1 #pragma once
2
3 #include <ATen/core/Tensor.h>
4 #include <ATen/Dispatch.h>
5 #include <ATen/Dispatch_v2.h>
6 #include <ATen/Generator.h>
7 #include <ATen/ExpandUtils.h>
8 #include <ATen/Tensor.h>
9 #include <ATen/MemoryOverlap.h>
10 #include <ATen/NamedTensorUtils.h>
11 #include <ATen/native/Resize.h>
12 #include <ATen/native/TensorIterator.h>
13 #include <cmath>
14 #include <limits>
15 #include <optional>
16
17 #ifndef AT_PER_OPERATOR_HEADERS
18 #include <ATen/Functions.h>
19 #else
20 #include <ATen/ops/empty_like.h>
21 #include <ATen/ops/empty.h>
22 #include <ATen/ops/full.h>
23 #include <ATen/ops/view_as_real.h>
24 #endif
25
26 namespace at::native::templates {
27
28 // ==================================================== Random ========================================================
29
30 // The purpose of `update_from` and `update_to` is to find the closest valid int64_t number that can be used as actual `from`.
31 // The current implementation of `random_` uses uint64_t arithmetics and casts the result to the target dtype(scalar_t).
32 // This casting can result in generating numbers that happen to be greater or equal to `to` value. For instance:
33 //
34 // auto actual = torch::empty({3, 3}, torch::half);
35 // actual.random_(0, 65504);
36 //
37 // If random's uint64_t arithmetics produces 65503 as a random value after casting to torch::half it becomes 65504
38 // and violates the requirement that random value must be less than `to`. To resolve this issue `update_from` and `update_to`
39 // moves `from` to the right and `to` to the left to the next closest value that won't go outside [from, to) after casting to
40 // the target dtype. For `to` = 65504 it moves left for (1 << (log2(to) - 11 + 1)) = 32 and becomes 65472, which is previous
41 // available number for torch::half dtype.
42 template<typename scalar_t>
update_from(int64_t from)43 int64_t update_from(int64_t from) {
44 static_assert(
45 std::is_floating_point<scalar_t>::value ||
46 std::is_same<scalar_t, at::Half>::value ||
47 std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
48 const auto from_plus_1 = static_cast<int64_t>(static_cast<scalar_t>(from + 1));
49 if (from_plus_1 < from) {
50 int64_t from_ = std::abs(from + 1);
51 int n = 0;
52 while (from_ >>= 1) ++n;
53 // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
54 from = from_plus_1 + (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
55 }
56 return from;
57 }
58
59 template<typename scalar_t>
update_to(int64_t to)60 int64_t update_to(int64_t to) {
61 static_assert(
62 std::is_floating_point<scalar_t>::value ||
63 std::is_same<scalar_t, at::Half>::value ||
64 std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
65 const auto to_minus_1 = static_cast<int64_t>(static_cast<scalar_t>(to - 1));
66 if (to_minus_1 >= to) {
67 int64_t to_ = std::abs(to - 1);
68 int n = 0;
69 while (to_ >>= 1) ++n;
70 // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
71 to = to_minus_1 - (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
72 }
73 return to;
74 }
75
76 // Return earlier for not invoking kernel.
77 // See https://github.com/pytorch/pytorch/issues/103418 for more details
78 #define CHECK_EMPTY_AND_RETURN(tensor) \
79 if (tensor.numel() == 0) { \
80 return tensor; \
81 }
82
83 template<template<typename> class random_kernel, typename RNG>
random_impl(at::Tensor & self,std::optional<Generator> generator)84 at::Tensor& random_impl(at::Tensor& self, std::optional<Generator> generator) {
85 CHECK_EMPTY_AND_RETURN(self);
86 auto iter = at::TensorIterator::borrowing_nullary_op(self);
87 random_kernel<RNG>()(iter, generator);
88 return self;
89 }
90
91 #define CHECK_OUT_OF_BOUNDS(var, name, min, max, dtype) \
92 TORCH_CHECK(var >= min && var <= max, name , " is out of bounds for ", dtype); \
93
94 #define WARN_OUT_OF_BOUNDS(var, name, digits, dtype) \
95 if (var < -(1LL << digits) || var > (1LL << digits)) { \
96 TORCH_WARN(name , " is out of bounds [-(2^", digits, "), 2^", digits, "]. ", \
97 "Due to precision limitations ", dtype, " can support discrete uniform distribution only within this range. ", \
98 "This warning will become an error in version 1.7 release, please fix the code in advance"); \
99 }
100
check_from_to_in_range(int64_t from,int64_t to_inc,caffe2::TypeMeta dtype)101 inline void check_from_to_in_range(int64_t from, int64_t to_inc, caffe2::TypeMeta dtype) {
102 const auto scalar_type = typeMetaToScalarType(dtype);
103 if (isFloatingType(scalar_type)) {
104 AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "check_random_fp_bounds", [&] {
105 const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
106 const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
107 CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
108 CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
109
110 constexpr auto digits = std::numeric_limits<scalar_t>::digits;
111 WARN_OUT_OF_BOUNDS(from, "from", digits, dtype);
112 WARN_OUT_OF_BOUNDS(to_inc, "to - 1", digits, dtype);
113 });
114 } else if (scalar_type == kUInt64) {
115 // When you do a comparison between int64_t and uint64_t, the usual
116 // arithmetic conversions say that the int64_t value is promoted to
117 // unsigned. But this conversion wraps around: if I had -1 as my int64_t,
118 // then it will promote to 0xFFFFFFFFFFFFFFFF in uint64_t. This is never
119 // the right thing to do.
120 CHECK_OUT_OF_BOUNDS(from, "from", 0, INT64_MAX, dtype);
121 CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", 0, INT64_MAX, dtype);
122 } else if (isIntegralType(scalar_type, /*includeBool=*/true)) {
123 AT_DISPATCH_V2(scalar_type, "check_random_integral_bounds", AT_WRAP([&]() {
124 const auto min = static_cast<int64_t>(std::numeric_limits<scalar_t>::lowest());
125 const auto max = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
126 CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
127 CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
128 }), AT_EXPAND(AT_INTEGRAL_TYPES), kUInt16, kUInt32, kBool);
129 } else {
130 TORCH_CHECK(false, "check_random_bounds handles only integral, floating-point and boolean types");
131 }
132 }
133
134 template<template<typename> class random_from_to_kernel, typename RNG>
random_from_to_impl(at::Tensor & self,int64_t from,std::optional<int64_t> to_opt,std::optional<Generator> generator)135 at::Tensor& random_from_to_impl(at::Tensor& self, int64_t from, std::optional<int64_t> to_opt, std::optional<Generator> generator) {
136 uint64_t range = 0;
137 auto iter = at::TensorIterator::borrowing_nullary_op(self);
138 if (to_opt.has_value()) {
139 // [from, to)
140 int64_t to = *to_opt;
141 TORCH_CHECK(from < to, "random_ expects 'from' to be less than 'to', but got from=", from, " >= to=", to);
142 if (isFloatingType(iter.dtype())) {
143 AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_update_from_to", [&] {
144 from = update_from<scalar_t>(from);
145 to = update_to<scalar_t>(to);
146 TORCH_CHECK(from < to, "random_ expects 'from' casted to dtype to be less than 'to' casted to dtype, but got from=", from, " >= to=", to);
147 });
148 }
149 check_from_to_in_range(from, to - 1, self.dtype());
150 CHECK_EMPTY_AND_RETURN(self);
151 range = static_cast<uint64_t>(to) - static_cast<uint64_t>(from);
152 random_from_to_kernel<RNG>()(iter, range, from, generator);
153 } else if (from != std::numeric_limits<int64_t>::lowest()) {
154 // [from, std::numeric_limits<int64_t>::max()]
155 int64_t to_inc = 0;
156 if (isFloatingType(iter.dtype())) {
157 AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_from_to_range_calc", [&] {
158 constexpr int64_t scalar_t_max = static_cast<int64_t>(1) << std::numeric_limits<scalar_t>::digits;
159 to_inc = scalar_t_max > std::numeric_limits<int64_t>::max() ? std::numeric_limits<int64_t>::max() : static_cast<int64_t>(scalar_t_max);
160 from = update_from<scalar_t>(from);
161 TORCH_CHECK(from < to_inc, "random_ expects 'from' casted to dtype to be less than or equal to 'to_inc' casted to dtype, but got from=", from, " > to_inc=", to_inc);
162 });
163 } else if (isIntegralType(iter.dtype(), /*includeBool=*/true)) {
164 AT_DISPATCH_V2(self.scalar_type(), "random_from_to_range_calc", AT_WRAP([&] {
165 if constexpr (std::is_same_v<scalar_t, bool>) {
166 to_inc = static_cast<int64_t>(true);
167 } else {
168 to_inc = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
169 }
170 }), AT_EXPAND(AT_INTEGRAL_TYPES_V2), kBool);
171 } else {
172 TORCH_CHECK(false, "random_from_to_impl handles only integral, floating-point and boolean types");
173 }
174 check_from_to_in_range(from, to_inc, self.dtype());
175 CHECK_EMPTY_AND_RETURN(self);
176 range = static_cast<uint64_t>(to_inc) - static_cast<uint64_t>(from) + 1;
177 random_from_to_kernel<RNG>()(iter, range, from, generator);
178 } else {
179 // [std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max()]
180 // range = 2^64
181 CHECK_EMPTY_AND_RETURN(self);
182 random_from_to_kernel<RNG>()(iter, generator);
183 }
184 return self;
185 }
186
187 // ==================================================== Normal ========================================================
188
189 #define CHECK_NORMAL_TENSOR_STD(std) \
190 do { \
191 TORCH_CHECK( \
192 !std.is_complex(), \
193 "normal expects standard deviation to be non-complex"); \
194 TORCH_CHECK( \
195 std.numel() == 0 || std.is_meta() || std.min().ge(0).item<bool>(), \
196 "normal expects all elements of std >= 0.0"); \
197 } while (0)
198
199 #define CHECK_NORMAL_STD(std) \
200 TORCH_CHECK(std >= 0.0, "normal expects std >= 0.0, but found std ", std);
201
202 template<template<typename> class normal_kernel, typename RNG>
normal_impl_(Tensor & self,double mean,double std,std::optional<Generator> gen)203 Tensor& normal_impl_(Tensor& self, double mean, double std, std::optional<Generator> gen) {
204 CHECK_NORMAL_STD(std);
205 CHECK_EMPTY_AND_RETURN(self);
206
207 if (self.is_complex()) {
208 auto float_tensor = at::view_as_real(self);
209 // variance for normal distribution of the real and imaginary values
210 // is half of the input variance
211 normal_kernel<RNG>()(float_tensor, mean, std/(std::sqrt(2)), gen);
212 } else {
213 normal_kernel<RNG>()(self, mean, std, gen);
214 }
215 return self;
216 }
217
218 template<template<typename> class normal_kernel, typename RNG>
normal_out_impl(Tensor & output,const Tensor & mean,double std,std::optional<Generator> gen)219 Tensor& normal_out_impl(Tensor& output, const Tensor& mean, double std, std::optional<Generator> gen) {
220 CHECK_NORMAL_STD(std);
221 auto std_tensor = at::empty_like(output, MemoryFormat::Contiguous);
222 auto shape = at::infer_size(mean.sizes(), std_tensor.sizes());
223 at::native::resize_output(output, shape);
224 normal_impl_<normal_kernel, RNG>(output, 0, std, gen);
225 output.add_(mean);
226 return output;
227 }
228
229 template<template<typename> class normal_kernel, typename RNG>
normal_out_impl(Tensor & output,double mean,const Tensor & std,std::optional<Generator> gen)230 Tensor& normal_out_impl(Tensor& output, double mean, const Tensor& std, std::optional<Generator> gen) {
231 CHECK_NORMAL_TENSOR_STD(std);
232 auto mean_tensor = at::full({}, mean, output.options());
233 auto shape = at::infer_size(mean_tensor.sizes(), std.sizes());
234 at::native::resize_output(output, shape);
235 normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
236 // CUDA NB: addcmul_out copies the tensor to be added into the output.
237 // The previous function here was addcmul_out(output, mean_tensor, output, std, 1);
238 // The third argument is not a constant reference and hence the samples in output are overwritten.
239 // Consequently, the computation performed is mean_tensor + mean_tensor * std instead of mean_tensor + output * std
240 output.mul_(std).add_(mean_tensor);
241 return output;
242 }
243
244 template<template<typename> class normal_kernel, typename RNG>
normal_out_impl(Tensor & output,const Tensor & mean,const Tensor & std,std::optional<Generator> gen)245 Tensor& normal_out_impl(Tensor& output, const Tensor& mean, const Tensor& std, std::optional<Generator> gen) {
246 CHECK_NORMAL_TENSOR_STD(std);
247 auto shape = at::infer_size(mean.sizes(), std.sizes());
248 at::native::resize_output(output, shape);
249 normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
250 // CUDA NB: addcmul_out copies the tensor to be added into the output.
251 // The previous function here was addcmul_out(output, mean, output, std, 1);
252 // The third argument is not a constant reference and hence the samples in output are overwritten.
253 // Consequently, the computation performed is mean + mean * std instead of mean + output * std
254 output.mul_(std).add_(mean);
255 return output;
256 }
257
258 template<template<typename> class normal_kernel, typename RNG>
normal_impl(const Tensor & mean,double std,std::optional<Generator> gen)259 Tensor normal_impl(const Tensor& mean, double std, std::optional<Generator> gen) {
260 CHECK_NORMAL_STD(std);
261 Tensor ret = at::empty_like(mean, MemoryFormat::Contiguous);
262 normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
263 return ret;
264 }
265
266 template<template<typename> class normal_kernel, typename RNG>
normal_impl(double mean,const Tensor & std,std::optional<Generator> gen)267 Tensor normal_impl(double mean, const Tensor& std, std::optional<Generator> gen) {
268 CHECK_NORMAL_TENSOR_STD(std);
269 Tensor ret = at::empty_like(std, MemoryFormat::Contiguous);
270 normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
271 return ret;
272 }
273
274 template<template<typename> class normal_kernel, typename RNG>
normal_impl(const Tensor & mean,const Tensor & std,std::optional<Generator> gen)275 Tensor normal_impl(const Tensor& mean, const Tensor& std, std::optional<Generator> gen) {
276 CHECK_NORMAL_TENSOR_STD(std);
277 auto shape = at::infer_size(mean.sizes(), std.sizes());
278 Tensor ret = at::empty(shape, mean.options(), MemoryFormat::Contiguous);
279 normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
280 return ret;
281 }
282
283 // ==================================================== Uniform =======================================================
284
285 template<template<typename> class uniform_kernel, typename RNG>
uniform_impl_(at::Tensor & self,double from,double to,std::optional<Generator> generator)286 at::Tensor& uniform_impl_(at::Tensor& self, double from, double to, std::optional<Generator> generator) {
287 if (self.is_complex()) {
288 CHECK_EMPTY_AND_RETURN(self);
289 auto float_tensor = at::view_as_real(self);
290 uniform_impl_<uniform_kernel, RNG>(float_tensor, from, to, generator);
291 } else {
292 AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "check_uniform_bounds", [&] {
293 [[maybe_unused]] const auto dtype = self.dtype();
294 const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
295 const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
296 CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
297 CHECK_OUT_OF_BOUNDS(to, "to", min, max, dtype);
298 TORCH_CHECK(from <= to, "uniform_ expects to return a [from, to) range, but found from=", from, " > to=", to);
299 TORCH_CHECK((to - from) <= std::numeric_limits<scalar_t>::max(),
300 "uniform_ expects to-from <= std::numeric_limits<", toString(self.scalar_type()),
301 ">::max(), but found to=", to, " and from=", from,
302 " which result in to-from to exceed the limit");
303 from = std::min(std::max(from, min), max);
304 to = std::max(std::min(to, max), min);
305 });
306 CHECK_EMPTY_AND_RETURN(self);
307 auto iter = at::TensorIterator::borrowing_nullary_op(self);
308 uniform_kernel<RNG>()(iter, from, to, generator);
309 }
310 return self;
311 }
312
313 // ================================================== LogNormal =======================================================
314
315 template<template<typename> class log_normal_kernel, typename RNG>
log_normal_impl_(at::Tensor & self,double mean,double std,std::optional<Generator> gen)316 at::Tensor& log_normal_impl_(at::Tensor& self, double mean, double std, std::optional<Generator> gen) {
317 TORCH_CHECK(std > 0.0, "log_normal_ expects std > 0.0, but found std=", std);
318 CHECK_EMPTY_AND_RETURN(self);
319 auto iter = TensorIterator::borrowing_nullary_op(self);
320 log_normal_kernel<RNG>()(iter, mean, std, gen);
321 return self;
322 }
323
324 // =================================================== Geometric ======================================================
325
326 template<template<typename> class geometric_kernel, typename RNG>
geometric_impl_(Tensor & self,double p,std::optional<Generator> gen)327 Tensor& geometric_impl_(Tensor& self, double p, std::optional<Generator> gen) {
328 TORCH_CHECK(0 < p && p < 1, "geometric_ expects p to be in (0, 1), but got p=", p);
329 CHECK_EMPTY_AND_RETURN(self);
330 auto iter = TensorIterator::borrowing_nullary_op(self);
331 geometric_kernel<RNG>()(iter, p, gen);
332 return self;
333 }
334
335 // ================================================== Exponential =====================================================
336
337 template<template<typename> class exponential_kernel, typename RNG>
exponential_impl_(Tensor & self,double lambda,std::optional<Generator> gen)338 Tensor& exponential_impl_(Tensor& self, double lambda, std::optional<Generator> gen) {
339 TORCH_CHECK(lambda > 0.0, "exponential_ expects lambda > 0.0, but found lambda=", lambda);
340 CHECK_EMPTY_AND_RETURN(self);
341 auto iter = TensorIterator::borrowing_nullary_op(self);
342 exponential_kernel<RNG>()(iter, lambda, gen);
343 return self;
344 }
345
346 // ==================================================== Cauchy ========================================================
347
348 template<template<typename> class cauchy_kernel, typename RNG>
cauchy_impl_(Tensor & self,double median,double sigma,std::optional<Generator> gen)349 Tensor& cauchy_impl_(Tensor& self, double median, double sigma, std::optional<Generator> gen) {
350 // TODO: instead of variable name 'sigma', use 'gamma' or 'scale'
351 // the variance, squared sigma, is undefined for cauchy distribution
352 TORCH_CHECK(sigma > 0.0, "cauchy_ expects sigma > 0.0, but found sigma=", sigma);
353 TORCH_CHECK(at::isFloatingType(self.scalar_type()), "Cauchy distribution is a continuous probability distribution. dtype must be a floating point but you specified ", self.dtype());
354 CHECK_EMPTY_AND_RETURN(self);
355 auto iter = TensorIterator::borrowing_nullary_op(self);
356 cauchy_kernel<RNG>()(iter, median, sigma, gen);
357 return self;
358 }
359
360 // ==================================================== Bernoulli =====================================================
361
362 template<template<typename> class bernoulli_tensor_kernel, typename RNG>
bernoulli_impl_(Tensor & self,const Tensor & p_,std::optional<Generator> gen)363 Tensor& bernoulli_impl_(Tensor& self, const Tensor& p_, std::optional<Generator> gen) {
364 CHECK_EMPTY_AND_RETURN(self);
365 NoNamesGuard guard;
366 at::assert_no_internal_overlap(self);
367 bernoulli_tensor_kernel<RNG>()(self, p_, gen);
368 return self;
369 }
370
371 template<template<typename> class bernoulli_scalar_kernel, typename RNG>
bernoulli_impl_(Tensor & self,double p,std::optional<Generator> gen)372 Tensor& bernoulli_impl_(Tensor& self, double p, std::optional<Generator> gen) {
373 TORCH_CHECK(0 <= p && p <= 1, "bernoulli_ expects p to be in [0, 1], but got p=", p);
374 CHECK_EMPTY_AND_RETURN(self);
375 at::assert_no_internal_overlap(self);
376 bernoulli_scalar_kernel<RNG>()(self, p, gen);
377 return self;
378 }
379
380 template<template<typename> class bernoulli_tensor_kernel, typename RNG>
bernoulli_out_impl(Tensor & result,const Tensor & self,std::optional<Generator> gen)381 Tensor& bernoulli_out_impl(Tensor& result, const Tensor& self, std::optional<Generator> gen) {
382 // result.resize_as_(self) requires self to have same dtype as result, so we
383 // use resize_ instead.
384 // TODO: Fix resize_as_. See pytorch/pytorch#11665.
385 result.resize_(self.sizes());
386 bernoulli_impl_<bernoulli_tensor_kernel, RNG>(result, self, gen);
387 namedinference::propagate_names(result, self);
388 return result;
389 }
390
391 #undef CHECK_OUT_OF_BOUNDS
392 #undef WARN_OUT_OF_BOUNDS
393
394 } // namespace at::native::templates
395