR_TO_CTX,
3168 };
3169 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3170 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3171 {
3172 	/* Set user specified hash as L4(+), so that it gets returned
3173 	 * on skb_get_hash() call unless BPF prog later on triggers a
3174 	 * skb_clear_hash().
3175 	 */
3176 	__skb_set_sw_hash(skb, hash, true);
3177 	return 0;
3178 }
3179 
3180 static const struct bpf_func_proto bpf_set_hash_proto = {
3181 	.func		= bpf_set_hash,
3182 	.gpl_only	= false,
3183 	.ret_type	= RET_INTEGER,
3184 	.arg1_type	= ARG_PTR_TO_CTX,
3185 	.arg2_type	= ARG_ANYTHING,
3186 };
3187 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3188 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3189 	   u16, vlan_tci)
3190 {
3191 	int ret;
3192 
3193 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3194 		     vlan_proto != htons(ETH_P_8021AD)))
3195 		vlan_proto = htons(ETH_P_8021Q);
3196 
3197 	bpf_push_mac_rcsum(skb);
3198 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3199 	bpf_pull_mac_rcsum(skb);
3200 	skb_reset_mac_len(skb);
3201 
3202 	bpf_compute_data_pointers(skb);
3203 	return ret;
3204 }
3205 
3206 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3207 	.func           = bpf_skb_vlan_push,
3208 	.gpl_only       = false,
3209 	.ret_type       = RET_INTEGER,
3210 	.arg1_type      = ARG_PTR_TO_CTX,
3211 	.arg2_type      = ARG_ANYTHING,
3212 	.arg3_type      = ARG_ANYTHING,
3213 };
3214 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3215 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3216 {
3217 	int ret;
3218 
3219 	bpf_push_mac_rcsum(skb);
3220 	ret = skb_vlan_pop(skb);
3221 	bpf_pull_mac_rcsum(skb);
3222 
3223 	bpf_compute_data_pointers(skb);
3224 	return ret;
3225 }
3226 
3227 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3228 	.func           = bpf_skb_vlan_pop,
3229 	.gpl_only       = false,
3230 	.ret_type       = RET_INTEGER,
3231 	.arg1_type      = ARG_PTR_TO_CTX,
3232 };
3233 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3234 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3235 {
3236 	/* Caller already did skb_cow() with len as headroom,
3237 	 * so no need to do it here.
3238 	 */
3239 	skb_push(skb, len);
3240 	memmove(skb->data, skb->data + len, off);
3241 	memset(skb->data + off, 0, len);
3242 
3243 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3244 	 * needed here as it does not change the skb->csum
3245 	 * result for checksum complete when summing over
3246 	 * zeroed blocks.
3247 	 */
3248 	return 0;
3249 }
3250 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3251 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3252 {
3253 	void *old_data;
3254 
3255 	/* skb_ensure_writable() is not needed here, as we're
3256 	 * already working on an uncloned skb.
3257 	 */
3258 	if (unlikely(!pskb_may_pull(skb, off + len)))
3259 		return -ENOMEM;
3260 
3261 	old_data = skb->data;
3262 	__skb_pull(skb, len);
3263 	skb_postpull_rcsum(skb, old_data + off, len);
3264 	memmove(skb->data, old_data, off);
3265 
3266 	return 0;
3267 }
3268 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3269 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3270 {
3271 	bool trans_same = skb->transport_header == skb->network_header;
3272 	int ret;
3273 
3274 	/* There's no need for __skb_push()/__skb_pull() pair to
3275 	 * get to the start of the mac header as we're guaranteed
3276 	 * to always start from here under eBPF.
3277 	 */
3278 	ret = bpf_skb_generic_push(skb, off, len);
3279 	if (likely(!ret)) {
3280 		skb->mac_header -= len;
3281 		skb->network_header -= len;
3282 		if (trans_same)
3283 			skb->transport_header = skb->network_header;
3284 	}
3285 
3286 	return ret;
3287 }
3288 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3289 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3290 {
3291 	bool trans_same = skb->transport_header == skb->network_header;
3292 	int ret;
3293 
3294 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3295 	ret = bpf_skb_generic_pop(skb, off, len);
3296 	if (likely(!ret)) {
3297 		skb->mac_header += len;
3298 		skb->network_header += len;
3299 		if (trans_same)
3300 			skb->transport_header = skb->network_header;
3301 	}
3302 
3303 	return ret;
3304 }
3305 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3306 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3307 {
3308 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3309 	u32 off = skb_mac_header_len(skb);
3310 	int ret;
3311 
3312 	ret = skb_cow(skb, len_diff);
3313 	if (unlikely(ret < 0))
3314 		return ret;
3315 
3316 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3317 	if (unlikely(ret < 0))
3318 		return ret;
3319 
3320 	if (skb_is_gso(skb)) {
3321 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3322 
3323 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3324 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3325 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3326 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3327 		}
3328 	}
3329 
3330 	skb->protocol = htons(ETH_P_IPV6);
3331 	skb_clear_hash(skb);
3332 
3333 	return 0;
3334 }
3335 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3336 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3337 {
3338 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3339 	u32 off = skb_mac_header_len(skb);
3340 	int ret;
3341 
3342 	ret = skb_unclone(skb, GFP_ATOMIC);
3343 	if (unlikely(ret < 0))
3344 		return ret;
3345 
3346 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3347 	if (unlikely(ret < 0))
3348 		return ret;
3349 
3350 	if (skb_is_gso(skb)) {
3351 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3352 
3353 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3354 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3355 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3356 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3357 		}
3358 	}
3359 
3360 	skb->protocol = htons(ETH_P_IP);
3361 	skb_clear_hash(skb);
3362 
3363 	return 0;
3364 }
3365 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3366 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3367 {
3368 	__be16 from_proto = skb->protocol;
3369 
3370 	if (from_proto == htons(ETH_P_IP) &&
3371 	      to_proto == htons(ETH_P_IPV6))
3372 		return bpf_skb_proto_4_to_6(skb);
3373 
3374 	if (from_proto == htons(ETH_P_IPV6) &&
3375 	      to_proto == htons(ETH_P_IP))
3376 		return bpf_skb_proto_6_to_4(skb);
3377 
3378 	return -ENOTSUPP;
3379 }
3380 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3381 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3382 	   u64, flags)
3383 {
3384 	int ret;
3385 
3386 	if (unlikely(flags))
3387 		return -EINVAL;
3388 
3389 	/* General idea is that this helper does the basic groundwork
3390 	 * needed for changing the protocol, and eBPF program fills the
3391 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3392 	 * and other helpers, rather than passing a raw buffer here.
3393 	 *
3394 	 * The rationale is to keep this minimal and without a need to
3395 	 * deal with raw packet data. F.e. even if we would pass buffers
3396 	 * here, the program still needs to call the bpf_lX_csum_replace()
3397 	 * helpers anyway. Plus, this way we keep also separation of
3398 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3399 	 * care of stores.
3400 	 *
3401 	 * Currently, additional options and extension header space are
3402 	 * not supported, but flags register is reserved so we can adapt
3403 	 * that. For offloads, we mark packet as dodgy, so that headers
3404 	 * need to be verified first.
3405 	 */
3406 	ret = bpf_skb_proto_xlat(skb, proto);
3407 	bpf_compute_data_pointers(skb);
3408 	return ret;
3409 }
3410 
3411 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3412 	.func		= bpf_skb_change_proto,
3413 	.gpl_only	= false,
3414 	.ret_type	= RET_INTEGER,
3415 	.arg1_type	= ARG_PTR_TO_CTX,
3416 	.arg2_type	= ARG_ANYTHING,
3417 	.arg3_type	= ARG_ANYTHING,
3418 };
3419 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3420 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3421 {
3422 	/* We only allow a restricted subset to be changed for now. */
3423 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3424 		     !skb_pkt_type_ok(pkt_type)))
3425 		return -EINVAL;
3426 
3427 	skb->pkt_type = pkt_type;
3428 	return 0;
3429 }
3430 
3431 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3432 	.func		= bpf_skb_change_type,
3433 	.gpl_only	= false,
3434 	.ret_type	= RET_INTEGER,
3435 	.arg1_type	= ARG_PTR_TO_CTX,
3436 	.arg2_type	= ARG_ANYTHING,
3437 };
3438 
bpf_skb_net_base_len(const struct sk_buff * skb)3439 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3440 {
3441 	switch (skb->protocol) {
3442 	case htons(ETH_P_IP):
3443 		return sizeof(struct iphdr);
3444 	case htons(ETH_P_IPV6):
3445 		return sizeof(struct ipv6hdr);
3446 	default:
3447 		return ~0U;
3448 	}
3449 }
3450 
3451 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3452 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3453 
3454 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3455 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3456 
3457 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3458 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3459 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3460 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3461 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3462 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3463 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3464 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3465 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3466 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3467 			    u64 flags)
3468 {
3469 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3470 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3471 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3472 	unsigned int gso_type = SKB_GSO_DODGY;
3473 	int ret;
3474 
3475 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3476 		/* udp gso_size delineates datagrams, only allow if fixed */
3477 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3478 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3479 			return -ENOTSUPP;
3480 	}
3481 
3482 	ret = skb_cow_head(skb, len_diff);
3483 	if (unlikely(ret < 0))
3484 		return ret;
3485 
3486 	if (encap) {
3487 		if (skb->protocol != htons(ETH_P_IP) &&
3488 		    skb->protocol != htons(ETH_P_IPV6))
3489 			return -ENOTSUPP;
3490 
3491 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3492 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3493 			return -EINVAL;
3494 
3495 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3496 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3497 			return -EINVAL;
3498 
3499 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3500 		    inner_mac_len < ETH_HLEN)
3501 			return -EINVAL;
3502 
3503 		if (skb->encapsulation)
3504 			return -EALREADY;
3505 
3506 		mac_len = skb->network_header - skb->mac_header;
3507 		inner_net = skb->network_header;
3508 		if (inner_mac_len > len_diff)
3509 			return -EINVAL;
3510 		inner_trans = skb->transport_header;
3511 	}
3512 
3513 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3514 	if (unlikely(ret < 0))
3515 		return ret;
3516 
3517 	if (encap) {
3518 		skb->inner_mac_header = inner_net - inner_mac_len;
3519 		skb->inner_network_header = inner_net;
3520 		skb->inner_transport_header = inner_trans;
3521 
3522 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3523 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3524 		else
3525 			skb_set_inner_protocol(skb, skb->protocol);
3526 
3527 		skb->encapsulation = 1;
3528 		skb_set_network_header(skb, mac_len);
3529 
3530 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3531 			gso_type |= SKB_GSO_UDP_TUNNEL;
3532 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3533 			gso_type |= SKB_GSO_GRE;
3534 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3535 			gso_type |= SKB_GSO_IPXIP6;
3536 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3537 			gso_type |= SKB_GSO_IPXIP4;
3538 
3539 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3540 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3541 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3542 					sizeof(struct ipv6hdr) :
3543 					sizeof(struct iphdr);
3544 
3545 			skb_set_transport_header(skb, mac_len + nh_len);
3546 		}
3547 
3548 		/* Match skb->protocol to new outer l3 protocol */
3549 		if (skb->protocol == htons(ETH_P_IP) &&
3550 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3551 			skb->protocol = htons(ETH_P_IPV6);
3552 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3553 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3554 			skb->protocol = htons(ETH_P_IP);
3555 	}
3556 
3557 	if (skb_is_gso(skb)) {
3558 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3559 
3560 		/* Header must be checked, and gso_segs recomputed. */
3561 		shinfo->gso_type |= gso_type;
3562 		shinfo->gso_segs = 0;
3563 
3564 		/* Due to header growth, MSS needs to be downgraded.
3565 		 * There is a BUG_ON() when segmenting the frag_list with
3566 		 * head_frag true, so linearize the skb after downgrading
3567 		 * the MSS.
3568 		 */
3569 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3570 			skb_decrease_gso_size(shinfo, len_diff);
3571 			if (shinfo->frag_list)
3572 				return skb_linearize(skb);
3573 		}
3574 	}
3575 
3576 	return 0;
3577 }
3578 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3579 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3580 			      u64 flags)
3581 {
3582 	int ret;
3583 
3584 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3585 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3586 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3587 		return -EINVAL;
3588 
3589 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3590 		/* udp gso_size delineates datagrams, only allow if fixed */
3591 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3592 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3593 			return -ENOTSUPP;
3594 	}
3595 
3596 	ret = skb_unclone(skb, GFP_ATOMIC);
3597 	if (unlikely(ret < 0))
3598 		return ret;
3599 
3600 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3601 	if (unlikely(ret < 0))
3602 		return ret;
3603 
3604 	/* Match skb->protocol to new outer l3 protocol */
3605 	if (skb->protocol == htons(ETH_P_IP) &&
3606 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3607 		skb->protocol = htons(ETH_P_IPV6);
3608 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3609 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3610 		skb->protocol = htons(ETH_P_IP);
3611 
3612 	if (skb_is_gso(skb)) {
3613 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3614 
3615 		/* Due to header shrink, MSS can be upgraded. */
3616 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3617 			skb_increase_gso_size(shinfo, len_diff);
3618 
3619 		/* Header must be checked, and gso_segs recomputed. */
3620 		shinfo->gso_type |= SKB_GSO_DODGY;
3621 		shinfo->gso_segs = 0;
3622 	}
3623 
3624 	return 0;
3625 }
3626 
3627 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3628 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3629 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3630 	   u32, mode, u64, flags)
3631 {
3632 	u32 len_diff_abs = abs(len_diff);
3633 	bool shrink = len_diff < 0;
3634 	int ret = 0;
3635 
3636 	if (unlikely(flags || mode))
3637 		return -EINVAL;
3638 	if (unlikely(len_diff_abs > 0xfffU))
3639 		return -EFAULT;
3640 
3641 	if (!shrink) {
3642 		ret = skb_cow(skb, len_diff);
3643 		if (unlikely(ret < 0))
3644 			return ret;
3645 		__skb_push(skb, len_diff_abs);
3646 		memset(skb->data, 0, len_diff_abs);
3647 	} else {
3648 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3649 			return -ENOMEM;
3650 		__skb_pull(skb, len_diff_abs);
3651 	}
3652 	if (tls_sw_has_ctx_rx(skb->sk)) {
3653 		struct strp_msg *rxm = strp_msg(skb);
3654 
3655 		rxm->full_len += len_diff;
3656 	}
3657 	return ret;
3658 }
3659 
3660 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3661 	.func		= sk_skb_adjust_room,
3662 	.gpl_only	= false,
3663 	.ret_type	= RET_INTEGER,
3664 	.arg1_type	= ARG_PTR_TO_CTX,
3665 	.arg2_type	= ARG_ANYTHING,
3666 	.arg3_type	= ARG_ANYTHING,
3667 	.arg4_type	= ARG_ANYTHING,
3668 };
3669 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3670 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3671 	   u32, mode, u64, flags)
3672 {
3673 	u32 len_cur, len_diff_abs = abs(len_diff);
3674 	u32 len_min = bpf_skb_net_base_len(skb);
3675 	u32 len_max = BPF_SKB_MAX_LEN;
3676 	__be16 proto = skb->protocol;
3677 	bool shrink = len_diff < 0;
3678 	u32 off;
3679 	int ret;
3680 
3681 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3682 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3683 		return -EINVAL;
3684 	if (unlikely(len_diff_abs > 0xfffU))
3685 		return -EFAULT;
3686 	if (unlikely(proto != htons(ETH_P_IP) &&
3687 		     proto != htons(ETH_P_IPV6)))
3688 		return -ENOTSUPP;
3689 
3690 	off = skb_mac_header_len(skb);
3691 	switch (mode) {
3692 	case BPF_ADJ_ROOM_NET:
3693 		off += bpf_skb_net_base_len(skb);
3694 		break;
3695 	case BPF_ADJ_ROOM_MAC:
3696 		break;
3697 	default:
3698 		return -ENOTSUPP;
3699 	}
3700 
3701 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3702 		if (!shrink)
3703 			return -EINVAL;
3704 
3705 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3706 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3707 			len_min = sizeof(struct iphdr);
3708 			break;
3709 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3710 			len_min = sizeof(struct ipv6hdr);
3711 			break;
3712 		default:
3713 			return -EINVAL;
3714 		}
3715 	}
3716 
3717 	len_cur = skb->len - skb_network_offset(skb);
3718 	if ((shrink && (len_diff_abs >= len_cur ||
3719 			len_cur - len_diff_abs < len_min)) ||
3720 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3721 			 !skb_is_gso(skb))))
3722 		return -ENOTSUPP;
3723 
3724 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3725 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3726 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3727 		__skb_reset_checksum_unnecessary(skb);
3728 
3729 	bpf_compute_data_pointers(skb);
3730 	return ret;
3731 }
3732 
3733 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3734 	.func		= bpf_skb_adjust_room,
3735 	.gpl_only	= false,
3736 	.ret_type	= RET_INTEGER,
3737 	.arg1_type	= ARG_PTR_TO_CTX,
3738 	.arg2_type	= ARG_ANYTHING,
3739 	.arg3_type	= ARG_ANYTHING,
3740 	.arg4_type	= ARG_ANYTHING,
3741 };
3742 
__bpf_skb_min_len(const struct sk_buff * skb)3743 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3744 {
3745 	int offset = skb_network_offset(skb);
3746 	u32 min_len = 0;
3747 
3748 	if (offset > 0)
3749 		min_len = offset;
3750 	if (skb_transport_header_was_set(skb)) {
3751 		offset = skb_transport_offset(skb);
3752 		if (offset > 0)
3753 			min_len = offset;
3754 	}
3755 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 		offset = skb_checksum_start_offset(skb) +
3757 			 skb->csum_offset + sizeof(__sum16);
3758 		if (offset > 0)
3759 			min_len = offset;
3760 	}
3761 	return min_len;
3762 }
3763 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3764 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3765 {
3766 	unsigned int old_len = skb->len;
3767 	int ret;
3768 
3769 	ret = __skb_grow_rcsum(skb, new_len);
3770 	if (!ret)
3771 		memset(skb->data + old_len, 0, new_len - old_len);
3772 	return ret;
3773 }
3774 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3775 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3776 {
3777 	return __skb_trim_rcsum(skb, new_len);
3778 }
3779 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3780 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3781 					u64 flags)
3782 {
3783 	u32 max_len = BPF_SKB_MAX_LEN;
3784 	u32 min_len = __bpf_skb_min_len(skb);
3785 	int ret;
3786 
3787 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3788 		return -EINVAL;
3789 	if (skb->encapsulation)
3790 		return -ENOTSUPP;
3791 
3792 	/* The basic idea of this helper is that it's performing the
3793 	 * needed work to either grow or trim an skb, and eBPF program
3794 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3795 	 * bpf_lX_csum_replace() and others rather than passing a raw
3796 	 * buffer here. This one is a slow path helper and intended
3797 	 * for replies with control messages.
3798 	 *
3799 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3800 	 * minimal and without protocol specifics so that we are able
3801 	 * to separate concerns as in bpf_skb_store_bytes() should only
3802 	 * be the one responsible for writing buffers.
3803 	 *
3804 	 * It's really expected to be a slow path operation here for
3805 	 * control message replies, so we're implicitly linearizing,
3806 	 * uncloning and drop offloads from the skb by this.
3807 	 */
3808 	ret = __bpf_try_make_writable(skb, skb->len);
3809 	if (!ret) {
3810 		if (new_len > skb->len)
3811 			ret = bpf_skb_grow_rcsum(skb, new_len);
3812 		else if (new_len < skb->len)
3813 			ret = bpf_skb_trim_rcsum(skb, new_len);
3814 		if (!ret && skb_is_gso(skb))
3815 			skb_gso_reset(skb);
3816 	}
3817 	return ret;
3818 }
3819 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3820 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3821 	   u64, flags)
3822 {
3823 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3824 
3825 	bpf_compute_data_pointers(skb);
3826 	return ret;
3827 }
3828 
3829 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3830 	.func		= bpf_skb_change_tail,
3831 	.gpl_only	= false,
3832 	.ret_type	= RET_INTEGER,
3833 	.arg1_type	= ARG_PTR_TO_CTX,
3834 	.arg2_type	= ARG_ANYTHING,
3835 	.arg3_type	= ARG_ANYTHING,
3836 };
3837 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3838 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3839 	   u64, flags)
3840 {
3841 	return __bpf_skb_change_tail(skb, new_len, flags);
3842 }
3843 
3844 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3845 	.func		= sk_skb_change_tail,
3846 	.gpl_only	= false,
3847 	.ret_type	= RET_INTEGER,
3848 	.arg1_type	= ARG_PTR_TO_CTX,
3849 	.arg2_type	= ARG_ANYTHING,
3850 	.arg3_type	= ARG_ANYTHING,
3851 };
3852 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3853 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3854 					u64 flags)
3855 {
3856 	u32 max_len = BPF_SKB_MAX_LEN;
3857 	u32 new_len = skb->len + head_room;
3858 	int ret;
3859 
3860 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3861 		     new_len < skb->len))
3862 		return -EINVAL;
3863 
3864 	ret = skb_cow(skb, head_room);
3865 	if (likely(!ret)) {
3866 		/* Idea for this helper is that we currently only
3867 		 * allow to expand on mac header. This means that
3868 		 * skb->protocol network header, etc, stay as is.
3869 		 * Compared to bpf_skb_change_tail(), we're more
3870 		 * flexible due to not needing to linearize or
3871 		 * reset GSO. Intention for this helper is to be
3872 		 * used by an L3 skb that needs to push mac header
3873 		 * for redirection into L2 device.
3874 		 */
3875 		__skb_push(skb, head_room);
3876 		memset(skb->data, 0, head_room);
3877 		skb_reset_mac_header(skb);
3878 		skb_reset_mac_len(skb);
3879 	}
3880 
3881 	return ret;
3882 }
3883 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3884 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3885 	   u64, flags)
3886 {
3887 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3888 
3889 	bpf_compute_data_pointers(skb);
3890 	return ret;
3891 }
3892 
3893 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3894 	.func		= bpf_skb_change_head,
3895 	.gpl_only	= false,
3896 	.ret_type	= RET_INTEGER,
3897 	.arg1_type	= ARG_PTR_TO_CTX,
3898 	.arg2_type	= ARG_ANYTHING,
3899 	.arg3_type	= ARG_ANYTHING,
3900 };
3901 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3902 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3903 	   u64, flags)
3904 {
3905 	return __bpf_skb_change_head(skb, head_room, flags);
3906 }
3907 
3908 static const struct bpf_func_proto sk_skb_change_head_proto = {
3909 	.func		= sk_skb_change_head,
3910 	.gpl_only	= false,
3911 	.ret_type	= RET_INTEGER,
3912 	.arg1_type	= ARG_PTR_TO_CTX,
3913 	.arg2_type	= ARG_ANYTHING,
3914 	.arg3_type	= ARG_ANYTHING,
3915 };
3916 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3917 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3918 {
3919 	return xdp_get_buff_len(xdp);
3920 }
3921 
3922 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3923 	.func		= bpf_xdp_get_buff_len,
3924 	.gpl_only	= false,
3925 	.ret_type	= RET_INTEGER,
3926 	.arg1_type	= ARG_PTR_TO_CTX,
3927 };
3928 
3929 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3930 
3931 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3932 	.func		= bpf_xdp_get_buff_len,
3933 	.gpl_only	= false,
3934 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3935 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3936 };
3937 
xdp_get_metalen(const struct xdp_buff * xdp)3938 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3939 {
3940 	return xdp_data_meta_unsupported(xdp) ? 0 :
3941 	       xdp->data - xdp->data_meta;
3942 }
3943 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3944 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3945 {
3946 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3947 	unsigned long metalen = xdp_get_metalen(xdp);
3948 	void *data_start = xdp_frame_end + metalen;
3949 	void *data = xdp->data + offset;
3950 
3951 	if (unlikely(data < data_start ||
3952 		     data > xdp->data_end - ETH_HLEN))
3953 		return -EINVAL;
3954 
3955 	if (metalen)
3956 		memmove(xdp->data_meta + offset,
3957 			xdp->data_meta, metalen);
3958 	xdp->data_meta += offset;
3959 	xdp->data = data;
3960 
3961 	return 0;
3962 }
3963 
3964 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3965 	.func		= bpf_xdp_adjust_head,
3966 	.gpl_only	= false,
3967 	.ret_type	= RET_INTEGER,
3968 	.arg1_type	= ARG_PTR_TO_CTX,
3969 	.arg2_type	= ARG_ANYTHING,
3970 };
3971 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3972 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3973 		      void *buf, unsigned long len, bool flush)
3974 {
3975 	unsigned long ptr_len, ptr_off = 0;
3976 	skb_frag_t *next_frag, *end_frag;
3977 	struct skb_shared_info *sinfo;
3978 	void *src, *dst;
3979 	u8 *ptr_buf;
3980 
3981 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3982 		src = flush ? buf : xdp->data + off;
3983 		dst = flush ? xdp->data + off : buf;
3984 		memcpy(dst, src, len);
3985 		return;
3986 	}
3987 
3988 	sinfo = xdp_get_shared_info_from_buff(xdp);
3989 	end_frag = &sinfo->frags[sinfo->nr_frags];
3990 	next_frag = &sinfo->frags[0];
3991 
3992 	ptr_len = xdp->data_end - xdp->data;
3993 	ptr_buf = xdp->data;
3994 
3995 	while (true) {
3996 		if (off < ptr_off + ptr_len) {
3997 			unsigned long copy_off = off - ptr_off;
3998 			unsigned long copy_len = min(len, ptr_len - copy_off);
3999 
4000 			src = flush ? buf : ptr_buf + copy_off;
4001 			dst = flush ? ptr_buf + copy_off : buf;
4002 			memcpy(dst, src, copy_len);
4003 
4004 			off += copy_len;
4005 			len -= copy_len;
4006 			buf += copy_len;
4007 		}
4008 
4009 		if (!len || next_frag == end_frag)
4010 			break;
4011 
4012 		ptr_off += ptr_len;
4013 		ptr_buf = skb_frag_address(next_frag);
4014 		ptr_len = skb_frag_size(next_frag);
4015 		next_frag++;
4016 	}
4017 }
4018 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4019 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4020 {
4021 	u32 size = xdp->data_end - xdp->data;
4022 	struct skb_shared_info *sinfo;
4023 	void *addr = xdp->data;
4024 	int i;
4025 
4026 	if (unlikely(offset > 0xffff || len > 0xffff))
4027 		return ERR_PTR(-EFAULT);
4028 
4029 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4030 		return ERR_PTR(-EINVAL);
4031 
4032 	if (likely(offset < size)) /* linear area */
4033 		goto out;
4034 
4035 	sinfo = xdp_get_shared_info_from_buff(xdp);
4036 	offset -= size;
4037 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4038 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4039 
4040 		if  (offset < frag_size) {
4041 			addr = skb_frag_address(&sinfo->frags[i]);
4042 			size = frag_size;
4043 			break;
4044 		}
4045 		offset -= frag_size;
4046 	}
4047 out:
4048 	return offset + len <= size ? addr + offset : NULL;
4049 }
4050 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4051 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4052 	   void *, buf, u32, len)
4053 {
4054 	void *ptr;
4055 
4056 	ptr = bpf_xdp_pointer(xdp, offset, len);
4057 	if (IS_ERR(ptr))
4058 		return PTR_ERR(ptr);
4059 
4060 	if (!ptr)
4061 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4062 	else
4063 		memcpy(buf, ptr, len);
4064 
4065 	return 0;
4066 }
4067 
4068 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4069 	.func		= bpf_xdp_load_bytes,
4070 	.gpl_only	= false,
4071 	.ret_type	= RET_INTEGER,
4072 	.arg1_type	= ARG_PTR_TO_CTX,
4073 	.arg2_type	= ARG_ANYTHING,
4074 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4075 	.arg4_type	= ARG_CONST_SIZE,
4076 };
4077 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4078 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4079 {
4080 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4081 }
4082 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4083 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4084 	   void *, buf, u32, len)
4085 {
4086 	void *ptr;
4087 
4088 	ptr = bpf_xdp_pointer(xdp, offset, len);
4089 	if (IS_ERR(ptr))
4090 		return PTR_ERR(ptr);
4091 
4092 	if (!ptr)
4093 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4094 	else
4095 		memcpy(ptr, buf, len);
4096 
4097 	return 0;
4098 }
4099 
4100 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4101 	.func		= bpf_xdp_store_bytes,
4102 	.gpl_only	= false,
4103 	.ret_type	= RET_INTEGER,
4104 	.arg1_type	= ARG_PTR_TO_CTX,
4105 	.arg2_type	= ARG_ANYTHING,
4106 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4107 	.arg4_type	= ARG_CONST_SIZE,
4108 };
4109 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4110 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4111 {
4112 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4113 }
4114 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4115 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4116 {
4117 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4118 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4119 	struct xdp_rxq_info *rxq = xdp->rxq;
4120 	unsigned int tailroom;
4121 
4122 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4123 		return -EOPNOTSUPP;
4124 
4125 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4126 	if (unlikely(offset > tailroom))
4127 		return -EINVAL;
4128 
4129 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4130 	skb_frag_size_add(frag, offset);
4131 	sinfo->xdp_frags_size += offset;
4132 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4133 		xsk_buff_get_tail(xdp)->data_end += offset;
4134 
4135 	return 0;
4136 }
4137 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4138 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4139 				   enum xdp_mem_type mem_type, bool release)
4140 {
4141 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4142 
4143 	if (release) {
4144 		xsk_buff_del_tail(zc_frag);
4145 		__xdp_return(0, mem_type, false, zc_frag);
4146 	} else {
4147 		zc_frag->data_end -= shrink;
4148 	}
4149 }
4150 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4151 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4152 				int shrink)
4153 {
4154 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4155 	bool release = skb_frag_size(frag) == shrink;
4156 
4157 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4158 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4159 		goto out;
4160 	}
4161 
4162 	if (release)
4163 		__xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4164 
4165 out:
4166 	return release;
4167 }
4168 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4169 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4170 {
4171 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4172 	int i, n_frags_free = 0, len_free = 0;
4173 
4174 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4175 		return -EINVAL;
4176 
4177 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4178 		skb_frag_t *frag = &sinfo->frags[i];
4179 		int shrink = min_t(int, offset, skb_frag_size(frag));
4180 
4181 		len_free += shrink;
4182 		offset -= shrink;
4183 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4184 			n_frags_free++;
4185 		} else {
4186 			skb_frag_size_sub(frag, shrink);
4187 			break;
4188 		}
4189 	}
4190 	sinfo->nr_frags -= n_frags_free;
4191 	sinfo->xdp_frags_size -= len_free;
4192 
4193 	if (unlikely(!sinfo->nr_frags)) {
4194 		xdp_buff_clear_frags_flag(xdp);
4195 		xdp->data_end -= offset;
4196 	}
4197 
4198 	return 0;
4199 }
4200 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4201 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4202 {
4203 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4204 	void *data_end = xdp->data_end + offset;
4205 
4206 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4207 		if (offset < 0)
4208 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4209 
4210 		return bpf_xdp_frags_increase_tail(xdp, offset);
4211 	}
4212 
4213 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4214 	if (unlikely(data_end > data_hard_end))
4215 		return -EINVAL;
4216 
4217 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4218 		return -EINVAL;
4219 
4220 	/* Clear memory area on grow, can contain uninit kernel memory */
4221 	if (offset > 0)
4222 		memset(xdp->data_end, 0, offset);
4223 
4224 	xdp->data_end = data_end;
4225 
4226 	return 0;
4227 }
4228 
4229 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4230 	.func		= bpf_xdp_adjust_tail,
4231 	.gpl_only	= false,
4232 	.ret_type	= RET_INTEGER,
4233 	.arg1_type	= ARG_PTR_TO_CTX,
4234 	.arg2_type	= ARG_ANYTHING,
4235 };
4236 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4237 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4238 {
4239 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4240 	void *meta = xdp->data_meta + offset;
4241 	unsigned long metalen = xdp->data - meta;
4242 
4243 	if (xdp_data_meta_unsupported(xdp))
4244 		return -ENOTSUPP;
4245 	if (unlikely(meta < xdp_frame_end ||
4246 		     meta > xdp->data))
4247 		return -EINVAL;
4248 	if (unlikely(xdp_metalen_invalid(metalen)))
4249 		return -EACCES;
4250 
4251 	xdp->data_meta = meta;
4252 
4253 	return 0;
4254 }
4255 
4256 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4257 	.func		= bpf_xdp_adjust_meta,
4258 	.gpl_only	= false,
4259 	.ret_type	= RET_INTEGER,
4260 	.arg1_type	= ARG_PTR_TO_CTX,
4261 	.arg2_type	= ARG_ANYTHING,
4262 };
4263 
4264 /**
4265  * DOC: xdp redirect
4266  *
4267  * XDP_REDIRECT works by a three-step process, implemented in the functions
4268  * below:
4269  *
4270  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4271  *    of the redirect and store it (along with some other metadata) in a per-CPU
4272  *    struct bpf_redirect_info.
4273  *
4274  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4275  *    call xdp_do_redirect() which will use the information in struct
4276  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4277  *    bulk queue structure.
4278  *
4279  * 3. Before exiting its NAPI poll loop, the driver will call
4280  *    xdp_do_flush(), which will flush all the different bulk queues,
4281  *    thus completing the redirect. Note that xdp_do_flush() must be
4282  *    called before napi_complete_done() in the driver, as the
4283  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4284  *    through to the xdp_do_flush() call for RCU protection of all
4285  *    in-kernel data structures.
4286  */
4287 /*
4288  * Pointers to the map entries will be kept around for this whole sequence of
4289  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4290  * the core code; instead, the RCU protection relies on everything happening
4291  * inside a single NAPI poll sequence, which means it's between a pair of calls
4292  * to local_bh_disable()/local_bh_enable().
4293  *
4294  * The map entries are marked as __rcu and the map code makes sure to
4295  * dereference those pointers with rcu_dereference_check() in a way that works
4296  * for both sections that to hold an rcu_read_lock() and sections that are
4297  * called from NAPI without a separate rcu_read_lock(). The code below does not
4298  * use RCU annotations, but relies on those in the map code.
4299  */
xdp_do_flush(void)4300 void xdp_do_flush(void)
4301 {
4302 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4303 
4304 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4305 	if (lh_dev)
4306 		__dev_flush(lh_dev);
4307 	if (lh_map)
4308 		__cpu_map_flush(lh_map);
4309 	if (lh_xsk)
4310 		__xsk_map_flush(lh_xsk);
4311 }
4312 EXPORT_SYMBOL_GPL(xdp_do_flush);
4313 
4314 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4315 void xdp_do_check_flushed(struct napi_struct *napi)
4316 {
4317 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4318 	bool missed = false;
4319 
4320 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4321 	if (lh_dev) {
4322 		__dev_flush(lh_dev);
4323 		missed = true;
4324 	}
4325 	if (lh_map) {
4326 		__cpu_map_flush(lh_map);
4327 		missed = true;
4328 	}
4329 	if (lh_xsk) {
4330 		__xsk_map_flush(lh_xsk);
4331 		missed = true;
4332 	}
4333 
4334 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4335 		  napi->poll);
4336 }
4337 #endif
4338 
4339 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4340 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4341 
xdp_master_redirect(struct xdp_buff * xdp)4342 u32 xdp_master_redirect(struct xdp_buff *xdp)
4343 {
4344 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4345 	struct net_device *master, *slave;
4346 
4347 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4348 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4349 	if (slave && slave != xdp->rxq->dev) {
4350 		/* The target device is different from the receiving device, so
4351 		 * redirect it to the new device.
4352 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4353 		 * drivers to unmap the packet from their rx ring.
4354 		 */
4355 		ri->tgt_index = slave->ifindex;
4356 		ri->map_id = INT_MAX;
4357 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4358 		return XDP_REDIRECT;
4359 	}
4360 	return XDP_TX;
4361 }
4362 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4363 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4364 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4365 					const struct net_device *dev,
4366 					struct xdp_buff *xdp,
4367 					const struct bpf_prog *xdp_prog)
4368 {
4369 	enum bpf_map_type map_type = ri->map_type;
4370 	void *fwd = ri->tgt_value;
4371 	u32 map_id = ri->map_id;
4372 	int err;
4373 
4374 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4375 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4376 
4377 	err = __xsk_map_redirect(fwd, xdp);
4378 	if (unlikely(err))
4379 		goto err;
4380 
4381 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4382 	return 0;
4383 err:
4384 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4385 	return err;
4386 }
4387 
4388 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4389 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4390 			struct xdp_frame *xdpf,
4391 			const struct bpf_prog *xdp_prog)
4392 {
4393 	enum bpf_map_type map_type = ri->map_type;
4394 	void *fwd = ri->tgt_value;
4395 	u32 map_id = ri->map_id;
4396 	u32 flags = ri->flags;
4397 	struct bpf_map *map;
4398 	int err;
4399 
4400 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4401 	ri->flags = 0;
4402 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4403 
4404 	if (unlikely(!xdpf)) {
4405 		err = -EOVERFLOW;
4406 		goto err;
4407 	}
4408 
4409 	switch (map_type) {
4410 	case BPF_MAP_TYPE_DEVMAP:
4411 		fallthrough;
4412 	case BPF_MAP_TYPE_DEVMAP_HASH:
4413 		if (unlikely(flags & BPF_F_BROADCAST)) {
4414 			map = READ_ONCE(ri->map);
4415 
4416 			/* The map pointer is cleared when the map is being torn
4417 			 * down by dev_map_free()
4418 			 */
4419 			if (unlikely(!map)) {
4420 				err = -ENOENT;
4421 				break;
4422 			}
4423 
4424 			WRITE_ONCE(ri->map, NULL);
4425 			err = dev_map_enqueue_multi(xdpf, dev, map,
4426 						    flags & BPF_F_EXCLUDE_INGRESS);
4427 		} else {
4428 			err = dev_map_enqueue(fwd, xdpf, dev);
4429 		}
4430 		break;
4431 	case BPF_MAP_TYPE_CPUMAP:
4432 		err = cpu_map_enqueue(fwd, xdpf, dev);
4433 		break;
4434 	case BPF_MAP_TYPE_UNSPEC:
4435 		if (map_id == INT_MAX) {
4436 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4437 			if (unlikely(!fwd)) {
4438 				err = -EINVAL;
4439 				break;
4440 			}
4441 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4442 			break;
4443 		}
4444 		fallthrough;
4445 	default:
4446 		err = -EBADRQC;
4447 	}
4448 
4449 	if (unlikely(err))
4450 		goto err;
4451 
4452 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4453 	return 0;
4454 err:
4455 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4456 	return err;
4457 }
4458 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4459 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4460 		    const struct bpf_prog *xdp_prog)
4461 {
4462 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4463 	enum bpf_map_type map_type = ri->map_type;
4464 
4465 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4466 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4467 
4468 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4469 				       xdp_prog);
4470 }
4471 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4472 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4473 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4474 			  struct xdp_frame *xdpf,
4475 			  const struct bpf_prog *xdp_prog)
4476 {
4477 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4478 	enum bpf_map_type map_type = ri->map_type;
4479 
4480 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4481 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4482 
4483 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4484 }
4485 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4486 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4487 static int xdp_do_generic_redirect_map(struct net_device *dev,
4488 				       struct sk_buff *skb,
4489 				       struct xdp_buff *xdp,
4490 				       const struct bpf_prog *xdp_prog,
4491 				       void *fwd, enum bpf_map_type map_type,
4492 				       u32 map_id, u32 flags)
4493 {
4494 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4495 	struct bpf_map *map;
4496 	int err;
4497 
4498 	switch (map_type) {
4499 	case BPF_MAP_TYPE_DEVMAP:
4500 		fallthrough;
4501 	case BPF_MAP_TYPE_DEVMAP_HASH:
4502 		if (unlikely(flags & BPF_F_BROADCAST)) {
4503 			map = READ_ONCE(ri->map);
4504 
4505 			/* The map pointer is cleared when the map is being torn
4506 			 * down by dev_map_free()
4507 			 */
4508 			if (unlikely(!map)) {
4509 				err = -ENOENT;
4510 				break;
4511 			}
4512 
4513 			WRITE_ONCE(ri->map, NULL);
4514 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4515 						     flags & BPF_F_EXCLUDE_INGRESS);
4516 		} else {
4517 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4518 		}
4519 		if (unlikely(err))
4520 			goto err;
4521 		break;
4522 	case BPF_MAP_TYPE_XSKMAP:
4523 		err = xsk_generic_rcv(fwd, xdp);
4524 		if (err)
4525 			goto err;
4526 		consume_skb(skb);
4527 		break;
4528 	case BPF_MAP_TYPE_CPUMAP:
4529 		err = cpu_map_generic_redirect(fwd, skb);
4530 		if (unlikely(err))
4531 			goto err;
4532 		break;
4533 	default:
4534 		err = -EBADRQC;
4535 		goto err;
4536 	}
4537 
4538 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4539 	return 0;
4540 err:
4541 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4542 	return err;
4543 }
4544 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4545 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4546 			    struct xdp_buff *xdp,
4547 			    const struct bpf_prog *xdp_prog)
4548 {
4549 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4550 	enum bpf_map_type map_type = ri->map_type;
4551 	void *fwd = ri->tgt_value;
4552 	u32 map_id = ri->map_id;
4553 	u32 flags = ri->flags;
4554 	int err;
4555 
4556 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4557 	ri->flags = 0;
4558 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4559 
4560 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4561 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4562 		if (unlikely(!fwd)) {
4563 			err = -EINVAL;
4564 			goto err;
4565 		}
4566 
4567 		err = xdp_ok_fwd_dev(fwd, skb->len);
4568 		if (unlikely(err))
4569 			goto err;
4570 
4571 		skb->dev = fwd;
4572 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4573 		generic_xdp_tx(skb, xdp_prog);
4574 		return 0;
4575 	}
4576 
4577 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4578 err:
4579 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4580 	return err;
4581 }
4582 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4583 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4584 {
4585 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4586 
4587 	if (unlikely(flags))
4588 		return XDP_ABORTED;
4589 
4590 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4591 	 * by map_idr) is used for ifindex based XDP redirect.
4592 	 */
4593 	ri->tgt_index = ifindex;
4594 	ri->map_id = INT_MAX;
4595 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4596 
4597 	return XDP_REDIRECT;
4598 }
4599 
4600 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4601 	.func           = bpf_xdp_redirect,
4602 	.gpl_only       = false,
4603 	.ret_type       = RET_INTEGER,
4604 	.arg1_type      = ARG_ANYTHING,
4605 	.arg2_type      = ARG_ANYTHING,
4606 };
4607 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4608 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4609 	   u64, flags)
4610 {
4611 	return map->ops->map_redirect(map, key, flags);
4612 }
4613 
4614 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4615 	.func           = bpf_xdp_redirect_map,
4616 	.gpl_only       = false,
4617 	.ret_type       = RET_INTEGER,
4618 	.arg1_type      = ARG_CONST_MAP_PTR,
4619 	.arg2_type      = ARG_ANYTHING,
4620 	.arg3_type      = ARG_ANYTHING,
4621 };
4622 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4623 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4624 				  unsigned long off, unsigned long len)
4625 {
4626 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4627 
4628 	if (unlikely(!ptr))
4629 		return len;
4630 	if (ptr != dst_buff)
4631 		memcpy(dst_buff, ptr, len);
4632 
4633 	return 0;
4634 }
4635 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4636 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4637 	   u64, flags, void *, meta, u64, meta_size)
4638 {
4639 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4640 
4641 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4642 		return -EINVAL;
4643 	if (unlikely(!skb || skb_size > skb->len))
4644 		return -EFAULT;
4645 
4646 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4647 				bpf_skb_copy);
4648 }
4649 
4650 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4651 	.func		= bpf_skb_event_output,
4652 	.gpl_only	= true,
4653 	.ret_type	= RET_INTEGER,
4654 	.arg1_type	= ARG_PTR_TO_CTX,
4655 	.arg2_type	= ARG_CONST_MAP_PTR,
4656 	.arg3_type	= ARG_ANYTHING,
4657 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4658 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4659 };
4660 
4661 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4662 
4663 const struct bpf_func_proto bpf_skb_output_proto = {
4664 	.func		= bpf_skb_event_output,
4665 	.gpl_only	= true,
4666 	.ret_type	= RET_INTEGER,
4667 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4668 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4669 	.arg2_type	= ARG_CONST_MAP_PTR,
4670 	.arg3_type	= ARG_ANYTHING,
4671 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4672 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4673 };
4674 
bpf_tunnel_key_af(u64 flags)4675 static unsigned short bpf_tunnel_key_af(u64 flags)
4676 {
4677 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4678 }
4679 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4680 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4681 	   u32, size, u64, flags)
4682 {
4683 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4684 	u8 compat[sizeof(struct bpf_tunnel_key)];
4685 	void *to_orig = to;
4686 	int err;
4687 
4688 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4689 					 BPF_F_TUNINFO_FLAGS)))) {
4690 		err = -EINVAL;
4691 		goto err_clear;
4692 	}
4693 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4694 		err = -EPROTO;
4695 		goto err_clear;
4696 	}
4697 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4698 		err = -EINVAL;
4699 		switch (size) {
4700 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4701 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4702 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4703 			goto set_compat;
4704 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4705 			/* Fixup deprecated structure layouts here, so we have
4706 			 * a common path later on.
4707 			 */
4708 			if (ip_tunnel_info_af(info) != AF_INET)
4709 				goto err_clear;
4710 set_compat:
4711 			to = (struct bpf_tunnel_key *)compat;
4712 			break;
4713 		default:
4714 			goto err_clear;
4715 		}
4716 	}
4717 
4718 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4719 	to->tunnel_tos = info->key.tos;
4720 	to->tunnel_ttl = info->key.ttl;
4721 	if (flags & BPF_F_TUNINFO_FLAGS)
4722 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4723 	else
4724 		to->tunnel_ext = 0;
4725 
4726 	if (flags & BPF_F_TUNINFO_IPV6) {
4727 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4728 		       sizeof(to->remote_ipv6));
4729 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4730 		       sizeof(to->local_ipv6));
4731 		to->tunnel_label = be32_to_cpu(info->key.label);
4732 	} else {
4733 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4734 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4735 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4736 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4737 		to->tunnel_label = 0;
4738 	}
4739 
4740 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4741 		memcpy(to_orig, to, size);
4742 
4743 	return 0;
4744 err_clear:
4745 	memset(to_orig, 0, size);
4746 	return err;
4747 }
4748 
4749 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4750 	.func		= bpf_skb_get_tunnel_key,
4751 	.gpl_only	= false,
4752 	.ret_type	= RET_INTEGER,
4753 	.arg1_type	= ARG_PTR_TO_CTX,
4754 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4755 	.arg3_type	= ARG_CONST_SIZE,
4756 	.arg4_type	= ARG_ANYTHING,
4757 };
4758 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4759 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4760 {
4761 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4762 	int err;
4763 
4764 	if (unlikely(!info ||
4765 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4766 		err = -ENOENT;
4767 		goto err_clear;
4768 	}
4769 	if (unlikely(size < info->options_len)) {
4770 		err = -ENOMEM;
4771 		goto err_clear;
4772 	}
4773 
4774 	ip_tunnel_info_opts_get(to, info);
4775 	if (size > info->options_len)
4776 		memset(to + info->options_len, 0, size - info->options_len);
4777 
4778 	return info->options_len;
4779 err_clear:
4780 	memset(to, 0, size);
4781 	return err;
4782 }
4783 
4784 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4785 	.func		= bpf_skb_get_tunnel_opt,
4786 	.gpl_only	= false,
4787 	.ret_type	= RET_INTEGER,
4788 	.arg1_type	= ARG_PTR_TO_CTX,
4789 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4790 	.arg3_type	= ARG_CONST_SIZE,
4791 };
4792 
4793 static struct metadata_dst __percpu *md_dst;
4794 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4795 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4796 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4797 {
4798 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4799 	u8 compat[sizeof(struct bpf_tunnel_key)];
4800 	struct ip_tunnel_info *info;
4801 
4802 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4803 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4804 			       BPF_F_NO_TUNNEL_KEY)))
4805 		return -EINVAL;
4806 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4807 		switch (size) {
4808 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4809 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4810 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4811 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4812 			/* Fixup deprecated structure layouts here, so we have
4813 			 * a common path later on.
4814 			 */
4815 			memcpy(compat, from, size);
4816 			memset(compat + size, 0, sizeof(compat) - size);
4817 			from = (const struct bpf_tunnel_key *) compat;
4818 			break;
4819 		default:
4820 			return -EINVAL;
4821 		}
4822 	}
4823 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4824 		     from->tunnel_ext))
4825 		return -EINVAL;
4826 
4827 	skb_dst_drop(skb);
4828 	dst_hold((struct dst_entry *) md);
4829 	skb_dst_set(skb, (struct dst_entry *) md);
4830 
4831 	info = &md->u.tun_info;
4832 	memset(info, 0, sizeof(*info));
4833 	info->mode = IP_TUNNEL_INFO_TX;
4834 
4835 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4836 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4837 		     flags & BPF_F_DONT_FRAGMENT);
4838 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4839 		     !(flags & BPF_F_ZERO_CSUM_TX));
4840 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4841 		     flags & BPF_F_SEQ_NUMBER);
4842 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4843 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4844 
4845 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4846 	info->key.tos = from->tunnel_tos;
4847 	info->key.ttl = from->tunnel_ttl;
4848 
4849 	if (flags & BPF_F_TUNINFO_IPV6) {
4850 		info->mode |= IP_TUNNEL_INFO_IPV6;
4851 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4852 		       sizeof(from->remote_ipv6));
4853 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4854 		       sizeof(from->local_ipv6));
4855 		info->key.label = cpu_to_be32(from->tunnel_label) &
4856 				  IPV6_FLOWLABEL_MASK;
4857 	} else {
4858 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4859 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4860 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4867 	.func		= bpf_skb_set_tunnel_key,
4868 	.gpl_only	= false,
4869 	.ret_type	= RET_INTEGER,
4870 	.arg1_type	= ARG_PTR_TO_CTX,
4871 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4872 	.arg3_type	= ARG_CONST_SIZE,
4873 	.arg4_type	= ARG_ANYTHING,
4874 };
4875 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4876 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4877 	   const u8 *, from, u32, size)
4878 {
4879 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4880 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4881 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4882 
4883 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4884 		return -EINVAL;
4885 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4886 		return -ENOMEM;
4887 
4888 	ip_tunnel_set_options_present(present);
4889 	ip_tunnel_info_opts_set(info, from, size, present);
4890 
4891 	return 0;
4892 }
4893 
4894 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4895 	.func		= bpf_skb_set_tunnel_opt,
4896 	.gpl_only	= false,
4897 	.ret_type	= RET_INTEGER,
4898 	.arg1_type	= ARG_PTR_TO_CTX,
4899 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4900 	.arg3_type	= ARG_CONST_SIZE,
4901 };
4902 
4903 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4904 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4905 {
4906 	if (!md_dst) {
4907 		struct metadata_dst __percpu *tmp;
4908 
4909 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4910 						METADATA_IP_TUNNEL,
4911 						GFP_KERNEL);
4912 		if (!tmp)
4913 			return NULL;
4914 		if (cmpxchg(&md_dst, NULL, tmp))
4915 			metadata_dst_free_percpu(tmp);
4916 	}
4917 
4918 	switch (which) {
4919 	case BPF_FUNC_skb_set_tunnel_key:
4920 		return &bpf_skb_set_tunnel_key_proto;
4921 	case BPF_FUNC_skb_set_tunnel_opt:
4922 		return &bpf_skb_set_tunnel_opt_proto;
4923 	default:
4924 		return NULL;
4925 	}
4926 }
4927 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4928 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4929 	   u32, idx)
4930 {
4931 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4932 	struct cgroup *cgrp;
4933 	struct sock *sk;
4934 
4935 	sk = skb_to_full_sk(skb);
4936 	if (!sk || !sk_fullsock(sk))
4937 		return -ENOENT;
4938 	if (unlikely(idx >= array->map.max_entries))
4939 		return -E2BIG;
4940 
4941 	cgrp = READ_ONCE(array->ptrs[idx]);
4942 	if (unlikely(!cgrp))
4943 		return -EAGAIN;
4944 
4945 	return sk_under_cgroup_hierarchy(sk, cgrp);
4946 }
4947 
4948 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4949 	.func		= bpf_skb_under_cgroup,
4950 	.gpl_only	= false,
4951 	.ret_type	= RET_INTEGER,
4952 	.arg1_type	= ARG_PTR_TO_CTX,
4953 	.arg2_type	= ARG_CONST_MAP_PTR,
4954 	.arg3_type	= ARG_ANYTHING,
4955 };
4956 
4957 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4958 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4959 {
4960 	struct cgroup *cgrp;
4961 
4962 	sk = sk_to_full_sk(sk);
4963 	if (!sk || !sk_fullsock(sk))
4964 		return 0;
4965 
4966 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4967 	return cgroup_id(cgrp);
4968 }
4969 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4970 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4971 {
4972 	return __bpf_sk_cgroup_id(skb->sk);
4973 }
4974 
4975 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4976 	.func           = bpf_skb_cgroup_id,
4977 	.gpl_only       = false,
4978 	.ret_type       = RET_INTEGER,
4979 	.arg1_type      = ARG_PTR_TO_CTX,
4980 };
4981 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4982 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4983 					      int ancestor_level)
4984 {
4985 	struct cgroup *ancestor;
4986 	struct cgroup *cgrp;
4987 
4988 	sk = sk_to_full_sk(sk);
4989 	if (!sk || !sk_fullsock(sk))
4990 		return 0;
4991 
4992 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4993 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4994 	if (!ancestor)
4995 		return 0;
4996 
4997 	return cgroup_id(ancestor);
4998 }
4999 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5000 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5001 	   ancestor_level)
5002 {
5003 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5004 }
5005 
5006 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5007 	.func           = bpf_skb_ancestor_cgroup_id,
5008 	.gpl_only       = false,
5009 	.ret_type       = RET_INTEGER,
5010 	.arg1_type      = ARG_PTR_TO_CTX,
5011 	.arg2_type      = ARG_ANYTHING,
5012 };
5013 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5014 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5015 {
5016 	return __bpf_sk_cgroup_id(sk);
5017 }
5018 
5019 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5020 	.func           = bpf_sk_cgroup_id,
5021 	.gpl_only       = false,
5022 	.ret_type       = RET_INTEGER,
5023 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5024 };
5025 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5026 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5027 {
5028 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5029 }
5030 
5031 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5032 	.func           = bpf_sk_ancestor_cgroup_id,
5033 	.gpl_only       = false,
5034 	.ret_type       = RET_INTEGER,
5035 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5036 	.arg2_type      = ARG_ANYTHING,
5037 };
5038 #endif
5039 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5040 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5041 				  unsigned long off, unsigned long len)
5042 {
5043 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5044 
5045 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5046 	return 0;
5047 }
5048 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5049 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5050 	   u64, flags, void *, meta, u64, meta_size)
5051 {
5052 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5053 
5054 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5055 		return -EINVAL;
5056 
5057 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5058 		return -EFAULT;
5059 
5060 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5061 				xdp_size, bpf_xdp_copy);
5062 }
5063 
5064 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5065 	.func		= bpf_xdp_event_output,
5066 	.gpl_only	= true,
5067 	.ret_type	= RET_INTEGER,
5068 	.arg1_type	= ARG_PTR_TO_CTX,
5069 	.arg2_type	= ARG_CONST_MAP_PTR,
5070 	.arg3_type	= ARG_ANYTHING,
5071 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5072 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5073 };
5074 
5075 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5076 
5077 const struct bpf_func_proto bpf_xdp_output_proto = {
5078 	.func		= bpf_xdp_event_output,
5079 	.gpl_only	= true,
5080 	.ret_type	= RET_INTEGER,
5081 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5082 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5083 	.arg2_type	= ARG_CONST_MAP_PTR,
5084 	.arg3_type	= ARG_ANYTHING,
5085 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5086 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5087 };
5088 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5089 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5090 {
5091 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5092 }
5093 
5094 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5095 	.func           = bpf_get_socket_cookie,
5096 	.gpl_only       = false,
5097 	.ret_type       = RET_INTEGER,
5098 	.arg1_type      = ARG_PTR_TO_CTX,
5099 };
5100 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5101 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5102 {
5103 	return __sock_gen_cookie(ctx->sk);
5104 }
5105 
5106 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5107 	.func		= bpf_get_socket_cookie_sock_addr,
5108 	.gpl_only	= false,
5109 	.ret_type	= RET_INTEGER,
5110 	.arg1_type	= ARG_PTR_TO_CTX,
5111 };
5112 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5113 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5114 {
5115 	return __sock_gen_cookie(ctx);
5116 }
5117 
5118 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5119 	.func		= bpf_get_socket_cookie_sock,
5120 	.gpl_only	= false,
5121 	.ret_type	= RET_INTEGER,
5122 	.arg1_type	= ARG_PTR_TO_CTX,
5123 };
5124 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5125 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5126 {
5127 	return sk ? sock_gen_cookie(sk) : 0;
5128 }
5129 
5130 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5131 	.func		= bpf_get_socket_ptr_cookie,
5132 	.gpl_only	= false,
5133 	.ret_type	= RET_INTEGER,
5134 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5135 };
5136 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5137 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5138 {
5139 	return __sock_gen_cookie(ctx->sk);
5140 }
5141 
5142 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5143 	.func		= bpf_get_socket_cookie_sock_ops,
5144 	.gpl_only	= false,
5145 	.ret_type	= RET_INTEGER,
5146 	.arg1_type	= ARG_PTR_TO_CTX,
5147 };
5148 
__bpf_get_netns_cookie(struct sock * sk)5149 static u64 __bpf_get_netns_cookie(struct sock *sk)
5150 {
5151 	const struct net *net = sk ? sock_net(sk) : &init_net;
5152 
5153 	return net->net_cookie;
5154 }
5155 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5156 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5157 {
5158 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5159 }
5160 
5161 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5162 	.func           = bpf_get_netns_cookie,
5163 	.ret_type       = RET_INTEGER,
5164 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5165 };
5166 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5167 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5168 {
5169 	return __bpf_get_netns_cookie(ctx);
5170 }
5171 
5172 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5173 	.func		= bpf_get_netns_cookie_sock,
5174 	.gpl_only	= false,
5175 	.ret_type	= RET_INTEGER,
5176 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5177 };
5178 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5179 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5180 {
5181 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5182 }
5183 
5184 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5185 	.func		= bpf_get_netns_cookie_sock_addr,
5186 	.gpl_only	= false,
5187 	.ret_type	= RET_INTEGER,
5188 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5189 };
5190 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5191 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5192 {
5193 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5194 }
5195 
5196 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5197 	.func		= bpf_get_netns_cookie_sock_ops,
5198 	.gpl_only	= false,
5199 	.ret_type	= RET_INTEGER,
5200 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5201 };
5202 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5203 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5204 {
5205 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5206 }
5207 
5208 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5209 	.func		= bpf_get_netns_cookie_sk_msg,
5210 	.gpl_only	= false,
5211 	.ret_type	= RET_INTEGER,
5212 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5213 };
5214 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5215 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5216 {
5217 	struct sock *sk = sk_to_full_sk(skb->sk);
5218 	kuid_t kuid;
5219 
5220 	if (!sk || !sk_fullsock(sk))
5221 		return overflowuid;
5222 	kuid = sock_net_uid(sock_net(sk), sk);
5223 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5224 }
5225 
5226 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5227 	.func           = bpf_get_socket_uid,
5228 	.gpl_only       = false,
5229 	.ret_type       = RET_INTEGER,
5230 	.arg1_type      = ARG_PTR_TO_CTX,
5231 };
5232 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5233 static int sol_socket_sockopt(struct sock *sk, int optname,
5234 			      char *optval, int *optlen,
5235 			      bool getopt)
5236 {
5237 	switch (optname) {
5238 	case SO_REUSEADDR:
5239 	case SO_SNDBUF:
5240 	case SO_RCVBUF:
5241 	case SO_KEEPALIVE:
5242 	case SO_PRIORITY:
5243 	case SO_REUSEPORT:
5244 	case SO_RCVLOWAT:
5245 	case SO_MARK:
5246 	case SO_MAX_PACING_RATE:
5247 	case SO_BINDTOIFINDEX:
5248 	case SO_TXREHASH:
5249 		if (*optlen != sizeof(int))
5250 			return -EINVAL;
5251 		break;
5252 	case SO_BINDTODEVICE:
5253 		break;
5254 	default:
5255 		return -EINVAL;
5256 	}
5257 
5258 	if (getopt) {
5259 		if (optname == SO_BINDTODEVICE)
5260 			return -EINVAL;
5261 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5262 				     KERNEL_SOCKPTR(optval),
5263 				     KERNEL_SOCKPTR(optlen));
5264 	}
5265 
5266 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5267 			     KERNEL_SOCKPTR(optval), *optlen);
5268 }
5269 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5270 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5271 				  char *optval, int optlen)
5272 {
5273 	struct tcp_sock *tp = tcp_sk(sk);
5274 	unsigned long timeout;
5275 	int val;
5276 
5277 	if (optlen != sizeof(int))
5278 		return -EINVAL;
5279 
5280 	val = *(int *)optval;
5281 
5282 	/* Only some options are supported */
5283 	switch (optname) {
5284 	case TCP_BPF_IW:
5285 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5286 			return -EINVAL;
5287 		tcp_snd_cwnd_set(tp, val);
5288 		break;
5289 	case TCP_BPF_SNDCWND_CLAMP:
5290 		if (val <= 0)
5291 			return -EINVAL;
5292 		tp->snd_cwnd_clamp = val;
5293 		tp->snd_ssthresh = val;
5294 		break;
5295 	case TCP_BPF_DELACK_MAX:
5296 		timeout = usecs_to_jiffies(val);
5297 		if (timeout > TCP_DELACK_MAX ||
5298 		    timeout < TCP_TIMEOUT_MIN)
5299 			return -EINVAL;
5300 		inet_csk(sk)->icsk_delack_max = timeout;
5301 		break;
5302 	case TCP_BPF_RTO_MIN:
5303 		timeout = usecs_to_jiffies(val);
5304 		if (timeout > TCP_RTO_MIN ||
5305 		    timeout < TCP_TIMEOUT_MIN)
5306 			return -EINVAL;
5307 		inet_csk(sk)->icsk_rto_min = timeout;
5308 		break;
5309 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5310 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5311 			return -EINVAL;
5312 		tp->bpf_sock_ops_cb_flags = val;
5313 		break;
5314 	default:
5315 		return -EINVAL;
5316 	}
5317 
5318 	return 0;
5319 }
5320 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5321 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5322 				      int *optlen, bool getopt)
5323 {
5324 	struct tcp_sock *tp;
5325 	int ret;
5326 
5327 	if (*optlen < 2)
5328 		return -EINVAL;
5329 
5330 	if (getopt) {
5331 		if (!inet_csk(sk)->icsk_ca_ops)
5332 			return -EINVAL;
5333 		/* BPF expects NULL-terminated tcp-cc string */
5334 		optval[--(*optlen)] = '\0';
5335 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5336 					 KERNEL_SOCKPTR(optval),
5337 					 KERNEL_SOCKPTR(optlen));
5338 	}
5339 
5340 	/* "cdg" is the only cc that alloc a ptr
5341 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5342 	 * overwrite this ptr after switching to cdg.
5343 	 */
5344 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5345 		return -ENOTSUPP;
5346 
5347 	/* It stops this looping
5348 	 *
5349 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5350 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5351 	 *
5352 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5353 	 * in order to break the loop when both .init
5354 	 * are the same bpf prog.
5355 	 *
5356 	 * This applies even the second bpf_setsockopt(tcp_cc)
5357 	 * does not cause a loop.  This limits only the first
5358 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5359 	 * pick a fallback cc (eg. peer does not support ECN)
5360 	 * and the second '.init' cannot fallback to
5361 	 * another.
5362 	 */
5363 	tp = tcp_sk(sk);
5364 	if (tp->bpf_chg_cc_inprogress)
5365 		return -EBUSY;
5366 
5367 	tp->bpf_chg_cc_inprogress = 1;
5368 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5369 				KERNEL_SOCKPTR(optval), *optlen);
5370 	tp->bpf_chg_cc_inprogress = 0;
5371 	return ret;
5372 }
5373 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5374 static int sol_tcp_sockopt(struct sock *sk, int optname,
5375 			   char *optval, int *optlen,
5376 			   bool getopt)
5377 {
5378 	if (sk->sk_protocol != IPPROTO_TCP)
5379 		return -EINVAL;
5380 
5381 	switch (optname) {
5382 	case TCP_NODELAY:
5383 	case TCP_MAXSEG:
5384 	case TCP_KEEPIDLE:
5385 	case TCP_KEEPINTVL:
5386 	case TCP_KEEPCNT:
5387 	case TCP_SYNCNT:
5388 	case TCP_WINDOW_CLAMP:
5389 	case TCP_THIN_LINEAR_TIMEOUTS:
5390 	case TCP_USER_TIMEOUT:
5391 	case TCP_NOTSENT_LOWAT:
5392 	case TCP_SAVE_SYN:
5393 		if (*optlen != sizeof(int))
5394 			return -EINVAL;
5395 		break;
5396 	case TCP_CONGESTION:
5397 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5398 	case TCP_SAVED_SYN:
5399 		if (*optlen < 1)
5400 			return -EINVAL;
5401 		break;
5402 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5403 		if (*optlen != sizeof(int))
5404 			return -EINVAL;
5405 		if (getopt) {
5406 			struct tcp_sock *tp = tcp_sk(sk);
5407 			int cb_flags = tp->bpf_sock_ops_cb_flags;
5408 
5409 			memcpy(optval, &cb_flags, *optlen);
5410 			return 0;
5411 		}
5412 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5413 	default:
5414 		if (getopt)
5415 			return -EINVAL;
5416 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5417 	}
5418 
5419 	if (getopt) {
5420 		if (optname == TCP_SAVED_SYN) {
5421 			struct tcp_sock *tp = tcp_sk(sk);
5422 
5423 			if (!tp->saved_syn ||
5424 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5425 				return -EINVAL;
5426 			memcpy(optval, tp->saved_syn->data, *optlen);
5427 			/* It cannot free tp->saved_syn here because it
5428 			 * does not know if the user space still needs it.
5429 			 */
5430 			return 0;
5431 		}
5432 
5433 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5434 					 KERNEL_SOCKPTR(optval),
5435 					 KERNEL_SOCKPTR(optlen));
5436 	}
5437 
5438 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5439 				 KERNEL_SOCKPTR(optval), *optlen);
5440 }
5441 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5442 static int sol_ip_sockopt(struct sock *sk, int optname,
5443 			  char *optval, int *optlen,
5444 			  bool getopt)
5445 {
5446 	if (sk->sk_family != AF_INET)
5447 		return -EINVAL;
5448 
5449 	switch (optname) {
5450 	case IP_TOS:
5451 		if (*optlen != sizeof(int))
5452 			return -EINVAL;
5453 		break;
5454 	default:
5455 		return -EINVAL;
5456 	}
5457 
5458 	if (getopt)
5459 		return do_ip_getsockopt(sk, SOL_IP, optname,
5460 					KERNEL_SOCKPTR(optval),
5461 					KERNEL_SOCKPTR(optlen));
5462 
5463 	return do_ip_setsockopt(sk, SOL_IP, optname,
5464 				KERNEL_SOCKPTR(optval), *optlen);
5465 }
5466 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5467 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5468 			    char *optval, int *optlen,
5469 			    bool getopt)
5470 {
5471 	if (sk->sk_family != AF_INET6)
5472 		return -EINVAL;
5473 
5474 	switch (optname) {
5475 	case IPV6_TCLASS:
5476 	case IPV6_AUTOFLOWLABEL:
5477 		if (*optlen != sizeof(int))
5478 			return -EINVAL;
5479 		break;
5480 	default:
5481 		return -EINVAL;
5482 	}
5483 
5484 	if (getopt)
5485 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5486 						      KERNEL_SOCKPTR(optval),
5487 						      KERNEL_SOCKPTR(optlen));
5488 
5489 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5490 					      KERNEL_SOCKPTR(optval), *optlen);
5491 }
5492 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5493 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5494 			    char *optval, int optlen)
5495 {
5496 	if (!sk_fullsock(sk))
5497 		return -EINVAL;
5498 
5499 	if (level == SOL_SOCKET)
5500 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5501 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5502 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5503 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5504 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5505 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5506 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5507 
5508 	return -EINVAL;
5509 }
5510 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5511 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5512 			   char *optval, int optlen)
5513 {
5514 	if (sk_fullsock(sk))
5515 		sock_owned_by_me(sk);
5516 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5517 }
5518 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5519 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5520 			    char *optval, int optlen)
5521 {
5522 	int err, saved_optlen = optlen;
5523 
5524 	if (!sk_fullsock(sk)) {
5525 		err = -EINVAL;
5526 		goto done;
5527 	}
5528 
5529 	if (level == SOL_SOCKET)
5530 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5531 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5532 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5533 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5534 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5535 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5536 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5537 	else
5538 		err = -EINVAL;
5539 
5540 done:
5541 	if (err)
5542 		optlen = 0;
5543 	if (optlen < saved_optlen)
5544 		memset(optval + optlen, 0, saved_optlen - optlen);
5545 	return err;
5546 }
5547 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5548 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5549 			   char *optval, int optlen)
5550 {
5551 	if (sk_fullsock(sk))
5552 		sock_owned_by_me(sk);
5553 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5554 }
5555 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5556 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5557 	   int, optname, char *, optval, int, optlen)
5558 {
5559 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5560 }
5561 
5562 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5563 	.func		= bpf_sk_setsockopt,
5564 	.gpl_only	= false,
5565 	.ret_type	= RET_INTEGER,
5566 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5567 	.arg2_type	= ARG_ANYTHING,
5568 	.arg3_type	= ARG_ANYTHING,
5569 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5570 	.arg5_type	= ARG_CONST_SIZE,
5571 };
5572 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5573 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5574 	   int, optname, char *, optval, int, optlen)
5575 {
5576 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5577 }
5578 
5579 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5580 	.func		= bpf_sk_getsockopt,
5581 	.gpl_only	= false,
5582 	.ret_type	= RET_INTEGER,
5583 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5584 	.arg2_type	= ARG_ANYTHING,
5585 	.arg3_type	= ARG_ANYTHING,
5586 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5587 	.arg5_type	= ARG_CONST_SIZE,
5588 };
5589 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5590 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5591 	   int, optname, char *, optval, int, optlen)
5592 {
5593 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5594 }
5595 
5596 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5597 	.func		= bpf_unlocked_sk_setsockopt,
5598 	.gpl_only	= false,
5599 	.ret_type	= RET_INTEGER,
5600 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5601 	.arg2_type	= ARG_ANYTHING,
5602 	.arg3_type	= ARG_ANYTHING,
5603 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5604 	.arg5_type	= ARG_CONST_SIZE,
5605 };
5606 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5607 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5608 	   int, optname, char *, optval, int, optlen)
5609 {
5610 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5611 }
5612 
5613 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5614 	.func		= bpf_unlocked_sk_getsockopt,
5615 	.gpl_only	= false,
5616 	.ret_type	= RET_INTEGER,
5617 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5618 	.arg2_type	= ARG_ANYTHING,
5619 	.arg3_type	= ARG_ANYTHING,
5620 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5621 	.arg5_type	= ARG_CONST_SIZE,
5622 };
5623 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5624 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5625 	   int, level, int, optname, char *, optval, int, optlen)
5626 {
5627 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5628 }
5629 
5630 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5631 	.func		= bpf_sock_addr_setsockopt,
5632 	.gpl_only	= false,
5633 	.ret_type	= RET_INTEGER,
5634 	.arg1_type	= ARG_PTR_TO_CTX,
5635 	.arg2_type	= ARG_ANYTHING,
5636 	.arg3_type	= ARG_ANYTHING,
5637 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5638 	.arg5_type	= ARG_CONST_SIZE,
5639 };
5640 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5641 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5642 	   int, level, int, optname, char *, optval, int, optlen)
5643 {
5644 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5645 }
5646 
5647 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5648 	.func		= bpf_sock_addr_getsockopt,
5649 	.gpl_only	= false,
5650 	.ret_type	= RET_INTEGER,
5651 	.arg1_type	= ARG_PTR_TO_CTX,
5652 	.arg2_type	= ARG_ANYTHING,
5653 	.arg3_type	= ARG_ANYTHING,
5654 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5655 	.arg5_type	= ARG_CONST_SIZE,
5656 };
5657 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5658 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5659 	   int, level, int, optname, char *, optval, int, optlen)
5660 {
5661 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5662 }
5663 
5664 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5665 	.func		= bpf_sock_ops_setsockopt,
5666 	.gpl_only	= false,
5667 	.ret_type	= RET_INTEGER,
5668 	.arg1_type	= ARG_PTR_TO_CTX,
5669 	.arg2_type	= ARG_ANYTHING,
5670 	.arg3_type	= ARG_ANYTHING,
5671 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5672 	.arg5_type	= ARG_CONST_SIZE,
5673 };
5674 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5675 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5676 				int optname, const u8 **start)
5677 {
5678 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5679 	const u8 *hdr_start;
5680 	int ret;
5681 
5682 	if (syn_skb) {
5683 		/* sk is a request_sock here */
5684 
5685 		if (optname == TCP_BPF_SYN) {
5686 			hdr_start = syn_skb->data;
5687 			ret = tcp_hdrlen(syn_skb);
5688 		} else if (optname == TCP_BPF_SYN_IP) {
5689 			hdr_start = skb_network_header(syn_skb);
5690 			ret = skb_network_header_len(syn_skb) +
5691 				tcp_hdrlen(syn_skb);
5692 		} else {
5693 			/* optname == TCP_BPF_SYN_MAC */
5694 			hdr_start = skb_mac_header(syn_skb);
5695 			ret = skb_mac_header_len(syn_skb) +
5696 				skb_network_header_len(syn_skb) +
5697 				tcp_hdrlen(syn_skb);
5698 		}
5699 	} else {
5700 		struct sock *sk = bpf_sock->sk;
5701 		struct saved_syn *saved_syn;
5702 
5703 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5704 			/* synack retransmit. bpf_sock->syn_skb will
5705 			 * not be available.  It has to resort to
5706 			 * saved_syn (if it is saved).
5707 			 */
5708 			saved_syn = inet_reqsk(sk)->saved_syn;
5709 		else
5710 			saved_syn = tcp_sk(sk)->saved_syn;
5711 
5712 		if (!saved_syn)
5713 			return -ENOENT;
5714 
5715 		if (optname == TCP_BPF_SYN) {
5716 			hdr_start = saved_syn->data +
5717 				saved_syn->mac_hdrlen +
5718 				saved_syn->network_hdrlen;
5719 			ret = saved_syn->tcp_hdrlen;
5720 		} else if (optname == TCP_BPF_SYN_IP) {
5721 			hdr_start = saved_syn->data +
5722 				saved_syn->mac_hdrlen;
5723 			ret = saved_syn->network_hdrlen +
5724 				saved_syn->tcp_hdrlen;
5725 		} else {
5726 			/* optname == TCP_BPF_SYN_MAC */
5727 
5728 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5729 			if (!saved_syn->mac_hdrlen)
5730 				return -ENOENT;
5731 
5732 			hdr_start = saved_syn->data;
5733 			ret = saved_syn->mac_hdrlen +
5734 				saved_syn->network_hdrlen +
5735 				saved_syn->tcp_hdrlen;
5736 		}
5737 	}
5738 
5739 	*start = hdr_start;
5740 	return ret;
5741 }
5742 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5743 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5744 	   int, level, int, optname, char *, optval, int, optlen)
5745 {
5746 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5747 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5748 		int ret, copy_len = 0;
5749 		const u8 *start;
5750 
5751 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5752 		if (ret > 0) {
5753 			copy_len = ret;
5754 			if (optlen < copy_len) {
5755 				copy_len = optlen;
5756 				ret = -ENOSPC;
5757 			}
5758 
5759 			memcpy(optval, start, copy_len);
5760 		}
5761 
5762 		/* Zero out unused buffer at the end */
5763 		memset(optval + copy_len, 0, optlen - copy_len);
5764 
5765 		return ret;
5766 	}
5767 
5768 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5769 }
5770 
5771 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5772 	.func		= bpf_sock_ops_getsockopt,
5773 	.gpl_only	= false,
5774 	.ret_type	= RET_INTEGER,
5775 	.arg1_type	= ARG_PTR_TO_CTX,
5776 	.arg2_type	= ARG_ANYTHING,
5777 	.arg3_type	= ARG_ANYTHING,
5778 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5779 	.arg5_type	= ARG_CONST_SIZE,
5780 };
5781 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5782 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5783 	   int, argval)
5784 {
5785 	struct sock *sk = bpf_sock->sk;
5786 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5787 
5788 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5789 		return -EINVAL;
5790 
5791 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5792 
5793 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5794 }
5795 
5796 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5797 	.func		= bpf_sock_ops_cb_flags_set,
5798 	.gpl_only	= false,
5799 	.ret_type	= RET_INTEGER,
5800 	.arg1_type	= ARG_PTR_TO_CTX,
5801 	.arg2_type	= ARG_ANYTHING,
5802 };
5803 
5804 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5805 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5806 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5807 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5808 	   int, addr_len)
5809 {
5810 #ifdef CONFIG_INET
5811 	struct sock *sk = ctx->sk;
5812 	u32 flags = BIND_FROM_BPF;
5813 	int err;
5814 
5815 	err = -EINVAL;
5816 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5817 		return err;
5818 	if (addr->sa_family == AF_INET) {
5819 		if (addr_len < sizeof(struct sockaddr_in))
5820 			return err;
5821 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5822 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5823 		return __inet_bind(sk, addr, addr_len, flags);
5824 #if IS_ENABLED(CONFIG_IPV6)
5825 	} else if (addr->sa_family == AF_INET6) {
5826 		if (addr_len < SIN6_LEN_RFC2133)
5827 			return err;
5828 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5829 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5830 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5831 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5832 		 */
5833 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5834 #endif /* CONFIG_IPV6 */
5835 	}
5836 #endif /* CONFIG_INET */
5837 
5838 	return -EAFNOSUPPORT;
5839 }
5840 
5841 static const struct bpf_func_proto bpf_bind_proto = {
5842 	.func		= bpf_bind,
5843 	.gpl_only	= false,
5844 	.ret_type	= RET_INTEGER,
5845 	.arg1_type	= ARG_PTR_TO_CTX,
5846 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5847 	.arg3_type	= ARG_CONST_SIZE,
5848 };
5849 
5850 #ifdef CONFIG_XFRM
5851 
5852 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5853     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5854 
5855 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5856 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5857 
5858 #endif
5859 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5860 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5861 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5862 {
5863 	const struct sec_path *sp = skb_sec_path(skb);
5864 	const struct xfrm_state *x;
5865 
5866 	if (!sp || unlikely(index >= sp->len || flags))
5867 		goto err_clear;
5868 
5869 	x = sp->xvec[index];
5870 
5871 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5872 		goto err_clear;
5873 
5874 	to->reqid = x->props.reqid;
5875 	to->spi = x->id.spi;
5876 	to->family = x->props.family;
5877 	to->ext = 0;
5878 
5879 	if (to->family == AF_INET6) {
5880 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5881 		       sizeof(to->remote_ipv6));
5882 	} else {
5883 		to->remote_ipv4 = x->props.saddr.a4;
5884 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5885 	}
5886 
5887 	return 0;
5888 err_clear:
5889 	memset(to, 0, size);
5890 	return -EINVAL;
5891 }
5892 
5893 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5894 	.func		= bpf_skb_get_xfrm_state,
5895 	.gpl_only	= false,
5896 	.ret_type	= RET_INTEGER,
5897 	.arg1_type	= ARG_PTR_TO_CTX,
5898 	.arg2_type	= ARG_ANYTHING,
5899 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5900 	.arg4_type	= ARG_CONST_SIZE,
5901 	.arg5_type	= ARG_ANYTHING,
5902 };
5903 #endif
5904 
5905 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5906 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5907 {
5908 	params->h_vlan_TCI = 0;
5909 	params->h_vlan_proto = 0;
5910 	if (mtu)
5911 		params->mtu_result = mtu; /* union with tot_len */
5912 
5913 	return 0;
5914 }
5915 #endif
5916 
5917 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5918 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5919 			       u32 flags, bool check_mtu)
5920 {
5921 	struct fib_nh_common *nhc;
5922 	struct in_device *in_dev;
5923 	struct neighbour *neigh;
5924 	struct net_device *dev;
5925 	struct fib_result res;
5926 	struct flowi4 fl4;
5927 	u32 mtu = 0;
5928 	int err;
5929 
5930 	dev = dev_get_by_index_rcu(net, params->ifindex);
5931 	if (unlikely(!dev))
5932 		return -ENODEV;
5933 
5934 	/* verify forwarding is enabled on this interface */
5935 	in_dev = __in_dev_get_rcu(dev);
5936 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5937 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5938 
5939 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5940 		fl4.flowi4_iif = 1;
5941 		fl4.flowi4_oif = params->ifindex;
5942 	} else {
5943 		fl4.flowi4_iif = params->ifindex;
5944 		fl4.flowi4_oif = 0;
5945 	}
5946 	fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
5947 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5948 	fl4.flowi4_flags = 0;
5949 
5950 	fl4.flowi4_proto = params->l4_protocol;
5951 	fl4.daddr = params->ipv4_dst;
5952 	fl4.saddr = params->ipv4_src;
5953 	fl4.fl4_sport = params->sport;
5954 	fl4.fl4_dport = params->dport;
5955 	fl4.flowi4_multipath_hash = 0;
5956 
5957 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5958 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5959 		struct fib_table *tb;
5960 
5961 		if (flags & BPF_FIB_LOOKUP_TBID) {
5962 			tbid = params->tbid;
5963 			/* zero out for vlan output */
5964 			params->tbid = 0;
5965 		}
5966 
5967 		tb = fib_get_table(net, tbid);
5968 		if (unlikely(!tb))
5969 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5970 
5971 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5972 	} else {
5973 		if (flags & BPF_FIB_LOOKUP_MARK)
5974 			fl4.flowi4_mark = params->mark;
5975 		else
5976 			fl4.flowi4_mark = 0;
5977 		fl4.flowi4_secid = 0;
5978 		fl4.flowi4_tun_key.tun_id = 0;
5979 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5980 
5981 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5982 	}
5983 
5984 	if (err) {
5985 		/* map fib lookup errors to RTN_ type */
5986 		if (err == -EINVAL)
5987 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5988 		if (err == -EHOSTUNREACH)
5989 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5990 		if (err == -EACCES)
5991 			return BPF_FIB_LKUP_RET_PROHIBIT;
5992 
5993 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5994 	}
5995 
5996 	if (res.type != RTN_UNICAST)
5997 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5998 
5999 	if (fib_info_num_path(res.fi) > 1)
6000 		fib_select_path(net, &res, &fl4, NULL);
6001 
6002 	if (check_mtu) {
6003 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6004 		if (params->tot_len > mtu) {
6005 			params->mtu_result = mtu; /* union with tot_len */
6006 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6007 		}
6008 	}
6009 
6010 	nhc = res.nhc;
6011 
6012 	/* do not handle lwt encaps right now */
6013 	if (nhc->nhc_lwtstate)
6014 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6015 
6016 	dev = nhc->nhc_dev;
6017 
6018 	params->rt_metric = res.fi->fib_priority;
6019 	params->ifindex = dev->ifindex;
6020 
6021 	if (flags & BPF_FIB_LOOKUP_SRC)
6022 		params->ipv4_src = fib_result_prefsrc(net, &res);
6023 
6024 	/* xdp and cls_bpf programs are run in RCU-bh so
6025 	 * rcu_read_lock_bh is not needed here
6026 	 */
6027 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6028 		if (nhc->nhc_gw_family)
6029 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6030 	} else {
6031 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6032 
6033 		params->family = AF_INET6;
6034 		*dst = nhc->nhc_gw.ipv6;
6035 	}
6036 
6037 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6038 		goto set_fwd_params;
6039 
6040 	if (likely(nhc->nhc_gw_family != AF_INET6))
6041 		neigh = __ipv4_neigh_lookup_noref(dev,
6042 						  (__force u32)params->ipv4_dst);
6043 	else
6044 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6045 
6046 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6047 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6048 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6049 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6050 
6051 set_fwd_params:
6052 	return bpf_fib_set_fwd_params(params, mtu);
6053 }
6054 #endif
6055 
6056 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6057 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6058 			       u32 flags, bool check_mtu)
6059 {
6060 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6061 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6062 	struct fib6_result res = {};
6063 	struct neighbour *neigh;
6064 	struct net_device *dev;
6065 	struct inet6_dev *idev;
6066 	struct flowi6 fl6;
6067 	int strict = 0;
6068 	int oif, err;
6069 	u32 mtu = 0;
6070 
6071 	/* link local addresses are never forwarded */
6072 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6073 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6074 
6075 	dev = dev_get_by_index_rcu(net, params->ifindex);
6076 	if (unlikely(!dev))
6077 		return -ENODEV;
6078 
6079 	idev = __in6_dev_get_safely(dev);
6080 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6081 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6082 
6083 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6084 		fl6.flowi6_iif = 1;
6085 		oif = fl6.flowi6_oif = params->ifindex;
6086 	} else {
6087 		oif = fl6.flowi6_iif = params->ifindex;
6088 		fl6.flowi6_oif = 0;
6089 		strict = RT6_LOOKUP_F_HAS_SADDR;
6090 	}
6091 	fl6.flowlabel = params->flowinfo;
6092 	fl6.flowi6_scope = 0;
6093 	fl6.flowi6_flags = 0;
6094 	fl6.mp_hash = 0;
6095 
6096 	fl6.flowi6_proto = params->l4_protocol;
6097 	fl6.daddr = *dst;
6098 	fl6.saddr = *src;
6099 	fl6.fl6_sport = params->sport;
6100 	fl6.fl6_dport = params->dport;
6101 
6102 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6103 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6104 		struct fib6_table *tb;
6105 
6106 		if (flags & BPF_FIB_LOOKUP_TBID) {
6107 			tbid = params->tbid;
6108 			/* zero out for vlan output */
6109 			params->tbid = 0;
6110 		}
6111 
6112 		tb = ipv6_stub->fib6_get_table(net, tbid);
6113 		if (unlikely(!tb))
6114 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6115 
6116 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6117 						   strict);
6118 	} else {
6119 		if (flags & BPF_FIB_LOOKUP_MARK)
6120 			fl6.flowi6_mark = params->mark;
6121 		else
6122 			fl6.flowi6_mark = 0;
6123 		fl6.flowi6_secid = 0;
6124 		fl6.flowi6_tun_key.tun_id = 0;
6125 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6126 
6127 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6128 	}
6129 
6130 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6131 		     res.f6i == net->ipv6.fib6_null_entry))
6132 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6133 
6134 	switch (res.fib6_type) {
6135 	/* only unicast is forwarded */
6136 	case RTN_UNICAST:
6137 		break;
6138 	case RTN_BLACKHOLE:
6139 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6140 	case RTN_UNREACHABLE:
6141 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6142 	case RTN_PROHIBIT:
6143 		return BPF_FIB_LKUP_RET_PROHIBIT;
6144 	default:
6145 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6146 	}
6147 
6148 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6149 				    fl6.flowi6_oif != 0, NULL, strict);
6150 
6151 	if (check_mtu) {
6152 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6153 		if (params->tot_len > mtu) {
6154 			params->mtu_result = mtu; /* union with tot_len */
6155 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6156 		}
6157 	}
6158 
6159 	if (res.nh->fib_nh_lws)
6160 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6161 
6162 	if (res.nh->fib_nh_gw_family)
6163 		*dst = res.nh->fib_nh_gw6;
6164 
6165 	dev = res.nh->fib_nh_dev;
6166 	params->rt_metric = res.f6i->fib6_metric;
6167 	params->ifindex = dev->ifindex;
6168 
6169 	if (flags & BPF_FIB_LOOKUP_SRC) {
6170 		if (res.f6i->fib6_prefsrc.plen) {
6171 			*src = res.f6i->fib6_prefsrc.addr;
6172 		} else {
6173 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6174 								&fl6.daddr, 0,
6175 								src);
6176 			if (err)
6177 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6178 		}
6179 	}
6180 
6181 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6182 		goto set_fwd_params;
6183 
6184 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6185 	 * not needed here.
6186 	 */
6187 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6188 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6189 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6190 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6191 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6192 
6193 set_fwd_params:
6194 	return bpf_fib_set_fwd_params(params, mtu);
6195 }
6196 #endif
6197 
6198 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6199 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6200 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6201 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6202 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6203 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6204 {
6205 	if (plen < sizeof(*params))
6206 		return -EINVAL;
6207 
6208 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6209 		return -EINVAL;
6210 
6211 	switch (params->family) {
6212 #if IS_ENABLED(CONFIG_INET)
6213 	case AF_INET:
6214 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6215 					   flags, true);
6216 #endif
6217 #if IS_ENABLED(CONFIG_IPV6)
6218 	case AF_INET6:
6219 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6220 					   flags, true);
6221 #endif
6222 	}
6223 	return -EAFNOSUPPORT;
6224 }
6225 
6226 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6227 	.func		= bpf_xdp_fib_lookup,
6228 	.gpl_only	= true,
6229 	.ret_type	= RET_INTEGER,
6230 	.arg1_type      = ARG_PTR_TO_CTX,
6231 	.arg2_type      = ARG_PTR_TO_MEM,
6232 	.arg3_type      = ARG_CONST_SIZE,
6233 	.arg4_type	= ARG_ANYTHING,
6234 };
6235 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6236 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6237 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6238 {
6239 	struct net *net = dev_net(skb->dev);
6240 	int rc = -EAFNOSUPPORT;
6241 	bool check_mtu = false;
6242 
6243 	if (plen < sizeof(*params))
6244 		return -EINVAL;
6245 
6246 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6247 		return -EINVAL;
6248 
6249 	if (params->tot_len)
6250 		check_mtu = true;
6251 
6252 	switch (params->family) {
6253 #if IS_ENABLED(CONFIG_INET)
6254 	case AF_INET:
6255 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6256 		break;
6257 #endif
6258 #if IS_ENABLED(CONFIG_IPV6)
6259 	case AF_INET6:
6260 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6261 		break;
6262 #endif
6263 	}
6264 
6265 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6266 		struct net_device *dev;
6267 
6268 		/* When tot_len isn't provided by user, check skb
6269 		 * against MTU of FIB lookup resulting net_device
6270 		 */
6271 		dev = dev_get_by_index_rcu(net, params->ifindex);
6272 		if (!is_skb_forwardable(dev, skb))
6273 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6274 
6275 		params->mtu_result = dev->mtu; /* union with tot_len */
6276 	}
6277 
6278 	return rc;
6279 }
6280 
6281 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6282 	.func		= bpf_skb_fib_lookup,
6283 	.gpl_only	= true,
6284 	.ret_type	= RET_INTEGER,
6285 	.arg1_type      = ARG_PTR_TO_CTX,
6286 	.arg2_type      = ARG_PTR_TO_MEM,
6287 	.arg3_type      = ARG_CONST_SIZE,
6288 	.arg4_type	= ARG_ANYTHING,
6289 };
6290 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6291 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6292 					    u32 ifindex)
6293 {
6294 	struct net *netns = dev_net(dev_curr);
6295 
6296 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6297 	if (ifindex == 0)
6298 		return dev_curr;
6299 
6300 	return dev_get_by_index_rcu(netns, ifindex);
6301 }
6302 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6303 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6304 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6305 {
6306 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6307 	struct net_device *dev = skb->dev;
6308 	int mtu, dev_len, skb_len;
6309 
6310 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6311 		return -EINVAL;
6312 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6313 		return -EINVAL;
6314 
6315 	dev = __dev_via_ifindex(dev, ifindex);
6316 	if (unlikely(!dev))
6317 		return -ENODEV;
6318 
6319 	mtu = READ_ONCE(dev->mtu);
6320 	dev_len = mtu + dev->hard_header_len;
6321 
6322 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6323 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6324 
6325 	skb_len += len_diff; /* minus result pass check */
6326 	if (skb_len <= dev_len) {
6327 		ret = BPF_MTU_CHK_RET_SUCCESS;
6328 		goto out;
6329 	}
6330 	/* At this point, skb->len exceed MTU, but as it include length of all
6331 	 * segments, it can still be below MTU.  The SKB can possibly get
6332 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6333 	 * must choose if segs are to be MTU checked.
6334 	 */
6335 	if (skb_is_gso(skb)) {
6336 		ret = BPF_MTU_CHK_RET_SUCCESS;
6337 		if (flags & BPF_MTU_CHK_SEGS &&
6338 		    !skb_gso_validate_network_len(skb, mtu))
6339 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6340 	}
6341 out:
6342 	*mtu_len = mtu;
6343 	return ret;
6344 }
6345 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6346 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6347 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6348 {
6349 	struct net_device *dev = xdp->rxq->dev;
6350 	int xdp_len = xdp->data_end - xdp->data;
6351 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6352 	int mtu, dev_len;
6353 
6354 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6355 	if (unlikely(flags))
6356 		return -EINVAL;
6357 
6358 	dev = __dev_via_ifindex(dev, ifindex);
6359 	if (unlikely(!dev))
6360 		return -ENODEV;
6361 
6362 	mtu = READ_ONCE(dev->mtu);
6363 	dev_len = mtu + dev->hard_header_len;
6364 
6365 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6366 	if (*mtu_len)
6367 		xdp_len = *mtu_len + dev->hard_header_len;
6368 
6369 	xdp_len += len_diff; /* minus result pass check */
6370 	if (xdp_len > dev_len)
6371 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6372 
6373 	*mtu_len = mtu;
6374 	return ret;
6375 }
6376 
6377 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6378 	.func		= bpf_skb_check_mtu,
6379 	.gpl_only	= true,
6380 	.ret_type	= RET_INTEGER,
6381 	.arg1_type      = ARG_PTR_TO_CTX,
6382 	.arg2_type      = ARG_ANYTHING,
6383 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6384 	.arg3_size	= sizeof(u32),
6385 	.arg4_type      = ARG_ANYTHING,
6386 	.arg5_type      = ARG_ANYTHING,
6387 };
6388 
6389 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6390 	.func		= bpf_xdp_check_mtu,
6391 	.gpl_only	= true,
6392 	.ret_type	= RET_INTEGER,
6393 	.arg1_type      = ARG_PTR_TO_CTX,
6394 	.arg2_type      = ARG_ANYTHING,
6395 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6396 	.arg3_size	= sizeof(u32),
6397 	.arg4_type      = ARG_ANYTHING,
6398 	.arg5_type      = ARG_ANYTHING,
6399 };
6400 
6401 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6402 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6403 {
6404 	int err;
6405 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6406 
6407 	if (!seg6_validate_srh(srh, len, false))
6408 		return -EINVAL;
6409 
6410 	switch (type) {
6411 	case BPF_LWT_ENCAP_SEG6_INLINE:
6412 		if (skb->protocol != htons(ETH_P_IPV6))
6413 			return -EBADMSG;
6414 
6415 		err = seg6_do_srh_inline(skb, srh);
6416 		break;
6417 	case BPF_LWT_ENCAP_SEG6:
6418 		skb_reset_inner_headers(skb);
6419 		skb->encapsulation = 1;
6420 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6421 		break;
6422 	default:
6423 		return -EINVAL;
6424 	}
6425 
6426 	bpf_compute_data_pointers(skb);
6427 	if (err)
6428 		return err;
6429 
6430 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6431 
6432 	return seg6_lookup_nexthop(skb, NULL, 0);
6433 }
6434 #endif /* CONFIG_IPV6_SEG6_BPF */
6435 
6436 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6437 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6438 			     bool ingress)
6439 {
6440 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6441 }
6442 #endif
6443 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6444 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6445 	   u32, len)
6446 {
6447 	switch (type) {
6448 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6449 	case BPF_LWT_ENCAP_SEG6:
6450 	case BPF_LWT_ENCAP_SEG6_INLINE:
6451 		return bpf_push_seg6_encap(skb, type, hdr, len);
6452 #endif
6453 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6454 	case BPF_LWT_ENCAP_IP:
6455 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6456 #endif
6457 	default:
6458 		return -EINVAL;
6459 	}
6460 }
6461 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6462 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6463 	   void *, hdr, u32, len)
6464 {
6465 	switch (type) {
6466 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6467 	case BPF_LWT_ENCAP_IP:
6468 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6469 #endif
6470 	default:
6471 		return -EINVAL;
6472 	}
6473 }
6474 
6475 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6476 	.func		= bpf_lwt_in_push_encap,
6477 	.gpl_only	= false,
6478 	.ret_type	= RET_INTEGER,
6479 	.arg1_type	= ARG_PTR_TO_CTX,
6480 	.arg2_type	= ARG_ANYTHING,
6481 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6482 	.arg4_type	= ARG_CONST_SIZE
6483 };
6484 
6485 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6486 	.func		= bpf_lwt_xmit_push_encap,
6487 	.gpl_only	= false,
6488 	.ret_type	= RET_INTEGER,
6489 	.arg1_type	= ARG_PTR_TO_CTX,
6490 	.arg2_type	= ARG_ANYTHING,
6491 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6492 	.arg4_type	= ARG_CONST_SIZE
6493 };
6494 
6495 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6496 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6497 	   const void *, from, u32, len)
6498 {
6499 	struct seg6_bpf_srh_state *srh_state =
6500 		this_cpu_ptr(&seg6_bpf_srh_states);
6501 	struct ipv6_sr_hdr *srh = srh_state->srh;
6502 	void *srh_tlvs, *srh_end, *ptr;
6503 	int srhoff = 0;
6504 
6505 	lockdep_assert_held(&srh_state->bh_lock);
6506 	if (srh == NULL)
6507 		return -EINVAL;
6508 
6509 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6510 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6511 
6512 	ptr = skb->data + offset;
6513 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6514 		srh_state->valid = false;
6515 	else if (ptr < (void *)&srh->flags ||
6516 		 ptr + len > (void *)&srh->segments)
6517 		return -EFAULT;
6518 
6519 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6520 		return -EFAULT;
6521 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6522 		return -EINVAL;
6523 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6524 
6525 	memcpy(skb->data + offset, from, len);
6526 	return 0;
6527 }
6528 
6529 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6530 	.func		= bpf_lwt_seg6_store_bytes,
6531 	.gpl_only	= false,
6532 	.ret_type	= RET_INTEGER,
6533 	.arg1_type	= ARG_PTR_TO_CTX,
6534 	.arg2_type	= ARG_ANYTHING,
6535 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6536 	.arg4_type	= ARG_CONST_SIZE
6537 };
6538 
bpf_update_srh_state(struct sk_buff * skb)6539 static void bpf_update_srh_state(struct sk_buff *skb)
6540 {
6541 	struct seg6_bpf_srh_state *srh_state =
6542 		this_cpu_ptr(&seg6_bpf_srh_states);
6543 	int srhoff = 0;
6544 
6545 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6546 		srh_state->srh = NULL;
6547 	} else {
6548 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6549 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6550 		srh_state->valid = true;
6551 	}
6552 }
6553 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6554 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6555 	   u32, action, void *, param, u32, param_len)
6556 {
6557 	struct seg6_bpf_srh_state *srh_state =
6558 		this_cpu_ptr(&seg6_bpf_srh_states);
6559 	int hdroff = 0;
6560 	int err;
6561 
6562 	lockdep_assert_held(&srh_state->bh_lock);
6563 	switch (action) {
6564 	case SEG6_LOCAL_ACTION_END_X:
6565 		if (!seg6_bpf_has_valid_srh(skb))
6566 			return -EBADMSG;
6567 		if (param_len != sizeof(struct in6_addr))
6568 			return -EINVAL;
6569 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6570 	case SEG6_LOCAL_ACTION_END_T:
6571 		if (!seg6_bpf_has_valid_srh(skb))
6572 			return -EBADMSG;
6573 		if (param_len != sizeof(int))
6574 			return -EINVAL;
6575 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6576 	case SEG6_LOCAL_ACTION_END_DT6:
6577 		if (!seg6_bpf_has_valid_srh(skb))
6578 			return -EBADMSG;
6579 		if (param_len != sizeof(int))
6580 			return -EINVAL;
6581 
6582 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6583 			return -EBADMSG;
6584 		if (!pskb_pull(skb, hdroff))
6585 			return -EBADMSG;
6586 
6587 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6588 		skb_reset_network_header(skb);
6589 		skb_reset_transport_header(skb);
6590 		skb->encapsulation = 0;
6591 
6592 		bpf_compute_data_pointers(skb);
6593 		bpf_update_srh_state(skb);
6594 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6595 	case SEG6_LOCAL_ACTION_END_B6:
6596 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6597 			return -EBADMSG;
6598 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6599 					  param, param_len);
6600 		if (!err)
6601 			bpf_update_srh_state(skb);
6602 
6603 		return err;
6604 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6605 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6606 			return -EBADMSG;
6607 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6608 					  param, param_len);
6609 		if (!err)
6610 			bpf_update_srh_state(skb);
6611 
6612 		return err;
6613 	default:
6614 		return -EINVAL;
6615 	}
6616 }
6617 
6618 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6619 	.func		= bpf_lwt_seg6_action,
6620 	.gpl_only	= false,
6621 	.ret_type	= RET_INTEGER,
6622 	.arg1_type	= ARG_PTR_TO_CTX,
6623 	.arg2_type	= ARG_ANYTHING,
6624 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6625 	.arg4_type	= ARG_CONST_SIZE
6626 };
6627 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6628 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6629 	   s32, len)
6630 {
6631 	struct seg6_bpf_srh_state *srh_state =
6632 		this_cpu_ptr(&seg6_bpf_srh_states);
6633 	struct ipv6_sr_hdr *srh = srh_state->srh;
6634 	void *srh_end, *srh_tlvs, *ptr;
6635 	struct ipv6hdr *hdr;
6636 	int srhoff = 0;
6637 	int ret;
6638 
6639 	lockdep_assert_held(&srh_state->bh_lock);
6640 	if (unlikely(srh == NULL))
6641 		return -EINVAL;
6642 
6643 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6644 			((srh->first_segment + 1) << 4));
6645 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6646 			srh_state->hdrlen);
6647 	ptr = skb->data + offset;
6648 
6649 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6650 		return -EFAULT;
6651 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6652 		return -EFAULT;
6653 
6654 	if (len > 0) {
6655 		ret = skb_cow_head(skb, len);
6656 		if (unlikely(ret < 0))
6657 			return ret;
6658 
6659 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6660 	} else {
6661 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6662 	}
6663 
6664 	bpf_compute_data_pointers(skb);
6665 	if (unlikely(ret < 0))
6666 		return ret;
6667 
6668 	hdr = (struct ipv6hdr *)skb->data;
6669 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6670 
6671 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6672 		return -EINVAL;
6673 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6674 	srh_state->hdrlen += len;
6675 	srh_state->valid = false;
6676 	return 0;
6677 }
6678 
6679 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6680 	.func		= bpf_lwt_seg6_adjust_srh,
6681 	.gpl_only	= false,
6682 	.ret_type	= RET_INTEGER,
6683 	.arg1_type	= ARG_PTR_TO_CTX,
6684 	.arg2_type	= ARG_ANYTHING,
6685 	.arg3_type	= ARG_ANYTHING,
6686 };
6687 #endif /* CONFIG_IPV6_SEG6_BPF */
6688 
6689 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6690 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6691 			      int dif, int sdif, u8 family, u8 proto)
6692 {
6693 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6694 	bool refcounted = false;
6695 	struct sock *sk = NULL;
6696 
6697 	if (family == AF_INET) {
6698 		__be32 src4 = tuple->ipv4.saddr;
6699 		__be32 dst4 = tuple->ipv4.daddr;
6700 
6701 		if (proto == IPPROTO_TCP)
6702 			sk = __inet_lookup(net, hinfo, NULL, 0,
6703 					   src4, tuple->ipv4.sport,
6704 					   dst4, tuple->ipv4.dport,
6705 					   dif, sdif, &refcounted);
6706 		else
6707 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6708 					       dst4, tuple->ipv4.dport,
6709 					       dif, sdif, net->ipv4.udp_table, NULL);
6710 #if IS_ENABLED(CONFIG_IPV6)
6711 	} else {
6712 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6713 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6714 
6715 		if (proto == IPPROTO_TCP)
6716 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6717 					    src6, tuple->ipv6.sport,
6718 					    dst6, ntohs(tuple->ipv6.dport),
6719 					    dif, sdif, &refcounted);
6720 		else if (likely(ipv6_bpf_stub))
6721 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6722 							    src6, tuple->ipv6.sport,
6723 							    dst6, tuple->ipv6.dport,
6724 							    dif, sdif,
6725 							    net->ipv4.udp_table, NULL);
6726 #endif
6727 	}
6728 
6729 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6730 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6731 		sk = NULL;
6732 	}
6733 	return sk;
6734 }
6735 
6736 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6737  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6738  */
6739 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6740 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6741 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6742 		 u64 flags, int sdif)
6743 {
6744 	struct sock *sk = NULL;
6745 	struct net *net;
6746 	u8 family;
6747 
6748 	if (len == sizeof(tuple->ipv4))
6749 		family = AF_INET;
6750 	else if (len == sizeof(tuple->ipv6))
6751 		family = AF_INET6;
6752 	else
6753 		return NULL;
6754 
6755 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6756 		goto out;
6757 
6758 	if (sdif < 0) {
6759 		if (family == AF_INET)
6760 			sdif = inet_sdif(skb);
6761 		else
6762 			sdif = inet6_sdif(skb);
6763 	}
6764 
6765 	if ((s32)netns_id < 0) {
6766 		net = caller_net;
6767 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6768 	} else {
6769 		net = get_net_ns_by_id(caller_net, netns_id);
6770 		if (unlikely(!net))
6771 			goto out;
6772 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6773 		put_net(net);
6774 	}
6775 
6776 out:
6777 	return sk;
6778 }
6779 
6780 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6781 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6782 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6783 		u64 flags, int sdif)
6784 {
6785 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6786 					   ifindex, proto, netns_id, flags,
6787 					   sdif);
6788 
6789 	if (sk) {
6790 		struct sock *sk2 = sk_to_full_sk(sk);
6791 
6792 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6793 		 * sock refcnt is decremented to prevent a request_sock leak.
6794 		 */
6795 		if (sk2 != sk) {
6796 			sock_gen_put(sk);
6797 			/* Ensure there is no need to bump sk2 refcnt */
6798 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6799 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6800 				return NULL;
6801 			}
6802 			sk = sk2;
6803 		}
6804 	}
6805 
6806 	return sk;
6807 }
6808 
6809 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6810 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6811 	       u8 proto, u64 netns_id, u64 flags)
6812 {
6813 	struct net *caller_net;
6814 	int ifindex;
6815 
6816 	if (skb->dev) {
6817 		caller_net = dev_net(skb->dev);
6818 		ifindex = skb->dev->ifindex;
6819 	} else {
6820 		caller_net = sock_net(skb->sk);
6821 		ifindex = 0;
6822 	}
6823 
6824 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6825 				netns_id, flags, -1);
6826 }
6827 
6828 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6829 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6830 	      u8 proto, u64 netns_id, u64 flags)
6831 {
6832 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6833 					 flags);
6834 
6835 	if (sk) {
6836 		struct sock *sk2 = sk_to_full_sk(sk);
6837 
6838 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6839 		 * sock refcnt is decremented to prevent a request_sock leak.
6840 		 */
6841 		if (sk2 != sk) {
6842 			sock_gen_put(sk);
6843 			/* Ensure there is no need to bump sk2 refcnt */
6844 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6845 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6846 				return NULL;
6847 			}
6848 			sk = sk2;
6849 		}
6850 	}
6851 
6852 	return sk;
6853 }
6854 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6855 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6856 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6857 {
6858 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6859 					     netns_id, flags);
6860 }
6861 
6862 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6863 	.func		= bpf_skc_lookup_tcp,
6864 	.gpl_only	= false,
6865 	.pkt_access	= true,
6866 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6867 	.arg1_type	= ARG_PTR_TO_CTX,
6868 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6869 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6870 	.arg4_type	= ARG_ANYTHING,
6871 	.arg5_type	= ARG_ANYTHING,
6872 };
6873 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6874 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6875 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6876 {
6877 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6878 					    netns_id, flags);
6879 }
6880 
6881 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6882 	.func		= bpf_sk_lookup_tcp,
6883 	.gpl_only	= false,
6884 	.pkt_access	= true,
6885 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6886 	.arg1_type	= ARG_PTR_TO_CTX,
6887 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6888 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6889 	.arg4_type	= ARG_ANYTHING,
6890 	.arg5_type	= ARG_ANYTHING,
6891 };
6892 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6893 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6894 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6895 {
6896 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6897 					    netns_id, flags);
6898 }
6899 
6900 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6901 	.func		= bpf_sk_lookup_udp,
6902 	.gpl_only	= false,
6903 	.pkt_access	= true,
6904 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6905 	.arg1_type	= ARG_PTR_TO_CTX,
6906 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6907 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6908 	.arg4_type	= ARG_ANYTHING,
6909 	.arg5_type	= ARG_ANYTHING,
6910 };
6911 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6912 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6913 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6914 {
6915 	struct net_device *dev = skb->dev;
6916 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6917 	struct net *caller_net = dev_net(dev);
6918 
6919 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6920 					       ifindex, IPPROTO_TCP, netns_id,
6921 					       flags, sdif);
6922 }
6923 
6924 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6925 	.func		= bpf_tc_skc_lookup_tcp,
6926 	.gpl_only	= false,
6927 	.pkt_access	= true,
6928 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6929 	.arg1_type	= ARG_PTR_TO_CTX,
6930 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6931 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6932 	.arg4_type	= ARG_ANYTHING,
6933 	.arg5_type	= ARG_ANYTHING,
6934 };
6935 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6936 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6937 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6938 {
6939 	struct net_device *dev = skb->dev;
6940 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6941 	struct net *caller_net = dev_net(dev);
6942 
6943 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6944 					      ifindex, IPPROTO_TCP, netns_id,
6945 					      flags, sdif);
6946 }
6947 
6948 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6949 	.func		= bpf_tc_sk_lookup_tcp,
6950 	.gpl_only	= false,
6951 	.pkt_access	= true,
6952 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6953 	.arg1_type	= ARG_PTR_TO_CTX,
6954 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6955 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6956 	.arg4_type	= ARG_ANYTHING,
6957 	.arg5_type	= ARG_ANYTHING,
6958 };
6959 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6960 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6961 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6962 {
6963 	struct net_device *dev = skb->dev;
6964 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6965 	struct net *caller_net = dev_net(dev);
6966 
6967 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6968 					      ifindex, IPPROTO_UDP, netns_id,
6969 					      flags, sdif);
6970 }
6971 
6972 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6973 	.func		= bpf_tc_sk_lookup_udp,
6974 	.gpl_only	= false,
6975 	.pkt_access	= true,
6976 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6977 	.arg1_type	= ARG_PTR_TO_CTX,
6978 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6979 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6980 	.arg4_type	= ARG_ANYTHING,
6981 	.arg5_type	= ARG_ANYTHING,
6982 };
6983 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6984 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6985 {
6986 	if (sk && sk_is_refcounted(sk))
6987 		sock_gen_put(sk);
6988 	return 0;
6989 }
6990 
6991 static const struct bpf_func_proto bpf_sk_release_proto = {
6992 	.func		= bpf_sk_release,
6993 	.gpl_only	= false,
6994 	.ret_type	= RET_INTEGER,
6995 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6996 };
6997 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6998 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6999 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7000 {
7001 	struct net_device *dev = ctx->rxq->dev;
7002 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7003 	struct net *caller_net = dev_net(dev);
7004 
7005 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7006 					      ifindex, IPPROTO_UDP, netns_id,
7007 					      flags, sdif);
7008 }
7009 
7010 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7011 	.func           = bpf_xdp_sk_lookup_udp,
7012 	.gpl_only       = false,
7013 	.pkt_access     = true,
7014 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7015 	.arg1_type      = ARG_PTR_TO_CTX,
7016 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7017 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7018 	.arg4_type      = ARG_ANYTHING,
7019 	.arg5_type      = ARG_ANYTHING,
7020 };
7021 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7022 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7023 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7024 {
7025 	struct net_device *dev = ctx->rxq->dev;
7026 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7027 	struct net *caller_net = dev_net(dev);
7028 
7029 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7030 					       ifindex, IPPROTO_TCP, netns_id,
7031 					       flags, sdif);
7032 }
7033 
7034 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7035 	.func           = bpf_xdp_skc_lookup_tcp,
7036 	.gpl_only       = false,
7037 	.pkt_access     = true,
7038 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7039 	.arg1_type      = ARG_PTR_TO_CTX,
7040 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7041 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7042 	.arg4_type      = ARG_ANYTHING,
7043 	.arg5_type      = ARG_ANYTHING,
7044 };
7045 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7046 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7047 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7048 {
7049 	struct net_device *dev = ctx->rxq->dev;
7050 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7051 	struct net *caller_net = dev_net(dev);
7052 
7053 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7054 					      ifindex, IPPROTO_TCP, netns_id,
7055 					      flags, sdif);
7056 }
7057 
7058 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7059 	.func           = bpf_xdp_sk_lookup_tcp,
7060 	.gpl_only       = false,
7061 	.pkt_access     = true,
7062 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7063 	.arg1_type      = ARG_PTR_TO_CTX,
7064 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7065 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7066 	.arg4_type      = ARG_ANYTHING,
7067 	.arg5_type      = ARG_ANYTHING,
7068 };
7069 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7070 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7071 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7072 {
7073 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7074 					       sock_net(ctx->sk), 0,
7075 					       IPPROTO_TCP, netns_id, flags,
7076 					       -1);
7077 }
7078 
7079 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7080 	.func		= bpf_sock_addr_skc_lookup_tcp,
7081 	.gpl_only	= false,
7082 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7083 	.arg1_type	= ARG_PTR_TO_CTX,
7084 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7085 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7086 	.arg4_type	= ARG_ANYTHING,
7087 	.arg5_type	= ARG_ANYTHING,
7088 };
7089 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7090 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7091 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7092 {
7093 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7094 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7095 					      netns_id, flags, -1);
7096 }
7097 
7098 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7099 	.func		= bpf_sock_addr_sk_lookup_tcp,
7100 	.gpl_only	= false,
7101 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7102 	.arg1_type	= ARG_PTR_TO_CTX,
7103 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7104 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7105 	.arg4_type	= ARG_ANYTHING,
7106 	.arg5_type	= ARG_ANYTHING,
7107 };
7108 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7109 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7110 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7111 {
7112 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7113 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7114 					      netns_id, flags, -1);
7115 }
7116 
7117 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7118 	.func		= bpf_sock_addr_sk_lookup_udp,
7119 	.gpl_only	= false,
7120 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7121 	.arg1_type	= ARG_PTR_TO_CTX,
7122 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7123 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7124 	.arg4_type	= ARG_ANYTHING,
7125 	.arg5_type	= ARG_ANYTHING,
7126 };
7127 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7128 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7129 				  struct bpf_insn_access_aux *info)
7130 {
7131 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7132 					  icsk_retransmits))
7133 		return false;
7134 
7135 	if (off % size != 0)
7136 		return false;
7137 
7138 	switch (off) {
7139 	case offsetof(struct bpf_tcp_sock, bytes_received):
7140 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7141 		return size == sizeof(__u64);
7142 	default:
7143 		return size == sizeof(__u32);
7144 	}
7145 }
7146 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7147 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7148 				    const struct bpf_insn *si,
7149 				    struct bpf_insn *insn_buf,
7150 				    struct bpf_prog *prog, u32 *target_size)
7151 {
7152 	struct bpf_insn *insn = insn_buf;
7153 
7154 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7155 	do {								\
7156 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7157 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7158 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7159 				      si->dst_reg, si->src_reg,		\
7160 				      offsetof(struct tcp_sock, FIELD)); \
7161 	} while (0)
7162 
7163 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7164 	do {								\
7165 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7166 					  FIELD) >			\
7167 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7168 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7169 					struct inet_connection_sock,	\
7170 					FIELD),				\
7171 				      si->dst_reg, si->src_reg,		\
7172 				      offsetof(				\
7173 					struct inet_connection_sock,	\
7174 					FIELD));			\
7175 	} while (0)
7176 
7177 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7178 
7179 	switch (si->off) {
7180 	case offsetof(struct bpf_tcp_sock, rtt_min):
7181 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7182 			     sizeof(struct minmax));
7183 		BUILD_BUG_ON(sizeof(struct minmax) <
7184 			     sizeof(struct minmax_sample));
7185 
7186 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7187 				      offsetof(struct tcp_sock, rtt_min) +
7188 				      offsetof(struct minmax_sample, v));
7189 		break;
7190 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7191 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7192 		break;
7193 	case offsetof(struct bpf_tcp_sock, srtt_us):
7194 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7195 		break;
7196 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7197 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7198 		break;
7199 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7200 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7201 		break;
7202 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7203 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7204 		break;
7205 	case offsetof(struct bpf_tcp_sock, snd_una):
7206 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7207 		break;
7208 	case offsetof(struct bpf_tcp_sock, mss_cache):
7209 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7210 		break;
7211 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7212 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7213 		break;
7214 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7215 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7216 		break;
7217 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7218 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7219 		break;
7220 	case offsetof(struct bpf_tcp_sock, packets_out):
7221 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7222 		break;
7223 	case offsetof(struct bpf_tcp_sock, retrans_out):
7224 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7225 		break;
7226 	case offsetof(struct bpf_tcp_sock, total_retrans):
7227 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7228 		break;
7229 	case offsetof(struct bpf_tcp_sock, segs_in):
7230 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7231 		break;
7232 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7233 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7234 		break;
7235 	case offsetof(struct bpf_tcp_sock, segs_out):
7236 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7237 		break;
7238 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7239 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7240 		break;
7241 	case offsetof(struct bpf_tcp_sock, lost_out):
7242 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7243 		break;
7244 	case offsetof(struct bpf_tcp_sock, sacked_out):
7245 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7246 		break;
7247 	case offsetof(struct bpf_tcp_sock, bytes_received):
7248 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7249 		break;
7250 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7251 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7252 		break;
7253 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7254 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7255 		break;
7256 	case offsetof(struct bpf_tcp_sock, delivered):
7257 		BPF_TCP_SOCK_GET_COMMON(delivered);
7258 		break;
7259 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7260 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7261 		break;
7262 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7263 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7264 		break;
7265 	}
7266 
7267 	return insn - insn_buf;
7268 }
7269 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7270 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7271 {
7272 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7273 		return (unsigned long)sk;
7274 
7275 	return (unsigned long)NULL;
7276 }
7277 
7278 const struct bpf_func_proto bpf_tcp_sock_proto = {
7279 	.func		= bpf_tcp_sock,
7280 	.gpl_only	= false,
7281 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7282 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7283 };
7284 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7285 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7286 {
7287 	sk = sk_to_full_sk(sk);
7288 
7289 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7290 		return (unsigned long)sk;
7291 
7292 	return (unsigned long)NULL;
7293 }
7294 
7295 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7296 	.func		= bpf_get_listener_sock,
7297 	.gpl_only	= false,
7298 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7299 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7300 };
7301 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7302 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7303 {
7304 	unsigned int iphdr_len;
7305 
7306 	switch (skb_protocol(skb, true)) {
7307 	case cpu_to_be16(ETH_P_IP):
7308 		iphdr_len = sizeof(struct iphdr);
7309 		break;
7310 	case cpu_to_be16(ETH_P_IPV6):
7311 		iphdr_len = sizeof(struct ipv6hdr);
7312 		break;
7313 	default:
7314 		return 0;
7315 	}
7316 
7317 	if (skb_headlen(skb) < iphdr_len)
7318 		return 0;
7319 
7320 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7321 		return 0;
7322 
7323 	return INET_ECN_set_ce(skb);
7324 }
7325 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7326 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7327 				  struct bpf_insn_access_aux *info)
7328 {
7329 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7330 		return false;
7331 
7332 	if (off % size != 0)
7333 		return false;
7334 
7335 	switch (off) {
7336 	default:
7337 		return size == sizeof(__u32);
7338 	}
7339 }
7340 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7341 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7342 				    const struct bpf_insn *si,
7343 				    struct bpf_insn *insn_buf,
7344 				    struct bpf_prog *prog, u32 *target_size)
7345 {
7346 	struct bpf_insn *insn = insn_buf;
7347 
7348 #define BPF_XDP_SOCK_GET(FIELD)						\
7349 	do {								\
7350 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7351 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7352 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7353 				      si->dst_reg, si->src_reg,		\
7354 				      offsetof(struct xdp_sock, FIELD)); \
7355 	} while (0)
7356 
7357 	switch (si->off) {
7358 	case offsetof(struct bpf_xdp_sock, queue_id):
7359 		BPF_XDP_SOCK_GET(queue_id);
7360 		break;
7361 	}
7362 
7363 	return insn - insn_buf;
7364 }
7365 
7366 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7367 	.func           = bpf_skb_ecn_set_ce,
7368 	.gpl_only       = false,
7369 	.ret_type       = RET_INTEGER,
7370 	.arg1_type      = ARG_PTR_TO_CTX,
7371 };
7372 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7373 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7374 	   struct tcphdr *, th, u32, th_len)
7375 {
7376 #ifdef CONFIG_SYN_COOKIES
7377 	int ret;
7378 
7379 	if (unlikely(!sk || th_len < sizeof(*th)))
7380 		return -EINVAL;
7381 
7382 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7383 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7384 		return -EINVAL;
7385 
7386 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7387 		return -EINVAL;
7388 
7389 	if (!th->ack || th->rst || th->syn)
7390 		return -ENOENT;
7391 
7392 	if (unlikely(iph_len < sizeof(struct iphdr)))
7393 		return -EINVAL;
7394 
7395 	if (tcp_synq_no_recent_overflow(sk))
7396 		return -ENOENT;
7397 
7398 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7399 	 * same offset so we can cast to the shorter header (struct iphdr).
7400 	 */
7401 	switch (((struct iphdr *)iph)->version) {
7402 	case 4:
7403 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7404 			return -EINVAL;
7405 
7406 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7407 		break;
7408 
7409 #if IS_BUILTIN(CONFIG_IPV6)
7410 	case 6:
7411 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7412 			return -EINVAL;
7413 
7414 		if (sk->sk_family != AF_INET6)
7415 			return -EINVAL;
7416 
7417 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7418 		break;
7419 #endif /* CONFIG_IPV6 */
7420 
7421 	default:
7422 		return -EPROTONOSUPPORT;
7423 	}
7424 
7425 	if (ret > 0)
7426 		return 0;
7427 
7428 	return -ENOENT;
7429 #else
7430 	return -ENOTSUPP;
7431 #endif
7432 }
7433 
7434 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7435 	.func		= bpf_tcp_check_syncookie,
7436 	.gpl_only	= true,
7437 	.pkt_access	= true,
7438 	.ret_type	= RET_INTEGER,
7439 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7440 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7441 	.arg3_type	= ARG_CONST_SIZE,
7442 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7443 	.arg5_type	= ARG_CONST_SIZE,
7444 };
7445 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7446 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7447 	   struct tcphdr *, th, u32, th_len)
7448 {
7449 #ifdef CONFIG_SYN_COOKIES
7450 	u32 cookie;
7451 	u16 mss;
7452 
7453 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7454 		return -EINVAL;
7455 
7456 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7457 		return -EINVAL;
7458 
7459 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7460 		return -ENOENT;
7461 
7462 	if (!th->syn || th->ack || th->fin || th->rst)
7463 		return -EINVAL;
7464 
7465 	if (unlikely(iph_len < sizeof(struct iphdr)))
7466 		return -EINVAL;
7467 
7468 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7469 	 * same offset so we can cast to the shorter header (struct iphdr).
7470 	 */
7471 	switch (((struct iphdr *)iph)->version) {
7472 	case 4:
7473 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7474 			return -EINVAL;
7475 
7476 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7477 		break;
7478 
7479 #if IS_BUILTIN(CONFIG_IPV6)
7480 	case 6:
7481 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7482 			return -EINVAL;
7483 
7484 		if (sk->sk_family != AF_INET6)
7485 			return -EINVAL;
7486 
7487 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7488 		break;
7489 #endif /* CONFIG_IPV6 */
7490 
7491 	default:
7492 		return -EPROTONOSUPPORT;
7493 	}
7494 	if (mss == 0)
7495 		return -ENOENT;
7496 
7497 	return cookie | ((u64)mss << 32);
7498 #else
7499 	return -EOPNOTSUPP;
7500 #endif /* CONFIG_SYN_COOKIES */
7501 }
7502 
7503 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7504 	.func		= bpf_tcp_gen_syncookie,
7505 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7506 	.pkt_access	= true,
7507 	.ret_type	= RET_INTEGER,
7508 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7509 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7510 	.arg3_type	= ARG_CONST_SIZE,
7511 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7512 	.arg5_type	= ARG_CONST_SIZE,
7513 };
7514 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7515 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7516 {
7517 	if (!sk || flags != 0)
7518 		return -EINVAL;
7519 	if (!skb_at_tc_ingress(skb))
7520 		return -EOPNOTSUPP;
7521 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7522 		return -ENETUNREACH;
7523 	if (sk_unhashed(sk))
7524 		return -EOPNOTSUPP;
7525 	if (sk_is_refcounted(sk) &&
7526 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7527 		return -ENOENT;
7528 
7529 	skb_orphan(skb);
7530 	skb->sk = sk;
7531 	skb->destructor = sock_pfree;
7532 
7533 	return 0;
7534 }
7535 
7536 static const struct bpf_func_proto bpf_sk_assign_proto = {
7537 	.func		= bpf_sk_assign,
7538 	.gpl_only	= false,
7539 	.ret_type	= RET_INTEGER,
7540 	.arg1_type      = ARG_PTR_TO_CTX,
7541 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7542 	.arg3_type	= ARG_ANYTHING,
7543 };
7544 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7545 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7546 				    u8 search_kind, const u8 *magic,
7547 				    u8 magic_len, bool *eol)
7548 {
7549 	u8 kind, kind_len;
7550 
7551 	*eol = false;
7552 
7553 	while (op < opend) {
7554 		kind = op[0];
7555 
7556 		if (kind == TCPOPT_EOL) {
7557 			*eol = true;
7558 			return ERR_PTR(-ENOMSG);
7559 		} else if (kind == TCPOPT_NOP) {
7560 			op++;
7561 			continue;
7562 		}
7563 
7564 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7565 			/* Something is wrong in the received header.
7566 			 * Follow the TCP stack's tcp_parse_options()
7567 			 * and just bail here.
7568 			 */
7569 			return ERR_PTR(-EFAULT);
7570 
7571 		kind_len = op[1];
7572 		if (search_kind == kind) {
7573 			if (!magic_len)
7574 				return op;
7575 
7576 			if (magic_len > kind_len - 2)
7577 				return ERR_PTR(-ENOMSG);
7578 
7579 			if (!memcmp(&op[2], magic, magic_len))
7580 				return op;
7581 		}
7582 
7583 		op += kind_len;
7584 	}
7585 
7586 	return ERR_PTR(-ENOMSG);
7587 }
7588 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7589 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7590 	   void *, search_res, u32, len, u64, flags)
7591 {
7592 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7593 	const u8 *op, *opend, *magic, *search = search_res;
7594 	u8 search_kind, search_len, copy_len, magic_len;
7595 	int ret;
7596 
7597 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7598 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7599 	 * and this helper disallow loading them also.
7600 	 */
7601 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7602 		return -EINVAL;
7603 
7604 	search_kind = search[0];
7605 	search_len = search[1];
7606 
7607 	if (search_len > len || search_kind == TCPOPT_NOP ||
7608 	    search_kind == TCPOPT_EOL)
7609 		return -EINVAL;
7610 
7611 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7612 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7613 		if (search_len != 4 && search_len != 6)
7614 			return -EINVAL;
7615 		magic = &search[2];
7616 		magic_len = search_len - 2;
7617 	} else {
7618 		if (search_len)
7619 			return -EINVAL;
7620 		magic = NULL;
7621 		magic_len = 0;
7622 	}
7623 
7624 	if (load_syn) {
7625 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7626 		if (ret < 0)
7627 			return ret;
7628 
7629 		opend = op + ret;
7630 		op += sizeof(struct tcphdr);
7631 	} else {
7632 		if (!bpf_sock->skb ||
7633 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7634 			/* This bpf_sock->op cannot call this helper */
7635 			return -EPERM;
7636 
7637 		opend = bpf_sock->skb_data_end;
7638 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7639 	}
7640 
7641 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7642 				&eol);
7643 	if (IS_ERR(op))
7644 		return PTR_ERR(op);
7645 
7646 	copy_len = op[1];
7647 	ret = copy_len;
7648 	if (copy_len > len) {
7649 		ret = -ENOSPC;
7650 		copy_len = len;
7651 	}
7652 
7653 	memcpy(search_res, op, copy_len);
7654 	return ret;
7655 }
7656 
7657 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7658 	.func		= bpf_sock_ops_load_hdr_opt,
7659 	.gpl_only	= false,
7660 	.ret_type	= RET_INTEGER,
7661 	.arg1_type	= ARG_PTR_TO_CTX,
7662 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7663 	.arg3_type	= ARG_CONST_SIZE,
7664 	.arg4_type	= ARG_ANYTHING,
7665 };
7666 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7667 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7668 	   const void *, from, u32, len, u64, flags)
7669 {
7670 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7671 	const u8 *op, *new_op, *magic = NULL;
7672 	struct sk_buff *skb;
7673 	bool eol;
7674 
7675 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7676 		return -EPERM;
7677 
7678 	if (len < 2 || flags)
7679 		return -EINVAL;
7680 
7681 	new_op = from;
7682 	new_kind = new_op[0];
7683 	new_kind_len = new_op[1];
7684 
7685 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7686 	    new_kind == TCPOPT_EOL)
7687 		return -EINVAL;
7688 
7689 	if (new_kind_len > bpf_sock->remaining_opt_len)
7690 		return -ENOSPC;
7691 
7692 	/* 253 is another experimental kind */
7693 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7694 		if (new_kind_len < 4)
7695 			return -EINVAL;
7696 		/* Match for the 2 byte magic also.
7697 		 * RFC 6994: the magic could be 2 or 4 bytes.
7698 		 * Hence, matching by 2 byte only is on the
7699 		 * conservative side but it is the right
7700 		 * thing to do for the 'search-for-duplication'
7701 		 * purpose.
7702 		 */
7703 		magic = &new_op[2];
7704 		magic_len = 2;
7705 	}
7706 
7707 	/* Check for duplication */
7708 	skb = bpf_sock->skb;
7709 	op = skb->data + sizeof(struct tcphdr);
7710 	opend = bpf_sock->skb_data_end;
7711 
7712 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7713 				&eol);
7714 	if (!IS_ERR(op))
7715 		return -EEXIST;
7716 
7717 	if (PTR_ERR(op) != -ENOMSG)
7718 		return PTR_ERR(op);
7719 
7720 	if (eol)
7721 		/* The option has been ended.  Treat it as no more
7722 		 * header option can be written.
7723 		 */
7724 		return -ENOSPC;
7725 
7726 	/* No duplication found.  Store the header option. */
7727 	memcpy(opend, from, new_kind_len);
7728 
7729 	bpf_sock->remaining_opt_len -= new_kind_len;
7730 	bpf_sock->skb_data_end += new_kind_len;
7731 
7732 	return 0;
7733 }
7734 
7735 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7736 	.func		= bpf_sock_ops_store_hdr_opt,
7737 	.gpl_only	= false,
7738 	.ret_type	= RET_INTEGER,
7739 	.arg1_type	= ARG_PTR_TO_CTX,
7740 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7741 	.arg3_type	= ARG_CONST_SIZE,
7742 	.arg4_type	= ARG_ANYTHING,
7743 };
7744 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7745 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7746 	   u32, len, u64, flags)
7747 {
7748 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7749 		return -EPERM;
7750 
7751 	if (flags || len < 2)
7752 		return -EINVAL;
7753 
7754 	if (len > bpf_sock->remaining_opt_len)
7755 		return -ENOSPC;
7756 
7757 	bpf_sock->remaining_opt_len -= len;
7758 
7759 	return 0;
7760 }
7761 
7762 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7763 	.func		= bpf_sock_ops_reserve_hdr_opt,
7764 	.gpl_only	= false,
7765 	.ret_type	= RET_INTEGER,
7766 	.arg1_type	= ARG_PTR_TO_CTX,
7767 	.arg2_type	= ARG_ANYTHING,
7768 	.arg3_type	= ARG_ANYTHING,
7769 };
7770 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7771 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7772 	   u64, tstamp, u32, tstamp_type)
7773 {
7774 	/* skb_clear_delivery_time() is done for inet protocol */
7775 	if (skb->protocol != htons(ETH_P_IP) &&
7776 	    skb->protocol != htons(ETH_P_IPV6))
7777 		return -EOPNOTSUPP;
7778 
7779 	switch (tstamp_type) {
7780 	case BPF_SKB_CLOCK_REALTIME:
7781 		skb->tstamp = tstamp;
7782 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7783 		break;
7784 	case BPF_SKB_CLOCK_MONOTONIC:
7785 		if (!tstamp)
7786 			return -EINVAL;
7787 		skb->tstamp = tstamp;
7788 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7789 		break;
7790 	case BPF_SKB_CLOCK_TAI:
7791 		if (!tstamp)
7792 			return -EINVAL;
7793 		skb->tstamp = tstamp;
7794 		skb->tstamp_type = SKB_CLOCK_TAI;
7795 		break;
7796 	default:
7797 		return -EINVAL;
7798 	}
7799 
7800 	return 0;
7801 }
7802 
7803 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7804 	.func           = bpf_skb_set_tstamp,
7805 	.gpl_only       = false,
7806 	.ret_type       = RET_INTEGER,
7807 	.arg1_type      = ARG_PTR_TO_CTX,
7808 	.arg2_type      = ARG_ANYTHING,
7809 	.arg3_type      = ARG_ANYTHING,
7810 };
7811 
7812 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7813 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7814 	   struct tcphdr *, th, u32, th_len)
7815 {
7816 	u32 cookie;
7817 	u16 mss;
7818 
7819 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7820 		return -EINVAL;
7821 
7822 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7823 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7824 
7825 	return cookie | ((u64)mss << 32);
7826 }
7827 
7828 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7829 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7830 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7831 	.pkt_access	= true,
7832 	.ret_type	= RET_INTEGER,
7833 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7834 	.arg1_size	= sizeof(struct iphdr),
7835 	.arg2_type	= ARG_PTR_TO_MEM,
7836 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7837 };
7838 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7839 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7840 	   struct tcphdr *, th, u32, th_len)
7841 {
7842 #if IS_BUILTIN(CONFIG_IPV6)
7843 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7844 		sizeof(struct ipv6hdr);
7845 	u32 cookie;
7846 	u16 mss;
7847 
7848 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7849 		return -EINVAL;
7850 
7851 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7852 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7853 
7854 	return cookie | ((u64)mss << 32);
7855 #else
7856 	return -EPROTONOSUPPORT;
7857 #endif
7858 }
7859 
7860 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7861 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7862 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7863 	.pkt_access	= true,
7864 	.ret_type	= RET_INTEGER,
7865 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7866 	.arg1_size	= sizeof(struct ipv6hdr),
7867 	.arg2_type	= ARG_PTR_TO_MEM,
7868 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7869 };
7870 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7871 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7872 	   struct tcphdr *, th)
7873 {
7874 	if (__cookie_v4_check(iph, th) > 0)
7875 		return 0;
7876 
7877 	return -EACCES;
7878 }
7879 
7880 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7881 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7882 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7883 	.pkt_access	= true,
7884 	.ret_type	= RET_INTEGER,
7885 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7886 	.arg1_size	= sizeof(struct iphdr),
7887 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7888 	.arg2_size	= sizeof(struct tcphdr),
7889 };
7890 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7891 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7892 	   struct tcphdr *, th)
7893 {
7894 #if IS_BUILTIN(CONFIG_IPV6)
7895 	if (__cookie_v6_check(iph, th) > 0)
7896 		return 0;
7897 
7898 	return -EACCES;
7899 #else
7900 	return -EPROTONOSUPPORT;
7901 #endif
7902 }
7903 
7904 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7905 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7906 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7907 	.pkt_access	= true,
7908 	.ret_type	= RET_INTEGER,
7909 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7910 	.arg1_size	= sizeof(struct ipv6hdr),
7911 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7912 	.arg2_size	= sizeof(struct tcphdr),
7913 };
7914 #endif /* CONFIG_SYN_COOKIES */
7915 
7916 #endif /* CONFIG_INET */
7917 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7918 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7919 {
7920 	switch (func_id) {
7921 	case BPF_FUNC_clone_redirect:
7922 	case BPF_FUNC_l3_csum_replace:
7923 	case BPF_FUNC_l4_csum_replace:
7924 	case BPF_FUNC_lwt_push_encap:
7925 	case BPF_FUNC_lwt_seg6_action:
7926 	case BPF_FUNC_lwt_seg6_adjust_srh:
7927 	case BPF_FUNC_lwt_seg6_store_bytes:
7928 	case BPF_FUNC_msg_pop_data:
7929 	case BPF_FUNC_msg_pull_data:
7930 	case BPF_FUNC_msg_push_data:
7931 	case BPF_FUNC_skb_adjust_room:
7932 	case BPF_FUNC_skb_change_head:
7933 	case BPF_FUNC_skb_change_proto:
7934 	case BPF_FUNC_skb_change_tail:
7935 	case BPF_FUNC_skb_pull_data:
7936 	case BPF_FUNC_skb_store_bytes:
7937 	case BPF_FUNC_skb_vlan_pop:
7938 	case BPF_FUNC_skb_vlan_push:
7939 	case BPF_FUNC_store_hdr_opt:
7940 	case BPF_FUNC_xdp_adjust_head:
7941 	case BPF_FUNC_xdp_adjust_meta:
7942 	case BPF_FUNC_xdp_adjust_tail:
7943 	/* tail-called program could call any of the above */
7944 	case BPF_FUNC_tail_call:
7945 		return true;
7946 	default:
7947 		return false;
7948 	}
7949 }
7950 
7951 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7952 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7953 
7954 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7955 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7956 {
7957 	const struct bpf_func_proto *func_proto;
7958 
7959 	func_proto = cgroup_common_func_proto(func_id, prog);
7960 	if (func_proto)
7961 		return func_proto;
7962 
7963 	func_proto = cgroup_current_func_proto(func_id, prog);
7964 	if (func_proto)
7965 		return func_proto;
7966 
7967 	switch (func_id) {
7968 	case BPF_FUNC_get_socket_cookie:
7969 		return &bpf_get_socket_cookie_sock_proto;
7970 	case BPF_FUNC_get_netns_cookie:
7971 		return &bpf_get_netns_cookie_sock_proto;
7972 	case BPF_FUNC_perf_event_output:
7973 		return &bpf_event_output_data_proto;
7974 	case BPF_FUNC_sk_storage_get:
7975 		return &bpf_sk_storage_get_cg_sock_proto;
7976 	case BPF_FUNC_ktime_get_coarse_ns:
7977 		return &bpf_ktime_get_coarse_ns_proto;
7978 	default:
7979 		return bpf_base_func_proto(func_id, prog);
7980 	}
7981 }
7982 
7983 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7984 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7985 {
7986 	const struct bpf_func_proto *func_proto;
7987 
7988 	func_proto = cgroup_common_func_proto(func_id, prog);
7989 	if (func_proto)
7990 		return func_proto;
7991 
7992 	func_proto = cgroup_current_func_proto(func_id, prog);
7993 	if (func_proto)
7994 		return func_proto;
7995 
7996 	switch (func_id) {
7997 	case BPF_FUNC_bind:
7998 		switch (prog->expected_attach_type) {
7999 		case BPF_CGROUP_INET4_CONNECT:
8000 		case BPF_CGROUP_INET6_CONNECT:
8001 			return &bpf_bind_proto;
8002 		default:
8003 			return NULL;
8004 		}
8005 	case BPF_FUNC_get_socket_cookie:
8006 		return &bpf_get_socket_cookie_sock_addr_proto;
8007 	case BPF_FUNC_get_netns_cookie:
8008 		return &bpf_get_netns_cookie_sock_addr_proto;
8009 	case BPF_FUNC_perf_event_output:
8010 		return &bpf_event_output_data_proto;
8011 #ifdef CONFIG_INET
8012 	case BPF_FUNC_sk_lookup_tcp:
8013 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8014 	case BPF_FUNC_sk_lookup_udp:
8015 		return &bpf_sock_addr_sk_lookup_udp_proto;
8016 	case BPF_FUNC_sk_release:
8017 		return &bpf_sk_release_proto;
8018 	case BPF_FUNC_skc_lookup_tcp:
8019 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8020 #endif /* CONFIG_INET */
8021 	case BPF_FUNC_sk_storage_get:
8022 		return &bpf_sk_storage_get_proto;
8023 	case BPF_FUNC_sk_storage_delete:
8024 		return &bpf_sk_storage_delete_proto;
8025 	case BPF_FUNC_setsockopt:
8026 		switch (prog->expected_attach_type) {
8027 		case BPF_CGROUP_INET4_BIND:
8028 		case BPF_CGROUP_INET6_BIND:
8029 		case BPF_CGROUP_INET4_CONNECT:
8030 		case BPF_CGROUP_INET6_CONNECT:
8031 		case BPF_CGROUP_UNIX_CONNECT:
8032 		case BPF_CGROUP_UDP4_RECVMSG:
8033 		case BPF_CGROUP_UDP6_RECVMSG:
8034 		case BPF_CGROUP_UNIX_RECVMSG:
8035 		case BPF_CGROUP_UDP4_SENDMSG:
8036 		case BPF_CGROUP_UDP6_SENDMSG:
8037 		case BPF_CGROUP_UNIX_SENDMSG:
8038 		case BPF_CGROUP_INET4_GETPEERNAME:
8039 		case BPF_CGROUP_INET6_GETPEERNAME:
8040 		case BPF_CGROUP_UNIX_GETPEERNAME:
8041 		case BPF_CGROUP_INET4_GETSOCKNAME:
8042 		case BPF_CGROUP_INET6_GETSOCKNAME:
8043 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8044 			return &bpf_sock_addr_setsockopt_proto;
8045 		default:
8046 			return NULL;
8047 		}
8048 	case BPF_FUNC_getsockopt:
8049 		switch (prog->expected_attach_type) {
8050 		case BPF_CGROUP_INET4_BIND:
8051 		case BPF_CGROUP_INET6_BIND:
8052 		case BPF_CGROUP_INET4_CONNECT:
8053 		case BPF_CGROUP_INET6_CONNECT:
8054 		case BPF_CGROUP_UNIX_CONNECT:
8055 		case BPF_CGROUP_UDP4_RECVMSG:
8056 		case BPF_CGROUP_UDP6_RECVMSG:
8057 		case BPF_CGROUP_UNIX_RECVMSG:
8058 		case BPF_CGROUP_UDP4_SENDMSG:
8059 		case BPF_CGROUP_UDP6_SENDMSG:
8060 		case BPF_CGROUP_UNIX_SENDMSG:
8061 		case BPF_CGROUP_INET4_GETPEERNAME:
8062 		case BPF_CGROUP_INET6_GETPEERNAME:
8063 		case BPF_CGROUP_UNIX_GETPEERNAME:
8064 		case BPF_CGROUP_INET4_GETSOCKNAME:
8065 		case BPF_CGROUP_INET6_GETSOCKNAME:
8066 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8067 			return &bpf_sock_addr_getsockopt_proto;
8068 		default:
8069 			return NULL;
8070 		}
8071 	default:
8072 		return bpf_sk_base_func_proto(func_id, prog);
8073 	}
8074 }
8075 
8076 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8077 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8078 {
8079 	switch (func_id) {
8080 	case BPF_FUNC_skb_load_bytes:
8081 		return &bpf_skb_load_bytes_proto;
8082 	case BPF_FUNC_skb_load_bytes_relative:
8083 		return &bpf_skb_load_bytes_relative_proto;
8084 	case BPF_FUNC_get_socket_cookie:
8085 		return &bpf_get_socket_cookie_proto;
8086 	case BPF_FUNC_get_socket_uid:
8087 		return &bpf_get_socket_uid_proto;
8088 	case BPF_FUNC_perf_event_output:
8089 		return &bpf_skb_event_output_proto;
8090 	default:
8091 		return bpf_sk_base_func_proto(func_id, prog);
8092 	}
8093 }
8094 
8095 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8096 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8097 
8098 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8099 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8100 {
8101 	const struct bpf_func_proto *func_proto;
8102 
8103 	func_proto = cgroup_common_func_proto(func_id, prog);
8104 	if (func_proto)
8105 		return func_proto;
8106 
8107 	switch (func_id) {
8108 	case BPF_FUNC_sk_fullsock:
8109 		return &bpf_sk_fullsock_proto;
8110 	case BPF_FUNC_sk_storage_get:
8111 		return &bpf_sk_storage_get_proto;
8112 	case BPF_FUNC_sk_storage_delete:
8113 		return &bpf_sk_storage_delete_proto;
8114 	case BPF_FUNC_perf_event_output:
8115 		return &bpf_skb_event_output_proto;
8116 #ifdef CONFIG_SOCK_CGROUP_DATA
8117 	case BPF_FUNC_skb_cgroup_id:
8118 		return &bpf_skb_cgroup_id_proto;
8119 	case BPF_FUNC_skb_ancestor_cgroup_id:
8120 		return &bpf_skb_ancestor_cgroup_id_proto;
8121 	case BPF_FUNC_sk_cgroup_id:
8122 		return &bpf_sk_cgroup_id_proto;
8123 	case BPF_FUNC_sk_ancestor_cgroup_id:
8124 		return &bpf_sk_ancestor_cgroup_id_proto;
8125 #endif
8126 #ifdef CONFIG_INET
8127 	case BPF_FUNC_sk_lookup_tcp:
8128 		return &bpf_sk_lookup_tcp_proto;
8129 	case BPF_FUNC_sk_lookup_udp:
8130 		return &bpf_sk_lookup_udp_proto;
8131 	case BPF_FUNC_sk_release:
8132 		return &bpf_sk_release_proto;
8133 	case BPF_FUNC_skc_lookup_tcp:
8134 		return &bpf_skc_lookup_tcp_proto;
8135 	case BPF_FUNC_tcp_sock:
8136 		return &bpf_tcp_sock_proto;
8137 	case BPF_FUNC_get_listener_sock:
8138 		return &bpf_get_listener_sock_proto;
8139 	case BPF_FUNC_skb_ecn_set_ce:
8140 		return &bpf_skb_ecn_set_ce_proto;
8141 #endif
8142 	default:
8143 		return sk_filter_func_proto(func_id, prog);
8144 	}
8145 }
8146 
8147 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8148 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8149 {
8150 	switch (func_id) {
8151 	case BPF_FUNC_skb_store_bytes:
8152 		return &bpf_skb_store_bytes_proto;
8153 	case BPF_FUNC_skb_load_bytes:
8154 		return &bpf_skb_load_bytes_proto;
8155 	case BPF_FUNC_skb_load_bytes_relative:
8156 		return &bpf_skb_load_bytes_relative_proto;
8157 	case BPF_FUNC_skb_pull_data:
8158 		return &bpf_skb_pull_data_proto;
8159 	case BPF_FUNC_csum_diff:
8160 		return &bpf_csum_diff_proto;
8161 	case BPF_FUNC_csum_update:
8162 		return &bpf_csum_update_proto;
8163 	case BPF_FUNC_csum_level:
8164 		return &bpf_csum_level_proto;
8165 	case BPF_FUNC_l3_csum_replace:
8166 		return &bpf_l3_csum_replace_proto;
8167 	case BPF_FUNC_l4_csum_replace:
8168 		return &bpf_l4_csum_replace_proto;
8169 	case BPF_FUNC_clone_redirect:
8170 		return &bpf_clone_redirect_proto;
8171 	case BPF_FUNC_get_cgroup_classid:
8172 		return &bpf_get_cgroup_classid_proto;
8173 	case BPF_FUNC_skb_vlan_push:
8174 		return &bpf_skb_vlan_push_proto;
8175 	case BPF_FUNC_skb_vlan_pop:
8176 		return &bpf_skb_vlan_pop_proto;
8177 	case BPF_FUNC_skb_change_proto:
8178 		return &bpf_skb_change_proto_proto;
8179 	case BPF_FUNC_skb_change_type:
8180 		return &bpf_skb_change_type_proto;
8181 	case BPF_FUNC_skb_adjust_room:
8182 		return &bpf_skb_adjust_room_proto;
8183 	case BPF_FUNC_skb_change_tail:
8184 		return &bpf_skb_change_tail_proto;
8185 	case BPF_FUNC_skb_change_head:
8186 		return &bpf_skb_change_head_proto;
8187 	case BPF_FUNC_skb_get_tunnel_key:
8188 		return &bpf_skb_get_tunnel_key_proto;
8189 	case BPF_FUNC_skb_set_tunnel_key:
8190 		return bpf_get_skb_set_tunnel_proto(func_id);
8191 	case BPF_FUNC_skb_get_tunnel_opt:
8192 		return &bpf_skb_get_tunnel_opt_proto;
8193 	case BPF_FUNC_skb_set_tunnel_opt:
8194 		return bpf_get_skb_set_tunnel_proto(func_id);
8195 	case BPF_FUNC_redirect:
8196 		return &bpf_redirect_proto;
8197 	case BPF_FUNC_redirect_neigh:
8198 		return &bpf_redirect_neigh_proto;
8199 	case BPF_FUNC_redirect_peer:
8200 		return &bpf_redirect_peer_proto;
8201 	case BPF_FUNC_get_route_realm:
8202 		return &bpf_get_route_realm_proto;
8203 	case BPF_FUNC_get_hash_recalc:
8204 		return &bpf_get_hash_recalc_proto;
8205 	case BPF_FUNC_set_hash_invalid:
8206 		return &bpf_set_hash_invalid_proto;
8207 	case BPF_FUNC_set_hash:
8208 		return &bpf_set_hash_proto;
8209 	case BPF_FUNC_perf_event_output:
8210 		return &bpf_skb_event_output_proto;
8211 	case BPF_FUNC_get_smp_processor_id:
8212 		return &bpf_get_smp_processor_id_proto;
8213 	case BPF_FUNC_skb_under_cgroup:
8214 		return &bpf_skb_under_cgroup_proto;
8215 	case BPF_FUNC_get_socket_cookie:
8216 		return &bpf_get_socket_cookie_proto;
8217 	case BPF_FUNC_get_netns_cookie:
8218 		return &bpf_get_netns_cookie_proto;
8219 	case BPF_FUNC_get_socket_uid:
8220 		return &bpf_get_socket_uid_proto;
8221 	case BPF_FUNC_fib_lookup:
8222 		return &bpf_skb_fib_lookup_proto;
8223 	case BPF_FUNC_check_mtu:
8224 		return &bpf_skb_check_mtu_proto;
8225 	case BPF_FUNC_sk_fullsock:
8226 		return &bpf_sk_fullsock_proto;
8227 	case BPF_FUNC_sk_storage_get:
8228 		return &bpf_sk_storage_get_proto;
8229 	case BPF_FUNC_sk_storage_delete:
8230 		return &bpf_sk_storage_delete_proto;
8231 #ifdef CONFIG_XFRM
8232 	case BPF_FUNC_skb_get_xfrm_state:
8233 		return &bpf_skb_get_xfrm_state_proto;
8234 #endif
8235 #ifdef CONFIG_CGROUP_NET_CLASSID
8236 	case BPF_FUNC_skb_cgroup_classid:
8237 		return &bpf_skb_cgroup_classid_proto;
8238 #endif
8239 #ifdef CONFIG_SOCK_CGROUP_DATA
8240 	case BPF_FUNC_skb_cgroup_id:
8241 		return &bpf_skb_cgroup_id_proto;
8242 	case BPF_FUNC_skb_ancestor_cgroup_id:
8243 		return &bpf_skb_ancestor_cgroup_id_proto;
8244 #endif
8245 #ifdef CONFIG_INET
8246 	case BPF_FUNC_sk_lookup_tcp:
8247 		return &bpf_tc_sk_lookup_tcp_proto;
8248 	case BPF_FUNC_sk_lookup_udp:
8249 		return &bpf_tc_sk_lookup_udp_proto;
8250 	case BPF_FUNC_sk_release:
8251 		return &bpf_sk_release_proto;
8252 	case BPF_FUNC_tcp_sock:
8253 		return &bpf_tcp_sock_proto;
8254 	case BPF_FUNC_get_listener_sock:
8255 		return &bpf_get_listener_sock_proto;
8256 	case BPF_FUNC_skc_lookup_tcp:
8257 		return &bpf_tc_skc_lookup_tcp_proto;
8258 	case BPF_FUNC_tcp_check_syncookie:
8259 		return &bpf_tcp_check_syncookie_proto;
8260 	case BPF_FUNC_skb_ecn_set_ce:
8261 		return &bpf_skb_ecn_set_ce_proto;
8262 	case BPF_FUNC_tcp_gen_syncookie:
8263 		return &bpf_tcp_gen_syncookie_proto;
8264 	case BPF_FUNC_sk_assign:
8265 		return &bpf_sk_assign_proto;
8266 	case BPF_FUNC_skb_set_tstamp:
8267 		return &bpf_skb_set_tstamp_proto;
8268 #ifdef CONFIG_SYN_COOKIES
8269 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8270 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8271 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8272 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8273 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8274 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8275 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8276 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8277 #endif
8278 #endif
8279 	default:
8280 		return bpf_sk_base_func_proto(func_id, prog);
8281 	}
8282 }
8283 
8284 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8285 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8286 {
8287 	switch (func_id) {
8288 	case BPF_FUNC_perf_event_output:
8289 		return &bpf_xdp_event_output_proto;
8290 	case BPF_FUNC_get_smp_processor_id:
8291 		return &bpf_get_smp_processor_id_proto;
8292 	case BPF_FUNC_csum_diff:
8293 		return &bpf_csum_diff_proto;
8294 	case BPF_FUNC_xdp_adjust_head:
8295 		return &bpf_xdp_adjust_head_proto;
8296 	case BPF_FUNC_xdp_adjust_meta:
8297 		return &bpf_xdp_adjust_meta_proto;
8298 	case BPF_FUNC_redirect:
8299 		return &bpf_xdp_redirect_proto;
8300 	case BPF_FUNC_redirect_map:
8301 		return &bpf_xdp_redirect_map_proto;
8302 	case BPF_FUNC_xdp_adjust_tail:
8303 		return &bpf_xdp_adjust_tail_proto;
8304 	case BPF_FUNC_xdp_get_buff_len:
8305 		return &bpf_xdp_get_buff_len_proto;
8306 	case BPF_FUNC_xdp_load_bytes:
8307 		return &bpf_xdp_load_bytes_proto;
8308 	case BPF_FUNC_xdp_store_bytes:
8309 		return &bpf_xdp_store_bytes_proto;
8310 	case BPF_FUNC_fib_lookup:
8311 		return &bpf_xdp_fib_lookup_proto;
8312 	case BPF_FUNC_check_mtu:
8313 		return &bpf_xdp_check_mtu_proto;
8314 #ifdef CONFIG_INET
8315 	case BPF_FUNC_sk_lookup_udp:
8316 		return &bpf_xdp_sk_lookup_udp_proto;
8317 	case BPF_FUNC_sk_lookup_tcp:
8318 		return &bpf_xdp_sk_lookup_tcp_proto;
8319 	case BPF_FUNC_sk_release:
8320 		return &bpf_sk_release_proto;
8321 	case BPF_FUNC_skc_lookup_tcp:
8322 		return &bpf_xdp_skc_lookup_tcp_proto;
8323 	case BPF_FUNC_tcp_check_syncookie:
8324 		return &bpf_tcp_check_syncookie_proto;
8325 	case BPF_FUNC_tcp_gen_syncookie:
8326 		return &bpf_tcp_gen_syncookie_proto;
8327 #ifdef CONFIG_SYN_COOKIES
8328 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8329 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8330 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8331 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8332 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8333 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8334 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8335 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8336 #endif
8337 #endif
8338 	default:
8339 		return bpf_sk_base_func_proto(func_id, prog);
8340 	}
8341 
8342 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8343 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8344 	 * kfuncs are defined in two different modules, and we want to be able
8345 	 * to use them interchangeably with the same BTF type ID. Because modules
8346 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8347 	 * referenced in the vmlinux BTF or the verifier will get confused about
8348 	 * the different types. So we add this dummy type reference which will
8349 	 * be included in vmlinux BTF, allowing both modules to refer to the
8350 	 * same type ID.
8351 	 */
8352 	BTF_TYPE_EMIT(struct nf_conn___init);
8353 #endif
8354 }
8355 
8356 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8357 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8358 
8359 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8360 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8361 {
8362 	const struct bpf_func_proto *func_proto;
8363 
8364 	func_proto = cgroup_common_func_proto(func_id, prog);
8365 	if (func_proto)
8366 		return func_proto;
8367 
8368 	switch (func_id) {
8369 	case BPF_FUNC_setsockopt:
8370 		return &bpf_sock_ops_setsockopt_proto;
8371 	case BPF_FUNC_getsockopt:
8372 		return &bpf_sock_ops_getsockopt_proto;
8373 	case BPF_FUNC_sock_ops_cb_flags_set:
8374 		return &bpf_sock_ops_cb_flags_set_proto;
8375 	case BPF_FUNC_sock_map_update:
8376 		return &bpf_sock_map_update_proto;
8377 	case BPF_FUNC_sock_hash_update:
8378 		return &bpf_sock_hash_update_proto;
8379 	case BPF_FUNC_get_socket_cookie:
8380 		return &bpf_get_socket_cookie_sock_ops_proto;
8381 	case BPF_FUNC_perf_event_output:
8382 		return &bpf_event_output_data_proto;
8383 	case BPF_FUNC_sk_storage_get:
8384 		return &bpf_sk_storage_get_proto;
8385 	case BPF_FUNC_sk_storage_delete:
8386 		return &bpf_sk_storage_delete_proto;
8387 	case BPF_FUNC_get_netns_cookie:
8388 		return &bpf_get_netns_cookie_sock_ops_proto;
8389 #ifdef CONFIG_INET
8390 	case BPF_FUNC_load_hdr_opt:
8391 		return &bpf_sock_ops_load_hdr_opt_proto;
8392 	case BPF_FUNC_store_hdr_opt:
8393 		return &bpf_sock_ops_store_hdr_opt_proto;
8394 	case BPF_FUNC_reserve_hdr_opt:
8395 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8396 	case BPF_FUNC_tcp_sock:
8397 		return &bpf_tcp_sock_proto;
8398 #endif /* CONFIG_INET */
8399 	default:
8400 		return bpf_sk_base_func_proto(func_id, prog);
8401 	}
8402 }
8403 
8404 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8405 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8406 
8407 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8408 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8409 {
8410 	switch (func_id) {
8411 	case BPF_FUNC_msg_redirect_map:
8412 		return &bpf_msg_redirect_map_proto;
8413 	case BPF_FUNC_msg_redirect_hash:
8414 		return &bpf_msg_redirect_hash_proto;
8415 	case BPF_FUNC_msg_apply_bytes:
8416 		return &bpf_msg_apply_bytes_proto;
8417 	case BPF_FUNC_msg_cork_bytes:
8418 		return &bpf_msg_cork_bytes_proto;
8419 	case BPF_FUNC_msg_pull_data:
8420 		return &bpf_msg_pull_data_proto;
8421 	case BPF_FUNC_msg_push_data:
8422 		return &bpf_msg_push_data_proto;
8423 	case BPF_FUNC_msg_pop_data:
8424 		return &bpf_msg_pop_data_proto;
8425 	case BPF_FUNC_perf_event_output:
8426 		return &bpf_event_output_data_proto;
8427 	case BPF_FUNC_get_current_uid_gid:
8428 		return &bpf_get_current_uid_gid_proto;
8429 	case BPF_FUNC_sk_storage_get:
8430 		return &bpf_sk_storage_get_proto;
8431 	case BPF_FUNC_sk_storage_delete:
8432 		return &bpf_sk_storage_delete_proto;
8433 	case BPF_FUNC_get_netns_cookie:
8434 		return &bpf_get_netns_cookie_sk_msg_proto;
8435 #ifdef CONFIG_CGROUP_NET_CLASSID
8436 	case BPF_FUNC_get_cgroup_classid:
8437 		return &bpf_get_cgroup_classid_curr_proto;
8438 #endif
8439 	default:
8440 		return bpf_sk_base_func_proto(func_id, prog);
8441 	}
8442 }
8443 
8444 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8445 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8446 
8447 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8448 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8449 {
8450 	switch (func_id) {
8451 	case BPF_FUNC_skb_store_bytes:
8452 		return &bpf_skb_store_bytes_proto;
8453 	case BPF_FUNC_skb_load_bytes:
8454 		return &bpf_skb_load_bytes_proto;
8455 	case BPF_FUNC_skb_pull_data:
8456 		return &sk_skb_pull_data_proto;
8457 	case BPF_FUNC_skb_change_tail:
8458 		return &sk_skb_change_tail_proto;
8459 	case BPF_FUNC_skb_change_head:
8460 		return &sk_skb_change_head_proto;
8461 	case BPF_FUNC_skb_adjust_room:
8462 		return &sk_skb_adjust_room_proto;
8463 	case BPF_FUNC_get_socket_cookie:
8464 		return &bpf_get_socket_cookie_proto;
8465 	case BPF_FUNC_get_socket_uid:
8466 		return &bpf_get_socket_uid_proto;
8467 	case BPF_FUNC_sk_redirect_map:
8468 		return &bpf_sk_redirect_map_proto;
8469 	case BPF_FUNC_sk_redirect_hash:
8470 		return &bpf_sk_redirect_hash_proto;
8471 	case BPF_FUNC_perf_event_output:
8472 		return &bpf_skb_event_output_proto;
8473 #ifdef CONFIG_INET
8474 	case BPF_FUNC_sk_lookup_tcp:
8475 		return &bpf_sk_lookup_tcp_proto;
8476 	case BPF_FUNC_sk_lookup_udp:
8477 		return &bpf_sk_lookup_udp_proto;
8478 	case BPF_FUNC_sk_release:
8479 		return &bpf_sk_release_proto;
8480 	case BPF_FUNC_skc_lookup_tcp:
8481 		return &bpf_skc_lookup_tcp_proto;
8482 #endif
8483 	default:
8484 		return bpf_sk_base_func_proto(func_id, prog);
8485 	}
8486 }
8487 
8488 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8489 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8490 {
8491 	switch (func_id) {
8492 	case BPF_FUNC_skb_load_bytes:
8493 		return &bpf_flow_dissector_load_bytes_proto;
8494 	default:
8495 		return bpf_sk_base_func_proto(func_id, prog);
8496 	}
8497 }
8498 
8499 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8500 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8501 {
8502 	switch (func_id) {
8503 	case BPF_FUNC_skb_load_bytes:
8504 		return &bpf_skb_load_bytes_proto;
8505 	case BPF_FUNC_skb_pull_data:
8506 		return &bpf_skb_pull_data_proto;
8507 	case BPF_FUNC_csum_diff:
8508 		return &bpf_csum_diff_proto;
8509 	case BPF_FUNC_get_cgroup_classid:
8510 		return &bpf_get_cgroup_classid_proto;
8511 	case BPF_FUNC_get_route_realm:
8512 		return &bpf_get_route_realm_proto;
8513 	case BPF_FUNC_get_hash_recalc:
8514 		return &bpf_get_hash_recalc_proto;
8515 	case BPF_FUNC_perf_event_output:
8516 		return &bpf_skb_event_output_proto;
8517 	case BPF_FUNC_get_smp_processor_id:
8518 		return &bpf_get_smp_processor_id_proto;
8519 	case BPF_FUNC_skb_under_cgroup:
8520 		return &bpf_skb_under_cgroup_proto;
8521 	default:
8522 		return bpf_sk_base_func_proto(func_id, prog);
8523 	}
8524 }
8525 
8526 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8527 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8528 {
8529 	switch (func_id) {
8530 	case BPF_FUNC_lwt_push_encap:
8531 		return &bpf_lwt_in_push_encap_proto;
8532 	default:
8533 		return lwt_out_func_proto(func_id, prog);
8534 	}
8535 }
8536 
8537 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8538 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8539 {
8540 	switch (func_id) {
8541 	case BPF_FUNC_skb_get_tunnel_key:
8542 		return &bpf_skb_get_tunnel_key_proto;
8543 	case BPF_FUNC_skb_set_tunnel_key:
8544 		return bpf_get_skb_set_tunnel_proto(func_id);
8545 	case BPF_FUNC_skb_get_tunnel_opt:
8546 		return &bpf_skb_get_tunnel_opt_proto;
8547 	case BPF_FUNC_skb_set_tunnel_opt:
8548 		return bpf_get_skb_set_tunnel_proto(func_id);
8549 	case BPF_FUNC_redirect:
8550 		return &bpf_redirect_proto;
8551 	case BPF_FUNC_clone_redirect:
8552 		return &bpf_clone_redirect_proto;
8553 	case BPF_FUNC_skb_change_tail:
8554 		return &bpf_skb_change_tail_proto;
8555 	case BPF_FUNC_skb_change_head:
8556 		return &bpf_skb_change_head_proto;
8557 	case BPF_FUNC_skb_store_bytes:
8558 		return &bpf_skb_store_bytes_proto;
8559 	case BPF_FUNC_csum_update:
8560 		return &bpf_csum_update_proto;
8561 	case BPF_FUNC_csum_level:
8562 		return &bpf_csum_level_proto;
8563 	case BPF_FUNC_l3_csum_replace:
8564 		return &bpf_l3_csum_replace_proto;
8565 	case BPF_FUNC_l4_csum_replace:
8566 		return &bpf_l4_csum_replace_proto;
8567 	case BPF_FUNC_set_hash_invalid:
8568 		return &bpf_set_hash_invalid_proto;
8569 	case BPF_FUNC_lwt_push_encap:
8570 		return &bpf_lwt_xmit_push_encap_proto;
8571 	default:
8572 		return lwt_out_func_proto(func_id, prog);
8573 	}
8574 }
8575 
8576 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8577 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8578 {
8579 	switch (func_id) {
8580 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8581 	case BPF_FUNC_lwt_seg6_store_bytes:
8582 		return &bpf_lwt_seg6_store_bytes_proto;
8583 	case BPF_FUNC_lwt_seg6_action:
8584 		return &bpf_lwt_seg6_action_proto;
8585 	case BPF_FUNC_lwt_seg6_adjust_srh:
8586 		return &bpf_lwt_seg6_adjust_srh_proto;
8587 #endif
8588 	default:
8589 		return lwt_out_func_proto(func_id, prog);
8590 	}
8591 }
8592 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8593 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8594 				    const struct bpf_prog *prog,
8595 				    struct bpf_insn_access_aux *info)
8596 {
8597 	const int size_default = sizeof(__u32);
8598 
8599 	if (off < 0 || off >= sizeof(struct __sk_buff))
8600 		return false;
8601 
8602 	/* The verifier guarantees that size > 0. */
8603 	if (off % size != 0)
8604 		return false;
8605 
8606 	switch (off) {
8607 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8608 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8609 			return false;
8610 		break;
8611 	case bpf_ctx_range(struct __sk_buff, data):
8612 	case bpf_ctx_range(struct __sk_buff, data_meta):
8613 	case bpf_ctx_range(struct __sk_buff, data_end):
8614 		if (info->is_ldsx || size != size_default)
8615 			return false;
8616 		break;
8617 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8618 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8619 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8620 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8621 		if (size != size_default)
8622 			return false;
8623 		break;
8624 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8625 		return false;
8626 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8627 		if (type == BPF_WRITE || size != sizeof(__u64))
8628 			return false;
8629 		break;
8630 	case bpf_ctx_range(struct __sk_buff, tstamp):
8631 		if (size != sizeof(__u64))
8632 			return false;
8633 		break;
8634 	case offsetof(struct __sk_buff, sk):
8635 		if (type == BPF_WRITE || size != sizeof(__u64))
8636 			return false;
8637 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8638 		break;
8639 	case offsetof(struct __sk_buff, tstamp_type):
8640 		return false;
8641 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8642 		/* Explicitly prohibit access to padding in __sk_buff. */
8643 		return false;
8644 	default:
8645 		/* Only narrow read access allowed for now. */
8646 		if (type == BPF_WRITE) {
8647 			if (size != size_default)
8648 				return false;
8649 		} else {
8650 			bpf_ctx_record_field_size(info, size_default);
8651 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8652 				return false;
8653 		}
8654 	}
8655 
8656 	return true;
8657 }
8658 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8659 static bool sk_filter_is_valid_access(int off, int size,
8660 				      enum bpf_access_type type,
8661 				      const struct bpf_prog *prog,
8662 				      struct bpf_insn_access_aux *info)
8663 {
8664 	switch (off) {
8665 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8666 	case bpf_ctx_range(struct __sk_buff, data):
8667 	case bpf_ctx_range(struct __sk_buff, data_meta):
8668 	case bpf_ctx_range(struct __sk_buff, data_end):
8669 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8670 	case bpf_ctx_range(struct __sk_buff, tstamp):
8671 	case bpf_ctx_range(struct __sk_buff, wire_len):
8672 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8673 		return false;
8674 	}
8675 
8676 	if (type == BPF_WRITE) {
8677 		switch (off) {
8678 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8679 			break;
8680 		default:
8681 			return false;
8682 		}
8683 	}
8684 
8685 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8686 }
8687 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8688 static bool cg_skb_is_valid_access(int off, int size,
8689 				   enum bpf_access_type type,
8690 				   const struct bpf_prog *prog,
8691 				   struct bpf_insn_access_aux *info)
8692 {
8693 	switch (off) {
8694 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8695 	case bpf_ctx_range(struct __sk_buff, data_meta):
8696 	case bpf_ctx_range(struct __sk_buff, wire_len):
8697 		return false;
8698 	case bpf_ctx_range(struct __sk_buff, data):
8699 	case bpf_ctx_range(struct __sk_buff, data_end):
8700 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8701 			return false;
8702 		break;
8703 	}
8704 
8705 	if (type == BPF_WRITE) {
8706 		switch (off) {
8707 		case bpf_ctx_range(struct __sk_buff, mark):
8708 		case bpf_ctx_range(struct __sk_buff, priority):
8709 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8710 			break;
8711 		case bpf_ctx_range(struct __sk_buff, tstamp):
8712 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8713 				return false;
8714 			break;
8715 		default:
8716 			return false;
8717 		}
8718 	}
8719 
8720 	switch (off) {
8721 	case bpf_ctx_range(struct __sk_buff, data):
8722 		info->reg_type = PTR_TO_PACKET;
8723 		break;
8724 	case bpf_ctx_range(struct __sk_buff, data_end):
8725 		info->reg_type = PTR_TO_PACKET_END;
8726 		break;
8727 	}
8728 
8729 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8730 }
8731 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8732 static bool lwt_is_valid_access(int off, int size,
8733 				enum bpf_access_type type,
8734 				const struct bpf_prog *prog,
8735 				struct bpf_insn_access_aux *info)
8736 {
8737 	switch (off) {
8738 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8739 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8740 	case bpf_ctx_range(struct __sk_buff, data_meta):
8741 	case bpf_ctx_range(struct __sk_buff, tstamp):
8742 	case bpf_ctx_range(struct __sk_buff, wire_len):
8743 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8744 		return false;
8745 	}
8746 
8747 	if (type == BPF_WRITE) {
8748 		switch (off) {
8749 		case bpf_ctx_range(struct __sk_buff, mark):
8750 		case bpf_ctx_range(struct __sk_buff, priority):
8751 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8752 			break;
8753 		default:
8754 			return false;
8755 		}
8756 	}
8757 
8758 	switch (off) {
8759 	case bpf_ctx_range(struct __sk_buff, data):
8760 		info->reg_type = PTR_TO_PACKET;
8761 		break;
8762 	case bpf_ctx_range(struct __sk_buff, data_end):
8763 		info->reg_type = PTR_TO_PACKET_END;
8764 		break;
8765 	}
8766 
8767 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8768 }
8769 
8770 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8771 static bool __sock_filter_check_attach_type(int off,
8772 					    enum bpf_access_type access_type,
8773 					    enum bpf_attach_type attach_type)
8774 {
8775 	switch (off) {
8776 	case offsetof(struct bpf_sock, bound_dev_if):
8777 	case offsetof(struct bpf_sock, mark):
8778 	case offsetof(struct bpf_sock, priority):
8779 		switch (attach_type) {
8780 		case BPF_CGROUP_INET_SOCK_CREATE:
8781 		case BPF_CGROUP_INET_SOCK_RELEASE:
8782 			goto full_access;
8783 		default:
8784 			return false;
8785 		}
8786 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8787 		switch (attach_type) {
8788 		case BPF_CGROUP_INET4_POST_BIND:
8789 			goto read_only;
8790 		default:
8791 			return false;
8792 		}
8793 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8794 		switch (attach_type) {
8795 		case BPF_CGROUP_INET6_POST_BIND:
8796 			goto read_only;
8797 		default:
8798 			return false;
8799 		}
8800 	case bpf_ctx_range(struct bpf_sock, src_port):
8801 		switch (attach_type) {
8802 		case BPF_CGROUP_INET4_POST_BIND:
8803 		case BPF_CGROUP_INET6_POST_BIND:
8804 			goto read_only;
8805 		default:
8806 			return false;
8807 		}
8808 	}
8809 read_only:
8810 	return access_type == BPF_READ;
8811 full_access:
8812 	return true;
8813 }
8814 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8815 bool bpf_sock_common_is_valid_access(int off, int size,
8816 				     enum bpf_access_type type,
8817 				     struct bpf_insn_access_aux *info)
8818 {
8819 	switch (off) {
8820 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8821 		return false;
8822 	default:
8823 		return bpf_sock_is_valid_access(off, size, type, info);
8824 	}
8825 }
8826 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8827 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8828 			      struct bpf_insn_access_aux *info)
8829 {
8830 	const int size_default = sizeof(__u32);
8831 	int field_size;
8832 
8833 	if (off < 0 || off >= sizeof(struct bpf_sock))
8834 		return false;
8835 	if (off % size != 0)
8836 		return false;
8837 
8838 	switch (off) {
8839 	case offsetof(struct bpf_sock, state):
8840 	case offsetof(struct bpf_sock, family):
8841 	case offsetof(struct bpf_sock, type):
8842 	case offsetof(struct bpf_sock, protocol):
8843 	case offsetof(struct bpf_sock, src_port):
8844 	case offsetof(struct bpf_sock, rx_queue_mapping):
8845 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8846 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8847 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8848 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8849 		bpf_ctx_record_field_size(info, size_default);
8850 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8851 	case bpf_ctx_range(struct bpf_sock, dst_port):
8852 		field_size = size == size_default ?
8853 			size_default : sizeof_field(struct bpf_sock, dst_port);
8854 		bpf_ctx_record_field_size(info, field_size);
8855 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8856 	case offsetofend(struct bpf_sock, dst_port) ...
8857 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8858 		return false;
8859 	}
8860 
8861 	return size == size_default;
8862 }
8863 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8864 static bool sock_filter_is_valid_access(int off, int size,
8865 					enum bpf_access_type type,
8866 					const struct bpf_prog *prog,
8867 					struct bpf_insn_access_aux *info)
8868 {
8869 	if (!bpf_sock_is_valid_access(off, size, type, info))
8870 		return false;
8871 	return __sock_filter_check_attach_type(off, type,
8872 					       prog->expected_attach_type);
8873 }
8874 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8875 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8876 			     const struct bpf_prog *prog)
8877 {
8878 	/* Neither direct read nor direct write requires any preliminary
8879 	 * action.
8880 	 */
8881 	return 0;
8882 }
8883 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8884 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8885 				const struct bpf_prog *prog, int drop_verdict)
8886 {
8887 	struct bpf_insn *insn = insn_buf;
8888 
8889 	if (!direct_write)
8890 		return 0;
8891 
8892 	/* if (!skb->cloned)
8893 	 *       goto start;
8894 	 *
8895 	 * (Fast-path, otherwise approximation that we might be
8896 	 *  a clone, do the rest in helper.)
8897 	 */
8898 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8899 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8900 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8901 
8902 	/* ret = bpf_skb_pull_data(skb, 0); */
8903 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8904 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8905 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8906 			       BPF_FUNC_skb_pull_data);
8907 	/* if (!ret)
8908 	 *      goto restore;
8909 	 * return TC_ACT_SHOT;
8910 	 */
8911 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8912 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8913 	*insn++ = BPF_EXIT_INSN();
8914 
8915 	/* restore: */
8916 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8917 	/* start: */
8918 	*insn++ = prog->insnsi[0];
8919 
8920 	return insn - insn_buf;
8921 }
8922 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8923 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8924 			  struct bpf_insn *insn_buf)
8925 {
8926 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8927 	struct bpf_insn *insn = insn_buf;
8928 
8929 	if (!indirect) {
8930 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8931 	} else {
8932 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8933 		if (orig->imm)
8934 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8935 	}
8936 	/* We're guaranteed here that CTX is in R6. */
8937 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8938 
8939 	switch (BPF_SIZE(orig->code)) {
8940 	case BPF_B:
8941 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8942 		break;
8943 	case BPF_H:
8944 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8945 		break;
8946 	case BPF_W:
8947 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8948 		break;
8949 	}
8950 
8951 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8952 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8953 	*insn++ = BPF_EXIT_INSN();
8954 
8955 	return insn - insn_buf;
8956 }
8957 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8958 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8959 			       const struct bpf_prog *prog)
8960 {
8961 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8962 }
8963 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8964 static bool tc_cls_act_is_valid_access(int off, int size,
8965 				       enum bpf_access_type type,
8966 				       const struct bpf_prog *prog,
8967 				       struct bpf_insn_access_aux *info)
8968 {
8969 	if (type == BPF_WRITE) {
8970 		switch (off) {
8971 		case bpf_ctx_range(struct __sk_buff, mark):
8972 		case bpf_ctx_range(struct __sk_buff, tc_index):
8973 		case bpf_ctx_range(struct __sk_buff, priority):
8974 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8975 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8976 		case bpf_ctx_range(struct __sk_buff, tstamp):
8977 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8978 			break;
8979 		default:
8980 			return false;
8981 		}
8982 	}
8983 
8984 	switch (off) {
8985 	case bpf_ctx_range(struct __sk_buff, data):
8986 		info->reg_type = PTR_TO_PACKET;
8987 		break;
8988 	case bpf_ctx_range(struct __sk_buff, data_meta):
8989 		info->reg_type = PTR_TO_PACKET_META;
8990 		break;
8991 	case bpf_ctx_range(struct __sk_buff, data_end):
8992 		info->reg_type = PTR_TO_PACKET_END;
8993 		break;
8994 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8995 		return false;
8996 	case offsetof(struct __sk_buff, tstamp_type):
8997 		/* The convert_ctx_access() on reading and writing
8998 		 * __sk_buff->tstamp depends on whether the bpf prog
8999 		 * has used __sk_buff->tstamp_type or not.
9000 		 * Thus, we need to set prog->tstamp_type_access
9001 		 * earlier during is_valid_access() here.
9002 		 */
9003 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9004 		return size == sizeof(__u8);
9005 	}
9006 
9007 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9008 }
9009 
9010 DEFINE_MUTEX(nf_conn_btf_access_lock);
9011 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9012 
9013 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9014 			      const struct bpf_reg_state *reg,
9015 			      int off, int size);
9016 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9017 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9018 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9019 					const struct bpf_reg_state *reg,
9020 					int off, int size)
9021 {
9022 	int ret = -EACCES;
9023 
9024 	mutex_lock(&nf_conn_btf_access_lock);
9025 	if (nfct_btf_struct_access)
9026 		ret = nfct_btf_struct_access(log, reg, off, size);
9027 	mutex_unlock(&nf_conn_btf_access_lock);
9028 
9029 	return ret;
9030 }
9031 
__is_valid_xdp_access(int off,int size)9032 static bool __is_valid_xdp_access(int off, int size)
9033 {
9034 	if (off < 0 || off >= sizeof(struct xdp_md))
9035 		return false;
9036 	if (off % size != 0)
9037 		return false;
9038 	if (size != sizeof(__u32))
9039 		return false;
9040 
9041 	return true;
9042 }
9043 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9044 static bool xdp_is_valid_access(int off, int size,
9045 				enum bpf_access_type type,
9046 				const struct bpf_prog *prog,
9047 				struct bpf_insn_access_aux *info)
9048 {
9049 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9050 		switch (off) {
9051 		case offsetof(struct xdp_md, egress_ifindex):
9052 			return false;
9053 		}
9054 	}
9055 
9056 	if (type == BPF_WRITE) {
9057 		if (bpf_prog_is_offloaded(prog->aux)) {
9058 			switch (off) {
9059 			case offsetof(struct xdp_md, rx_queue_index):
9060 				return __is_valid_xdp_access(off, size);
9061 			}
9062 		}
9063 		return false;
9064 	} else {
9065 		switch (off) {
9066 		case offsetof(struct xdp_md, data_meta):
9067 		case offsetof(struct xdp_md, data):
9068 		case offsetof(struct xdp_md, data_end):
9069 			if (info->is_ldsx)
9070 				return false;
9071 		}
9072 	}
9073 
9074 	switch (off) {
9075 	case offsetof(struct xdp_md, data):
9076 		info->reg_type = PTR_TO_PACKET;
9077 		break;
9078 	case offsetof(struct xdp_md, data_meta):
9079 		info->reg_type = PTR_TO_PACKET_META;
9080 		break;
9081 	case offsetof(struct xdp_md, data_end):
9082 		info->reg_type = PTR_TO_PACKET_END;
9083 		break;
9084 	}
9085 
9086 	return __is_valid_xdp_access(off, size);
9087 }
9088 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9089 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9090 				 const struct bpf_prog *prog, u32 act)
9091 {
9092 	const u32 act_max = XDP_REDIRECT;
9093 
9094 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9095 		     act > act_max ? "Illegal" : "Driver unsupported",
9096 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9097 }
9098 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9099 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9100 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9101 				 const struct bpf_reg_state *reg,
9102 				 int off, int size)
9103 {
9104 	int ret = -EACCES;
9105 
9106 	mutex_lock(&nf_conn_btf_access_lock);
9107 	if (nfct_btf_struct_access)
9108 		ret = nfct_btf_struct_access(log, reg, off, size);
9109 	mutex_unlock(&nf_conn_btf_access_lock);
9110 
9111 	return ret;
9112 }
9113 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9114 static bool sock_addr_is_valid_access(int off, int size,
9115 				      enum bpf_access_type type,
9116 				      const struct bpf_prog *prog,
9117 				      struct bpf_insn_access_aux *info)
9118 {
9119 	const int size_default = sizeof(__u32);
9120 
9121 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9122 		return false;
9123 	if (off % size != 0)
9124 		return false;
9125 
9126 	/* Disallow access to fields not belonging to the attach type's address
9127 	 * family.
9128 	 */
9129 	switch (off) {
9130 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9131 		switch (prog->expected_attach_type) {
9132 		case BPF_CGROUP_INET4_BIND:
9133 		case BPF_CGROUP_INET4_CONNECT:
9134 		case BPF_CGROUP_INET4_GETPEERNAME:
9135 		case BPF_CGROUP_INET4_GETSOCKNAME:
9136 		case BPF_CGROUP_UDP4_SENDMSG:
9137 		case BPF_CGROUP_UDP4_RECVMSG:
9138 			break;
9139 		default:
9140 			return false;
9141 		}
9142 		break;
9143 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9144 		switch (prog->expected_attach_type) {
9145 		case BPF_CGROUP_INET6_BIND:
9146 		case BPF_CGROUP_INET6_CONNECT:
9147 		case BPF_CGROUP_INET6_GETPEERNAME:
9148 		case BPF_CGROUP_INET6_GETSOCKNAME:
9149 		case BPF_CGROUP_UDP6_SENDMSG:
9150 		case BPF_CGROUP_UDP6_RECVMSG:
9151 			break;
9152 		default:
9153 			return false;
9154 		}
9155 		break;
9156 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9157 		switch (prog->expected_attach_type) {
9158 		case BPF_CGROUP_UDP4_SENDMSG:
9159 			break;
9160 		default:
9161 			return false;
9162 		}
9163 		break;
9164 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9165 				msg_src_ip6[3]):
9166 		switch (prog->expected_attach_type) {
9167 		case BPF_CGROUP_UDP6_SENDMSG:
9168 			break;
9169 		default:
9170 			return false;
9171 		}
9172 		break;
9173 	}
9174 
9175 	switch (off) {
9176 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9177 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9178 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9179 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9180 				msg_src_ip6[3]):
9181 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9182 		if (type == BPF_READ) {
9183 			bpf_ctx_record_field_size(info, size_default);
9184 
9185 			if (bpf_ctx_wide_access_ok(off, size,
9186 						   struct bpf_sock_addr,
9187 						   user_ip6))
9188 				return true;
9189 
9190 			if (bpf_ctx_wide_access_ok(off, size,
9191 						   struct bpf_sock_addr,
9192 						   msg_src_ip6))
9193 				return true;
9194 
9195 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9196 				return false;
9197 		} else {
9198 			if (bpf_ctx_wide_access_ok(off, size,
9199 						   struct bpf_sock_addr,
9200 						   user_ip6))
9201 				return true;
9202 
9203 			if (bpf_ctx_wide_access_ok(off, size,
9204 						   struct bpf_sock_addr,
9205 						   msg_src_ip6))
9206 				return true;
9207 
9208 			if (size != size_default)
9209 				return false;
9210 		}
9211 		break;
9212 	case offsetof(struct bpf_sock_addr, sk):
9213 		if (type != BPF_READ)
9214 			return false;
9215 		if (size != sizeof(__u64))
9216 			return false;
9217 		info->reg_type = PTR_TO_SOCKET;
9218 		break;
9219 	default:
9220 		if (type == BPF_READ) {
9221 			if (size != size_default)
9222 				return false;
9223 		} else {
9224 			return false;
9225 		}
9226 	}
9227 
9228 	return true;
9229 }
9230 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9231 static bool sock_ops_is_valid_access(int off, int size,
9232 				     enum bpf_access_type type,
9233 				     const struct bpf_prog *prog,
9234 				     struct bpf_insn_access_aux *info)
9235 {
9236 	const int size_default = sizeof(__u32);
9237 
9238 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9239 		return false;
9240 
9241 	/* The verifier guarantees that size > 0. */
9242 	if (off % size != 0)
9243 		return false;
9244 
9245 	if (type == BPF_WRITE) {
9246 		switch (off) {
9247 		case offsetof(struct bpf_sock_ops, reply):
9248 		case offsetof(struct bpf_sock_ops, sk_txhash):
9249 			if (size != size_default)
9250 				return false;
9251 			break;
9252 		default:
9253 			return false;
9254 		}
9255 	} else {
9256 		switch (off) {
9257 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9258 					bytes_acked):
9259 			if (size != sizeof(__u64))
9260 				return false;
9261 			break;
9262 		case offsetof(struct bpf_sock_ops, sk):
9263 			if (size != sizeof(__u64))
9264 				return false;
9265 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9266 			break;
9267 		case offsetof(struct bpf_sock_ops, skb_data):
9268 			if (size != sizeof(__u64))
9269 				return false;
9270 			info->reg_type = PTR_TO_PACKET;
9271 			break;
9272 		case offsetof(struct bpf_sock_ops, skb_data_end):
9273 			if (size != sizeof(__u64))
9274 				return false;
9275 			info->reg_type = PTR_TO_PACKET_END;
9276 			break;
9277 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9278 			bpf_ctx_record_field_size(info, size_default);
9279 			return bpf_ctx_narrow_access_ok(off, size,
9280 							size_default);
9281 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9282 			if (size != sizeof(__u64))
9283 				return false;
9284 			break;
9285 		default:
9286 			if (size != size_default)
9287 				return false;
9288 			break;
9289 		}
9290 	}
9291 
9292 	return true;
9293 }
9294 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9295 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9296 			   const struct bpf_prog *prog)
9297 {
9298 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9299 }
9300 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9301 static bool sk_skb_is_valid_access(int off, int size,
9302 				   enum bpf_access_type type,
9303 				   const struct bpf_prog *prog,
9304 				   struct bpf_insn_access_aux *info)
9305 {
9306 	switch (off) {
9307 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9308 	case bpf_ctx_range(struct __sk_buff, data_meta):
9309 	case bpf_ctx_range(struct __sk_buff, tstamp):
9310 	case bpf_ctx_range(struct __sk_buff, wire_len):
9311 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9312 		return false;
9313 	}
9314 
9315 	if (type == BPF_WRITE) {
9316 		switch (off) {
9317 		case bpf_ctx_range(struct __sk_buff, tc_index):
9318 		case bpf_ctx_range(struct __sk_buff, priority):
9319 			break;
9320 		default:
9321 			return false;
9322 		}
9323 	}
9324 
9325 	switch (off) {
9326 	case bpf_ctx_range(struct __sk_buff, mark):
9327 		return false;
9328 	case bpf_ctx_range(struct __sk_buff, data):
9329 		info->reg_type = PTR_TO_PACKET;
9330 		break;
9331 	case bpf_ctx_range(struct __sk_buff, data_end):
9332 		info->reg_type = PTR_TO_PACKET_END;
9333 		break;
9334 	}
9335 
9336 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9337 }
9338 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9339 static bool sk_msg_is_valid_access(int off, int size,
9340 				   enum bpf_access_type type,
9341 				   const struct bpf_prog *prog,
9342 				   struct bpf_insn_access_aux *info)
9343 {
9344 	if (type == BPF_WRITE)
9345 		return false;
9346 
9347 	if (off % size != 0)
9348 		return false;
9349 
9350 	switch (off) {
9351 	case offsetof(struct sk_msg_md, data):
9352 		info->reg_type = PTR_TO_PACKET;
9353 		if (size != sizeof(__u64))
9354 			return false;
9355 		break;
9356 	case offsetof(struct sk_msg_md, data_end):
9357 		info->reg_type = PTR_TO_PACKET_END;
9358 		if (size != sizeof(__u64))
9359 			return false;
9360 		break;
9361 	case offsetof(struct sk_msg_md, sk):
9362 		if (size != sizeof(__u64))
9363 			return false;
9364 		info->reg_type = PTR_TO_SOCKET;
9365 		break;
9366 	case bpf_ctx_range(struct sk_msg_md, family):
9367 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9368 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9369 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9370 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9371 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9372 	case bpf_ctx_range(struct sk_msg_md, local_port):
9373 	case bpf_ctx_range(struct sk_msg_md, size):
9374 		if (size != sizeof(__u32))
9375 			return false;
9376 		break;
9377 	default:
9378 		return false;
9379 	}
9380 	return true;
9381 }
9382 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9383 static bool flow_dissector_is_valid_access(int off, int size,
9384 					   enum bpf_access_type type,
9385 					   const struct bpf_prog *prog,
9386 					   struct bpf_insn_access_aux *info)
9387 {
9388 	const int size_default = sizeof(__u32);
9389 
9390 	if (off < 0 || off >= sizeof(struct __sk_buff))
9391 		return false;
9392 
9393 	if (type == BPF_WRITE)
9394 		return false;
9395 
9396 	switch (off) {
9397 	case bpf_ctx_range(struct __sk_buff, data):
9398 		if (info->is_ldsx || size != size_default)
9399 			return false;
9400 		info->reg_type = PTR_TO_PACKET;
9401 		return true;
9402 	case bpf_ctx_range(struct __sk_buff, data_end):
9403 		if (info->is_ldsx || size != size_default)
9404 			return false;
9405 		info->reg_type = PTR_TO_PACKET_END;
9406 		return true;
9407 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9408 		if (size != sizeof(__u64))
9409 			return false;
9410 		info->reg_type = PTR_TO_FLOW_KEYS;
9411 		return true;
9412 	default:
9413 		return false;
9414 	}
9415 }
9416 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9417 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9418 					     const struct bpf_insn *si,
9419 					     struct bpf_insn *insn_buf,
9420 					     struct bpf_prog *prog,
9421 					     u32 *target_size)
9422 
9423 {
9424 	struct bpf_insn *insn = insn_buf;
9425 
9426 	switch (si->off) {
9427 	case offsetof(struct __sk_buff, data):
9428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9429 				      si->dst_reg, si->src_reg,
9430 				      offsetof(struct bpf_flow_dissector, data));
9431 		break;
9432 
9433 	case offsetof(struct __sk_buff, data_end):
9434 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9435 				      si->dst_reg, si->src_reg,
9436 				      offsetof(struct bpf_flow_dissector, data_end));
9437 		break;
9438 
9439 	case offsetof(struct __sk_buff, flow_keys):
9440 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9441 				      si->dst_reg, si->src_reg,
9442 				      offsetof(struct bpf_flow_dissector, flow_keys));
9443 		break;
9444 	}
9445 
9446 	return insn - insn_buf;
9447 }
9448 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9449 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9450 						     struct bpf_insn *insn)
9451 {
9452 	__u8 value_reg = si->dst_reg;
9453 	__u8 skb_reg = si->src_reg;
9454 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9455 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9456 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9457 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9458 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9459 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9460 #ifdef __BIG_ENDIAN_BITFIELD
9461 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9462 #else
9463 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9464 #endif
9465 
9466 	return insn;
9467 }
9468 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9469 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9470 						  struct bpf_insn *insn)
9471 {
9472 	/* si->dst_reg = skb_shinfo(SKB); */
9473 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9474 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9475 			      BPF_REG_AX, skb_reg,
9476 			      offsetof(struct sk_buff, end));
9477 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9478 			      dst_reg, skb_reg,
9479 			      offsetof(struct sk_buff, head));
9480 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9481 #else
9482 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9483 			      dst_reg, skb_reg,
9484 			      offsetof(struct sk_buff, end));
9485 #endif
9486 
9487 	return insn;
9488 }
9489 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9490 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9491 						const struct bpf_insn *si,
9492 						struct bpf_insn *insn)
9493 {
9494 	__u8 value_reg = si->dst_reg;
9495 	__u8 skb_reg = si->src_reg;
9496 
9497 #ifdef CONFIG_NET_XGRESS
9498 	/* If the tstamp_type is read,
9499 	 * the bpf prog is aware the tstamp could have delivery time.
9500 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9501 	 */
9502 	if (!prog->tstamp_type_access) {
9503 		/* AX is needed because src_reg and dst_reg could be the same */
9504 		__u8 tmp_reg = BPF_REG_AX;
9505 
9506 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9507 		/* check if ingress mask bits is set */
9508 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9509 		*insn++ = BPF_JMP_A(4);
9510 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9511 		*insn++ = BPF_JMP_A(2);
9512 		/* skb->tc_at_ingress && skb->tstamp_type,
9513 		 * read 0 as the (rcv) timestamp.
9514 		 */
9515 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9516 		*insn++ = BPF_JMP_A(1);
9517 	}
9518 #endif
9519 
9520 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9521 			      offsetof(struct sk_buff, tstamp));
9522 	return insn;
9523 }
9524 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9525 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9526 						 const struct bpf_insn *si,
9527 						 struct bpf_insn *insn)
9528 {
9529 	__u8 value_reg = si->src_reg;
9530 	__u8 skb_reg = si->dst_reg;
9531 
9532 #ifdef CONFIG_NET_XGRESS
9533 	/* If the tstamp_type is read,
9534 	 * the bpf prog is aware the tstamp could have delivery time.
9535 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9536 	 * Otherwise, writing at ingress will have to clear the
9537 	 * skb->tstamp_type bit also.
9538 	 */
9539 	if (!prog->tstamp_type_access) {
9540 		__u8 tmp_reg = BPF_REG_AX;
9541 
9542 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9543 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9544 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9545 		/* goto <store> */
9546 		*insn++ = BPF_JMP_A(2);
9547 		/* <clear>: skb->tstamp_type */
9548 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9549 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9550 	}
9551 #endif
9552 
9553 	/* <store>: skb->tstamp = tstamp */
9554 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9555 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9556 	return insn;
9557 }
9558 
9559 #define BPF_EMIT_STORE(size, si, off)					\
9560 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9561 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9562 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9563 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9564 				  const struct bpf_insn *si,
9565 				  struct bpf_insn *insn_buf,
9566 				  struct bpf_prog *prog, u32 *target_size)
9567 {
9568 	struct bpf_insn *insn = insn_buf;
9569 	int off;
9570 
9571 	switch (si->off) {
9572 	case offsetof(struct __sk_buff, len):
9573 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9574 				      bpf_target_off(struct sk_buff, len, 4,
9575 						     target_size));
9576 		break;
9577 
9578 	case offsetof(struct __sk_buff, protocol):
9579 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9580 				      bpf_target_off(struct sk_buff, protocol, 2,
9581 						     target_size));
9582 		break;
9583 
9584 	case offsetof(struct __sk_buff, vlan_proto):
9585 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9586 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9587 						     target_size));
9588 		break;
9589 
9590 	case offsetof(struct __sk_buff, priority):
9591 		if (type == BPF_WRITE)
9592 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9593 						 bpf_target_off(struct sk_buff, priority, 4,
9594 								target_size));
9595 		else
9596 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9597 					      bpf_target_off(struct sk_buff, priority, 4,
9598 							     target_size));
9599 		break;
9600 
9601 	case offsetof(struct __sk_buff, ingress_ifindex):
9602 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9603 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9604 						     target_size));
9605 		break;
9606 
9607 	case offsetof(struct __sk_buff, ifindex):
9608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9609 				      si->dst_reg, si->src_reg,
9610 				      offsetof(struct sk_buff, dev));
9611 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9612 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9613 				      bpf_target_off(struct net_device, ifindex, 4,
9614 						     target_size));
9615 		break;
9616 
9617 	case offsetof(struct __sk_buff, hash):
9618 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9619 				      bpf_target_off(struct sk_buff, hash, 4,
9620 						     target_size));
9621 		break;
9622 
9623 	case offsetof(struct __sk_buff, mark):
9624 		if (type == BPF_WRITE)
9625 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9626 						 bpf_target_off(struct sk_buff, mark, 4,
9627 								target_size));
9628 		else
9629 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9630 					      bpf_target_off(struct sk_buff, mark, 4,
9631 							     target_size));
9632 		break;
9633 
9634 	case offsetof(struct __sk_buff, pkt_type):
9635 		*target_size = 1;
9636 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9637 				      PKT_TYPE_OFFSET);
9638 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9639 #ifdef __BIG_ENDIAN_BITFIELD
9640 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9641 #endif
9642 		break;
9643 
9644 	case offsetof(struct __sk_buff, queue_mapping):
9645 		if (type == BPF_WRITE) {
9646 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9647 
9648 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9649 				*insn++ = BPF_JMP_A(0); /* noop */
9650 				break;
9651 			}
9652 
9653 			if (BPF_CLASS(si->code) == BPF_STX)
9654 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9655 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9656 		} else {
9657 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9658 					      bpf_target_off(struct sk_buff,
9659 							     queue_mapping,
9660 							     2, target_size));
9661 		}
9662 		break;
9663 
9664 	case offsetof(struct __sk_buff, vlan_present):
9665 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9666 				      bpf_target_off(struct sk_buff,
9667 						     vlan_all, 4, target_size));
9668 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9669 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9670 		break;
9671 
9672 	case offsetof(struct __sk_buff, vlan_tci):
9673 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9674 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9675 						     target_size));
9676 		break;
9677 
9678 	case offsetof(struct __sk_buff, cb[0]) ...
9679 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9680 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9681 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9682 			      offsetof(struct qdisc_skb_cb, data)) %
9683 			     sizeof(__u64));
9684 
9685 		prog->cb_access = 1;
9686 		off  = si->off;
9687 		off -= offsetof(struct __sk_buff, cb[0]);
9688 		off += offsetof(struct sk_buff, cb);
9689 		off += offsetof(struct qdisc_skb_cb, data);
9690 		if (type == BPF_WRITE)
9691 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9692 		else
9693 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9694 					      si->src_reg, off);
9695 		break;
9696 
9697 	case offsetof(struct __sk_buff, tc_classid):
9698 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9699 
9700 		off  = si->off;
9701 		off -= offsetof(struct __sk_buff, tc_classid);
9702 		off += offsetof(struct sk_buff, cb);
9703 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9704 		*target_size = 2;
9705 		if (type == BPF_WRITE)
9706 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9707 		else
9708 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9709 					      si->src_reg, off);
9710 		break;
9711 
9712 	case offsetof(struct __sk_buff, data):
9713 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9714 				      si->dst_reg, si->src_reg,
9715 				      offsetof(struct sk_buff, data));
9716 		break;
9717 
9718 	case offsetof(struct __sk_buff, data_meta):
9719 		off  = si->off;
9720 		off -= offsetof(struct __sk_buff, data_meta);
9721 		off += offsetof(struct sk_buff, cb);
9722 		off += offsetof(struct bpf_skb_data_end, data_meta);
9723 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9724 				      si->src_reg, off);
9725 		break;
9726 
9727 	case offsetof(struct __sk_buff, data_end):
9728 		off  = si->off;
9729 		off -= offsetof(struct __sk_buff, data_end);
9730 		off += offsetof(struct sk_buff, cb);
9731 		off += offsetof(struct bpf_skb_data_end, data_end);
9732 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9733 				      si->src_reg, off);
9734 		break;
9735 
9736 	case offsetof(struct __sk_buff, tc_index):
9737 #ifdef CONFIG_NET_SCHED
9738 		if (type == BPF_WRITE)
9739 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9740 						 bpf_target_off(struct sk_buff, tc_index, 2,
9741 								target_size));
9742 		else
9743 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9744 					      bpf_target_off(struct sk_buff, tc_index, 2,
9745 							     target_size));
9746 #else
9747 		*target_size = 2;
9748 		if (type == BPF_WRITE)
9749 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9750 		else
9751 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9752 #endif
9753 		break;
9754 
9755 	case offsetof(struct __sk_buff, napi_id):
9756 #if defined(CONFIG_NET_RX_BUSY_POLL)
9757 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9758 				      bpf_target_off(struct sk_buff, napi_id, 4,
9759 						     target_size));
9760 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9761 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9762 #else
9763 		*target_size = 4;
9764 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9765 #endif
9766 		break;
9767 	case offsetof(struct __sk_buff, family):
9768 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9769 
9770 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9771 				      si->dst_reg, si->src_reg,
9772 				      offsetof(struct sk_buff, sk));
9773 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9774 				      bpf_target_off(struct sock_common,
9775 						     skc_family,
9776 						     2, target_size));
9777 		break;
9778 	case offsetof(struct __sk_buff, remote_ip4):
9779 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9780 
9781 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9782 				      si->dst_reg, si->src_reg,
9783 				      offsetof(struct sk_buff, sk));
9784 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9785 				      bpf_target_off(struct sock_common,
9786 						     skc_daddr,
9787 						     4, target_size));
9788 		break;
9789 	case offsetof(struct __sk_buff, local_ip4):
9790 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9791 					  skc_rcv_saddr) != 4);
9792 
9793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9794 				      si->dst_reg, si->src_reg,
9795 				      offsetof(struct sk_buff, sk));
9796 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9797 				      bpf_target_off(struct sock_common,
9798 						     skc_rcv_saddr,
9799 						     4, target_size));
9800 		break;
9801 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9802 	     offsetof(struct __sk_buff, remote_ip6[3]):
9803 #if IS_ENABLED(CONFIG_IPV6)
9804 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9805 					  skc_v6_daddr.s6_addr32[0]) != 4);
9806 
9807 		off = si->off;
9808 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9809 
9810 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9811 				      si->dst_reg, si->src_reg,
9812 				      offsetof(struct sk_buff, sk));
9813 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9814 				      offsetof(struct sock_common,
9815 					       skc_v6_daddr.s6_addr32[0]) +
9816 				      off);
9817 #else
9818 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9819 #endif
9820 		break;
9821 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9822 	     offsetof(struct __sk_buff, local_ip6[3]):
9823 #if IS_ENABLED(CONFIG_IPV6)
9824 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9825 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9826 
9827 		off = si->off;
9828 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9829 
9830 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9831 				      si->dst_reg, si->src_reg,
9832 				      offsetof(struct sk_buff, sk));
9833 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9834 				      offsetof(struct sock_common,
9835 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9836 				      off);
9837 #else
9838 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9839 #endif
9840 		break;
9841 
9842 	case offsetof(struct __sk_buff, remote_port):
9843 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9844 
9845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9846 				      si->dst_reg, si->src_reg,
9847 				      offsetof(struct sk_buff, sk));
9848 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9849 				      bpf_target_off(struct sock_common,
9850 						     skc_dport,
9851 						     2, target_size));
9852 #ifndef __BIG_ENDIAN_BITFIELD
9853 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9854 #endif
9855 		break;
9856 
9857 	case offsetof(struct __sk_buff, local_port):
9858 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9859 
9860 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9861 				      si->dst_reg, si->src_reg,
9862 				      offsetof(struct sk_buff, sk));
9863 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9864 				      bpf_target_off(struct sock_common,
9865 						     skc_num, 2, target_size));
9866 		break;
9867 
9868 	case offsetof(struct __sk_buff, tstamp):
9869 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9870 
9871 		if (type == BPF_WRITE)
9872 			insn = bpf_convert_tstamp_write(prog, si, insn);
9873 		else
9874 			insn = bpf_convert_tstamp_read(prog, si, insn);
9875 		break;
9876 
9877 	case offsetof(struct __sk_buff, tstamp_type):
9878 		insn = bpf_convert_tstamp_type_read(si, insn);
9879 		break;
9880 
9881 	case offsetof(struct __sk_buff, gso_segs):
9882 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9883 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9884 				      si->dst_reg, si->dst_reg,
9885 				      bpf_target_off(struct skb_shared_info,
9886 						     gso_segs, 2,
9887 						     target_size));
9888 		break;
9889 	case offsetof(struct __sk_buff, gso_size):
9890 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9891 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9892 				      si->dst_reg, si->dst_reg,
9893 				      bpf_target_off(struct skb_shared_info,
9894 						     gso_size, 2,
9895 						     target_size));
9896 		break;
9897 	case offsetof(struct __sk_buff, wire_len):
9898 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9899 
9900 		off = si->off;
9901 		off -= offsetof(struct __sk_buff, wire_len);
9902 		off += offsetof(struct sk_buff, cb);
9903 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9904 		*target_size = 4;
9905 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9906 		break;
9907 
9908 	case offsetof(struct __sk_buff, sk):
9909 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9910 				      si->dst_reg, si->src_reg,
9911 				      offsetof(struct sk_buff, sk));
9912 		break;
9913 	case offsetof(struct __sk_buff, hwtstamp):
9914 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9915 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9916 
9917 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9918 		*insn++ = BPF_LDX_MEM(BPF_DW,
9919 				      si->dst_reg, si->dst_reg,
9920 				      bpf_target_off(struct skb_shared_info,
9921 						     hwtstamps, 8,
9922 						     target_size));
9923 		break;
9924 	}
9925 
9926 	return insn - insn_buf;
9927 }
9928 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9929 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9930 				const struct bpf_insn *si,
9931 				struct bpf_insn *insn_buf,
9932 				struct bpf_prog *prog, u32 *target_size)
9933 {
9934 	struct bpf_insn *insn = insn_buf;
9935 	int off;
9936 
9937 	switch (si->off) {
9938 	case offsetof(struct bpf_sock, bound_dev_if):
9939 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9940 
9941 		if (type == BPF_WRITE)
9942 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9943 						 offsetof(struct sock, sk_bound_dev_if));
9944 		else
9945 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9946 				      offsetof(struct sock, sk_bound_dev_if));
9947 		break;
9948 
9949 	case offsetof(struct bpf_sock, mark):
9950 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9951 
9952 		if (type == BPF_WRITE)
9953 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9954 						 offsetof(struct sock, sk_mark));
9955 		else
9956 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9957 				      offsetof(struct sock, sk_mark));
9958 		break;
9959 
9960 	case offsetof(struct bpf_sock, priority):
9961 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9962 
9963 		if (type == BPF_WRITE)
9964 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9965 						 offsetof(struct sock, sk_priority));
9966 		else
9967 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9968 				      offsetof(struct sock, sk_priority));
9969 		break;
9970 
9971 	case offsetof(struct bpf_sock, family):
9972 		*insn++ = BPF_LDX_MEM(
9973 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9974 			si->dst_reg, si->src_reg,
9975 			bpf_target_off(struct sock_common,
9976 				       skc_family,
9977 				       sizeof_field(struct sock_common,
9978 						    skc_family),
9979 				       target_size));
9980 		break;
9981 
9982 	case offsetof(struct bpf_sock, type):
9983 		*insn++ = BPF_LDX_MEM(
9984 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9985 			si->dst_reg, si->src_reg,
9986 			bpf_target_off(struct sock, sk_type,
9987 				       sizeof_field(struct sock, sk_type),
9988 				       target_size));
9989 		break;
9990 
9991 	case offsetof(struct bpf_sock, protocol):
9992 		*insn++ = BPF_LDX_MEM(
9993 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9994 			si->dst_reg, si->src_reg,
9995 			bpf_target_off(struct sock, sk_protocol,
9996 				       sizeof_field(struct sock, sk_protocol),
9997 				       target_size));
9998 		break;
9999 
10000 	case offsetof(struct bpf_sock, src_ip4):
10001 		*insn++ = BPF_LDX_MEM(
10002 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10003 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10004 				       sizeof_field(struct sock_common,
10005 						    skc_rcv_saddr),
10006 				       target_size));
10007 		break;
10008 
10009 	case offsetof(struct bpf_sock, dst_ip4):
10010 		*insn++ = BPF_LDX_MEM(
10011 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10012 			bpf_target_off(struct sock_common, skc_daddr,
10013 				       sizeof_field(struct sock_common,
10014 						    skc_daddr),
10015 				       target_size));
10016 		break;
10017 
10018 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10019 #if IS_ENABLED(CONFIG_IPV6)
10020 		off = si->off;
10021 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10022 		*insn++ = BPF_LDX_MEM(
10023 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10024 			bpf_target_off(
10025 				struct sock_common,
10026 				skc_v6_rcv_saddr.s6_addr32[0],
10027 				sizeof_field(struct sock_common,
10028 					     skc_v6_rcv_saddr.s6_addr32[0]),
10029 				target_size) + off);
10030 #else
10031 		(void)off;
10032 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10033 #endif
10034 		break;
10035 
10036 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10037 #if IS_ENABLED(CONFIG_IPV6)
10038 		off = si->off;
10039 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10040 		*insn++ = BPF_LDX_MEM(
10041 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10042 			bpf_target_off(struct sock_common,
10043 				       skc_v6_daddr.s6_addr32[0],
10044 				       sizeof_field(struct sock_common,
10045 						    skc_v6_daddr.s6_addr32[0]),
10046 				       target_size) + off);
10047 #else
10048 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10049 		*target_size = 4;
10050 #endif
10051 		break;
10052 
10053 	case offsetof(struct bpf_sock, src_port):
10054 		*insn++ = BPF_LDX_MEM(
10055 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10056 			si->dst_reg, si->src_reg,
10057 			bpf_target_off(struct sock_common, skc_num,
10058 				       sizeof_field(struct sock_common,
10059 						    skc_num),
10060 				       target_size));
10061 		break;
10062 
10063 	case offsetof(struct bpf_sock, dst_port):
10064 		*insn++ = BPF_LDX_MEM(
10065 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10066 			si->dst_reg, si->src_reg,
10067 			bpf_target_off(struct sock_common, skc_dport,
10068 				       sizeof_field(struct sock_common,
10069 						    skc_dport),
10070 				       target_size));
10071 		break;
10072 
10073 	case offsetof(struct bpf_sock, state):
10074 		*insn++ = BPF_LDX_MEM(
10075 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10076 			si->dst_reg, si->src_reg,
10077 			bpf_target_off(struct sock_common, skc_state,
10078 				       sizeof_field(struct sock_common,
10079 						    skc_state),
10080 				       target_size));
10081 		break;
10082 	case offsetof(struct bpf_sock, rx_queue_mapping):
10083 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10084 		*insn++ = BPF_LDX_MEM(
10085 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10086 			si->dst_reg, si->src_reg,
10087 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10088 				       sizeof_field(struct sock,
10089 						    sk_rx_queue_mapping),
10090 				       target_size));
10091 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10092 				      1);
10093 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10094 #else
10095 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10096 		*target_size = 2;
10097 #endif
10098 		break;
10099 	}
10100 
10101 	return insn - insn_buf;
10102 }
10103 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10104 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10105 					 const struct bpf_insn *si,
10106 					 struct bpf_insn *insn_buf,
10107 					 struct bpf_prog *prog, u32 *target_size)
10108 {
10109 	struct bpf_insn *insn = insn_buf;
10110 
10111 	switch (si->off) {
10112 	case offsetof(struct __sk_buff, ifindex):
10113 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10114 				      si->dst_reg, si->src_reg,
10115 				      offsetof(struct sk_buff, dev));
10116 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10117 				      bpf_target_off(struct net_device, ifindex, 4,
10118 						     target_size));
10119 		break;
10120 	default:
10121 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10122 					      target_size);
10123 	}
10124 
10125 	return insn - insn_buf;
10126 }
10127 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10128 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10129 				  const struct bpf_insn *si,
10130 				  struct bpf_insn *insn_buf,
10131 				  struct bpf_prog *prog, u32 *target_size)
10132 {
10133 	struct bpf_insn *insn = insn_buf;
10134 
10135 	switch (si->off) {
10136 	case offsetof(struct xdp_md, data):
10137 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10138 				      si->dst_reg, si->src_reg,
10139 				      offsetof(struct xdp_buff, data));
10140 		break;
10141 	case offsetof(struct xdp_md, data_meta):
10142 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10143 				      si->dst_reg, si->src_reg,
10144 				      offsetof(struct xdp_buff, data_meta));
10145 		break;
10146 	case offsetof(struct xdp_md, data_end):
10147 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10148 				      si->dst_reg, si->src_reg,
10149 				      offsetof(struct xdp_buff, data_end));
10150 		break;
10151 	case offsetof(struct xdp_md, ingress_ifindex):
10152 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10153 				      si->dst_reg, si->src_reg,
10154 				      offsetof(struct xdp_buff, rxq));
10155 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10156 				      si->dst_reg, si->dst_reg,
10157 				      offsetof(struct xdp_rxq_info, dev));
10158 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10159 				      offsetof(struct net_device, ifindex));
10160 		break;
10161 	case offsetof(struct xdp_md, rx_queue_index):
10162 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10163 				      si->dst_reg, si->src_reg,
10164 				      offsetof(struct xdp_buff, rxq));
10165 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10166 				      offsetof(struct xdp_rxq_info,
10167 					       queue_index));
10168 		break;
10169 	case offsetof(struct xdp_md, egress_ifindex):
10170 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10171 				      si->dst_reg, si->src_reg,
10172 				      offsetof(struct xdp_buff, txq));
10173 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10174 				      si->dst_reg, si->dst_reg,
10175 				      offsetof(struct xdp_txq_info, dev));
10176 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10177 				      offsetof(struct net_device, ifindex));
10178 		break;
10179 	}
10180 
10181 	return insn - insn_buf;
10182 }
10183 
10184 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10185  * context Structure, F is Field in context structure that contains a pointer
10186  * to Nested Structure of type NS that has the field NF.
10187  *
10188  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10189  * sure that SIZE is not greater than actual size of S.F.NF.
10190  *
10191  * If offset OFF is provided, the load happens from that offset relative to
10192  * offset of NF.
10193  */
10194 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10195 	do {								       \
10196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10197 				      si->src_reg, offsetof(S, F));	       \
10198 		*insn++ = BPF_LDX_MEM(					       \
10199 			SIZE, si->dst_reg, si->dst_reg,			       \
10200 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10201 				       target_size)			       \
10202 				+ OFF);					       \
10203 	} while (0)
10204 
10205 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10206 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10207 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10208 
10209 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10210  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10211  *
10212  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10213  * "register" since two registers available in convert_ctx_access are not
10214  * enough: we can't override neither SRC, since it contains value to store, nor
10215  * DST since it contains pointer to context that may be used by later
10216  * instructions. But we need a temporary place to save pointer to nested
10217  * structure whose field we want to store to.
10218  */
10219 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10220 	do {								       \
10221 		int tmp_reg = BPF_REG_9;				       \
10222 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10223 			--tmp_reg;					       \
10224 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10225 			--tmp_reg;					       \
10226 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10227 				      offsetof(S, TF));			       \
10228 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10229 				      si->dst_reg, offsetof(S, F));	       \
10230 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10231 				       tmp_reg, si->src_reg,		       \
10232 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10233 				       target_size)			       \
10234 				       + OFF,				       \
10235 				       si->imm);			       \
10236 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10237 				      offsetof(S, TF));			       \
10238 	} while (0)
10239 
10240 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10241 						      TF)		       \
10242 	do {								       \
10243 		if (type == BPF_WRITE) {				       \
10244 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10245 							 OFF, TF);	       \
10246 		} else {						       \
10247 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10248 				S, NS, F, NF, SIZE, OFF);  \
10249 		}							       \
10250 	} while (0)
10251 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10252 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10253 					const struct bpf_insn *si,
10254 					struct bpf_insn *insn_buf,
10255 					struct bpf_prog *prog, u32 *target_size)
10256 {
10257 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10258 	struct bpf_insn *insn = insn_buf;
10259 
10260 	switch (si->off) {
10261 	case offsetof(struct bpf_sock_addr, user_family):
10262 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10263 					    struct sockaddr, uaddr, sa_family);
10264 		break;
10265 
10266 	case offsetof(struct bpf_sock_addr, user_ip4):
10267 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10268 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10269 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10270 		break;
10271 
10272 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10273 		off = si->off;
10274 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10275 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10276 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10277 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10278 			tmp_reg);
10279 		break;
10280 
10281 	case offsetof(struct bpf_sock_addr, user_port):
10282 		/* To get port we need to know sa_family first and then treat
10283 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10284 		 * Though we can simplify since port field has same offset and
10285 		 * size in both structures.
10286 		 * Here we check this invariant and use just one of the
10287 		 * structures if it's true.
10288 		 */
10289 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10290 			     offsetof(struct sockaddr_in6, sin6_port));
10291 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10292 			     sizeof_field(struct sockaddr_in6, sin6_port));
10293 		/* Account for sin6_port being smaller than user_port. */
10294 		port_size = min(port_size, BPF_LDST_BYTES(si));
10295 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10296 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10297 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10298 		break;
10299 
10300 	case offsetof(struct bpf_sock_addr, family):
10301 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10302 					    struct sock, sk, sk_family);
10303 		break;
10304 
10305 	case offsetof(struct bpf_sock_addr, type):
10306 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10307 					    struct sock, sk, sk_type);
10308 		break;
10309 
10310 	case offsetof(struct bpf_sock_addr, protocol):
10311 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10312 					    struct sock, sk, sk_protocol);
10313 		break;
10314 
10315 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10316 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10317 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10318 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10319 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10320 		break;
10321 
10322 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10323 				msg_src_ip6[3]):
10324 		off = si->off;
10325 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10326 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10327 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10328 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10329 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10330 		break;
10331 	case offsetof(struct bpf_sock_addr, sk):
10332 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10333 				      si->dst_reg, si->src_reg,
10334 				      offsetof(struct bpf_sock_addr_kern, sk));
10335 		break;
10336 	}
10337 
10338 	return insn - insn_buf;
10339 }
10340 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10341 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10342 				       const struct bpf_insn *si,
10343 				       struct bpf_insn *insn_buf,
10344 				       struct bpf_prog *prog,
10345 				       u32 *target_size)
10346 {
10347 	struct bpf_insn *insn = insn_buf;
10348 	int off;
10349 
10350 /* Helper macro for adding read access to tcp_sock or sock fields. */
10351 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10352 	do {								      \
10353 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10354 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10355 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10356 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10357 			reg--;						      \
10358 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10359 			reg--;						      \
10360 		if (si->dst_reg == si->src_reg) {			      \
10361 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10362 					  offsetof(struct bpf_sock_ops_kern,  \
10363 					  temp));			      \
10364 			fullsock_reg = reg;				      \
10365 			jmp += 2;					      \
10366 		}							      \
10367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10368 						struct bpf_sock_ops_kern,     \
10369 						is_fullsock),		      \
10370 				      fullsock_reg, si->src_reg,	      \
10371 				      offsetof(struct bpf_sock_ops_kern,      \
10372 					       is_fullsock));		      \
10373 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10374 		if (si->dst_reg == si->src_reg)				      \
10375 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10376 				      offsetof(struct bpf_sock_ops_kern,      \
10377 				      temp));				      \
10378 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10379 						struct bpf_sock_ops_kern, sk),\
10380 				      si->dst_reg, si->src_reg,		      \
10381 				      offsetof(struct bpf_sock_ops_kern, sk));\
10382 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10383 						       OBJ_FIELD),	      \
10384 				      si->dst_reg, si->dst_reg,		      \
10385 				      offsetof(OBJ, OBJ_FIELD));	      \
10386 		if (si->dst_reg == si->src_reg)	{			      \
10387 			*insn++ = BPF_JMP_A(1);				      \
10388 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10389 				      offsetof(struct bpf_sock_ops_kern,      \
10390 				      temp));				      \
10391 		}							      \
10392 	} while (0)
10393 
10394 #define SOCK_OPS_GET_SK()							      \
10395 	do {								      \
10396 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10397 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10398 			reg--;						      \
10399 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10400 			reg--;						      \
10401 		if (si->dst_reg == si->src_reg) {			      \
10402 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10403 					  offsetof(struct bpf_sock_ops_kern,  \
10404 					  temp));			      \
10405 			fullsock_reg = reg;				      \
10406 			jmp += 2;					      \
10407 		}							      \
10408 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10409 						struct bpf_sock_ops_kern,     \
10410 						is_fullsock),		      \
10411 				      fullsock_reg, si->src_reg,	      \
10412 				      offsetof(struct bpf_sock_ops_kern,      \
10413 					       is_fullsock));		      \
10414 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10415 		if (si->dst_reg == si->src_reg)				      \
10416 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10417 				      offsetof(struct bpf_sock_ops_kern,      \
10418 				      temp));				      \
10419 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10420 						struct bpf_sock_ops_kern, sk),\
10421 				      si->dst_reg, si->src_reg,		      \
10422 				      offsetof(struct bpf_sock_ops_kern, sk));\
10423 		if (si->dst_reg == si->src_reg)	{			      \
10424 			*insn++ = BPF_JMP_A(1);				      \
10425 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10426 				      offsetof(struct bpf_sock_ops_kern,      \
10427 				      temp));				      \
10428 		}							      \
10429 	} while (0)
10430 
10431 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10432 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10433 
10434 /* Helper macro for adding write access to tcp_sock or sock fields.
10435  * The macro is called with two registers, dst_reg which contains a pointer
10436  * to ctx (context) and src_reg which contains the value that should be
10437  * stored. However, we need an additional register since we cannot overwrite
10438  * dst_reg because it may be used later in the program.
10439  * Instead we "borrow" one of the other register. We first save its value
10440  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10441  * it at the end of the macro.
10442  */
10443 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10444 	do {								      \
10445 		int reg = BPF_REG_9;					      \
10446 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10447 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10448 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10449 			reg--;						      \
10450 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10451 			reg--;						      \
10452 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10453 				      offsetof(struct bpf_sock_ops_kern,      \
10454 					       temp));			      \
10455 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10456 						struct bpf_sock_ops_kern,     \
10457 						is_fullsock),		      \
10458 				      reg, si->dst_reg,			      \
10459 				      offsetof(struct bpf_sock_ops_kern,      \
10460 					       is_fullsock));		      \
10461 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10463 						struct bpf_sock_ops_kern, sk),\
10464 				      reg, si->dst_reg,			      \
10465 				      offsetof(struct bpf_sock_ops_kern, sk));\
10466 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10467 				       BPF_MEM | BPF_CLASS(si->code),	      \
10468 				       reg, si->src_reg,		      \
10469 				       offsetof(OBJ, OBJ_FIELD),	      \
10470 				       si->imm);			      \
10471 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10472 				      offsetof(struct bpf_sock_ops_kern,      \
10473 					       temp));			      \
10474 	} while (0)
10475 
10476 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10477 	do {								      \
10478 		if (TYPE == BPF_WRITE)					      \
10479 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10480 		else							      \
10481 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10482 	} while (0)
10483 
10484 	switch (si->off) {
10485 	case offsetof(struct bpf_sock_ops, op):
10486 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10487 						       op),
10488 				      si->dst_reg, si->src_reg,
10489 				      offsetof(struct bpf_sock_ops_kern, op));
10490 		break;
10491 
10492 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10493 	     offsetof(struct bpf_sock_ops, replylong[3]):
10494 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10495 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10496 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10497 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10498 		off = si->off;
10499 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10500 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10501 		if (type == BPF_WRITE)
10502 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10503 		else
10504 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10505 					      off);
10506 		break;
10507 
10508 	case offsetof(struct bpf_sock_ops, family):
10509 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10510 
10511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10512 					      struct bpf_sock_ops_kern, sk),
10513 				      si->dst_reg, si->src_reg,
10514 				      offsetof(struct bpf_sock_ops_kern, sk));
10515 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10516 				      offsetof(struct sock_common, skc_family));
10517 		break;
10518 
10519 	case offsetof(struct bpf_sock_ops, remote_ip4):
10520 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10521 
10522 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10523 						struct bpf_sock_ops_kern, sk),
10524 				      si->dst_reg, si->src_reg,
10525 				      offsetof(struct bpf_sock_ops_kern, sk));
10526 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10527 				      offsetof(struct sock_common, skc_daddr));
10528 		break;
10529 
10530 	case offsetof(struct bpf_sock_ops, local_ip4):
10531 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10532 					  skc_rcv_saddr) != 4);
10533 
10534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10535 					      struct bpf_sock_ops_kern, sk),
10536 				      si->dst_reg, si->src_reg,
10537 				      offsetof(struct bpf_sock_ops_kern, sk));
10538 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10539 				      offsetof(struct sock_common,
10540 					       skc_rcv_saddr));
10541 		break;
10542 
10543 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10544 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10545 #if IS_ENABLED(CONFIG_IPV6)
10546 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10547 					  skc_v6_daddr.s6_addr32[0]) != 4);
10548 
10549 		off = si->off;
10550 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10552 						struct bpf_sock_ops_kern, sk),
10553 				      si->dst_reg, si->src_reg,
10554 				      offsetof(struct bpf_sock_ops_kern, sk));
10555 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10556 				      offsetof(struct sock_common,
10557 					       skc_v6_daddr.s6_addr32[0]) +
10558 				      off);
10559 #else
10560 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10561 #endif
10562 		break;
10563 
10564 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10565 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10566 #if IS_ENABLED(CONFIG_IPV6)
10567 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10568 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10569 
10570 		off = si->off;
10571 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10572 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10573 						struct bpf_sock_ops_kern, sk),
10574 				      si->dst_reg, si->src_reg,
10575 				      offsetof(struct bpf_sock_ops_kern, sk));
10576 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10577 				      offsetof(struct sock_common,
10578 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10579 				      off);
10580 #else
10581 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10582 #endif
10583 		break;
10584 
10585 	case offsetof(struct bpf_sock_ops, remote_port):
10586 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10587 
10588 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10589 						struct bpf_sock_ops_kern, sk),
10590 				      si->dst_reg, si->src_reg,
10591 				      offsetof(struct bpf_sock_ops_kern, sk));
10592 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10593 				      offsetof(struct sock_common, skc_dport));
10594 #ifndef __BIG_ENDIAN_BITFIELD
10595 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10596 #endif
10597 		break;
10598 
10599 	case offsetof(struct bpf_sock_ops, local_port):
10600 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10601 
10602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10603 						struct bpf_sock_ops_kern, sk),
10604 				      si->dst_reg, si->src_reg,
10605 				      offsetof(struct bpf_sock_ops_kern, sk));
10606 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10607 				      offsetof(struct sock_common, skc_num));
10608 		break;
10609 
10610 	case offsetof(struct bpf_sock_ops, is_fullsock):
10611 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10612 						struct bpf_sock_ops_kern,
10613 						is_fullsock),
10614 				      si->dst_reg, si->src_reg,
10615 				      offsetof(struct bpf_sock_ops_kern,
10616 					       is_fullsock));
10617 		break;
10618 
10619 	case offsetof(struct bpf_sock_ops, state):
10620 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10621 
10622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10623 						struct bpf_sock_ops_kern, sk),
10624 				      si->dst_reg, si->src_reg,
10625 				      offsetof(struct bpf_sock_ops_kern, sk));
10626 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10627 				      offsetof(struct sock_common, skc_state));
10628 		break;
10629 
10630 	case offsetof(struct bpf_sock_ops, rtt_min):
10631 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10632 			     sizeof(struct minmax));
10633 		BUILD_BUG_ON(sizeof(struct minmax) <
10634 			     sizeof(struct minmax_sample));
10635 
10636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10637 						struct bpf_sock_ops_kern, sk),
10638 				      si->dst_reg, si->src_reg,
10639 				      offsetof(struct bpf_sock_ops_kern, sk));
10640 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10641 				      offsetof(struct tcp_sock, rtt_min) +
10642 				      sizeof_field(struct minmax_sample, t));
10643 		break;
10644 
10645 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10646 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10647 				   struct tcp_sock);
10648 		break;
10649 
10650 	case offsetof(struct bpf_sock_ops, sk_txhash):
10651 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10652 					  struct sock, type);
10653 		break;
10654 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10655 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10656 		break;
10657 	case offsetof(struct bpf_sock_ops, srtt_us):
10658 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10659 		break;
10660 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10661 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10662 		break;
10663 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10664 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10665 		break;
10666 	case offsetof(struct bpf_sock_ops, snd_nxt):
10667 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10668 		break;
10669 	case offsetof(struct bpf_sock_ops, snd_una):
10670 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10671 		break;
10672 	case offsetof(struct bpf_sock_ops, mss_cache):
10673 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10674 		break;
10675 	case offsetof(struct bpf_sock_ops, ecn_flags):
10676 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10677 		break;
10678 	case offsetof(struct bpf_sock_ops, rate_delivered):
10679 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10680 		break;
10681 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10682 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10683 		break;
10684 	case offsetof(struct bpf_sock_ops, packets_out):
10685 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10686 		break;
10687 	case offsetof(struct bpf_sock_ops, retrans_out):
10688 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10689 		break;
10690 	case offsetof(struct bpf_sock_ops, total_retrans):
10691 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10692 		break;
10693 	case offsetof(struct bpf_sock_ops, segs_in):
10694 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10695 		break;
10696 	case offsetof(struct bpf_sock_ops, data_segs_in):
10697 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10698 		break;
10699 	case offsetof(struct bpf_sock_ops, segs_out):
10700 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10701 		break;
10702 	case offsetof(struct bpf_sock_ops, data_segs_out):
10703 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10704 		break;
10705 	case offsetof(struct bpf_sock_ops, lost_out):
10706 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10707 		break;
10708 	case offsetof(struct bpf_sock_ops, sacked_out):
10709 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10710 		break;
10711 	case offsetof(struct bpf_sock_ops, bytes_received):
10712 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10713 		break;
10714 	case offsetof(struct bpf_sock_ops, bytes_acked):
10715 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10716 		break;
10717 	case offsetof(struct bpf_sock_ops, sk):
10718 		SOCK_OPS_GET_SK();
10719 		break;
10720 	case offsetof(struct bpf_sock_ops, skb_data_end):
10721 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10722 						       skb_data_end),
10723 				      si->dst_reg, si->src_reg,
10724 				      offsetof(struct bpf_sock_ops_kern,
10725 					       skb_data_end));
10726 		break;
10727 	case offsetof(struct bpf_sock_ops, skb_data):
10728 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10729 						       skb),
10730 				      si->dst_reg, si->src_reg,
10731 				      offsetof(struct bpf_sock_ops_kern,
10732 					       skb));
10733 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10734 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10735 				      si->dst_reg, si->dst_reg,
10736 				      offsetof(struct sk_buff, data));
10737 		break;
10738 	case offsetof(struct bpf_sock_ops, skb_len):
10739 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10740 						       skb),
10741 				      si->dst_reg, si->src_reg,
10742 				      offsetof(struct bpf_sock_ops_kern,
10743 					       skb));
10744 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10746 				      si->dst_reg, si->dst_reg,
10747 				      offsetof(struct sk_buff, len));
10748 		break;
10749 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10750 		off = offsetof(struct sk_buff, cb);
10751 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10752 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10753 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10754 						       skb),
10755 				      si->dst_reg, si->src_reg,
10756 				      offsetof(struct bpf_sock_ops_kern,
10757 					       skb));
10758 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10759 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10760 						       tcp_flags),
10761 				      si->dst_reg, si->dst_reg, off);
10762 		break;
10763 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10764 		struct bpf_insn *jmp_on_null_skb;
10765 
10766 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10767 						       skb),
10768 				      si->dst_reg, si->src_reg,
10769 				      offsetof(struct bpf_sock_ops_kern,
10770 					       skb));
10771 		/* Reserve one insn to test skb == NULL */
10772 		jmp_on_null_skb = insn++;
10773 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10774 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10775 				      bpf_target_off(struct skb_shared_info,
10776 						     hwtstamps, 8,
10777 						     target_size));
10778 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10779 					       insn - jmp_on_null_skb - 1);
10780 		break;
10781 	}
10782 	}
10783 	return insn - insn_buf;
10784 }
10785 
10786 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10787 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10788 						    struct bpf_insn *insn)
10789 {
10790 	int reg;
10791 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10792 			   offsetof(struct sk_skb_cb, temp_reg);
10793 
10794 	if (si->src_reg == si->dst_reg) {
10795 		/* We need an extra register, choose and save a register. */
10796 		reg = BPF_REG_9;
10797 		if (si->src_reg == reg || si->dst_reg == reg)
10798 			reg--;
10799 		if (si->src_reg == reg || si->dst_reg == reg)
10800 			reg--;
10801 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10802 	} else {
10803 		reg = si->dst_reg;
10804 	}
10805 
10806 	/* reg = skb->data */
10807 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10808 			      reg, si->src_reg,
10809 			      offsetof(struct sk_buff, data));
10810 	/* AX = skb->len */
10811 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10812 			      BPF_REG_AX, si->src_reg,
10813 			      offsetof(struct sk_buff, len));
10814 	/* reg = skb->data + skb->len */
10815 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10816 	/* AX = skb->data_len */
10817 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10818 			      BPF_REG_AX, si->src_reg,
10819 			      offsetof(struct sk_buff, data_len));
10820 
10821 	/* reg = skb->data + skb->len - skb->data_len */
10822 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10823 
10824 	if (si->src_reg == si->dst_reg) {
10825 		/* Restore the saved register */
10826 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10827 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10828 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10829 	}
10830 
10831 	return insn;
10832 }
10833 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10834 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10835 				     const struct bpf_insn *si,
10836 				     struct bpf_insn *insn_buf,
10837 				     struct bpf_prog *prog, u32 *target_size)
10838 {
10839 	struct bpf_insn *insn = insn_buf;
10840 	int off;
10841 
10842 	switch (si->off) {
10843 	case offsetof(struct __sk_buff, data_end):
10844 		insn = bpf_convert_data_end_access(si, insn);
10845 		break;
10846 	case offsetof(struct __sk_buff, cb[0]) ...
10847 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10848 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10849 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10850 			      offsetof(struct sk_skb_cb, data)) %
10851 			     sizeof(__u64));
10852 
10853 		prog->cb_access = 1;
10854 		off  = si->off;
10855 		off -= offsetof(struct __sk_buff, cb[0]);
10856 		off += offsetof(struct sk_buff, cb);
10857 		off += offsetof(struct sk_skb_cb, data);
10858 		if (type == BPF_WRITE)
10859 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10860 		else
10861 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10862 					      si->src_reg, off);
10863 		break;
10864 
10865 
10866 	default:
10867 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10868 					      target_size);
10869 	}
10870 
10871 	return insn - insn_buf;
10872 }
10873 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10874 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10875 				     const struct bpf_insn *si,
10876 				     struct bpf_insn *insn_buf,
10877 				     struct bpf_prog *prog, u32 *target_size)
10878 {
10879 	struct bpf_insn *insn = insn_buf;
10880 #if IS_ENABLED(CONFIG_IPV6)
10881 	int off;
10882 #endif
10883 
10884 	/* convert ctx uses the fact sg element is first in struct */
10885 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10886 
10887 	switch (si->off) {
10888 	case offsetof(struct sk_msg_md, data):
10889 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10890 				      si->dst_reg, si->src_reg,
10891 				      offsetof(struct sk_msg, data));
10892 		break;
10893 	case offsetof(struct sk_msg_md, data_end):
10894 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10895 				      si->dst_reg, si->src_reg,
10896 				      offsetof(struct sk_msg, data_end));
10897 		break;
10898 	case offsetof(struct sk_msg_md, family):
10899 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10900 
10901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10902 					      struct sk_msg, sk),
10903 				      si->dst_reg, si->src_reg,
10904 				      offsetof(struct sk_msg, sk));
10905 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10906 				      offsetof(struct sock_common, skc_family));
10907 		break;
10908 
10909 	case offsetof(struct sk_msg_md, remote_ip4):
10910 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10911 
10912 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10913 						struct sk_msg, sk),
10914 				      si->dst_reg, si->src_reg,
10915 				      offsetof(struct sk_msg, sk));
10916 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10917 				      offsetof(struct sock_common, skc_daddr));
10918 		break;
10919 
10920 	case offsetof(struct sk_msg_md, local_ip4):
10921 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10922 					  skc_rcv_saddr) != 4);
10923 
10924 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10925 					      struct sk_msg, sk),
10926 				      si->dst_reg, si->src_reg,
10927 				      offsetof(struct sk_msg, sk));
10928 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10929 				      offsetof(struct sock_common,
10930 					       skc_rcv_saddr));
10931 		break;
10932 
10933 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10934 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10935 #if IS_ENABLED(CONFIG_IPV6)
10936 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10937 					  skc_v6_daddr.s6_addr32[0]) != 4);
10938 
10939 		off = si->off;
10940 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10941 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10942 						struct sk_msg, sk),
10943 				      si->dst_reg, si->src_reg,
10944 				      offsetof(struct sk_msg, sk));
10945 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10946 				      offsetof(struct sock_common,
10947 					       skc_v6_daddr.s6_addr32[0]) +
10948 				      off);
10949 #else
10950 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10951 #endif
10952 		break;
10953 
10954 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10955 	     offsetof(struct sk_msg_md, local_ip6[3]):
10956 #if IS_ENABLED(CONFIG_IPV6)
10957 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10958 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10959 
10960 		off = si->off;
10961 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10962 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10963 						struct sk_msg, sk),
10964 				      si->dst_reg, si->src_reg,
10965 				      offsetof(struct sk_msg, sk));
10966 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10967 				      offsetof(struct sock_common,
10968 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10969 				      off);
10970 #else
10971 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10972 #endif
10973 		break;
10974 
10975 	case offsetof(struct sk_msg_md, remote_port):
10976 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10977 
10978 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10979 						struct sk_msg, sk),
10980 				      si->dst_reg, si->src_reg,
10981 				      offsetof(struct sk_msg, sk));
10982 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10983 				      offsetof(struct sock_common, skc_dport));
10984 #ifndef __BIG_ENDIAN_BITFIELD
10985 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10986 #endif
10987 		break;
10988 
10989 	case offsetof(struct sk_msg_md, local_port):
10990 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10991 
10992 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10993 						struct sk_msg, sk),
10994 				      si->dst_reg, si->src_reg,
10995 				      offsetof(struct sk_msg, sk));
10996 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10997 				      offsetof(struct sock_common, skc_num));
10998 		break;
10999 
11000 	case offsetof(struct sk_msg_md, size):
11001 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11002 				      si->dst_reg, si->src_reg,
11003 				      offsetof(struct sk_msg_sg, size));
11004 		break;
11005 
11006 	case offsetof(struct sk_msg_md, sk):
11007 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11008 				      si->dst_reg, si->src_reg,
11009 				      offsetof(struct sk_msg, sk));
11010 		break;
11011 	}
11012 
11013 	return insn - insn_buf;
11014 }
11015 
11016 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11017 	.get_func_proto		= sk_filter_func_proto,
11018 	.is_valid_access	= sk_filter_is_valid_access,
11019 	.convert_ctx_access	= bpf_convert_ctx_access,
11020 	.gen_ld_abs		= bpf_gen_ld_abs,
11021 };
11022 
11023 const struct bpf_prog_ops sk_filter_prog_ops = {
11024 	.test_run		= bpf_prog_test_run_skb,
11025 };
11026 
11027 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11028 	.get_func_proto		= tc_cls_act_func_proto,
11029 	.is_valid_access	= tc_cls_act_is_valid_access,
11030 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11031 	.gen_prologue		= tc_cls_act_prologue,
11032 	.gen_ld_abs		= bpf_gen_ld_abs,
11033 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11034 };
11035 
11036 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11037 	.test_run		= bpf_prog_test_run_skb,
11038 };
11039 
11040 const struct bpf_verifier_ops xdp_verifier_ops = {
11041 	.get_func_proto		= xdp_func_proto,
11042 	.is_valid_access	= xdp_is_valid_access,
11043 	.convert_ctx_access	= xdp_convert_ctx_access,
11044 	.gen_prologue		= bpf_noop_prologue,
11045 	.btf_struct_access	= xdp_btf_struct_access,
11046 };
11047 
11048 const struct bpf_prog_ops xdp_prog_ops = {
11049 	.test_run		= bpf_prog_test_run_xdp,
11050 };
11051 
11052 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11053 	.get_func_proto		= cg_skb_func_proto,
11054 	.is_valid_access	= cg_skb_is_valid_access,
11055 	.convert_ctx_access	= bpf_convert_ctx_access,
11056 };
11057 
11058 const struct bpf_prog_ops cg_skb_prog_ops = {
11059 	.test_run		= bpf_prog_test_run_skb,
11060 };
11061 
11062 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11063 	.get_func_proto		= lwt_in_func_proto,
11064 	.is_valid_access	= lwt_is_valid_access,
11065 	.convert_ctx_access	= bpf_convert_ctx_access,
11066 };
11067 
11068 const struct bpf_prog_ops lwt_in_prog_ops = {
11069 	.test_run		= bpf_prog_test_run_skb,
11070 };
11071 
11072 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11073 	.get_func_proto		= lwt_out_func_proto,
11074 	.is_valid_access	= lwt_is_valid_access,
11075 	.convert_ctx_access	= bpf_convert_ctx_access,
11076 };
11077 
11078 const struct bpf_prog_ops lwt_out_prog_ops = {
11079 	.test_run		= bpf_prog_test_run_skb,
11080 };
11081 
11082 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11083 	.get_func_proto		= lwt_xmit_func_proto,
11084 	.is_valid_access	= lwt_is_valid_access,
11085 	.convert_ctx_access	= bpf_convert_ctx_access,
11086 	.gen_prologue		= tc_cls_act_prologue,
11087 };
11088 
11089 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11090 	.test_run		= bpf_prog_test_run_skb,
11091 };
11092 
11093 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11094 	.get_func_proto		= lwt_seg6local_func_proto,
11095 	.is_valid_access	= lwt_is_valid_access,
11096 	.convert_ctx_access	= bpf_convert_ctx_access,
11097 };
11098 
11099 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11100 };
11101 
11102 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11103 	.get_func_proto		= sock_filter_func_proto,
11104 	.is_valid_access	= sock_filter_is_valid_access,
11105 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11106 };
11107 
11108 const struct bpf_prog_ops cg_sock_prog_ops = {
11109 };
11110 
11111 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11112 	.get_func_proto		= sock_addr_func_proto,
11113 	.is_valid_access	= sock_addr_is_valid_access,
11114 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11115 };
11116 
11117 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11118 };
11119 
11120 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11121 	.get_func_proto		= sock_ops_func_proto,
11122 	.is_valid_access	= sock_ops_is_valid_access,
11123 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11124 };
11125 
11126 const struct bpf_prog_ops sock_ops_prog_ops = {
11127 };
11128 
11129 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11130 	.get_func_proto		= sk_skb_func_proto,
11131 	.is_valid_access	= sk_skb_is_valid_access,
11132 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11133 	.gen_prologue		= sk_skb_prologue,
11134 };
11135 
11136 const struct bpf_prog_ops sk_skb_prog_ops = {
11137 };
11138 
11139 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11140 	.get_func_proto		= sk_msg_func_proto,
11141 	.is_valid_access	= sk_msg_is_valid_access,
11142 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11143 	.gen_prologue		= bpf_noop_prologue,
11144 };
11145 
11146 const struct bpf_prog_ops sk_msg_prog_ops = {
11147 };
11148 
11149 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11150 	.get_func_proto		= flow_dissector_func_proto,
11151 	.is_valid_access	= flow_dissector_is_valid_access,
11152 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11153 };
11154 
11155 const struct bpf_prog_ops flow_dissector_prog_ops = {
11156 	.test_run		= bpf_prog_test_run_flow_dissector,
11157 };
11158 
sk_detach_filter(struct sock * sk)11159 int sk_detach_filter(struct sock *sk)
11160 {
11161 	int ret = -ENOENT;
11162 	struct sk_filter *filter;
11163 
11164 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11165 		return -EPERM;
11166 
11167 	filter = rcu_dereference_protected(sk->sk_filter,
11168 					   lockdep_sock_is_held(sk));
11169 	if (filter) {
11170 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11171 		sk_filter_uncharge(sk, filter);
11172 		ret = 0;
11173 	}
11174 
11175 	return ret;
11176 }
11177 EXPORT_SYMBOL_GPL(sk_detach_filter);
11178 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11179 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11180 {
11181 	struct sock_fprog_kern *fprog;
11182 	struct sk_filter *filter;
11183 	int ret = 0;
11184 
11185 	sockopt_lock_sock(sk);
11186 	filter = rcu_dereference_protected(sk->sk_filter,
11187 					   lockdep_sock_is_held(sk));
11188 	if (!filter)
11189 		goto out;
11190 
11191 	/* We're copying the filter that has been originally attached,
11192 	 * so no conversion/decode needed anymore. eBPF programs that
11193 	 * have no original program cannot be dumped through this.
11194 	 */
11195 	ret = -EACCES;
11196 	fprog = filter->prog->orig_prog;
11197 	if (!fprog)
11198 		goto out;
11199 
11200 	ret = fprog->len;
11201 	if (!len)
11202 		/* User space only enquires number of filter blocks. */
11203 		goto out;
11204 
11205 	ret = -EINVAL;
11206 	if (len < fprog->len)
11207 		goto out;
11208 
11209 	ret = -EFAULT;
11210 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11211 		goto out;
11212 
11213 	/* Instead of bytes, the API requests to return the number
11214 	 * of filter blocks.
11215 	 */
11216 	ret = fprog->len;
11217 out:
11218 	sockopt_release_sock(sk);
11219 	return ret;
11220 }
11221 
11222 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11223 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11224 				    struct sock_reuseport *reuse,
11225 				    struct sock *sk, struct sk_buff *skb,
11226 				    struct sock *migrating_sk,
11227 				    u32 hash)
11228 {
11229 	reuse_kern->skb = skb;
11230 	reuse_kern->sk = sk;
11231 	reuse_kern->selected_sk = NULL;
11232 	reuse_kern->migrating_sk = migrating_sk;
11233 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11234 	reuse_kern->hash = hash;
11235 	reuse_kern->reuseport_id = reuse->reuseport_id;
11236 	reuse_kern->bind_inany = reuse->bind_inany;
11237 }
11238 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11239 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11240 				  struct bpf_prog *prog, struct sk_buff *skb,
11241 				  struct sock *migrating_sk,
11242 				  u32 hash)
11243 {
11244 	struct sk_reuseport_kern reuse_kern;
11245 	enum sk_action action;
11246 
11247 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11248 	action = bpf_prog_run(prog, &reuse_kern);
11249 
11250 	if (action == SK_PASS)
11251 		return reuse_kern.selected_sk;
11252 	else
11253 		return ERR_PTR(-ECONNREFUSED);
11254 }
11255 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11256 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11257 	   struct bpf_map *, map, void *, key, u32, flags)
11258 {
11259 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11260 	struct sock_reuseport *reuse;
11261 	struct sock *selected_sk;
11262 	int err;
11263 
11264 	selected_sk = map->ops->map_lookup_elem(map, key);
11265 	if (!selected_sk)
11266 		return -ENOENT;
11267 
11268 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11269 	if (!reuse) {
11270 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11271 		 * The only (!reuse) case here is - the sk has already been
11272 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11273 		 *
11274 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11275 		 * the sk may never be in the reuseport group to begin with.
11276 		 */
11277 		err = is_sockarray ? -ENOENT : -EINVAL;
11278 		goto error;
11279 	}
11280 
11281 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11282 		struct sock *sk = reuse_kern->sk;
11283 
11284 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11285 			err = -EPROTOTYPE;
11286 		} else if (sk->sk_family != selected_sk->sk_family) {
11287 			err = -EAFNOSUPPORT;
11288 		} else {
11289 			/* Catch all. Likely bound to a different sockaddr. */
11290 			err = -EBADFD;
11291 		}
11292 		goto error;
11293 	}
11294 
11295 	reuse_kern->selected_sk = selected_sk;
11296 
11297 	return 0;
11298 error:
11299 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11300 	if (sk_is_refcounted(selected_sk))
11301 		sock_put(selected_sk);
11302 
11303 	return err;
11304 }
11305 
11306 static const struct bpf_func_proto sk_select_reuseport_proto = {
11307 	.func           = sk_select_reuseport,
11308 	.gpl_only       = false,
11309 	.ret_type       = RET_INTEGER,
11310 	.arg1_type	= ARG_PTR_TO_CTX,
11311 	.arg2_type      = ARG_CONST_MAP_PTR,
11312 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11313 	.arg4_type	= ARG_ANYTHING,
11314 };
11315 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11316 BPF_CALL_4(sk_reuseport_load_bytes,
11317 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11318 	   void *, to, u32, len)
11319 {
11320 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11321 }
11322 
11323 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11324 	.func		= sk_reuseport_load_bytes,
11325 	.gpl_only	= false,
11326 	.ret_type	= RET_INTEGER,
11327 	.arg1_type	= ARG_PTR_TO_CTX,
11328 	.arg2_type	= ARG_ANYTHING,
11329 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11330 	.arg4_type	= ARG_CONST_SIZE,
11331 };
11332 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11333 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11334 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11335 	   void *, to, u32, len, u32, start_header)
11336 {
11337 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11338 					       len, start_header);
11339 }
11340 
11341 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11342 	.func		= sk_reuseport_load_bytes_relative,
11343 	.gpl_only	= false,
11344 	.ret_type	= RET_INTEGER,
11345 	.arg1_type	= ARG_PTR_TO_CTX,
11346 	.arg2_type	= ARG_ANYTHING,
11347 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11348 	.arg4_type	= ARG_CONST_SIZE,
11349 	.arg5_type	= ARG_ANYTHING,
11350 };
11351 
11352 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11353 sk_reuseport_func_proto(enum bpf_func_id func_id,
11354 			const struct bpf_prog *prog)
11355 {
11356 	switch (func_id) {
11357 	case BPF_FUNC_sk_select_reuseport:
11358 		return &sk_select_reuseport_proto;
11359 	case BPF_FUNC_skb_load_bytes:
11360 		return &sk_reuseport_load_bytes_proto;
11361 	case BPF_FUNC_skb_load_bytes_relative:
11362 		return &sk_reuseport_load_bytes_relative_proto;
11363 	case BPF_FUNC_get_socket_cookie:
11364 		return &bpf_get_socket_ptr_cookie_proto;
11365 	case BPF_FUNC_ktime_get_coarse_ns:
11366 		return &bpf_ktime_get_coarse_ns_proto;
11367 	default:
11368 		return bpf_base_func_proto(func_id, prog);
11369 	}
11370 }
11371 
11372 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11373 sk_reuseport_is_valid_access(int off, int size,
11374 			     enum bpf_access_type type,
11375 			     const struct bpf_prog *prog,
11376 			     struct bpf_insn_access_aux *info)
11377 {
11378 	const u32 size_default = sizeof(__u32);
11379 
11380 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11381 	    off % size || type != BPF_READ)
11382 		return false;
11383 
11384 	switch (off) {
11385 	case offsetof(struct sk_reuseport_md, data):
11386 		info->reg_type = PTR_TO_PACKET;
11387 		return size == sizeof(__u64);
11388 
11389 	case offsetof(struct sk_reuseport_md, data_end):
11390 		info->reg_type = PTR_TO_PACKET_END;
11391 		return size == sizeof(__u64);
11392 
11393 	case offsetof(struct sk_reuseport_md, hash):
11394 		return size == size_default;
11395 
11396 	case offsetof(struct sk_reuseport_md, sk):
11397 		info->reg_type = PTR_TO_SOCKET;
11398 		return size == sizeof(__u64);
11399 
11400 	case offsetof(struct sk_reuseport_md, migrating_sk):
11401 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11402 		return size == sizeof(__u64);
11403 
11404 	/* Fields that allow narrowing */
11405 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11406 		if (size < sizeof_field(struct sk_buff, protocol))
11407 			return false;
11408 		fallthrough;
11409 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11410 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11411 	case bpf_ctx_range(struct sk_reuseport_md, len):
11412 		bpf_ctx_record_field_size(info, size_default);
11413 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11414 
11415 	default:
11416 		return false;
11417 	}
11418 }
11419 
11420 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11421 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11422 			      si->dst_reg, si->src_reg,			\
11423 			      bpf_target_off(struct sk_reuseport_kern, F, \
11424 					     sizeof_field(struct sk_reuseport_kern, F), \
11425 					     target_size));		\
11426 	})
11427 
11428 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11429 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11430 				    struct sk_buff,			\
11431 				    skb,				\
11432 				    SKB_FIELD)
11433 
11434 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11435 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11436 				    struct sock,			\
11437 				    sk,					\
11438 				    SK_FIELD)
11439 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11440 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11441 					   const struct bpf_insn *si,
11442 					   struct bpf_insn *insn_buf,
11443 					   struct bpf_prog *prog,
11444 					   u32 *target_size)
11445 {
11446 	struct bpf_insn *insn = insn_buf;
11447 
11448 	switch (si->off) {
11449 	case offsetof(struct sk_reuseport_md, data):
11450 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11451 		break;
11452 
11453 	case offsetof(struct sk_reuseport_md, len):
11454 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11455 		break;
11456 
11457 	case offsetof(struct sk_reuseport_md, eth_protocol):
11458 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11459 		break;
11460 
11461 	case offsetof(struct sk_reuseport_md, ip_protocol):
11462 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11463 		break;
11464 
11465 	case offsetof(struct sk_reuseport_md, data_end):
11466 		SK_REUSEPORT_LOAD_FIELD(data_end);
11467 		break;
11468 
11469 	case offsetof(struct sk_reuseport_md, hash):
11470 		SK_REUSEPORT_LOAD_FIELD(hash);
11471 		break;
11472 
11473 	case offsetof(struct sk_reuseport_md, bind_inany):
11474 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11475 		break;
11476 
11477 	case offsetof(struct sk_reuseport_md, sk):
11478 		SK_REUSEPORT_LOAD_FIELD(sk);
11479 		break;
11480 
11481 	case offsetof(struct sk_reuseport_md, migrating_sk):
11482 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11483 		break;
11484 	}
11485 
11486 	return insn - insn_buf;
11487 }
11488 
11489 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11490 	.get_func_proto		= sk_reuseport_func_proto,
11491 	.is_valid_access	= sk_reuseport_is_valid_access,
11492 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11493 };
11494 
11495 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11496 };
11497 
11498 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11499 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11500 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11501 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11502 	   struct sock *, sk, u64, flags)
11503 {
11504 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11505 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11506 		return -EINVAL;
11507 	if (unlikely(sk && sk_is_refcounted(sk)))
11508 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11509 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11510 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11511 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11512 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11513 
11514 	/* Check if socket is suitable for packet L3/L4 protocol */
11515 	if (sk && sk->sk_protocol != ctx->protocol)
11516 		return -EPROTOTYPE;
11517 	if (sk && sk->sk_family != ctx->family &&
11518 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11519 		return -EAFNOSUPPORT;
11520 
11521 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11522 		return -EEXIST;
11523 
11524 	/* Select socket as lookup result */
11525 	ctx->selected_sk = sk;
11526 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11527 	return 0;
11528 }
11529 
11530 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11531 	.func		= bpf_sk_lookup_assign,
11532 	.gpl_only	= false,
11533 	.ret_type	= RET_INTEGER,
11534 	.arg1_type	= ARG_PTR_TO_CTX,
11535 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11536 	.arg3_type	= ARG_ANYTHING,
11537 };
11538 
11539 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11540 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11541 {
11542 	switch (func_id) {
11543 	case BPF_FUNC_perf_event_output:
11544 		return &bpf_event_output_data_proto;
11545 	case BPF_FUNC_sk_assign:
11546 		return &bpf_sk_lookup_assign_proto;
11547 	case BPF_FUNC_sk_release:
11548 		return &bpf_sk_release_proto;
11549 	default:
11550 		return bpf_sk_base_func_proto(func_id, prog);
11551 	}
11552 }
11553 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11554 static bool sk_lookup_is_valid_access(int off, int size,
11555 				      enum bpf_access_type type,
11556 				      const struct bpf_prog *prog,
11557 				      struct bpf_insn_access_aux *info)
11558 {
11559 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11560 		return false;
11561 	if (off % size != 0)
11562 		return false;
11563 	if (type != BPF_READ)
11564 		return false;
11565 
11566 	switch (off) {
11567 	case offsetof(struct bpf_sk_lookup, sk):
11568 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11569 		return size == sizeof(__u64);
11570 
11571 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11572 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11573 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11574 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11575 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11576 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11577 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11578 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11579 		bpf_ctx_record_field_size(info, sizeof(__u32));
11580 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11581 
11582 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11583 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11584 		if (size == sizeof(__u32))
11585 			return true;
11586 		bpf_ctx_record_field_size(info, sizeof(__be16));
11587 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11588 
11589 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11590 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11591 		/* Allow access to zero padding for backward compatibility */
11592 		bpf_ctx_record_field_size(info, sizeof(__u16));
11593 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11594 
11595 	default:
11596 		return false;
11597 	}
11598 }
11599 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11600 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11601 					const struct bpf_insn *si,
11602 					struct bpf_insn *insn_buf,
11603 					struct bpf_prog *prog,
11604 					u32 *target_size)
11605 {
11606 	struct bpf_insn *insn = insn_buf;
11607 
11608 	switch (si->off) {
11609 	case offsetof(struct bpf_sk_lookup, sk):
11610 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11611 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11612 		break;
11613 
11614 	case offsetof(struct bpf_sk_lookup, family):
11615 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11616 				      bpf_target_off(struct bpf_sk_lookup_kern,
11617 						     family, 2, target_size));
11618 		break;
11619 
11620 	case offsetof(struct bpf_sk_lookup, protocol):
11621 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11622 				      bpf_target_off(struct bpf_sk_lookup_kern,
11623 						     protocol, 2, target_size));
11624 		break;
11625 
11626 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11627 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11628 				      bpf_target_off(struct bpf_sk_lookup_kern,
11629 						     v4.saddr, 4, target_size));
11630 		break;
11631 
11632 	case offsetof(struct bpf_sk_lookup, local_ip4):
11633 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11634 				      bpf_target_off(struct bpf_sk_lookup_kern,
11635 						     v4.daddr, 4, target_size));
11636 		break;
11637 
11638 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11639 				remote_ip6[0], remote_ip6[3]): {
11640 #if IS_ENABLED(CONFIG_IPV6)
11641 		int off = si->off;
11642 
11643 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11644 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11645 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11646 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11647 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11648 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11649 #else
11650 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11651 #endif
11652 		break;
11653 	}
11654 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11655 				local_ip6[0], local_ip6[3]): {
11656 #if IS_ENABLED(CONFIG_IPV6)
11657 		int off = si->off;
11658 
11659 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11660 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11661 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11662 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11663 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11664 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11665 #else
11666 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11667 #endif
11668 		break;
11669 	}
11670 	case offsetof(struct bpf_sk_lookup, remote_port):
11671 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11672 				      bpf_target_off(struct bpf_sk_lookup_kern,
11673 						     sport, 2, target_size));
11674 		break;
11675 
11676 	case offsetofend(struct bpf_sk_lookup, remote_port):
11677 		*target_size = 2;
11678 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11679 		break;
11680 
11681 	case offsetof(struct bpf_sk_lookup, local_port):
11682 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11683 				      bpf_target_off(struct bpf_sk_lookup_kern,
11684 						     dport, 2, target_size));
11685 		break;
11686 
11687 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11688 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11689 				      bpf_target_off(struct bpf_sk_lookup_kern,
11690 						     ingress_ifindex, 4, target_size));
11691 		break;
11692 	}
11693 
11694 	return insn - insn_buf;
11695 }
11696 
11697 const struct bpf_prog_ops sk_lookup_prog_ops = {
11698 	.test_run = bpf_prog_test_run_sk_lookup,
11699 };
11700 
11701 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11702 	.get_func_proto		= sk_lookup_func_proto,
11703 	.is_valid_access	= sk_lookup_is_valid_access,
11704 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11705 };
11706 
11707 #endif /* CONFIG_INET */
11708 
DEFINE_BPF_DISPATCHER(xdp)11709 DEFINE_BPF_DISPATCHER(xdp)
11710 
11711 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11712 {
11713 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11714 }
11715 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11716 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11717 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11718 BTF_SOCK_TYPE_xxx
11719 #undef BTF_SOCK_TYPE
11720 
11721 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11722 {
11723 	/* tcp6_sock type is not generated in dwarf and hence btf,
11724 	 * trigger an explicit type generation here.
11725 	 */
11726 	BTF_TYPE_EMIT(struct tcp6_sock);
11727 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11728 	    sk->sk_family == AF_INET6)
11729 		return (unsigned long)sk;
11730 
11731 	return (unsigned long)NULL;
11732 }
11733 
11734 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11735 	.func			= bpf_skc_to_tcp6_sock,
11736 	.gpl_only		= false,
11737 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11738 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11739 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11740 };
11741 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11742 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11743 {
11744 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11745 		return (unsigned long)sk;
11746 
11747 	return (unsigned long)NULL;
11748 }
11749 
11750 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11751 	.func			= bpf_skc_to_tcp_sock,
11752 	.gpl_only		= false,
11753 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11754 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11755 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11756 };
11757 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11758 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11759 {
11760 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11761 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11762 	 */
11763 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11764 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11765 
11766 #ifdef CONFIG_INET
11767 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11768 		return (unsigned long)sk;
11769 #endif
11770 
11771 #if IS_BUILTIN(CONFIG_IPV6)
11772 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11773 		return (unsigned long)sk;
11774 #endif
11775 
11776 	return (unsigned long)NULL;
11777 }
11778 
11779 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11780 	.func			= bpf_skc_to_tcp_timewait_sock,
11781 	.gpl_only		= false,
11782 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11783 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11784 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11785 };
11786 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11787 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11788 {
11789 #ifdef CONFIG_INET
11790 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11791 		return (unsigned long)sk;
11792 #endif
11793 
11794 #if IS_BUILTIN(CONFIG_IPV6)
11795 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11796 		return (unsigned long)sk;
11797 #endif
11798 
11799 	return (unsigned long)NULL;
11800 }
11801 
11802 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11803 	.func			= bpf_skc_to_tcp_request_sock,
11804 	.gpl_only		= false,
11805 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11806 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11807 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11808 };
11809 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11810 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11811 {
11812 	/* udp6_sock type is not generated in dwarf and hence btf,
11813 	 * trigger an explicit type generation here.
11814 	 */
11815 	BTF_TYPE_EMIT(struct udp6_sock);
11816 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11817 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11818 		return (unsigned long)sk;
11819 
11820 	return (unsigned long)NULL;
11821 }
11822 
11823 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11824 	.func			= bpf_skc_to_udp6_sock,
11825 	.gpl_only		= false,
11826 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11827 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11828 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11829 };
11830 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11831 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11832 {
11833 	/* unix_sock type is not generated in dwarf and hence btf,
11834 	 * trigger an explicit type generation here.
11835 	 */
11836 	BTF_TYPE_EMIT(struct unix_sock);
11837 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11838 		return (unsigned long)sk;
11839 
11840 	return (unsigned long)NULL;
11841 }
11842 
11843 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11844 	.func			= bpf_skc_to_unix_sock,
11845 	.gpl_only		= false,
11846 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11847 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11848 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11849 };
11850 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11851 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11852 {
11853 	BTF_TYPE_EMIT(struct mptcp_sock);
11854 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11855 }
11856 
11857 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11858 	.func		= bpf_skc_to_mptcp_sock,
11859 	.gpl_only	= false,
11860 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11862 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11863 };
11864 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11865 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11866 {
11867 	return (unsigned long)sock_from_file(file);
11868 }
11869 
11870 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11871 BTF_ID(struct, socket)
11872 BTF_ID(struct, file)
11873 
11874 const struct bpf_func_proto bpf_sock_from_file_proto = {
11875 	.func		= bpf_sock_from_file,
11876 	.gpl_only	= false,
11877 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11878 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11879 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11880 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11881 };
11882 
11883 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11884 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11885 {
11886 	const struct bpf_func_proto *func;
11887 
11888 	switch (func_id) {
11889 	case BPF_FUNC_skc_to_tcp6_sock:
11890 		func = &bpf_skc_to_tcp6_sock_proto;
11891 		break;
11892 	case BPF_FUNC_skc_to_tcp_sock:
11893 		func = &bpf_skc_to_tcp_sock_proto;
11894 		break;
11895 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11896 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11897 		break;
11898 	case BPF_FUNC_skc_to_tcp_request_sock:
11899 		func = &bpf_skc_to_tcp_request_sock_proto;
11900 		break;
11901 	case BPF_FUNC_skc_to_udp6_sock:
11902 		func = &bpf_skc_to_udp6_sock_proto;
11903 		break;
11904 	case BPF_FUNC_skc_to_unix_sock:
11905 		func = &bpf_skc_to_unix_sock_proto;
11906 		break;
11907 	case BPF_FUNC_skc_to_mptcp_sock:
11908 		func = &bpf_skc_to_mptcp_sock_proto;
11909 		break;
11910 	case BPF_FUNC_ktime_get_coarse_ns:
11911 		return &bpf_ktime_get_coarse_ns_proto;
11912 	default:
11913 		return bpf_base_func_proto(func_id, prog);
11914 	}
11915 
11916 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11917 		return NULL;
11918 
11919 	return func;
11920 }
11921 
11922 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11923 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11924 				    struct bpf_dynptr *ptr__uninit)
11925 {
11926 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11927 	struct sk_buff *skb = (struct sk_buff *)s;
11928 
11929 	if (flags) {
11930 		bpf_dynptr_set_null(ptr);
11931 		return -EINVAL;
11932 	}
11933 
11934 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11935 
11936 	return 0;
11937 }
11938 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)11939 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11940 				    struct bpf_dynptr *ptr__uninit)
11941 {
11942 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11943 	struct xdp_buff *xdp = (struct xdp_buff *)x;
11944 
11945 	if (flags) {
11946 		bpf_dynptr_set_null(ptr);
11947 		return -EINVAL;
11948 	}
11949 
11950 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11951 
11952 	return 0;
11953 }
11954 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11955 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11956 					   const u8 *sun_path, u32 sun_path__sz)
11957 {
11958 	struct sockaddr_un *un;
11959 
11960 	if (sa_kern->sk->sk_family != AF_UNIX)
11961 		return -EINVAL;
11962 
11963 	/* We do not allow changing the address to unnamed or larger than the
11964 	 * maximum allowed address size for a unix sockaddr.
11965 	 */
11966 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11967 		return -EINVAL;
11968 
11969 	un = (struct sockaddr_un *)sa_kern->uaddr;
11970 	memcpy(un->sun_path, sun_path, sun_path__sz);
11971 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11972 
11973 	return 0;
11974 }
11975 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)11976 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
11977 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
11978 {
11979 #if IS_ENABLED(CONFIG_SYN_COOKIES)
11980 	struct sk_buff *skb = (struct sk_buff *)s;
11981 	const struct request_sock_ops *ops;
11982 	struct inet_request_sock *ireq;
11983 	struct tcp_request_sock *treq;
11984 	struct request_sock *req;
11985 	struct net *net;
11986 	__u16 min_mss;
11987 	u32 tsoff = 0;
11988 
11989 	if (attrs__sz != sizeof(*attrs) ||
11990 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
11991 		return -EINVAL;
11992 
11993 	if (!skb_at_tc_ingress(skb))
11994 		return -EINVAL;
11995 
11996 	net = dev_net(skb->dev);
11997 	if (net != sock_net(sk))
11998 		return -ENETUNREACH;
11999 
12000 	switch (skb->protocol) {
12001 	case htons(ETH_P_IP):
12002 		ops = &tcp_request_sock_ops;
12003 		min_mss = 536;
12004 		break;
12005 #if IS_BUILTIN(CONFIG_IPV6)
12006 	case htons(ETH_P_IPV6):
12007 		ops = &tcp6_request_sock_ops;
12008 		min_mss = IPV6_MIN_MTU - 60;
12009 		break;
12010 #endif
12011 	default:
12012 		return -EINVAL;
12013 	}
12014 
12015 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12016 	    sk_is_mptcp(sk))
12017 		return -EINVAL;
12018 
12019 	if (attrs->mss < min_mss)
12020 		return -EINVAL;
12021 
12022 	if (attrs->wscale_ok) {
12023 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12024 			return -EINVAL;
12025 
12026 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12027 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12028 			return -EINVAL;
12029 	}
12030 
12031 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12032 		return -EINVAL;
12033 
12034 	if (attrs->tstamp_ok) {
12035 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12036 			return -EINVAL;
12037 
12038 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12039 	}
12040 
12041 	req = inet_reqsk_alloc(ops, sk, false);
12042 	if (!req)
12043 		return -ENOMEM;
12044 
12045 	ireq = inet_rsk(req);
12046 	treq = tcp_rsk(req);
12047 
12048 	req->rsk_listener = sk;
12049 	req->syncookie = 1;
12050 	req->mss = attrs->mss;
12051 	req->ts_recent = attrs->rcv_tsval;
12052 
12053 	ireq->snd_wscale = attrs->snd_wscale;
12054 	ireq->rcv_wscale = attrs->rcv_wscale;
12055 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12056 	ireq->sack_ok = !!attrs->sack_ok;
12057 	ireq->wscale_ok = !!attrs->wscale_ok;
12058 	ireq->ecn_ok = !!attrs->ecn_ok;
12059 
12060 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12061 	treq->ts_off = tsoff;
12062 
12063 	skb_orphan(skb);
12064 	skb->sk = req_to_sk(req);
12065 	skb->destructor = sock_pfree;
12066 
12067 	return 0;
12068 #else
12069 	return -EOPNOTSUPP;
12070 #endif
12071 }
12072 
12073 __bpf_kfunc_end_defs();
12074 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12075 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12076 			       struct bpf_dynptr *ptr__uninit)
12077 {
12078 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12079 	int err;
12080 
12081 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12082 	if (err)
12083 		return err;
12084 
12085 	bpf_dynptr_set_rdonly(ptr);
12086 
12087 	return 0;
12088 }
12089 
12090 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12091 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12092 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12093 
12094 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12095 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12096 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12097 
12098 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12099 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12100 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12101 
12102 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12103 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12104 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12105 
12106 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12107 	.owner = THIS_MODULE,
12108 	.set = &bpf_kfunc_check_set_skb,
12109 };
12110 
12111 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12112 	.owner = THIS_MODULE,
12113 	.set = &bpf_kfunc_check_set_xdp,
12114 };
12115 
12116 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12117 	.owner = THIS_MODULE,
12118 	.set = &bpf_kfunc_check_set_sock_addr,
12119 };
12120 
12121 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12122 	.owner = THIS_MODULE,
12123 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12124 };
12125 
bpf_kfunc_init(void)12126 static int __init bpf_kfunc_init(void)
12127 {
12128 	int ret;
12129 
12130 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12131 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12132 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12133 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12134 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12135 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12136 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12137 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12138 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12139 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12140 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12141 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12142 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12143 					       &bpf_kfunc_set_sock_addr);
12144 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12145 }
12146 late_initcall(bpf_kfunc_init);
12147 
12148 __bpf_kfunc_start_defs();
12149 
12150 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12151  *
12152  * The function expects a non-NULL pointer to a socket, and invokes the
12153  * protocol specific socket destroy handlers.
12154  *
12155  * The helper can only be called from BPF contexts that have acquired the socket
12156  * locks.
12157  *
12158  * Parameters:
12159  * @sock: Pointer to socket to be destroyed
12160  *
12161  * Return:
12162  * On error, may return EPROTONOSUPPORT, EINVAL.
12163  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12164  * 0 otherwise
12165  */
bpf_sock_destroy(struct sock_common * sock)12166 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12167 {
12168 	struct sock *sk = (struct sock *)sock;
12169 
12170 	/* The locking semantics that allow for synchronous execution of the
12171 	 * destroy handlers are only supported for TCP and UDP.
12172 	 * Supporting protocols will need to acquire sock lock in the BPF context
12173 	 * prior to invoking this kfunc.
12174 	 */
12175 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12176 					   sk->sk_protocol != IPPROTO_UDP))
12177 		return -EOPNOTSUPP;
12178 
12179 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12180 }
12181 
12182 __bpf_kfunc_end_defs();
12183 
12184 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12185 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12186 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12187 
12188 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12189 {
12190 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12191 	    prog->expected_attach_type != BPF_TRACE_ITER)
12192 		return -EACCES;
12193 	return 0;
12194 }
12195 
12196 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12197 	.owner = THIS_MODULE,
12198 	.set   = &bpf_sk_iter_kfunc_ids,
12199 	.filter = tracing_iter_filter,
12200 };
12201 
init_subsystem(void)12202 static int init_subsystem(void)
12203 {
12204 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12205 }
12206 late_initcall(init_subsystem);
12207