1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72
73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 close_ctree(fs_info);
75 }
76
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 char *subvol_name;
80 u64 subvol_objectid;
81 u64 max_inline;
82 u32 commit_interval;
83 u32 metadata_ratio;
84 u32 thread_pool_size;
85 unsigned long long mount_opt;
86 unsigned long compress_type:4;
87 unsigned int compress_level;
88 refcount_t refs;
89 };
90
91 enum {
92 Opt_acl,
93 Opt_clear_cache,
94 Opt_commit_interval,
95 Opt_compress,
96 Opt_compress_force,
97 Opt_compress_force_type,
98 Opt_compress_type,
99 Opt_degraded,
100 Opt_device,
101 Opt_fatal_errors,
102 Opt_flushoncommit,
103 Opt_max_inline,
104 Opt_barrier,
105 Opt_datacow,
106 Opt_datasum,
107 Opt_defrag,
108 Opt_discard,
109 Opt_discard_mode,
110 Opt_ratio,
111 Opt_rescan_uuid_tree,
112 Opt_skip_balance,
113 Opt_space_cache,
114 Opt_space_cache_version,
115 Opt_ssd,
116 Opt_ssd_spread,
117 Opt_subvol,
118 Opt_subvol_empty,
119 Opt_subvolid,
120 Opt_thread_pool,
121 Opt_treelog,
122 Opt_user_subvol_rm_allowed,
123 Opt_norecovery,
124
125 /* Rescue options */
126 Opt_rescue,
127 Opt_usebackuproot,
128 Opt_nologreplay,
129
130 /* Debugging options */
131 Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136 Opt_ref_verify,
137 #endif
138 Opt_err,
139 };
140
141 enum {
142 Opt_fatal_errors_panic,
143 Opt_fatal_errors_bug,
144 };
145
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147 { "panic", Opt_fatal_errors_panic },
148 { "bug", Opt_fatal_errors_bug },
149 {}
150 };
151
152 enum {
153 Opt_discard_sync,
154 Opt_discard_async,
155 };
156
157 static const struct constant_table btrfs_parameter_discard[] = {
158 { "sync", Opt_discard_sync },
159 { "async", Opt_discard_async },
160 {}
161 };
162
163 enum {
164 Opt_space_cache_v1,
165 Opt_space_cache_v2,
166 };
167
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169 { "v1", Opt_space_cache_v1 },
170 { "v2", Opt_space_cache_v2 },
171 {}
172 };
173
174 enum {
175 Opt_rescue_usebackuproot,
176 Opt_rescue_nologreplay,
177 Opt_rescue_ignorebadroots,
178 Opt_rescue_ignoredatacsums,
179 Opt_rescue_ignoremetacsums,
180 Opt_rescue_ignoresuperflags,
181 Opt_rescue_parameter_all,
182 };
183
184 static const struct constant_table btrfs_parameter_rescue[] = {
185 { "usebackuproot", Opt_rescue_usebackuproot },
186 { "nologreplay", Opt_rescue_nologreplay },
187 { "ignorebadroots", Opt_rescue_ignorebadroots },
188 { "ibadroots", Opt_rescue_ignorebadroots },
189 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
190 { "ignoremetacsums", Opt_rescue_ignoremetacsums},
191 { "ignoresuperflags", Opt_rescue_ignoresuperflags},
192 { "idatacsums", Opt_rescue_ignoredatacsums },
193 { "imetacsums", Opt_rescue_ignoremetacsums},
194 { "isuperflags", Opt_rescue_ignoresuperflags},
195 { "all", Opt_rescue_parameter_all },
196 {}
197 };
198
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201 Opt_fragment_parameter_data,
202 Opt_fragment_parameter_metadata,
203 Opt_fragment_parameter_all,
204 };
205
206 static const struct constant_table btrfs_parameter_fragment[] = {
207 { "data", Opt_fragment_parameter_data },
208 { "metadata", Opt_fragment_parameter_metadata },
209 { "all", Opt_fragment_parameter_all },
210 {}
211 };
212 #endif
213
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215 fsparam_flag_no("acl", Opt_acl),
216 fsparam_flag_no("autodefrag", Opt_defrag),
217 fsparam_flag_no("barrier", Opt_barrier),
218 fsparam_flag("clear_cache", Opt_clear_cache),
219 fsparam_u32("commit", Opt_commit_interval),
220 fsparam_flag("compress", Opt_compress),
221 fsparam_string("compress", Opt_compress_type),
222 fsparam_flag("compress-force", Opt_compress_force),
223 fsparam_string("compress-force", Opt_compress_force_type),
224 fsparam_flag_no("datacow", Opt_datacow),
225 fsparam_flag_no("datasum", Opt_datasum),
226 fsparam_flag("degraded", Opt_degraded),
227 fsparam_string("device", Opt_device),
228 fsparam_flag_no("discard", Opt_discard),
229 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232 fsparam_string("max_inline", Opt_max_inline),
233 fsparam_u32("metadata_ratio", Opt_ratio),
234 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235 fsparam_flag("skip_balance", Opt_skip_balance),
236 fsparam_flag_no("space_cache", Opt_space_cache),
237 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238 fsparam_flag_no("ssd", Opt_ssd),
239 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240 fsparam_string("subvol", Opt_subvol),
241 fsparam_flag("subvol=", Opt_subvol_empty),
242 fsparam_u64("subvolid", Opt_subvolid),
243 fsparam_u32("thread_pool", Opt_thread_pool),
244 fsparam_flag_no("treelog", Opt_treelog),
245 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246
247 /* Rescue options. */
248 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249 /* Deprecated, with alias rescue=nologreplay */
250 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251 /* Deprecated, with alias rescue=usebackuproot */
252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 /* For compatibility only, alias for "rescue=nologreplay". */
254 fsparam_flag("norecovery", Opt_norecovery),
255
256 /* Debugging options. */
257 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 {}
265 };
266
267 /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275 struct btrfs_fs_context *ctx = fc->fs_private;
276 struct fs_parse_result result;
277 int opt;
278
279 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 if (opt < 0)
281 return opt;
282
283 switch (opt) {
284 case Opt_degraded:
285 btrfs_set_opt(ctx->mount_opt, DEGRADED);
286 break;
287 case Opt_subvol_empty:
288 /*
289 * This exists because we used to allow it on accident, so we're
290 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
291 * empty subvol= again").
292 */
293 break;
294 case Opt_subvol:
295 kfree(ctx->subvol_name);
296 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297 if (!ctx->subvol_name)
298 return -ENOMEM;
299 break;
300 case Opt_subvolid:
301 ctx->subvol_objectid = result.uint_64;
302
303 /* subvolid=0 means give me the original fs_tree. */
304 if (!ctx->subvol_objectid)
305 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306 break;
307 case Opt_device: {
308 struct btrfs_device *device;
309 blk_mode_t mode = btrfs_open_mode(fc);
310
311 mutex_lock(&uuid_mutex);
312 device = btrfs_scan_one_device(param->string, mode, false);
313 mutex_unlock(&uuid_mutex);
314 if (IS_ERR(device))
315 return PTR_ERR(device);
316 break;
317 }
318 case Opt_datasum:
319 if (result.negated) {
320 btrfs_set_opt(ctx->mount_opt, NODATASUM);
321 } else {
322 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324 }
325 break;
326 case Opt_datacow:
327 if (result.negated) {
328 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330 btrfs_set_opt(ctx->mount_opt, NODATACOW);
331 btrfs_set_opt(ctx->mount_opt, NODATASUM);
332 } else {
333 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334 }
335 break;
336 case Opt_compress_force:
337 case Opt_compress_force_type:
338 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339 fallthrough;
340 case Opt_compress:
341 case Opt_compress_type:
342 /*
343 * Provide the same semantics as older kernels that don't use fs
344 * context, specifying the "compress" option clears
345 * "force-compress" without the need to pass
346 * "compress-force=[no|none]" before specifying "compress".
347 */
348 if (opt != Opt_compress_force && opt != Opt_compress_force_type)
349 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
350
351 if (opt == Opt_compress || opt == Opt_compress_force) {
352 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
353 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
354 btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 } else if (strncmp(param->string, "zlib", 4) == 0) {
358 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
359 ctx->compress_level =
360 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
361 param->string + 4);
362 btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 } else if (strncmp(param->string, "lzo", 3) == 0) {
366 ctx->compress_type = BTRFS_COMPRESS_LZO;
367 ctx->compress_level = 0;
368 btrfs_set_opt(ctx->mount_opt, COMPRESS);
369 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
370 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
371 } else if (strncmp(param->string, "zstd", 4) == 0) {
372 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
373 ctx->compress_level =
374 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
375 param->string + 4);
376 btrfs_set_opt(ctx->mount_opt, COMPRESS);
377 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
378 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
379 } else if (strncmp(param->string, "no", 2) == 0) {
380 ctx->compress_level = 0;
381 ctx->compress_type = 0;
382 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
383 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
384 } else {
385 btrfs_err(NULL, "unrecognized compression value %s",
386 param->string);
387 return -EINVAL;
388 }
389 break;
390 case Opt_ssd:
391 if (result.negated) {
392 btrfs_set_opt(ctx->mount_opt, NOSSD);
393 btrfs_clear_opt(ctx->mount_opt, SSD);
394 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
395 } else {
396 btrfs_set_opt(ctx->mount_opt, SSD);
397 btrfs_clear_opt(ctx->mount_opt, NOSSD);
398 }
399 break;
400 case Opt_ssd_spread:
401 if (result.negated) {
402 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
403 } else {
404 btrfs_set_opt(ctx->mount_opt, SSD);
405 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
406 btrfs_clear_opt(ctx->mount_opt, NOSSD);
407 }
408 break;
409 case Opt_barrier:
410 if (result.negated)
411 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
412 else
413 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
414 break;
415 case Opt_thread_pool:
416 if (result.uint_32 == 0) {
417 btrfs_err(NULL, "invalid value 0 for thread_pool");
418 return -EINVAL;
419 }
420 ctx->thread_pool_size = result.uint_32;
421 break;
422 case Opt_max_inline:
423 ctx->max_inline = memparse(param->string, NULL);
424 break;
425 case Opt_acl:
426 if (result.negated) {
427 fc->sb_flags &= ~SB_POSIXACL;
428 } else {
429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
430 fc->sb_flags |= SB_POSIXACL;
431 #else
432 btrfs_err(NULL, "support for ACL not compiled in");
433 return -EINVAL;
434 #endif
435 }
436 /*
437 * VFS limits the ability to toggle ACL on and off via remount,
438 * despite every file system allowing this. This seems to be
439 * an oversight since we all do, but it'll fail if we're
440 * remounting. So don't set the mask here, we'll check it in
441 * btrfs_reconfigure and do the toggling ourselves.
442 */
443 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
444 fc->sb_flags_mask |= SB_POSIXACL;
445 break;
446 case Opt_treelog:
447 if (result.negated)
448 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
449 else
450 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
451 break;
452 case Opt_nologreplay:
453 btrfs_warn(NULL,
454 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
455 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
456 break;
457 case Opt_norecovery:
458 btrfs_info(NULL,
459 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
460 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
461 break;
462 case Opt_flushoncommit:
463 if (result.negated)
464 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
465 else
466 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
467 break;
468 case Opt_ratio:
469 ctx->metadata_ratio = result.uint_32;
470 break;
471 case Opt_discard:
472 if (result.negated) {
473 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
474 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
475 btrfs_set_opt(ctx->mount_opt, NODISCARD);
476 } else {
477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 }
480 break;
481 case Opt_discard_mode:
482 switch (result.uint_32) {
483 case Opt_discard_sync:
484 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
485 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
486 break;
487 case Opt_discard_async:
488 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
489 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
490 break;
491 default:
492 btrfs_err(NULL, "unrecognized discard mode value %s",
493 param->key);
494 return -EINVAL;
495 }
496 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
497 break;
498 case Opt_space_cache:
499 if (result.negated) {
500 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
501 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
502 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
503 } else {
504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
506 }
507 break;
508 case Opt_space_cache_version:
509 switch (result.uint_32) {
510 case Opt_space_cache_v1:
511 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
512 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
513 break;
514 case Opt_space_cache_v2:
515 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
516 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 break;
518 default:
519 btrfs_err(NULL, "unrecognized space_cache value %s",
520 param->key);
521 return -EINVAL;
522 }
523 break;
524 case Opt_rescan_uuid_tree:
525 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
526 break;
527 case Opt_clear_cache:
528 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
529 break;
530 case Opt_user_subvol_rm_allowed:
531 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
532 break;
533 case Opt_enospc_debug:
534 if (result.negated)
535 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
536 else
537 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
538 break;
539 case Opt_defrag:
540 if (result.negated)
541 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
542 else
543 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
544 break;
545 case Opt_usebackuproot:
546 btrfs_warn(NULL,
547 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
548 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
549
550 /* If we're loading the backup roots we can't trust the space cache. */
551 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
552 break;
553 case Opt_skip_balance:
554 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
555 break;
556 case Opt_fatal_errors:
557 switch (result.uint_32) {
558 case Opt_fatal_errors_panic:
559 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
560 break;
561 case Opt_fatal_errors_bug:
562 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
563 break;
564 default:
565 btrfs_err(NULL, "unrecognized fatal_errors value %s",
566 param->key);
567 return -EINVAL;
568 }
569 break;
570 case Opt_commit_interval:
571 ctx->commit_interval = result.uint_32;
572 if (ctx->commit_interval == 0)
573 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
574 break;
575 case Opt_rescue:
576 switch (result.uint_32) {
577 case Opt_rescue_usebackuproot:
578 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
579 break;
580 case Opt_rescue_nologreplay:
581 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
582 break;
583 case Opt_rescue_ignorebadroots:
584 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
585 break;
586 case Opt_rescue_ignoredatacsums:
587 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
588 break;
589 case Opt_rescue_ignoremetacsums:
590 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
591 break;
592 case Opt_rescue_ignoresuperflags:
593 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
594 break;
595 case Opt_rescue_parameter_all:
596 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
597 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
598 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
599 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
600 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
601 break;
602 default:
603 btrfs_info(NULL, "unrecognized rescue option '%s'",
604 param->key);
605 return -EINVAL;
606 }
607 break;
608 #ifdef CONFIG_BTRFS_DEBUG
609 case Opt_fragment:
610 switch (result.uint_32) {
611 case Opt_fragment_parameter_all:
612 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
613 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
614 break;
615 case Opt_fragment_parameter_metadata:
616 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
617 break;
618 case Opt_fragment_parameter_data:
619 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
620 break;
621 default:
622 btrfs_info(NULL, "unrecognized fragment option '%s'",
623 param->key);
624 return -EINVAL;
625 }
626 break;
627 #endif
628 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
629 case Opt_ref_verify:
630 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
631 break;
632 #endif
633 default:
634 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
635 return -EINVAL;
636 }
637
638 return 0;
639 }
640
641 /*
642 * Some options only have meaning at mount time and shouldn't persist across
643 * remounts, or be displayed. Clear these at the end of mount and remount code
644 * paths.
645 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)646 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
647 {
648 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
649 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
650 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
651 }
652
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)653 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
654 unsigned long long mount_opt, unsigned long long opt,
655 const char *opt_name)
656 {
657 if (mount_opt & opt) {
658 btrfs_err(fs_info, "%s must be used with ro mount option",
659 opt_name);
660 return true;
661 }
662 return false;
663 }
664
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)665 bool btrfs_check_options(const struct btrfs_fs_info *info,
666 unsigned long long *mount_opt,
667 unsigned long flags)
668 {
669 bool ret = true;
670
671 if (!(flags & SB_RDONLY) &&
672 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
673 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
674 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
675 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
676 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
677 ret = false;
678
679 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
680 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
681 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
682 btrfs_err(info, "cannot disable free-space-tree");
683 ret = false;
684 }
685 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
686 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
687 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
688 ret = false;
689 }
690
691 if (btrfs_check_mountopts_zoned(info, mount_opt))
692 ret = false;
693
694 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
695 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
696 btrfs_info(info, "disk space caching is enabled");
697 btrfs_warn(info,
698 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
699 }
700 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
701 btrfs_info(info, "using free-space-tree");
702 }
703
704 return ret;
705 }
706
707 /*
708 * This is subtle, we only call this during open_ctree(). We need to pre-load
709 * the mount options with the on-disk settings. Before the new mount API took
710 * effect we would do this on mount and remount. With the new mount API we'll
711 * only do this on the initial mount.
712 *
713 * This isn't a change in behavior, because we're using the current state of the
714 * file system to set the current mount options. If you mounted with special
715 * options to disable these features and then remounted we wouldn't revert the
716 * settings, because mounting without these features cleared the on-disk
717 * settings, so this being called on re-mount is not needed.
718 */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)719 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
720 {
721 if (fs_info->sectorsize < PAGE_SIZE) {
722 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
723 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
724 btrfs_info(fs_info,
725 "forcing free space tree for sector size %u with page size %lu",
726 fs_info->sectorsize, PAGE_SIZE);
727 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
728 }
729 }
730
731 /*
732 * At this point our mount options are populated, so we only mess with
733 * these settings if we don't have any settings already.
734 */
735 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
736 return;
737
738 if (btrfs_is_zoned(fs_info) &&
739 btrfs_free_space_cache_v1_active(fs_info)) {
740 btrfs_info(fs_info, "zoned: clearing existing space cache");
741 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
742 return;
743 }
744
745 if (btrfs_test_opt(fs_info, SPACE_CACHE))
746 return;
747
748 if (btrfs_test_opt(fs_info, NOSPACECACHE))
749 return;
750
751 /*
752 * At this point we don't have explicit options set by the user, set
753 * them ourselves based on the state of the file system.
754 */
755 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
756 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
757 else if (btrfs_free_space_cache_v1_active(fs_info))
758 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
759 }
760
set_device_specific_options(struct btrfs_fs_info * fs_info)761 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
762 {
763 if (!btrfs_test_opt(fs_info, NOSSD) &&
764 !fs_info->fs_devices->rotating)
765 btrfs_set_opt(fs_info->mount_opt, SSD);
766
767 /*
768 * For devices supporting discard turn on discard=async automatically,
769 * unless it's already set or disabled. This could be turned off by
770 * nodiscard for the same mount.
771 *
772 * The zoned mode piggy backs on the discard functionality for
773 * resetting a zone. There is no reason to delay the zone reset as it is
774 * fast enough. So, do not enable async discard for zoned mode.
775 */
776 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
777 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
778 btrfs_test_opt(fs_info, NODISCARD)) &&
779 fs_info->fs_devices->discardable &&
780 !btrfs_is_zoned(fs_info))
781 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
782 }
783
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)784 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
785 u64 subvol_objectid)
786 {
787 struct btrfs_root *root = fs_info->tree_root;
788 struct btrfs_root *fs_root = NULL;
789 struct btrfs_root_ref *root_ref;
790 struct btrfs_inode_ref *inode_ref;
791 struct btrfs_key key;
792 struct btrfs_path *path = NULL;
793 char *name = NULL, *ptr;
794 u64 dirid;
795 int len;
796 int ret;
797
798 path = btrfs_alloc_path();
799 if (!path) {
800 ret = -ENOMEM;
801 goto err;
802 }
803
804 name = kmalloc(PATH_MAX, GFP_KERNEL);
805 if (!name) {
806 ret = -ENOMEM;
807 goto err;
808 }
809 ptr = name + PATH_MAX - 1;
810 ptr[0] = '\0';
811
812 /*
813 * Walk up the subvolume trees in the tree of tree roots by root
814 * backrefs until we hit the top-level subvolume.
815 */
816 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
817 key.objectid = subvol_objectid;
818 key.type = BTRFS_ROOT_BACKREF_KEY;
819 key.offset = (u64)-1;
820
821 ret = btrfs_search_backwards(root, &key, path);
822 if (ret < 0) {
823 goto err;
824 } else if (ret > 0) {
825 ret = -ENOENT;
826 goto err;
827 }
828
829 subvol_objectid = key.offset;
830
831 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
832 struct btrfs_root_ref);
833 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
834 ptr -= len + 1;
835 if (ptr < name) {
836 ret = -ENAMETOOLONG;
837 goto err;
838 }
839 read_extent_buffer(path->nodes[0], ptr + 1,
840 (unsigned long)(root_ref + 1), len);
841 ptr[0] = '/';
842 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
843 btrfs_release_path(path);
844
845 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
846 if (IS_ERR(fs_root)) {
847 ret = PTR_ERR(fs_root);
848 fs_root = NULL;
849 goto err;
850 }
851
852 /*
853 * Walk up the filesystem tree by inode refs until we hit the
854 * root directory.
855 */
856 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
857 key.objectid = dirid;
858 key.type = BTRFS_INODE_REF_KEY;
859 key.offset = (u64)-1;
860
861 ret = btrfs_search_backwards(fs_root, &key, path);
862 if (ret < 0) {
863 goto err;
864 } else if (ret > 0) {
865 ret = -ENOENT;
866 goto err;
867 }
868
869 dirid = key.offset;
870
871 inode_ref = btrfs_item_ptr(path->nodes[0],
872 path->slots[0],
873 struct btrfs_inode_ref);
874 len = btrfs_inode_ref_name_len(path->nodes[0],
875 inode_ref);
876 ptr -= len + 1;
877 if (ptr < name) {
878 ret = -ENAMETOOLONG;
879 goto err;
880 }
881 read_extent_buffer(path->nodes[0], ptr + 1,
882 (unsigned long)(inode_ref + 1), len);
883 ptr[0] = '/';
884 btrfs_release_path(path);
885 }
886 btrfs_put_root(fs_root);
887 fs_root = NULL;
888 }
889
890 btrfs_free_path(path);
891 if (ptr == name + PATH_MAX - 1) {
892 name[0] = '/';
893 name[1] = '\0';
894 } else {
895 memmove(name, ptr, name + PATH_MAX - ptr);
896 }
897 return name;
898
899 err:
900 btrfs_put_root(fs_root);
901 btrfs_free_path(path);
902 kfree(name);
903 return ERR_PTR(ret);
904 }
905
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)906 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
907 {
908 struct btrfs_root *root = fs_info->tree_root;
909 struct btrfs_dir_item *di;
910 struct btrfs_path *path;
911 struct btrfs_key location;
912 struct fscrypt_str name = FSTR_INIT("default", 7);
913 u64 dir_id;
914
915 path = btrfs_alloc_path();
916 if (!path)
917 return -ENOMEM;
918
919 /*
920 * Find the "default" dir item which points to the root item that we
921 * will mount by default if we haven't been given a specific subvolume
922 * to mount.
923 */
924 dir_id = btrfs_super_root_dir(fs_info->super_copy);
925 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
926 if (IS_ERR(di)) {
927 btrfs_free_path(path);
928 return PTR_ERR(di);
929 }
930 if (!di) {
931 /*
932 * Ok the default dir item isn't there. This is weird since
933 * it's always been there, but don't freak out, just try and
934 * mount the top-level subvolume.
935 */
936 btrfs_free_path(path);
937 *objectid = BTRFS_FS_TREE_OBJECTID;
938 return 0;
939 }
940
941 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
942 btrfs_free_path(path);
943 *objectid = location.objectid;
944 return 0;
945 }
946
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)947 static int btrfs_fill_super(struct super_block *sb,
948 struct btrfs_fs_devices *fs_devices)
949 {
950 struct inode *inode;
951 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
952 int err;
953
954 sb->s_maxbytes = MAX_LFS_FILESIZE;
955 sb->s_magic = BTRFS_SUPER_MAGIC;
956 sb->s_op = &btrfs_super_ops;
957 sb->s_d_op = &btrfs_dentry_operations;
958 sb->s_export_op = &btrfs_export_ops;
959 #ifdef CONFIG_FS_VERITY
960 sb->s_vop = &btrfs_verityops;
961 #endif
962 sb->s_xattr = btrfs_xattr_handlers;
963 sb->s_time_gran = 1;
964 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
965
966 err = super_setup_bdi(sb);
967 if (err) {
968 btrfs_err(fs_info, "super_setup_bdi failed");
969 return err;
970 }
971
972 err = open_ctree(sb, fs_devices);
973 if (err) {
974 btrfs_err(fs_info, "open_ctree failed: %d", err);
975 return err;
976 }
977
978 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
979 if (IS_ERR(inode)) {
980 err = PTR_ERR(inode);
981 btrfs_handle_fs_error(fs_info, err, NULL);
982 goto fail_close;
983 }
984
985 sb->s_root = d_make_root(inode);
986 if (!sb->s_root) {
987 err = -ENOMEM;
988 goto fail_close;
989 }
990
991 sb->s_flags |= SB_ACTIVE;
992 return 0;
993
994 fail_close:
995 close_ctree(fs_info);
996 return err;
997 }
998
btrfs_sync_fs(struct super_block * sb,int wait)999 int btrfs_sync_fs(struct super_block *sb, int wait)
1000 {
1001 struct btrfs_trans_handle *trans;
1002 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1003 struct btrfs_root *root = fs_info->tree_root;
1004
1005 trace_btrfs_sync_fs(fs_info, wait);
1006
1007 if (!wait) {
1008 filemap_flush(fs_info->btree_inode->i_mapping);
1009 return 0;
1010 }
1011
1012 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1013
1014 trans = btrfs_attach_transaction_barrier(root);
1015 if (IS_ERR(trans)) {
1016 /* no transaction, don't bother */
1017 if (PTR_ERR(trans) == -ENOENT) {
1018 /*
1019 * Exit unless we have some pending changes
1020 * that need to go through commit
1021 */
1022 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1023 &fs_info->flags))
1024 return 0;
1025 /*
1026 * A non-blocking test if the fs is frozen. We must not
1027 * start a new transaction here otherwise a deadlock
1028 * happens. The pending operations are delayed to the
1029 * next commit after thawing.
1030 */
1031 if (sb_start_write_trylock(sb))
1032 sb_end_write(sb);
1033 else
1034 return 0;
1035 trans = btrfs_start_transaction(root, 0);
1036 }
1037 if (IS_ERR(trans))
1038 return PTR_ERR(trans);
1039 }
1040 return btrfs_commit_transaction(trans);
1041 }
1042
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1043 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1044 {
1045 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1046 *printed = true;
1047 }
1048
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1049 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1050 {
1051 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1052 const char *compress_type;
1053 const char *subvol_name;
1054 bool printed = false;
1055
1056 if (btrfs_test_opt(info, DEGRADED))
1057 seq_puts(seq, ",degraded");
1058 if (btrfs_test_opt(info, NODATASUM))
1059 seq_puts(seq, ",nodatasum");
1060 if (btrfs_test_opt(info, NODATACOW))
1061 seq_puts(seq, ",nodatacow");
1062 if (btrfs_test_opt(info, NOBARRIER))
1063 seq_puts(seq, ",nobarrier");
1064 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1065 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1066 if (info->thread_pool_size != min_t(unsigned long,
1067 num_online_cpus() + 2, 8))
1068 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1069 if (btrfs_test_opt(info, COMPRESS)) {
1070 compress_type = btrfs_compress_type2str(info->compress_type);
1071 if (btrfs_test_opt(info, FORCE_COMPRESS))
1072 seq_printf(seq, ",compress-force=%s", compress_type);
1073 else
1074 seq_printf(seq, ",compress=%s", compress_type);
1075 if (info->compress_level)
1076 seq_printf(seq, ":%d", info->compress_level);
1077 }
1078 if (btrfs_test_opt(info, NOSSD))
1079 seq_puts(seq, ",nossd");
1080 if (btrfs_test_opt(info, SSD_SPREAD))
1081 seq_puts(seq, ",ssd_spread");
1082 else if (btrfs_test_opt(info, SSD))
1083 seq_puts(seq, ",ssd");
1084 if (btrfs_test_opt(info, NOTREELOG))
1085 seq_puts(seq, ",notreelog");
1086 if (btrfs_test_opt(info, NOLOGREPLAY))
1087 print_rescue_option(seq, "nologreplay", &printed);
1088 if (btrfs_test_opt(info, USEBACKUPROOT))
1089 print_rescue_option(seq, "usebackuproot", &printed);
1090 if (btrfs_test_opt(info, IGNOREBADROOTS))
1091 print_rescue_option(seq, "ignorebadroots", &printed);
1092 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1093 print_rescue_option(seq, "ignoredatacsums", &printed);
1094 if (btrfs_test_opt(info, IGNOREMETACSUMS))
1095 print_rescue_option(seq, "ignoremetacsums", &printed);
1096 if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1097 print_rescue_option(seq, "ignoresuperflags", &printed);
1098 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1099 seq_puts(seq, ",flushoncommit");
1100 if (btrfs_test_opt(info, DISCARD_SYNC))
1101 seq_puts(seq, ",discard");
1102 if (btrfs_test_opt(info, DISCARD_ASYNC))
1103 seq_puts(seq, ",discard=async");
1104 if (!(info->sb->s_flags & SB_POSIXACL))
1105 seq_puts(seq, ",noacl");
1106 if (btrfs_free_space_cache_v1_active(info))
1107 seq_puts(seq, ",space_cache");
1108 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1109 seq_puts(seq, ",space_cache=v2");
1110 else
1111 seq_puts(seq, ",nospace_cache");
1112 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1113 seq_puts(seq, ",rescan_uuid_tree");
1114 if (btrfs_test_opt(info, CLEAR_CACHE))
1115 seq_puts(seq, ",clear_cache");
1116 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1117 seq_puts(seq, ",user_subvol_rm_allowed");
1118 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1119 seq_puts(seq, ",enospc_debug");
1120 if (btrfs_test_opt(info, AUTO_DEFRAG))
1121 seq_puts(seq, ",autodefrag");
1122 if (btrfs_test_opt(info, SKIP_BALANCE))
1123 seq_puts(seq, ",skip_balance");
1124 if (info->metadata_ratio)
1125 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1126 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1127 seq_puts(seq, ",fatal_errors=panic");
1128 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1129 seq_printf(seq, ",commit=%u", info->commit_interval);
1130 #ifdef CONFIG_BTRFS_DEBUG
1131 if (btrfs_test_opt(info, FRAGMENT_DATA))
1132 seq_puts(seq, ",fragment=data");
1133 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1134 seq_puts(seq, ",fragment=metadata");
1135 #endif
1136 if (btrfs_test_opt(info, REF_VERIFY))
1137 seq_puts(seq, ",ref_verify");
1138 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1139 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1140 btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1141 if (!IS_ERR(subvol_name)) {
1142 seq_show_option(seq, "subvol", subvol_name);
1143 kfree(subvol_name);
1144 }
1145 return 0;
1146 }
1147
1148 /*
1149 * subvolumes are identified by ino 256
1150 */
is_subvolume_inode(struct inode * inode)1151 static inline int is_subvolume_inode(struct inode *inode)
1152 {
1153 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1154 return 1;
1155 return 0;
1156 }
1157
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1158 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1159 struct vfsmount *mnt)
1160 {
1161 struct dentry *root;
1162 int ret;
1163
1164 if (!subvol_name) {
1165 if (!subvol_objectid) {
1166 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1167 &subvol_objectid);
1168 if (ret) {
1169 root = ERR_PTR(ret);
1170 goto out;
1171 }
1172 }
1173 subvol_name = btrfs_get_subvol_name_from_objectid(
1174 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1175 if (IS_ERR(subvol_name)) {
1176 root = ERR_CAST(subvol_name);
1177 subvol_name = NULL;
1178 goto out;
1179 }
1180
1181 }
1182
1183 root = mount_subtree(mnt, subvol_name);
1184 /* mount_subtree() drops our reference on the vfsmount. */
1185 mnt = NULL;
1186
1187 if (!IS_ERR(root)) {
1188 struct super_block *s = root->d_sb;
1189 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1190 struct inode *root_inode = d_inode(root);
1191 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1192
1193 ret = 0;
1194 if (!is_subvolume_inode(root_inode)) {
1195 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1196 subvol_name);
1197 ret = -EINVAL;
1198 }
1199 if (subvol_objectid && root_objectid != subvol_objectid) {
1200 /*
1201 * This will also catch a race condition where a
1202 * subvolume which was passed by ID is renamed and
1203 * another subvolume is renamed over the old location.
1204 */
1205 btrfs_err(fs_info,
1206 "subvol '%s' does not match subvolid %llu",
1207 subvol_name, subvol_objectid);
1208 ret = -EINVAL;
1209 }
1210 if (ret) {
1211 dput(root);
1212 root = ERR_PTR(ret);
1213 deactivate_locked_super(s);
1214 }
1215 }
1216
1217 out:
1218 mntput(mnt);
1219 kfree(subvol_name);
1220 return root;
1221 }
1222
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1223 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1224 u32 new_pool_size, u32 old_pool_size)
1225 {
1226 if (new_pool_size == old_pool_size)
1227 return;
1228
1229 fs_info->thread_pool_size = new_pool_size;
1230
1231 btrfs_info(fs_info, "resize thread pool %d -> %d",
1232 old_pool_size, new_pool_size);
1233
1234 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1235 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1236 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1237 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1238 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1239 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1240 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1241 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1242 }
1243
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1244 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1245 unsigned long long old_opts, int flags)
1246 {
1247 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1248 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1249 (flags & SB_RDONLY))) {
1250 /* wait for any defraggers to finish */
1251 wait_event(fs_info->transaction_wait,
1252 (atomic_read(&fs_info->defrag_running) == 0));
1253 if (flags & SB_RDONLY)
1254 sync_filesystem(fs_info->sb);
1255 }
1256 }
1257
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1258 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1259 unsigned long long old_opts)
1260 {
1261 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1262
1263 /*
1264 * We need to cleanup all defragable inodes if the autodefragment is
1265 * close or the filesystem is read only.
1266 */
1267 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1268 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1269 btrfs_cleanup_defrag_inodes(fs_info);
1270 }
1271
1272 /* If we toggled discard async */
1273 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1274 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1275 btrfs_discard_resume(fs_info);
1276 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1277 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1278 btrfs_discard_cleanup(fs_info);
1279
1280 /* If we toggled space cache */
1281 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1282 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1283 }
1284
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1285 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1286 {
1287 int ret;
1288
1289 if (BTRFS_FS_ERROR(fs_info)) {
1290 btrfs_err(fs_info,
1291 "remounting read-write after error is not allowed");
1292 return -EINVAL;
1293 }
1294
1295 if (fs_info->fs_devices->rw_devices == 0)
1296 return -EACCES;
1297
1298 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1299 btrfs_warn(fs_info,
1300 "too many missing devices, writable remount is not allowed");
1301 return -EACCES;
1302 }
1303
1304 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1305 btrfs_warn(fs_info,
1306 "mount required to replay tree-log, cannot remount read-write");
1307 return -EINVAL;
1308 }
1309
1310 /*
1311 * NOTE: when remounting with a change that does writes, don't put it
1312 * anywhere above this point, as we are not sure to be safe to write
1313 * until we pass the above checks.
1314 */
1315 ret = btrfs_start_pre_rw_mount(fs_info);
1316 if (ret)
1317 return ret;
1318
1319 btrfs_clear_sb_rdonly(fs_info->sb);
1320
1321 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1322
1323 /*
1324 * If we've gone from readonly -> read-write, we need to get our
1325 * sync/async discard lists in the right state.
1326 */
1327 btrfs_discard_resume(fs_info);
1328
1329 return 0;
1330 }
1331
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1332 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1333 {
1334 /*
1335 * This also happens on 'umount -rf' or on shutdown, when the
1336 * filesystem is busy.
1337 */
1338 cancel_work_sync(&fs_info->async_reclaim_work);
1339 cancel_work_sync(&fs_info->async_data_reclaim_work);
1340
1341 btrfs_discard_cleanup(fs_info);
1342
1343 /* Wait for the uuid_scan task to finish */
1344 down(&fs_info->uuid_tree_rescan_sem);
1345 /* Avoid complains from lockdep et al. */
1346 up(&fs_info->uuid_tree_rescan_sem);
1347
1348 btrfs_set_sb_rdonly(fs_info->sb);
1349
1350 /*
1351 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1352 * loop if it's already active. If it's already asleep, we'll leave
1353 * unused block groups on disk until we're mounted read-write again
1354 * unless we clean them up here.
1355 */
1356 btrfs_delete_unused_bgs(fs_info);
1357
1358 /*
1359 * The cleaner task could be already running before we set the flag
1360 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1361 * sure that after we finish the remount, i.e. after we call
1362 * btrfs_commit_super(), the cleaner can no longer start a transaction
1363 * - either because it was dropping a dead root, running delayed iputs
1364 * or deleting an unused block group (the cleaner picked a block
1365 * group from the list of unused block groups before we were able to
1366 * in the previous call to btrfs_delete_unused_bgs()).
1367 */
1368 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1369
1370 /*
1371 * We've set the superblock to RO mode, so we might have made the
1372 * cleaner task sleep without running all pending delayed iputs. Go
1373 * through all the delayed iputs here, so that if an unmount happens
1374 * without remounting RW we don't end up at finishing close_ctree()
1375 * with a non-empty list of delayed iputs.
1376 */
1377 btrfs_run_delayed_iputs(fs_info);
1378
1379 btrfs_dev_replace_suspend_for_unmount(fs_info);
1380 btrfs_scrub_cancel(fs_info);
1381 btrfs_pause_balance(fs_info);
1382
1383 /*
1384 * Pause the qgroup rescan worker if it is running. We don't want it to
1385 * be still running after we are in RO mode, as after that, by the time
1386 * we unmount, it might have left a transaction open, so we would leak
1387 * the transaction and/or crash.
1388 */
1389 btrfs_qgroup_wait_for_completion(fs_info, false);
1390
1391 return btrfs_commit_super(fs_info);
1392 }
1393
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1394 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1395 {
1396 fs_info->max_inline = ctx->max_inline;
1397 fs_info->commit_interval = ctx->commit_interval;
1398 fs_info->metadata_ratio = ctx->metadata_ratio;
1399 fs_info->thread_pool_size = ctx->thread_pool_size;
1400 fs_info->mount_opt = ctx->mount_opt;
1401 fs_info->compress_type = ctx->compress_type;
1402 fs_info->compress_level = ctx->compress_level;
1403 }
1404
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1405 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1406 {
1407 ctx->max_inline = fs_info->max_inline;
1408 ctx->commit_interval = fs_info->commit_interval;
1409 ctx->metadata_ratio = fs_info->metadata_ratio;
1410 ctx->thread_pool_size = fs_info->thread_pool_size;
1411 ctx->mount_opt = fs_info->mount_opt;
1412 ctx->compress_type = fs_info->compress_type;
1413 ctx->compress_level = fs_info->compress_level;
1414 }
1415
1416 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1417 do { \
1418 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1419 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1420 btrfs_info(fs_info, fmt, ##args); \
1421 } while (0)
1422
1423 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1424 do { \
1425 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1426 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1427 btrfs_info(fs_info, fmt, ##args); \
1428 } while (0)
1429
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1430 static void btrfs_emit_options(struct btrfs_fs_info *info,
1431 struct btrfs_fs_context *old)
1432 {
1433 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1434 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1435 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1436 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1437 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1438 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1439 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1440 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1441 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1442 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1443 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1444 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1445 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1446 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1447 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1448 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1449 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1450 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1451 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1452 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1453 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1454 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1455 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1456
1457 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1458 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1459 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1460 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1461 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1462 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1463 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1464 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1465 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1466
1467 /* Did the compression settings change? */
1468 if (btrfs_test_opt(info, COMPRESS) &&
1469 (!old ||
1470 old->compress_type != info->compress_type ||
1471 old->compress_level != info->compress_level ||
1472 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1473 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1474 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1475
1476 btrfs_info(info, "%s %s compression, level %d",
1477 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1478 compress_type, info->compress_level);
1479 }
1480
1481 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1482 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1483 }
1484
btrfs_reconfigure(struct fs_context * fc)1485 static int btrfs_reconfigure(struct fs_context *fc)
1486 {
1487 struct super_block *sb = fc->root->d_sb;
1488 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1489 struct btrfs_fs_context *ctx = fc->fs_private;
1490 struct btrfs_fs_context old_ctx;
1491 int ret = 0;
1492 bool mount_reconfigure = (fc->s_fs_info != NULL);
1493
1494 btrfs_info_to_ctx(fs_info, &old_ctx);
1495
1496 /*
1497 * This is our "bind mount" trick, we don't want to allow the user to do
1498 * anything other than mount a different ro/rw and a different subvol,
1499 * all of the mount options should be maintained.
1500 */
1501 if (mount_reconfigure)
1502 ctx->mount_opt = old_ctx.mount_opt;
1503
1504 sync_filesystem(sb);
1505 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1506
1507 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1508 return -EINVAL;
1509
1510 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1511 if (ret < 0)
1512 return ret;
1513
1514 btrfs_ctx_to_info(fs_info, ctx);
1515 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1516 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1517 old_ctx.thread_pool_size);
1518
1519 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1520 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1521 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1522 btrfs_warn(fs_info,
1523 "remount supports changing free space tree only from RO to RW");
1524 /* Make sure free space cache options match the state on disk. */
1525 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1526 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1527 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1528 }
1529 if (btrfs_free_space_cache_v1_active(fs_info)) {
1530 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1531 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1532 }
1533 }
1534
1535 ret = 0;
1536 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1537 ret = btrfs_remount_ro(fs_info);
1538 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1539 ret = btrfs_remount_rw(fs_info);
1540 if (ret)
1541 goto restore;
1542
1543 /*
1544 * If we set the mask during the parameter parsing VFS would reject the
1545 * remount. Here we can set the mask and the value will be updated
1546 * appropriately.
1547 */
1548 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1549 fc->sb_flags_mask |= SB_POSIXACL;
1550
1551 btrfs_emit_options(fs_info, &old_ctx);
1552 wake_up_process(fs_info->transaction_kthread);
1553 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1554 btrfs_clear_oneshot_options(fs_info);
1555 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1556
1557 return 0;
1558 restore:
1559 btrfs_ctx_to_info(fs_info, &old_ctx);
1560 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1561 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1562 return ret;
1563 }
1564
1565 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1566 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1567 {
1568 const struct btrfs_device_info *dev_info1 = a;
1569 const struct btrfs_device_info *dev_info2 = b;
1570
1571 if (dev_info1->max_avail > dev_info2->max_avail)
1572 return -1;
1573 else if (dev_info1->max_avail < dev_info2->max_avail)
1574 return 1;
1575 return 0;
1576 }
1577
1578 /*
1579 * sort the devices by max_avail, in which max free extent size of each device
1580 * is stored.(Descending Sort)
1581 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1582 static inline void btrfs_descending_sort_devices(
1583 struct btrfs_device_info *devices,
1584 size_t nr_devices)
1585 {
1586 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1587 btrfs_cmp_device_free_bytes, NULL);
1588 }
1589
1590 /*
1591 * The helper to calc the free space on the devices that can be used to store
1592 * file data.
1593 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1594 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1595 u64 *free_bytes)
1596 {
1597 struct btrfs_device_info *devices_info;
1598 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1599 struct btrfs_device *device;
1600 u64 type;
1601 u64 avail_space;
1602 u64 min_stripe_size;
1603 int num_stripes = 1;
1604 int i = 0, nr_devices;
1605 const struct btrfs_raid_attr *rattr;
1606
1607 /*
1608 * We aren't under the device list lock, so this is racy-ish, but good
1609 * enough for our purposes.
1610 */
1611 nr_devices = fs_info->fs_devices->open_devices;
1612 if (!nr_devices) {
1613 smp_mb();
1614 nr_devices = fs_info->fs_devices->open_devices;
1615 ASSERT(nr_devices);
1616 if (!nr_devices) {
1617 *free_bytes = 0;
1618 return 0;
1619 }
1620 }
1621
1622 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1623 GFP_KERNEL);
1624 if (!devices_info)
1625 return -ENOMEM;
1626
1627 /* calc min stripe number for data space allocation */
1628 type = btrfs_data_alloc_profile(fs_info);
1629 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1630
1631 if (type & BTRFS_BLOCK_GROUP_RAID0)
1632 num_stripes = nr_devices;
1633 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1634 num_stripes = rattr->ncopies;
1635 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1636 num_stripes = 4;
1637
1638 /* Adjust for more than 1 stripe per device */
1639 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1640
1641 rcu_read_lock();
1642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1643 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1644 &device->dev_state) ||
1645 !device->bdev ||
1646 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1647 continue;
1648
1649 if (i >= nr_devices)
1650 break;
1651
1652 avail_space = device->total_bytes - device->bytes_used;
1653
1654 /* align with stripe_len */
1655 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1656
1657 /*
1658 * Ensure we have at least min_stripe_size on top of the
1659 * reserved space on the device.
1660 */
1661 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1662 continue;
1663
1664 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1665
1666 devices_info[i].dev = device;
1667 devices_info[i].max_avail = avail_space;
1668
1669 i++;
1670 }
1671 rcu_read_unlock();
1672
1673 nr_devices = i;
1674
1675 btrfs_descending_sort_devices(devices_info, nr_devices);
1676
1677 i = nr_devices - 1;
1678 avail_space = 0;
1679 while (nr_devices >= rattr->devs_min) {
1680 num_stripes = min(num_stripes, nr_devices);
1681
1682 if (devices_info[i].max_avail >= min_stripe_size) {
1683 int j;
1684 u64 alloc_size;
1685
1686 avail_space += devices_info[i].max_avail * num_stripes;
1687 alloc_size = devices_info[i].max_avail;
1688 for (j = i + 1 - num_stripes; j <= i; j++)
1689 devices_info[j].max_avail -= alloc_size;
1690 }
1691 i--;
1692 nr_devices--;
1693 }
1694
1695 kfree(devices_info);
1696 *free_bytes = avail_space;
1697 return 0;
1698 }
1699
1700 /*
1701 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1702 *
1703 * If there's a redundant raid level at DATA block groups, use the respective
1704 * multiplier to scale the sizes.
1705 *
1706 * Unused device space usage is based on simulating the chunk allocator
1707 * algorithm that respects the device sizes and order of allocations. This is
1708 * a close approximation of the actual use but there are other factors that may
1709 * change the result (like a new metadata chunk).
1710 *
1711 * If metadata is exhausted, f_bavail will be 0.
1712 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1713 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1714 {
1715 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1716 struct btrfs_super_block *disk_super = fs_info->super_copy;
1717 struct btrfs_space_info *found;
1718 u64 total_used = 0;
1719 u64 total_free_data = 0;
1720 u64 total_free_meta = 0;
1721 u32 bits = fs_info->sectorsize_bits;
1722 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1723 unsigned factor = 1;
1724 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1725 int ret;
1726 u64 thresh = 0;
1727 int mixed = 0;
1728
1729 list_for_each_entry(found, &fs_info->space_info, list) {
1730 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1731 int i;
1732
1733 total_free_data += found->disk_total - found->disk_used;
1734 total_free_data -=
1735 btrfs_account_ro_block_groups_free_space(found);
1736
1737 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1738 if (!list_empty(&found->block_groups[i]))
1739 factor = btrfs_bg_type_to_factor(
1740 btrfs_raid_array[i].bg_flag);
1741 }
1742 }
1743
1744 /*
1745 * Metadata in mixed block group profiles are accounted in data
1746 */
1747 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1748 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1749 mixed = 1;
1750 else
1751 total_free_meta += found->disk_total -
1752 found->disk_used;
1753 }
1754
1755 total_used += found->disk_used;
1756 }
1757
1758 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1759 buf->f_blocks >>= bits;
1760 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1761
1762 /* Account global block reserve as used, it's in logical size already */
1763 spin_lock(&block_rsv->lock);
1764 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1765 if (buf->f_bfree >= block_rsv->size >> bits)
1766 buf->f_bfree -= block_rsv->size >> bits;
1767 else
1768 buf->f_bfree = 0;
1769 spin_unlock(&block_rsv->lock);
1770
1771 buf->f_bavail = div_u64(total_free_data, factor);
1772 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1773 if (ret)
1774 return ret;
1775 buf->f_bavail += div_u64(total_free_data, factor);
1776 buf->f_bavail = buf->f_bavail >> bits;
1777
1778 /*
1779 * We calculate the remaining metadata space minus global reserve. If
1780 * this is (supposedly) smaller than zero, there's no space. But this
1781 * does not hold in practice, the exhausted state happens where's still
1782 * some positive delta. So we apply some guesswork and compare the
1783 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1784 *
1785 * We probably cannot calculate the exact threshold value because this
1786 * depends on the internal reservations requested by various
1787 * operations, so some operations that consume a few metadata will
1788 * succeed even if the Avail is zero. But this is better than the other
1789 * way around.
1790 */
1791 thresh = SZ_4M;
1792
1793 /*
1794 * We only want to claim there's no available space if we can no longer
1795 * allocate chunks for our metadata profile and our global reserve will
1796 * not fit in the free metadata space. If we aren't ->full then we
1797 * still can allocate chunks and thus are fine using the currently
1798 * calculated f_bavail.
1799 */
1800 if (!mixed && block_rsv->space_info->full &&
1801 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1802 buf->f_bavail = 0;
1803
1804 buf->f_type = BTRFS_SUPER_MAGIC;
1805 buf->f_bsize = fs_info->sectorsize;
1806 buf->f_namelen = BTRFS_NAME_LEN;
1807
1808 /* We treat it as constant endianness (it doesn't matter _which_)
1809 because we want the fsid to come out the same whether mounted
1810 on a big-endian or little-endian host */
1811 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1812 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1813 /* Mask in the root object ID too, to disambiguate subvols */
1814 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1815 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1816
1817 return 0;
1818 }
1819
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1820 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1821 {
1822 struct btrfs_fs_info *p = fc->s_fs_info;
1823 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1824
1825 return fs_info->fs_devices == p->fs_devices;
1826 }
1827
btrfs_get_tree_super(struct fs_context * fc)1828 static int btrfs_get_tree_super(struct fs_context *fc)
1829 {
1830 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1831 struct btrfs_fs_context *ctx = fc->fs_private;
1832 struct btrfs_fs_devices *fs_devices = NULL;
1833 struct block_device *bdev;
1834 struct btrfs_device *device;
1835 struct super_block *sb;
1836 blk_mode_t mode = btrfs_open_mode(fc);
1837 int ret;
1838
1839 btrfs_ctx_to_info(fs_info, ctx);
1840 mutex_lock(&uuid_mutex);
1841
1842 /*
1843 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1844 * either a valid device or an error.
1845 */
1846 device = btrfs_scan_one_device(fc->source, mode, true);
1847 ASSERT(device != NULL);
1848 if (IS_ERR(device)) {
1849 mutex_unlock(&uuid_mutex);
1850 return PTR_ERR(device);
1851 }
1852
1853 fs_devices = device->fs_devices;
1854 fs_info->fs_devices = fs_devices;
1855
1856 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1857 mutex_unlock(&uuid_mutex);
1858 if (ret)
1859 return ret;
1860
1861 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1862 ret = -EACCES;
1863 goto error;
1864 }
1865
1866 bdev = fs_devices->latest_dev->bdev;
1867
1868 /*
1869 * From now on the error handling is not straightforward.
1870 *
1871 * If successful, this will transfer the fs_info into the super block,
1872 * and fc->s_fs_info will be NULL. However if there's an existing
1873 * super, we'll still have fc->s_fs_info populated. If we error
1874 * completely out it'll be cleaned up when we drop the fs_context,
1875 * otherwise it's tied to the lifetime of the super_block.
1876 */
1877 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1878 if (IS_ERR(sb)) {
1879 ret = PTR_ERR(sb);
1880 goto error;
1881 }
1882
1883 set_device_specific_options(fs_info);
1884
1885 if (sb->s_root) {
1886 btrfs_close_devices(fs_devices);
1887 /*
1888 * At this stage we may have RO flag mismatch between
1889 * fc->sb_flags and sb->s_flags. Caller should detect such
1890 * mismatch and reconfigure with sb->s_umount rwsem held if
1891 * needed.
1892 */
1893 } else {
1894 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1895 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1896 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1897 ret = btrfs_fill_super(sb, fs_devices);
1898 if (ret) {
1899 deactivate_locked_super(sb);
1900 return ret;
1901 }
1902 }
1903
1904 btrfs_clear_oneshot_options(fs_info);
1905
1906 fc->root = dget(sb->s_root);
1907 return 0;
1908
1909 error:
1910 btrfs_close_devices(fs_devices);
1911 return ret;
1912 }
1913
1914 /*
1915 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1916 * with different ro/rw options") the following works:
1917 *
1918 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1919 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1920 *
1921 * which looks nice and innocent but is actually pretty intricate and deserves
1922 * a long comment.
1923 *
1924 * On another filesystem a subvolume mount is close to something like:
1925 *
1926 * (iii) # create rw superblock + initial mount
1927 * mount -t xfs /dev/sdb /opt/
1928 *
1929 * # create ro bind mount
1930 * mount --bind -o ro /opt/foo /mnt/foo
1931 *
1932 * # unmount initial mount
1933 * umount /opt
1934 *
1935 * Of course, there's some special subvolume sauce and there's the fact that the
1936 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1937 * it's very close and will help us understand the issue.
1938 *
1939 * The old mount API didn't cleanly distinguish between a mount being made ro
1940 * and a superblock being made ro. The only way to change the ro state of
1941 * either object was by passing ms_rdonly. If a new mount was created via
1942 * mount(2) such as:
1943 *
1944 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1945 *
1946 * the MS_RDONLY flag being specified had two effects:
1947 *
1948 * (1) MNT_READONLY was raised -> the resulting mount got
1949 * @mnt->mnt_flags |= MNT_READONLY raised.
1950 *
1951 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1952 * made the superblock ro. Note, how SB_RDONLY has the same value as
1953 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1954 *
1955 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1956 * subtree mounted ro.
1957 *
1958 * But consider the effect on the old mount API on btrfs subvolume mounting
1959 * which combines the distinct step in (iii) into a single step.
1960 *
1961 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1962 * is issued the superblock is ro and thus even if the mount created for (ii) is
1963 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1964 * to rw for (ii) which it did using an internal remount call.
1965 *
1966 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1967 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1968 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1969 * passed by mount(8) to mount(2).
1970 *
1971 * Enter the new mount API. The new mount API disambiguates making a mount ro
1972 * and making a superblock ro.
1973 *
1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1975 * fsmount() or mount_setattr() this is a pure VFS level change for a
1976 * specific mount or mount tree that is never seen by the filesystem itself.
1977 *
1978 * (4) To turn a superblock ro the "ro" flag must be used with
1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1980 * in fc->sb_flags.
1981 *
1982 * But, currently the util-linux mount command already utilizes the new mount
1983 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1984 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting
1985 * work with different options work we need to keep backward compatibility.
1986 */
btrfs_reconfigure_for_mount(struct fs_context * fc,struct vfsmount * mnt)1987 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1988 {
1989 int ret = 0;
1990
1991 if (fc->sb_flags & SB_RDONLY)
1992 return ret;
1993
1994 down_write(&mnt->mnt_sb->s_umount);
1995 if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
1996 ret = btrfs_reconfigure(fc);
1997 up_write(&mnt->mnt_sb->s_umount);
1998 return ret;
1999 }
2000
btrfs_get_tree_subvol(struct fs_context * fc)2001 static int btrfs_get_tree_subvol(struct fs_context *fc)
2002 {
2003 struct btrfs_fs_info *fs_info = NULL;
2004 struct btrfs_fs_context *ctx = fc->fs_private;
2005 struct fs_context *dup_fc;
2006 struct dentry *dentry;
2007 struct vfsmount *mnt;
2008 int ret = 0;
2009
2010 /*
2011 * Setup a dummy root and fs_info for test/set super. This is because
2012 * we don't actually fill this stuff out until open_ctree, but we need
2013 * then open_ctree will properly initialize the file system specific
2014 * settings later. btrfs_init_fs_info initializes the static elements
2015 * of the fs_info (locks and such) to make cleanup easier if we find a
2016 * superblock with our given fs_devices later on at sget() time.
2017 */
2018 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2019 if (!fs_info)
2020 return -ENOMEM;
2021
2022 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2024 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2025 btrfs_free_fs_info(fs_info);
2026 return -ENOMEM;
2027 }
2028 btrfs_init_fs_info(fs_info);
2029
2030 dup_fc = vfs_dup_fs_context(fc);
2031 if (IS_ERR(dup_fc)) {
2032 btrfs_free_fs_info(fs_info);
2033 return PTR_ERR(dup_fc);
2034 }
2035
2036 /*
2037 * When we do the sget_fc this gets transferred to the sb, so we only
2038 * need to set it on the dup_fc as this is what creates the super block.
2039 */
2040 dup_fc->s_fs_info = fs_info;
2041
2042 /*
2043 * We'll do the security settings in our btrfs_get_tree_super() mount
2044 * loop, they were duplicated into dup_fc, we can drop the originals
2045 * here.
2046 */
2047 security_free_mnt_opts(&fc->security);
2048 fc->security = NULL;
2049
2050 mnt = fc_mount(dup_fc);
2051 if (IS_ERR(mnt)) {
2052 put_fs_context(dup_fc);
2053 return PTR_ERR(mnt);
2054 }
2055 ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2056 put_fs_context(dup_fc);
2057 if (ret) {
2058 mntput(mnt);
2059 return ret;
2060 }
2061
2062 /*
2063 * This free's ->subvol_name, because if it isn't set we have to
2064 * allocate a buffer to hold the subvol_name, so we just drop our
2065 * reference to it here.
2066 */
2067 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2068 ctx->subvol_name = NULL;
2069 if (IS_ERR(dentry))
2070 return PTR_ERR(dentry);
2071
2072 fc->root = dentry;
2073 return 0;
2074 }
2075
btrfs_get_tree(struct fs_context * fc)2076 static int btrfs_get_tree(struct fs_context *fc)
2077 {
2078 /*
2079 * Since we use mount_subtree to mount the default/specified subvol, we
2080 * have to do mounts in two steps.
2081 *
2082 * First pass through we call btrfs_get_tree_subvol(), this is just a
2083 * wrapper around fc_mount() to call back into here again, and this time
2084 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and
2085 * everything to open the devices and file system. Then we return back
2086 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2087 * from there we can do our mount_subvol() call, which will lookup
2088 * whichever subvol we're mounting and setup this fc with the
2089 * appropriate dentry for the subvol.
2090 */
2091 if (fc->s_fs_info)
2092 return btrfs_get_tree_super(fc);
2093 return btrfs_get_tree_subvol(fc);
2094 }
2095
btrfs_kill_super(struct super_block * sb)2096 static void btrfs_kill_super(struct super_block *sb)
2097 {
2098 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2099 kill_anon_super(sb);
2100 btrfs_free_fs_info(fs_info);
2101 }
2102
btrfs_free_fs_context(struct fs_context * fc)2103 static void btrfs_free_fs_context(struct fs_context *fc)
2104 {
2105 struct btrfs_fs_context *ctx = fc->fs_private;
2106 struct btrfs_fs_info *fs_info = fc->s_fs_info;
2107
2108 if (fs_info)
2109 btrfs_free_fs_info(fs_info);
2110
2111 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2112 kfree(ctx->subvol_name);
2113 kfree(ctx);
2114 }
2115 }
2116
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2117 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2118 {
2119 struct btrfs_fs_context *ctx = src_fc->fs_private;
2120
2121 /*
2122 * Give a ref to our ctx to this dup, as we want to keep it around for
2123 * our original fc so we can have the subvolume name or objectid.
2124 *
2125 * We unset ->source in the original fc because the dup needs it for
2126 * mounting, and then once we free the dup it'll free ->source, so we
2127 * need to make sure we're only pointing to it in one fc.
2128 */
2129 refcount_inc(&ctx->refs);
2130 fc->fs_private = ctx;
2131 fc->source = src_fc->source;
2132 src_fc->source = NULL;
2133 return 0;
2134 }
2135
2136 static const struct fs_context_operations btrfs_fs_context_ops = {
2137 .parse_param = btrfs_parse_param,
2138 .reconfigure = btrfs_reconfigure,
2139 .get_tree = btrfs_get_tree,
2140 .dup = btrfs_dup_fs_context,
2141 .free = btrfs_free_fs_context,
2142 };
2143
btrfs_init_fs_context(struct fs_context * fc)2144 static int btrfs_init_fs_context(struct fs_context *fc)
2145 {
2146 struct btrfs_fs_context *ctx;
2147
2148 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2149 if (!ctx)
2150 return -ENOMEM;
2151
2152 refcount_set(&ctx->refs, 1);
2153 fc->fs_private = ctx;
2154 fc->ops = &btrfs_fs_context_ops;
2155
2156 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2157 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2158 } else {
2159 ctx->thread_pool_size =
2160 min_t(unsigned long, num_online_cpus() + 2, 8);
2161 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2162 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2163 }
2164
2165 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2166 fc->sb_flags |= SB_POSIXACL;
2167 #endif
2168 fc->sb_flags |= SB_I_VERSION;
2169
2170 return 0;
2171 }
2172
2173 static struct file_system_type btrfs_fs_type = {
2174 .owner = THIS_MODULE,
2175 .name = "btrfs",
2176 .init_fs_context = btrfs_init_fs_context,
2177 .parameters = btrfs_fs_parameters,
2178 .kill_sb = btrfs_kill_super,
2179 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2180 FS_ALLOW_IDMAP | FS_MGTIME,
2181 };
2182
2183 MODULE_ALIAS_FS("btrfs");
2184
btrfs_control_open(struct inode * inode,struct file * file)2185 static int btrfs_control_open(struct inode *inode, struct file *file)
2186 {
2187 /*
2188 * The control file's private_data is used to hold the
2189 * transaction when it is started and is used to keep
2190 * track of whether a transaction is already in progress.
2191 */
2192 file->private_data = NULL;
2193 return 0;
2194 }
2195
2196 /*
2197 * Used by /dev/btrfs-control for devices ioctls.
2198 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2199 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2200 unsigned long arg)
2201 {
2202 struct btrfs_ioctl_vol_args *vol;
2203 struct btrfs_device *device = NULL;
2204 dev_t devt = 0;
2205 int ret = -ENOTTY;
2206
2207 if (!capable(CAP_SYS_ADMIN))
2208 return -EPERM;
2209
2210 vol = memdup_user((void __user *)arg, sizeof(*vol));
2211 if (IS_ERR(vol))
2212 return PTR_ERR(vol);
2213 ret = btrfs_check_ioctl_vol_args_path(vol);
2214 if (ret < 0)
2215 goto out;
2216
2217 switch (cmd) {
2218 case BTRFS_IOC_SCAN_DEV:
2219 mutex_lock(&uuid_mutex);
2220 /*
2221 * Scanning outside of mount can return NULL which would turn
2222 * into 0 error code.
2223 */
2224 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2225 ret = PTR_ERR_OR_ZERO(device);
2226 mutex_unlock(&uuid_mutex);
2227 break;
2228 case BTRFS_IOC_FORGET_DEV:
2229 if (vol->name[0] != 0) {
2230 ret = lookup_bdev(vol->name, &devt);
2231 if (ret)
2232 break;
2233 }
2234 ret = btrfs_forget_devices(devt);
2235 break;
2236 case BTRFS_IOC_DEVICES_READY:
2237 mutex_lock(&uuid_mutex);
2238 /*
2239 * Scanning outside of mount can return NULL which would turn
2240 * into 0 error code.
2241 */
2242 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2243 if (IS_ERR_OR_NULL(device)) {
2244 mutex_unlock(&uuid_mutex);
2245 if (IS_ERR(device))
2246 ret = PTR_ERR(device);
2247 else
2248 ret = 0;
2249 break;
2250 }
2251 ret = !(device->fs_devices->num_devices ==
2252 device->fs_devices->total_devices);
2253 mutex_unlock(&uuid_mutex);
2254 break;
2255 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2256 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2257 break;
2258 }
2259
2260 out:
2261 kfree(vol);
2262 return ret;
2263 }
2264
btrfs_freeze(struct super_block * sb)2265 static int btrfs_freeze(struct super_block *sb)
2266 {
2267 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2268
2269 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2270 /*
2271 * We don't need a barrier here, we'll wait for any transaction that
2272 * could be in progress on other threads (and do delayed iputs that
2273 * we want to avoid on a frozen filesystem), or do the commit
2274 * ourselves.
2275 */
2276 return btrfs_commit_current_transaction(fs_info->tree_root);
2277 }
2278
check_dev_super(struct btrfs_device * dev)2279 static int check_dev_super(struct btrfs_device *dev)
2280 {
2281 struct btrfs_fs_info *fs_info = dev->fs_info;
2282 struct btrfs_super_block *sb;
2283 u64 last_trans;
2284 u16 csum_type;
2285 int ret = 0;
2286
2287 /* This should be called with fs still frozen. */
2288 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2289
2290 /* Missing dev, no need to check. */
2291 if (!dev->bdev)
2292 return 0;
2293
2294 /* Only need to check the primary super block. */
2295 sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2296 if (IS_ERR(sb))
2297 return PTR_ERR(sb);
2298
2299 /* Verify the checksum. */
2300 csum_type = btrfs_super_csum_type(sb);
2301 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2302 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2303 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2304 ret = -EUCLEAN;
2305 goto out;
2306 }
2307
2308 if (btrfs_check_super_csum(fs_info, sb)) {
2309 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2310 ret = -EUCLEAN;
2311 goto out;
2312 }
2313
2314 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2315 ret = btrfs_validate_super(fs_info, sb, 0);
2316 if (ret < 0)
2317 goto out;
2318
2319 last_trans = btrfs_get_last_trans_committed(fs_info);
2320 if (btrfs_super_generation(sb) != last_trans) {
2321 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2322 btrfs_super_generation(sb), last_trans);
2323 ret = -EUCLEAN;
2324 goto out;
2325 }
2326 out:
2327 btrfs_release_disk_super(sb);
2328 return ret;
2329 }
2330
btrfs_unfreeze(struct super_block * sb)2331 static int btrfs_unfreeze(struct super_block *sb)
2332 {
2333 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2334 struct btrfs_device *device;
2335 int ret = 0;
2336
2337 /*
2338 * Make sure the fs is not changed by accident (like hibernation then
2339 * modified by other OS).
2340 * If we found anything wrong, we mark the fs error immediately.
2341 *
2342 * And since the fs is frozen, no one can modify the fs yet, thus
2343 * we don't need to hold device_list_mutex.
2344 */
2345 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2346 ret = check_dev_super(device);
2347 if (ret < 0) {
2348 btrfs_handle_fs_error(fs_info, ret,
2349 "super block on devid %llu got modified unexpectedly",
2350 device->devid);
2351 break;
2352 }
2353 }
2354 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2355
2356 /*
2357 * We still return 0, to allow VFS layer to unfreeze the fs even the
2358 * above checks failed. Since the fs is either fine or read-only, we're
2359 * safe to continue, without causing further damage.
2360 */
2361 return 0;
2362 }
2363
btrfs_show_devname(struct seq_file * m,struct dentry * root)2364 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2365 {
2366 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2367
2368 /*
2369 * There should be always a valid pointer in latest_dev, it may be stale
2370 * for a short moment in case it's being deleted but still valid until
2371 * the end of RCU grace period.
2372 */
2373 rcu_read_lock();
2374 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2375 rcu_read_unlock();
2376
2377 return 0;
2378 }
2379
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2380 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2381 {
2382 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2383 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2384
2385 trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2386
2387 return nr;
2388 }
2389
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2390 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2391 {
2392 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2393 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2394
2395 btrfs_free_extent_maps(fs_info, nr_to_scan);
2396
2397 /* The extent map shrinker runs asynchronously, so always return 0. */
2398 return 0;
2399 }
2400
2401 static const struct super_operations btrfs_super_ops = {
2402 .drop_inode = btrfs_drop_inode,
2403 .evict_inode = btrfs_evict_inode,
2404 .put_super = btrfs_put_super,
2405 .sync_fs = btrfs_sync_fs,
2406 .show_options = btrfs_show_options,
2407 .show_devname = btrfs_show_devname,
2408 .alloc_inode = btrfs_alloc_inode,
2409 .destroy_inode = btrfs_destroy_inode,
2410 .free_inode = btrfs_free_inode,
2411 .statfs = btrfs_statfs,
2412 .freeze_fs = btrfs_freeze,
2413 .unfreeze_fs = btrfs_unfreeze,
2414 .nr_cached_objects = btrfs_nr_cached_objects,
2415 .free_cached_objects = btrfs_free_cached_objects,
2416 };
2417
2418 static const struct file_operations btrfs_ctl_fops = {
2419 .open = btrfs_control_open,
2420 .unlocked_ioctl = btrfs_control_ioctl,
2421 .compat_ioctl = compat_ptr_ioctl,
2422 .owner = THIS_MODULE,
2423 .llseek = noop_llseek,
2424 };
2425
2426 static struct miscdevice btrfs_misc = {
2427 .minor = BTRFS_MINOR,
2428 .name = "btrfs-control",
2429 .fops = &btrfs_ctl_fops
2430 };
2431
2432 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2433 MODULE_ALIAS("devname:btrfs-control");
2434
btrfs_interface_init(void)2435 static int __init btrfs_interface_init(void)
2436 {
2437 return misc_register(&btrfs_misc);
2438 }
2439
btrfs_interface_exit(void)2440 static __cold void btrfs_interface_exit(void)
2441 {
2442 misc_deregister(&btrfs_misc);
2443 }
2444
btrfs_print_mod_info(void)2445 static int __init btrfs_print_mod_info(void)
2446 {
2447 static const char options[] = ""
2448 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2449 ", experimental=on"
2450 #endif
2451 #ifdef CONFIG_BTRFS_DEBUG
2452 ", debug=on"
2453 #endif
2454 #ifdef CONFIG_BTRFS_ASSERT
2455 ", assert=on"
2456 #endif
2457 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2458 ", ref-verify=on"
2459 #endif
2460 #ifdef CONFIG_BLK_DEV_ZONED
2461 ", zoned=yes"
2462 #else
2463 ", zoned=no"
2464 #endif
2465 #ifdef CONFIG_FS_VERITY
2466 ", fsverity=yes"
2467 #else
2468 ", fsverity=no"
2469 #endif
2470 ;
2471
2472 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2473 if (btrfs_get_mod_read_policy() == NULL)
2474 pr_info("Btrfs loaded%s\n", options);
2475 else
2476 pr_info("Btrfs loaded%s, read_policy=%s\n",
2477 options, btrfs_get_mod_read_policy());
2478 #else
2479 pr_info("Btrfs loaded%s\n", options);
2480 #endif
2481
2482 return 0;
2483 }
2484
register_btrfs(void)2485 static int register_btrfs(void)
2486 {
2487 return register_filesystem(&btrfs_fs_type);
2488 }
2489
unregister_btrfs(void)2490 static void unregister_btrfs(void)
2491 {
2492 unregister_filesystem(&btrfs_fs_type);
2493 }
2494
2495 /* Helper structure for long init/exit functions. */
2496 struct init_sequence {
2497 int (*init_func)(void);
2498 /* Can be NULL if the init_func doesn't need cleanup. */
2499 void (*exit_func)(void);
2500 };
2501
2502 static const struct init_sequence mod_init_seq[] = {
2503 {
2504 .init_func = btrfs_props_init,
2505 .exit_func = NULL,
2506 }, {
2507 .init_func = btrfs_init_sysfs,
2508 .exit_func = btrfs_exit_sysfs,
2509 }, {
2510 .init_func = btrfs_init_compress,
2511 .exit_func = btrfs_exit_compress,
2512 }, {
2513 .init_func = btrfs_init_cachep,
2514 .exit_func = btrfs_destroy_cachep,
2515 }, {
2516 .init_func = btrfs_init_dio,
2517 .exit_func = btrfs_destroy_dio,
2518 }, {
2519 .init_func = btrfs_transaction_init,
2520 .exit_func = btrfs_transaction_exit,
2521 }, {
2522 .init_func = btrfs_ctree_init,
2523 .exit_func = btrfs_ctree_exit,
2524 }, {
2525 .init_func = btrfs_free_space_init,
2526 .exit_func = btrfs_free_space_exit,
2527 }, {
2528 .init_func = extent_state_init_cachep,
2529 .exit_func = extent_state_free_cachep,
2530 }, {
2531 .init_func = extent_buffer_init_cachep,
2532 .exit_func = extent_buffer_free_cachep,
2533 }, {
2534 .init_func = btrfs_bioset_init,
2535 .exit_func = btrfs_bioset_exit,
2536 }, {
2537 .init_func = extent_map_init,
2538 .exit_func = extent_map_exit,
2539 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2540 }, {
2541 .init_func = btrfs_read_policy_init,
2542 .exit_func = NULL,
2543 #endif
2544 }, {
2545 .init_func = ordered_data_init,
2546 .exit_func = ordered_data_exit,
2547 }, {
2548 .init_func = btrfs_delayed_inode_init,
2549 .exit_func = btrfs_delayed_inode_exit,
2550 }, {
2551 .init_func = btrfs_auto_defrag_init,
2552 .exit_func = btrfs_auto_defrag_exit,
2553 }, {
2554 .init_func = btrfs_delayed_ref_init,
2555 .exit_func = btrfs_delayed_ref_exit,
2556 }, {
2557 .init_func = btrfs_prelim_ref_init,
2558 .exit_func = btrfs_prelim_ref_exit,
2559 }, {
2560 .init_func = btrfs_interface_init,
2561 .exit_func = btrfs_interface_exit,
2562 }, {
2563 .init_func = btrfs_print_mod_info,
2564 .exit_func = NULL,
2565 }, {
2566 .init_func = btrfs_run_sanity_tests,
2567 .exit_func = NULL,
2568 }, {
2569 .init_func = register_btrfs,
2570 .exit_func = unregister_btrfs,
2571 }
2572 };
2573
2574 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2575
btrfs_exit_btrfs_fs(void)2576 static __always_inline void btrfs_exit_btrfs_fs(void)
2577 {
2578 int i;
2579
2580 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2581 if (!mod_init_result[i])
2582 continue;
2583 if (mod_init_seq[i].exit_func)
2584 mod_init_seq[i].exit_func();
2585 mod_init_result[i] = false;
2586 }
2587 }
2588
exit_btrfs_fs(void)2589 static void __exit exit_btrfs_fs(void)
2590 {
2591 btrfs_exit_btrfs_fs();
2592 btrfs_cleanup_fs_uuids();
2593 }
2594
init_btrfs_fs(void)2595 static int __init init_btrfs_fs(void)
2596 {
2597 int ret;
2598 int i;
2599
2600 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2601 ASSERT(!mod_init_result[i]);
2602 ret = mod_init_seq[i].init_func();
2603 if (ret < 0) {
2604 btrfs_exit_btrfs_fs();
2605 return ret;
2606 }
2607 mod_init_result[i] = true;
2608 }
2609 return 0;
2610 }
2611
2612 late_initcall(init_btrfs_fs);
2613 module_exit(exit_btrfs_fs)
2614
2615 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2616 MODULE_LICENSE("GPL");
2617 MODULE_SOFTDEP("pre: crc32c");
2618 MODULE_SOFTDEP("pre: xxhash64");
2619 MODULE_SOFTDEP("pre: sha256");
2620 MODULE_SOFTDEP("pre: blake2b-256");
2621