xref: /aosp_15_r20/external/coreboot/util/cbfstool/cbfs_image.c (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /* CBFS Image Manipulation */
2 /* SPDX-License-Identifier: GPL-2.0-only */
3 
4 #include <inttypes.h>
5 #include <libgen.h>
6 #include <stddef.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <strings.h>
11 #include <commonlib/endian.h>
12 #include <vb2_sha.h>
13 
14 #include "common.h"
15 #include "cbfs_image.h"
16 #include "elfparsing.h"
17 #include "rmodule.h"
18 
19 /* Even though the file-adding functions---cbfs_add_entry() and
20  * cbfs_add_entry_at()---perform their sizing checks against the beginning of
21  * the subsequent section rather than a stable recorded value such as an empty
22  * file header's len field, it's possible to prove two interesting properties
23  * about their behavior:
24  *  - Placing a new file within an empty entry located below an existing file
25  *    entry will never leave an aligned flash address containing neither the
26  *    beginning of a file header nor part of a file.
27  *  - Placing a new file in an empty entry at the very end of the image such
28  *    that it fits, but leaves no room for a final header, is guaranteed not to
29  *    change the total amount of space for entries, even if that new file is
30  *    later removed from the CBFS.
31  * These properties are somewhat nonobvious from the implementation, so the
32  * reader is encouraged to blame this comment and examine the full proofs
33  * in the commit message before making significant changes that would risk
34  * removing said guarantees.
35  */
36 
lookup_name_by_type(const struct typedesc_t * desc,uint32_t type,const char * default_value)37 static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
38 				const char *default_value)
39 {
40 	int i;
41 	for (i = 0; desc[i].name; i++)
42 		if (desc[i].type == type)
43 			return desc[i].name;
44 	return default_value;
45 }
46 
lookup_type_by_name(const struct typedesc_t * desc,const char * name)47 static int lookup_type_by_name(const struct typedesc_t *desc, const char *name)
48 {
49 	int i;
50 	for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i);
51 	return desc[i].name ? (int)desc[i].type : -1;
52 }
53 
get_cbfs_entry_type_name(uint32_t type)54 static const char *get_cbfs_entry_type_name(uint32_t type)
55 {
56 	return lookup_name_by_type(filetypes, type, "(unknown)");
57 }
58 
cbfs_parse_comp_algo(const char * name)59 int cbfs_parse_comp_algo(const char *name)
60 {
61 	return lookup_type_by_name(types_cbfs_compression, name);
62 }
63 
64 /* CBFS image */
65 
cbfs_calculate_file_header_size(const char * name)66 size_t cbfs_calculate_file_header_size(const char *name)
67 {
68 	return (sizeof(struct cbfs_file) +
69 		align_up(strlen(name) + 1, CBFS_ATTRIBUTE_ALIGN));
70 }
71 
72 /* Only call on legacy CBFSes possessing a master header. */
cbfs_fix_legacy_size(struct cbfs_image * image,char * hdr_loc)73 static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
74 {
75 	assert(image);
76 	assert(cbfs_is_legacy_cbfs(image));
77 	// A bug in old cbfstool may produce extra few bytes (by alignment) and
78 	// cause cbfstool to overwrite things after free space -- which is
79 	// usually CBFS header on x86. We need to workaround that.
80 	// Except when we run across a file that contains the actual header,
81 	// in which case this image is a safe, new-style
82 	// `cbfstool add-master-header` based image.
83 
84 	struct cbfs_file *entry, *first = NULL, *last = NULL;
85 	for (first = entry = cbfs_find_first_entry(image);
86 	     entry && cbfs_is_valid_entry(image, entry);
87 	     entry = cbfs_find_next_entry(image, entry)) {
88 		/* Is the header guarded by a CBFS file entry? Then exit */
89 		if (((char *)entry) + be32toh(entry->offset) == hdr_loc)
90 			return 0;
91 		last = entry;
92 	}
93 	if ((char *)first < (char *)hdr_loc &&
94 	    (char *)entry > (char *)hdr_loc) {
95 		WARN("CBFS image was created with old cbfstool with size bug. "
96 		     "Fixing size in last entry...\n");
97 		last->len = htobe32(be32toh(last->len) - image->header.align);
98 		DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
99 		      cbfs_get_entry_addr(image, entry),
100 		      cbfs_get_entry_addr(image,
101 					  cbfs_find_next_entry(image, last)));
102 	}
103 	return 0;
104 }
105 
cbfs_put_header(void * dest,const struct cbfs_header * header)106 void cbfs_put_header(void *dest, const struct cbfs_header *header)
107 {
108 	struct buffer outheader;
109 
110 	outheader.data = dest;
111 	outheader.size = 0;
112 
113 	xdr_be.put32(&outheader, header->magic);
114 	xdr_be.put32(&outheader, header->version);
115 	xdr_be.put32(&outheader, header->romsize);
116 	xdr_be.put32(&outheader, header->bootblocksize);
117 	xdr_be.put32(&outheader, header->align);
118 	xdr_be.put32(&outheader, header->offset);
119 	xdr_be.put32(&outheader, header->architecture);
120 }
121 
cbfs_decode_payload_segment(struct cbfs_payload_segment * output,struct cbfs_payload_segment * input)122 static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
123 					struct cbfs_payload_segment *input)
124 {
125 	struct buffer seg = {
126 		.data = (void *)input,
127 		.size = sizeof(*input),
128 	};
129 	output->type = xdr_be.get32(&seg);
130 	output->compression = xdr_be.get32(&seg);
131 	output->offset = xdr_be.get32(&seg);
132 	output->load_addr = xdr_be.get64(&seg);
133 	output->len = xdr_be.get32(&seg);
134 	output->mem_len = xdr_be.get32(&seg);
135 	assert(seg.size == 0);
136 }
137 
cbfs_file_get_compression_info(struct cbfs_file * entry,uint32_t * decompressed_size)138 static int cbfs_file_get_compression_info(struct cbfs_file *entry,
139 	uint32_t *decompressed_size)
140 {
141 	unsigned int compression = CBFS_COMPRESS_NONE;
142 	if (decompressed_size)
143 		*decompressed_size = be32toh(entry->len);
144 	for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
145 	     attr != NULL;
146 	     attr = cbfs_file_next_attr(entry, attr)) {
147 		if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) {
148 			struct cbfs_file_attr_compression *ac =
149 				(struct cbfs_file_attr_compression *)attr;
150 			compression = be32toh(ac->compression);
151 			if (decompressed_size)
152 				*decompressed_size =
153 					be32toh(ac->decompressed_size);
154 		}
155 	}
156 	return compression;
157 }
158 
cbfs_file_get_next_hash(struct cbfs_file * entry,struct cbfs_file_attr_hash * cur)159 static struct cbfs_file_attr_hash *cbfs_file_get_next_hash(
160 	struct cbfs_file *entry, struct cbfs_file_attr_hash *cur)
161 {
162 	struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur;
163 	if (attr == NULL) {
164 		attr = cbfs_file_first_attr(entry);
165 		if (attr == NULL)
166 			return NULL;
167 		if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
168 			return (struct cbfs_file_attr_hash *)attr;
169 	}
170 	while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) {
171 		if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
172 			return (struct cbfs_file_attr_hash *)attr;
173 	};
174 	return NULL;
175 }
176 
cbfs_get_header(struct cbfs_header * header,void * src)177 void cbfs_get_header(struct cbfs_header *header, void *src)
178 {
179 	struct buffer outheader;
180 
181 	outheader.data = src;	/* We're not modifying the data */
182 	outheader.size = 0;
183 
184 	header->magic = xdr_be.get32(&outheader);
185 	header->version = xdr_be.get32(&outheader);
186 	header->romsize = xdr_be.get32(&outheader);
187 	header->bootblocksize = xdr_be.get32(&outheader);
188 	header->align = xdr_be.get32(&outheader);
189 	header->offset = xdr_be.get32(&outheader);
190 	header->architecture = xdr_be.get32(&outheader);
191 }
192 
cbfs_image_create(struct cbfs_image * image,size_t entries_size)193 int cbfs_image_create(struct cbfs_image *image, size_t entries_size)
194 {
195 	assert(image);
196 	assert(image->buffer.data);
197 
198 	size_t empty_header_len = cbfs_calculate_file_header_size("");
199 	uint32_t entries_offset = 0;
200 	uint32_t align = CBFS_ALIGNMENT;
201 	if (image->has_header) {
202 		entries_offset = image->header.offset;
203 
204 		if (entries_offset > image->buffer.size) {
205 			ERROR("CBFS file entries are located outside CBFS itself\n");
206 			return -1;
207 		}
208 
209 		align = image->header.align;
210 	}
211 
212 	// This attribute must be given in order to prove that this module
213 	// correctly preserves certain CBFS properties. See the block comment
214 	// near the top of this file (and the associated commit message).
215 	if (align < empty_header_len) {
216 		ERROR("CBFS must be aligned to at least %zu bytes\n",
217 							empty_header_len);
218 		return -1;
219 	}
220 
221 	if (entries_size > image->buffer.size - entries_offset) {
222 		ERROR("CBFS doesn't have enough space to fit its file entries\n");
223 		return -1;
224 	}
225 
226 	if (empty_header_len > entries_size) {
227 		ERROR("CBFS is too small to fit any header\n");
228 		return -1;
229 	}
230 	struct cbfs_file *entry_header =
231 		(struct cbfs_file *)(image->buffer.data + entries_offset);
232 	// This alignment is necessary in order to prove that this module
233 	// correctly preserves certain CBFS properties. See the block comment
234 	// near the top of this file (and the associated commit message).
235 	entries_size -= entries_size % align;
236 
237 	size_t capacity = entries_size - empty_header_len;
238 	LOG("Created CBFS (capacity = %zu bytes)\n", capacity);
239 	return cbfs_create_empty_entry(entry_header, CBFS_TYPE_NULL,
240 		capacity, "");
241 }
242 
cbfs_legacy_image_create(struct cbfs_image * image,uint32_t architecture,uint32_t align,struct buffer * bootblock,uint32_t bootblock_offset,uint32_t header_offset,uint32_t entries_offset)243 int cbfs_legacy_image_create(struct cbfs_image *image,
244 			     uint32_t architecture,
245 			     uint32_t align,
246 			     struct buffer *bootblock,
247 			     uint32_t bootblock_offset,
248 			     uint32_t header_offset,
249 			     uint32_t entries_offset)
250 {
251 	assert(image);
252 	assert(image->buffer.data);
253 	assert(bootblock);
254 
255 	int32_t *rel_offset;
256 	uint32_t cbfs_len;
257 	void *header_loc;
258 	size_t size = image->buffer.size;
259 
260 	DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
261 	      "header=0x%x+0x%zx, entries_offset=0x%x\n",
262 	      bootblock_offset, bootblock->size, header_offset,
263 	      sizeof(image->header), entries_offset);
264 
265 	DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
266 	      "header=0x%x, entries_offset=0x%x\n",
267 	      bootblock_offset, header_offset, entries_offset);
268 
269 	// Prepare bootblock
270 	if (bootblock_offset + bootblock->size > size) {
271 		ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
272 		      bootblock_offset, bootblock->size, size);
273 		return -1;
274 	}
275 	if (entries_offset > bootblock_offset &&
276 	    entries_offset < bootblock->size) {
277 		ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
278 		      bootblock_offset, bootblock->size, entries_offset);
279 		return -1;
280 	}
281 	memcpy(image->buffer.data + bootblock_offset, bootblock->data,
282 	       bootblock->size);
283 
284 	// Prepare header
285 	if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) {
286 		ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
287 		      header_offset, sizeof(image->header), size);
288 		return -1;
289 	}
290 	image->header.magic = CBFS_HEADER_MAGIC;
291 	image->header.version = CBFS_HEADER_VERSION;
292 	image->header.romsize = size;
293 	image->header.bootblocksize = bootblock->size;
294 	image->header.align = align;
295 	image->header.offset = entries_offset;
296 	image->header.architecture = architecture;
297 
298 	header_loc = (image->buffer.data + header_offset);
299 	cbfs_put_header(header_loc, &image->header);
300 	image->has_header = true;
301 
302 	// The last 4 byte of the image contain the relative offset from the end
303 	// of the image to the master header as a 32-bit signed integer. x86
304 	// relies on this also being its (memory-mapped, top-aligned) absolute
305 	// 32-bit address by virtue of how two's complement numbers work.
306 	assert(size % sizeof(int32_t) == 0);
307 	rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
308 	*rel_offset = header_offset - size;
309 
310 	// Prepare entries
311 	if (align_up(entries_offset, align) != entries_offset) {
312 		ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
313 		      entries_offset, align);
314 		return -1;
315 	}
316 	// To calculate available length, find
317 	//   e = min(bootblock, header, rel_offset) where e > entries_offset.
318 	cbfs_len = size - sizeof(int32_t);
319 	if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
320 		cbfs_len = bootblock_offset;
321 	if (header_offset > entries_offset && header_offset < cbfs_len)
322 		cbfs_len = header_offset;
323 
324 	if (cbfs_image_create(image, cbfs_len - entries_offset))
325 		return -1;
326 	return 0;
327 }
328 
cbfs_image_from_buffer(struct cbfs_image * out,struct buffer * in,uint32_t offset)329 int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in,
330 			   uint32_t offset)
331 {
332 	assert(out);
333 	assert(in);
334 	assert(in->data);
335 
336 	buffer_clone(&out->buffer, in);
337 	out->has_header = false;
338 
339 	if (cbfs_is_valid_cbfs(out)) {
340 		return 0;
341 	}
342 
343 	void *header_loc = cbfs_find_header(in->data, in->size, offset);
344 	if (header_loc) {
345 		cbfs_get_header(&out->header, header_loc);
346 		out->has_header = true;
347 		cbfs_fix_legacy_size(out, header_loc);
348 		return 0;
349 	} else if (offset != HEADER_OFFSET_UNKNOWN) {
350 		ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n");
351 	}
352 	ERROR("Selected image region is not a valid CBFS.\n");
353 	return 1;
354 }
355 
cbfs_copy_instance(struct cbfs_image * image,struct buffer * dst)356 int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst)
357 {
358 	assert(image);
359 
360 	struct cbfs_file *src_entry, *dst_entry;
361 	size_t align;
362 	ssize_t last_entry_size;
363 
364 	size_t copy_end = buffer_size(dst);
365 
366 	align = CBFS_ALIGNMENT;
367 
368 	dst_entry = (struct cbfs_file *)buffer_get(dst);
369 
370 	/* Copy non-empty files */
371 	for (src_entry = cbfs_find_first_entry(image);
372 	     src_entry && cbfs_is_valid_entry(image, src_entry);
373 	     src_entry = cbfs_find_next_entry(image, src_entry)) {
374 		size_t entry_size;
375 
376 		if ((src_entry->type == htobe32(CBFS_TYPE_NULL)) ||
377 		    (src_entry->type == htobe32(CBFS_TYPE_CBFSHEADER)) ||
378 		    (src_entry->type == htobe32(CBFS_TYPE_DELETED)))
379 			continue;
380 
381 		entry_size = htobe32(src_entry->len) + htobe32(src_entry->offset);
382 		memcpy(dst_entry, src_entry, entry_size);
383 		dst_entry = (struct cbfs_file *)(
384 			(uintptr_t)dst_entry + align_up(entry_size, align));
385 
386 		if ((size_t)((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst))
387 					>= copy_end) {
388 			ERROR("Ran out of room in copy region.\n");
389 			return 1;
390 		}
391 	}
392 
393 	/* Last entry size is all the room above it, except for top 4 bytes
394 	 * which may be used by the master header pointer. This messes with
395 	 * the ability to stash something "top-aligned" into the region, but
396 	 * keeps things simpler. */
397 	last_entry_size = copy_end -
398 		((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst)) -
399 		cbfs_calculate_file_header_size("") - sizeof(int32_t);
400 
401 	if (last_entry_size < 0)
402 		WARN("No room to create the last entry!\n");
403 	else
404 		return cbfs_create_empty_entry(dst_entry, CBFS_TYPE_NULL,
405 					       last_entry_size, "");
406 
407 	return 0;
408 }
409 
cbfs_expand_to_region(struct buffer * region)410 int cbfs_expand_to_region(struct buffer *region)
411 {
412 	if (buffer_get(region) == NULL)
413 		return 1;
414 
415 	struct cbfs_image image;
416 	memset(&image, 0, sizeof(image));
417 	if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) {
418 		ERROR("reading CBFS failed!\n");
419 		return 1;
420 	}
421 
422 	uint32_t region_sz = buffer_size(region);
423 
424 	struct cbfs_file *entry;
425 	for (entry = buffer_get(region);
426 	     cbfs_is_valid_entry(&image, entry);
427 	     entry = cbfs_find_next_entry(&image, entry)) {
428 	     /* just iterate through */
429 	}
430 
431 	/* entry now points to the first aligned address after the last valid
432 	 * file header. That's either outside the image or exactly the place
433 	 * where we need to create a new file.
434 	 */
435 	int last_entry_size = region_sz -
436 		((uint8_t *)entry - (uint8_t *)buffer_get(region)) -
437 		cbfs_calculate_file_header_size("") - sizeof(int32_t);
438 
439 	if (last_entry_size > 0) {
440 		if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL,
441 					    last_entry_size, ""))
442 			return 1;
443 
444 		/* If the last entry was an empty file, merge them. */
445 		cbfs_legacy_walk(&image, cbfs_merge_empty_entry, NULL);
446 	}
447 
448 	return 0;
449 }
450 
cbfs_truncate_space(struct buffer * region,uint32_t * size)451 int cbfs_truncate_space(struct buffer *region, uint32_t *size)
452 {
453 	if (buffer_get(region) == NULL)
454 		return 1;
455 
456 	struct cbfs_image image;
457 	memset(&image, 0, sizeof(image));
458 	if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) {
459 		ERROR("reading CBFS failed!\n");
460 		return 1;
461 	}
462 
463 	struct cbfs_file *entry, *trailer;
464 	for (trailer = entry = buffer_get(region);
465 	     cbfs_is_valid_entry(&image, entry);
466 	     trailer = entry,
467 	     entry = cbfs_find_next_entry(&image, entry)) {
468 	     /* just iterate through */
469 	}
470 
471 	/* trailer now points to the last valid CBFS entry's header.
472 	 * If that file is empty, remove it and report its header's offset as
473 	 * maximum size.
474 	 */
475 	if ((strlen(trailer->filename) != 0) &&
476 	    (trailer->type != htobe32(CBFS_TYPE_NULL)) &&
477 	    (trailer->type != htobe32(CBFS_TYPE_DELETED))) {
478 		/* nothing to truncate. Return de-facto CBFS size in case it
479 		 * was already truncated. */
480 		*size = (uint8_t *)entry - (uint8_t *)buffer_get(region);
481 		return 0;
482 	}
483 	*size = (uint8_t *)trailer - (uint8_t *)buffer_get(region);
484 	memset(trailer, 0xff, buffer_size(region) - *size);
485 
486 	return 0;
487 }
488 
cbfs_file_entry_metadata_size(const struct cbfs_file * f)489 static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f)
490 {
491 	return be32toh(f->offset);
492 }
493 
cbfs_file_entry_data_size(const struct cbfs_file * f)494 static size_t cbfs_file_entry_data_size(const struct cbfs_file *f)
495 {
496 	return be32toh(f->len);
497 }
498 
cbfs_file_entry_size(const struct cbfs_file * f)499 static size_t cbfs_file_entry_size(const struct cbfs_file *f)
500 {
501 	return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f);
502 }
503 
cbfs_compact_instance(struct cbfs_image * image)504 int cbfs_compact_instance(struct cbfs_image *image)
505 {
506 	assert(image);
507 
508 	struct cbfs_file *prev;
509 	struct cbfs_file *cur;
510 
511 	/* The prev entry will always be an empty entry. */
512 	prev = NULL;
513 
514 	/*
515 	 * Note: this function does not honor alignment or fixed location files.
516 	 * It's behavior is akin to cbfs_copy_instance() in that it expects
517 	 * the caller to understand the ramifications of compacting a
518 	 * fragmented CBFS image.
519 	 */
520 
521 	for (cur = cbfs_find_first_entry(image);
522 	     cur && cbfs_is_valid_entry(image, cur);
523 	     cur = cbfs_find_next_entry(image, cur)) {
524 		size_t prev_size;
525 		size_t cur_size;
526 		size_t empty_metadata_size;
527 		size_t spill_size;
528 
529 		/* Current entry is empty. Kepp track of it. */
530 		if (cur->type == CBFS_TYPE_NULL || cur->type == CBFS_TYPE_DELETED) {
531 			prev = cur;
532 			continue;
533 		}
534 
535 		/* Need to ensure the previous entry is an empty one. */
536 		if (prev == NULL)
537 			continue;
538 
539 		/* At this point prev is an empty entry. Put the non-empty
540 		 * file in prev's location. Then add a new empty entry. This
541 		 * essentialy bubbles empty entries towards the end. */
542 
543 		prev_size = cbfs_file_entry_size(prev);
544 		cur_size = cbfs_file_entry_size(cur);
545 
546 		/*
547 		 * Adjust the empty file size by the actual space occupied
548 		 * bewtween the beginning of the empty file and the non-empty
549 		 * file.
550 		 */
551 		prev_size += (cbfs_get_entry_addr(image, cur) -
552 				cbfs_get_entry_addr(image, prev)) - prev_size;
553 
554 		/* Move the non-empty file over the empty file. */
555 		memmove(prev, cur, cur_size);
556 
557 		/*
558 		 * Get location of the empty file. Note that since prev was
559 		 * overwritten with the non-empty file the previously moved
560 		 * file needs to be used to calculate the empty file's location.
561 		 */
562 		cur = cbfs_find_next_entry(image, prev);
563 
564 		/*
565 		 * The total space to work with for swapping the 2 entries
566 		 * consists of the 2 files' sizes combined. However, the
567 		 * cbfs_file entries start on CBFS_ALIGNMENT boundaries.
568 		 * Because of this the empty file size may end up smaller
569 		 * because of the non-empty file's metadata and data length.
570 		 *
571 		 * Calculate the spill size which is the amount of data lost
572 		 * due to the alignment constraints after moving the non-empty
573 		 * file.
574 		 */
575 		spill_size = (cbfs_get_entry_addr(image, cur) -
576 				cbfs_get_entry_addr(image, prev)) - cur_size;
577 
578 		empty_metadata_size = cbfs_calculate_file_header_size("");
579 
580 		/* Check if new empty size can contain the metadata. */
581 		if (empty_metadata_size + spill_size > prev_size) {
582 			ERROR("Unable to swap '%s' with prev empty entry.\n",
583 				prev->filename);
584 			return 1;
585 		}
586 
587 		/* Update the empty file's size. */
588 		prev_size -= spill_size + empty_metadata_size;
589 
590 		/* Create new empty file. */
591 		if (cbfs_create_empty_entry(cur, CBFS_TYPE_NULL,
592 					    prev_size, ""))
593 			return 1;
594 
595 		/* Merge any potential empty entries together. */
596 		cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
597 
598 		/*
599 		 * Since current switched to an empty file keep track of it.
600 		 * Even if any empty files were merged the empty entry still
601 		 * starts at previously calculated location.
602 		 */
603 		prev = cur;
604 	}
605 
606 	return 0;
607 }
608 
cbfs_image_delete(struct cbfs_image * image)609 int cbfs_image_delete(struct cbfs_image *image)
610 {
611 	if (image == NULL)
612 		return 0;
613 
614 	buffer_delete(&image->buffer);
615 	return 0;
616 }
617 
618 /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
cbfs_add_entry_at(struct cbfs_image * image,struct cbfs_file * entry,const void * data,uint32_t content_offset,const struct cbfs_file * header,const size_t len_align)619 static int cbfs_add_entry_at(struct cbfs_image *image,
620 			     struct cbfs_file *entry,
621 			     const void *data,
622 			     uint32_t content_offset,
623 			     const struct cbfs_file *header,
624 			     const size_t len_align)
625 {
626 	struct cbfs_file *next = cbfs_find_next_entry(image, entry);
627 	uint32_t addr = cbfs_get_entry_addr(image, entry),
628 		 addr_next = cbfs_get_entry_addr(image, next);
629 	uint32_t min_entry_size = cbfs_calculate_file_header_size("");
630 	uint32_t len, header_offset;
631 	uint32_t align = image->has_header ? image->header.align :
632 							CBFS_ALIGNMENT;
633 	uint32_t header_size = be32toh(header->offset);
634 
635 	header_offset = content_offset - header_size;
636 	if (header_offset % align)
637 		header_offset -= header_offset % align;
638 	if (header_offset < addr) {
639 		ERROR("No space to hold cbfs_file header.");
640 		return -1;
641 	}
642 
643 	// Process buffer BEFORE content_offset.
644 	if (header_offset - addr > min_entry_size) {
645 		DEBUG("|min|...|header|content|... <create new entry>\n");
646 		len = header_offset - addr - min_entry_size;
647 		if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, ""))
648 			return -1;
649 		if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
650 		entry = cbfs_find_next_entry(image, entry);
651 		addr = cbfs_get_entry_addr(image, entry);
652 	}
653 
654 	len = content_offset - addr - header_size;
655 	memcpy(entry, header, header_size);
656 	if (len != 0) {
657 		/*
658 		 * The header moved backwards a bit to accommodate cbfs_file
659 		 * alignment requirements, so patch up ->offset to still point
660 		 * to file data. Move attributes forward so the end of the
661 		 * attribute list still matches the end of the metadata.
662 		 */
663 		uint32_t offset = be32toh(entry->offset);
664 		uint32_t attrs = be32toh(entry->attributes_offset);
665 		DEBUG("|..|header|content|... <use offset to create entry>\n");
666 		DEBUG("before: attr_offset=0x%x, offset=0x%x\n", attrs, offset);
667 		if (attrs == 0) {
668 			memset((uint8_t *)entry + offset, 0, len);
669 		} else {
670 			uint8_t *p = (uint8_t *)entry + attrs;
671 			memmove(p + len, p, offset - attrs);
672 			memset(p, 0, len);
673 			attrs += len;
674 			entry->attributes_offset = htobe32(attrs);
675 		}
676 		offset += len;
677 		entry->offset = htobe32(offset);
678 		DEBUG("after: attr_offset=0x%x, offset=0x%x\n", attrs, offset);
679 	}
680 
681 	// Ready to fill data into entry.
682 	DEBUG("content_offset: 0x%x, entry location: %x\n",
683 	      content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
684 				    image->buffer.data));
685 	assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
686 	       (ptrdiff_t)content_offset);
687 	memcpy(CBFS_SUBHEADER(entry), data, be32toh(entry->len));
688 	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
689 
690 	// Align the length to a multiple of len_align
691 	if (len_align &&
692 	    ((be32toh(entry->offset) + be32toh(entry->len)) % len_align)) {
693 		size_t off = (be32toh(entry->offset) + be32toh(entry->len)) % len_align;
694 		entry->len = htobe32(be32toh(entry->len) + len_align - off);
695 	}
696 
697 	// Process buffer AFTER entry.
698 	entry = cbfs_find_next_entry(image, entry);
699 	addr = cbfs_get_entry_addr(image, entry);
700 	if (addr == addr_next)
701 		return 0;
702 
703 	assert(addr < addr_next);
704 	if (addr_next - addr < min_entry_size) {
705 		DEBUG("No need for new \"empty\" entry\n");
706 		/* No need to increase the size of the just
707 		 * stored file to extend to next file. Alignment
708 		 * of next file takes care of this.
709 		 */
710 		return 0;
711 	}
712 
713 	len = addr_next - addr - min_entry_size;
714 	/* keep space for master header pointer */
715 	if ((uint8_t *)entry + min_entry_size + len >
716 			(uint8_t *)buffer_get(&image->buffer) +
717 			buffer_size(&image->buffer) - sizeof(int32_t)) {
718 		len -= sizeof(int32_t);
719 	}
720 	if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, ""))
721 		return -1;
722 	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
723 	return 0;
724 }
725 
cbfs_add_entry(struct cbfs_image * image,struct buffer * buffer,uint32_t content_offset,struct cbfs_file * header,const size_t len_align)726 int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
727 		   uint32_t content_offset,
728 		   struct cbfs_file *header,
729 		   const size_t len_align)
730 {
731 	assert(image);
732 	assert(buffer);
733 	assert(buffer->data);
734 	assert(!IS_HOST_SPACE_ADDRESS(content_offset));
735 
736 	const char *name = header->filename;
737 
738 	/* This is so special rows in cbfstool print -k -v output stay unambiguous. */
739 	if (name[0] == '[') {
740 		ERROR("CBFS file name `%s` must not start with `[`\n", name);
741 		return -1;
742 	}
743 
744 	uint32_t entry_type;
745 	uint32_t addr, addr_next;
746 	struct cbfs_file *entry, *next;
747 	uint32_t need_size;
748 	uint32_t header_size = be32toh(header->offset);
749 
750 	need_size = header_size + buffer->size;
751 	DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
752 	      name, content_offset, header_size, buffer->size, need_size);
753 
754 	// Merge empty entries.
755 	DEBUG("(trying to merge empty entries...)\n");
756 	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
757 
758 	for (entry = cbfs_find_first_entry(image);
759 	     entry && cbfs_is_valid_entry(image, entry);
760 	     entry = cbfs_find_next_entry(image, entry)) {
761 
762 		entry_type = be32toh(entry->type);
763 		if (entry_type != CBFS_TYPE_NULL)
764 			continue;
765 
766 		addr = cbfs_get_entry_addr(image, entry);
767 		next = cbfs_find_next_entry(image, entry);
768 		addr_next = cbfs_get_entry_addr(image, next);
769 
770 		DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
771 		      addr, addr_next - addr, addr_next - addr);
772 
773 		/* Will the file fit? Don't yet worry if we have space for a new
774 		 * "empty" entry. We take care of that later.
775 		 */
776 		if (addr + need_size > addr_next)
777 			continue;
778 
779 		// Test for complicated cases
780 		if (content_offset > 0) {
781 			if (addr_next < content_offset) {
782 				DEBUG("Not for specified offset yet");
783 				continue;
784 			} else if (addr > content_offset) {
785 				DEBUG("Exceed specified content_offset.");
786 				break;
787 			} else if (addr + header_size > content_offset) {
788 				ERROR("Not enough space for header.\n");
789 				break;
790 			} else if (content_offset + buffer->size > addr_next) {
791 				ERROR("Not enough space for content.\n");
792 				break;
793 			}
794 		}
795 
796 		// TODO there are more few tricky cases that we may
797 		// want to fit by altering offset.
798 
799 		if (content_offset == 0) {
800 			// we tested every condition earlier under which
801 			// placing the file there might fail
802 			content_offset = addr + header_size;
803 		}
804 
805 		DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
806 		      addr, addr_next - addr, content_offset);
807 
808 		if (cbfs_add_entry_at(image, entry, buffer->data,
809 				      content_offset, header, len_align) == 0) {
810 			return 0;
811 		}
812 		break;
813 	}
814 
815 	ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
816 	      buffer->name, buffer->size, buffer->size / 1024, content_offset);
817 	return -1;
818 }
819 
cbfs_get_entry(struct cbfs_image * image,const char * name)820 struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
821 {
822 	struct cbfs_file *entry;
823 	for (entry = cbfs_find_first_entry(image);
824 	     entry && cbfs_is_valid_entry(image, entry);
825 	     entry = cbfs_find_next_entry(image, entry)) {
826 		if (strcasecmp(entry->filename, name) == 0) {
827 			DEBUG("cbfs_get_entry: found %s\n", name);
828 			return entry;
829 		}
830 	}
831 	return NULL;
832 }
833 
cbfs_payload_decompress(struct cbfs_payload_segment * segments,struct buffer * buff,int num_seg)834 static int cbfs_payload_decompress(struct cbfs_payload_segment *segments,
835 		struct buffer *buff, int num_seg)
836 {
837 	struct buffer new_buffer;
838 	struct buffer seg_buffer;
839 	size_t new_buff_sz;
840 	char *in_ptr;
841 	char *out_ptr;
842 	size_t new_offset;
843 	decomp_func_ptr decompress;
844 
845 	new_offset = num_seg * sizeof(*segments);
846 	new_buff_sz = num_seg * sizeof(*segments);
847 
848 	/* Find out and allocate the amount of memory occupied
849 	 * by the binary data */
850 	for (int i = 0; i < num_seg; i++)
851 		new_buff_sz += segments[i].mem_len;
852 
853 	if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff"))
854 		return -1;
855 
856 	in_ptr = buffer_get(buff) + new_offset;
857 	out_ptr = buffer_get(&new_buffer) + new_offset;
858 
859 	for (int i = 0; i < num_seg; i++) {
860 		struct buffer tbuff;
861 		size_t decomp_size;
862 
863 		/* Segments BSS and ENTRY do not have binary data. */
864 		if (segments[i].type == PAYLOAD_SEGMENT_BSS ||
865 				segments[i].type == PAYLOAD_SEGMENT_ENTRY) {
866 			continue;
867 		} else if (segments[i].type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
868 			memcpy(out_ptr, in_ptr, segments[i].len);
869 			segments[i].offset = new_offset;
870 			new_offset += segments[i].len;
871 			in_ptr += segments[i].len;
872 			out_ptr += segments[i].len;
873 			segments[i].compression = CBFS_COMPRESS_NONE;
874 			continue;
875 		}
876 
877 		/* The payload uses an unknown compression algorithm. */
878 		decompress = decompression_function(segments[i].compression);
879 		if (decompress == NULL) {
880 			ERROR("Unknown decompression algorithm: %u\n",
881 					segments[i].compression);
882 			return -1;
883 		}
884 
885 		if (buffer_create(&tbuff, segments[i].mem_len, "segment")) {
886 			buffer_delete(&new_buffer);
887 			return -1;
888 		}
889 
890 		if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff),
891 					(int) buffer_size(&tbuff),
892 					&decomp_size)) {
893 			ERROR("Couldn't decompress payload segment %u\n", i);
894 			buffer_delete(&new_buffer);
895 			buffer_delete(&tbuff);
896 			return -1;
897 		}
898 
899 		memcpy(out_ptr, buffer_get(&tbuff), decomp_size);
900 
901 		in_ptr += segments[i].len;
902 
903 		/* Update the offset of the segment. */
904 		segments[i].offset = new_offset;
905 		/* True decompressed size is just the data size. No metadata */
906 		segments[i].len = decomp_size;
907 		/* Segment is not compressed. */
908 		segments[i].compression = CBFS_COMPRESS_NONE;
909 
910 		/* Update the offset and output buffer pointer. */
911 		new_offset += decomp_size;
912 		out_ptr += decomp_size;
913 
914 		buffer_delete(&tbuff);
915 	}
916 
917 	buffer_splice(&seg_buffer, &new_buffer, 0, 0);
918 	xdr_segs(&seg_buffer, segments, num_seg);
919 
920 	buffer_delete(buff);
921 	*buff = new_buffer;
922 
923 	return 0;
924 }
925 
init_elf_from_arch(Elf64_Ehdr * ehdr,uint32_t cbfs_arch)926 static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch)
927 {
928 	int endian;
929 	int nbits;
930 	int machine;
931 
932 	switch (cbfs_arch) {
933 	case CBFS_ARCHITECTURE_X86:
934 		endian = ELFDATA2LSB;
935 		nbits = ELFCLASS32;
936 		machine = EM_386;
937 		break;
938 	case CBFS_ARCHITECTURE_ARM:
939 		endian = ELFDATA2LSB;
940 		nbits = ELFCLASS32;
941 		machine = EM_ARM;
942 		break;
943 	case CBFS_ARCHITECTURE_AARCH64:
944 		endian = ELFDATA2LSB;
945 		nbits = ELFCLASS64;
946 		machine = EM_AARCH64;
947 		break;
948 	case CBFS_ARCHITECTURE_MIPS:
949 		endian = ELFDATA2LSB;
950 		nbits = ELFCLASS32;
951 		machine = EM_MIPS;
952 		break;
953 	case CBFS_ARCHITECTURE_RISCV:
954 		endian = ELFDATA2LSB;
955 		nbits = ELFCLASS32;
956 		machine = EM_RISCV;
957 		break;
958 	default:
959 		ERROR("Unsupported arch: %x\n", cbfs_arch);
960 		return -1;
961 	}
962 
963 	elf_init_eheader(ehdr, machine, nbits, endian);
964 	return 0;
965 }
966 
cbfs_stage_make_elf(struct buffer * buff,uint32_t arch,struct cbfs_file * entry)967 static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch,
968 			       struct cbfs_file *entry)
969 {
970 	Elf64_Ehdr ehdr;
971 	Elf64_Shdr shdr;
972 	struct elf_writer *ew;
973 	struct buffer elf_out;
974 	size_t empty_sz;
975 	int rmod_ret;
976 
977 	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
978 		ERROR("You need to specify -m ARCH.\n");
979 		return -1;
980 	}
981 
982 	struct cbfs_file_attr_stageheader *stage = NULL;
983 	for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
984 	     attr != NULL; attr = cbfs_file_next_attr(entry, attr)) {
985 		if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) {
986 			stage = (struct cbfs_file_attr_stageheader *)attr;
987 			break;
988 		}
989 	}
990 
991 	if (stage == NULL) {
992 		ERROR("Stage header not found for %s\n", entry->filename);
993 		return -1;
994 	}
995 
996 	if (init_elf_from_arch(&ehdr, arch))
997 		return -1;
998 
999 	/* Attempt rmodule translation first. */
1000 	rmod_ret = rmodule_stage_to_elf(&ehdr, buff);
1001 
1002 	if (rmod_ret < 0) {
1003 		ERROR("rmodule parsing failed\n");
1004 		return -1;
1005 	} else if (rmod_ret == 0)
1006 		return 0;
1007 
1008 	/* Rmodule couldn't do anything with the data. Continue on with SELF. */
1009 
1010 	ehdr.e_entry = be64toh(stage->loadaddr) + be32toh(stage->entry_offset);
1011 
1012 	ew = elf_writer_init(&ehdr);
1013 	if (ew == NULL) {
1014 		ERROR("Unable to init ELF writer.\n");
1015 		return -1;
1016 	}
1017 
1018 	memset(&shdr, 0, sizeof(shdr));
1019 	shdr.sh_type = SHT_PROGBITS;
1020 	shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1021 	shdr.sh_addr = be64toh(stage->loadaddr);
1022 	shdr.sh_size = buffer_size(buff);
1023 	empty_sz = be32toh(stage->memlen) - buffer_size(buff);
1024 
1025 	if (elf_writer_add_section(ew, &shdr, buff, ".program")) {
1026 		ERROR("Unable to add ELF section: .program\n");
1027 		elf_writer_destroy(ew);
1028 		return -1;
1029 	}
1030 
1031 	if (empty_sz != 0) {
1032 		struct buffer b;
1033 
1034 		buffer_init(&b, NULL, NULL, 0);
1035 		memset(&shdr, 0, sizeof(shdr));
1036 		shdr.sh_type = SHT_NOBITS;
1037 		shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
1038 		shdr.sh_addr = be64toh(stage->loadaddr) + buffer_size(buff);
1039 		shdr.sh_size = empty_sz;
1040 		if (elf_writer_add_section(ew, &shdr, &b, ".empty")) {
1041 			ERROR("Unable to add ELF section: .empty\n");
1042 			elf_writer_destroy(ew);
1043 			return -1;
1044 		}
1045 	}
1046 
1047 	if (elf_writer_serialize(ew, &elf_out)) {
1048 		ERROR("Unable to create ELF file from stage.\n");
1049 		elf_writer_destroy(ew);
1050 		return -1;
1051 	}
1052 
1053 	/* Flip buffer with the created ELF one. */
1054 	buffer_delete(buff);
1055 	*buff = elf_out;
1056 
1057 	elf_writer_destroy(ew);
1058 
1059 	return 0;
1060 }
1061 
cbfs_payload_make_elf(struct buffer * buff,uint32_t arch,unused struct cbfs_file * entry)1062 static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch,
1063 				 unused struct cbfs_file *entry)
1064 {
1065 	Elf64_Ehdr ehdr;
1066 	Elf64_Shdr shdr;
1067 	struct cbfs_payload_segment *segs = NULL;
1068 	struct elf_writer *ew = NULL;
1069 	struct buffer elf_out;
1070 	int segments = 0;
1071 	int retval = -1;
1072 
1073 	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
1074 		ERROR("You need to specify -m ARCH.\n");
1075 		goto out;
1076 	}
1077 
1078 	/* Count the number of segments inside buffer */
1079 	while (true) {
1080 		uint32_t payload_type = 0;
1081 
1082 		struct cbfs_payload_segment *seg;
1083 
1084 		seg = buffer_get(buff);
1085 		payload_type = read_be32(&seg[segments].type);
1086 
1087 		if (payload_type == PAYLOAD_SEGMENT_CODE) {
1088 			segments++;
1089 		} else if (payload_type == PAYLOAD_SEGMENT_DATA) {
1090 			segments++;
1091 		} else if (payload_type == PAYLOAD_SEGMENT_BSS) {
1092 			segments++;
1093 		} else if (payload_type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
1094 			segments++;
1095 		} else if (payload_type == PAYLOAD_SEGMENT_ENTRY) {
1096 			/* The last segment in a payload is always ENTRY as
1097 			 * specified by the  parse_elf_to_payload() function.
1098 			 * Therefore there is no need to continue looking for
1099 			 * segments.*/
1100 			segments++;
1101 			break;
1102 		} else {
1103 			ERROR("Unknown payload segment type: %x\n",
1104 					payload_type);
1105 			goto out;
1106 		}
1107 	}
1108 
1109 	segs = malloc(segments * sizeof(*segs));
1110 
1111 	/* Decode xdr segments */
1112 	for (int i = 0; i < segments; i++) {
1113 		struct cbfs_payload_segment *serialized_seg = buffer_get(buff);
1114 		xdr_get_seg(&segs[i], &serialized_seg[i]);
1115 	}
1116 
1117 	if (cbfs_payload_decompress(segs, buff, segments)) {
1118 		ERROR("Failed to decompress payload.\n");
1119 		goto out;
1120 	}
1121 
1122 	if (init_elf_from_arch(&ehdr, arch))
1123 		goto out;
1124 
1125 	ehdr.e_entry = segs[segments-1].load_addr;
1126 
1127 	ew = elf_writer_init(&ehdr);
1128 	if (ew == NULL) {
1129 		ERROR("Unable to init ELF writer.\n");
1130 		goto out;
1131 	}
1132 
1133 	for (int i = 0; i < segments; i++) {
1134 		struct buffer tbuff;
1135 		size_t empty_sz = 0;
1136 
1137 		memset(&shdr, 0, sizeof(shdr));
1138 		char *name = NULL;
1139 
1140 		if (segs[i].type == PAYLOAD_SEGMENT_CODE) {
1141 			shdr.sh_type = SHT_PROGBITS;
1142 			shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1143 			shdr.sh_addr = segs[i].load_addr;
1144 			shdr.sh_size = segs[i].len;
1145 			empty_sz = segs[i].mem_len - segs[i].len;
1146 			name = strdup(".text");
1147 			buffer_splice(&tbuff, buff, segs[i].offset,
1148 				       segs[i].len);
1149 		} else if (segs[i].type == PAYLOAD_SEGMENT_DATA) {
1150 			shdr.sh_type = SHT_PROGBITS;
1151 			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
1152 			shdr.sh_addr = segs[i].load_addr;
1153 			shdr.sh_size = segs[i].len;
1154 			empty_sz = segs[i].mem_len - segs[i].len;
1155 			name = strdup(".data");
1156 			buffer_splice(&tbuff, buff, segs[i].offset,
1157 				       segs[i].len);
1158 		} else if (segs[i].type == PAYLOAD_SEGMENT_BSS) {
1159 			shdr.sh_type = SHT_NOBITS;
1160 			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
1161 			shdr.sh_addr = segs[i].load_addr;
1162 			shdr.sh_size = segs[i].len;
1163 			name = strdup(".bss");
1164 			buffer_splice(&tbuff, buff, 0, 0);
1165 		} else if (segs[i].type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
1166 			shdr.sh_type = SHT_NOTE;
1167 			shdr.sh_flags = 0;
1168 			shdr.sh_size = segs[i].len;
1169 			name = strdup(".note.pinfo");
1170 			buffer_splice(&tbuff, buff, segs[i].offset,
1171 				       segs[i].len);
1172 		} else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) {
1173 			break;
1174 		} else {
1175 			ERROR("unknown ELF segment type\n");
1176 			goto out;
1177 		}
1178 
1179 		if (!name) {
1180 			ERROR("out of memory\n");
1181 			goto out;
1182 		}
1183 
1184 		if (elf_writer_add_section(ew, &shdr, &tbuff, name)) {
1185 			ERROR("Unable to add ELF section: %s\n", name);
1186 			free(name);
1187 			goto out;
1188 		}
1189 		free(name);
1190 
1191 		if (empty_sz != 0) {
1192 			struct buffer b;
1193 
1194 			buffer_init(&b, NULL, NULL, 0);
1195 			memset(&shdr, 0, sizeof(shdr));
1196 			shdr.sh_type = SHT_NOBITS;
1197 			shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
1198 			shdr.sh_addr = segs[i].load_addr + segs[i].len;
1199 			shdr.sh_size = empty_sz;
1200 			name = strdup(".empty");
1201 			if (!name) {
1202 				ERROR("out of memory\n");
1203 				goto out;
1204 			}
1205 			if (elf_writer_add_section(ew, &shdr, &b, name)) {
1206 				ERROR("Unable to add ELF section: %s\n", name);
1207 				free(name);
1208 				goto out;
1209 			}
1210 			free(name);
1211 		}
1212 	}
1213 
1214 	if (elf_writer_serialize(ew, &elf_out)) {
1215 		ERROR("Unable to create ELF file from payload.\n");
1216 		goto out;
1217 	}
1218 
1219 	/* Flip buffer with the created ELF one. */
1220 	buffer_delete(buff);
1221 	*buff = elf_out;
1222 	retval = 0;
1223 
1224 out:
1225 	free(segs);
1226 	elf_writer_destroy(ew);
1227 	return retval;
1228 }
1229 
cbfs_export_entry(struct cbfs_image * image,const char * entry_name,const char * filename,uint32_t arch,bool do_processing)1230 int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
1231 		      const char *filename, uint32_t arch, bool do_processing)
1232 {
1233 	struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
1234 	struct buffer buffer;
1235 	if (!entry) {
1236 		ERROR("File not found: %s\n", entry_name);
1237 		return -1;
1238 	}
1239 
1240 	unsigned int compressed_size = be32toh(entry->len);
1241 	unsigned int decompressed_size = 0;
1242 	unsigned int compression = cbfs_file_get_compression_info(entry,
1243 		&decompressed_size);
1244 	unsigned int buffer_len;
1245 	decomp_func_ptr decompress;
1246 
1247 	if (do_processing) {
1248 		decompress = decompression_function(compression);
1249 		if (!decompress) {
1250 			ERROR("looking up decompression routine failed\n");
1251 			return -1;
1252 		}
1253 		buffer_len = decompressed_size;
1254 	} else {
1255 		/* Force nop decompression */
1256 		decompress = decompression_function(CBFS_COMPRESS_NONE);
1257 		buffer_len = compressed_size;
1258 	}
1259 
1260 	LOG("Found file %.30s at 0x%x, type %.12s, compressed %d, size %d\n",
1261 	    entry_name, cbfs_get_entry_addr(image, entry),
1262 	    get_cbfs_entry_type_name(be32toh(entry->type)), compressed_size,
1263 	    decompressed_size);
1264 
1265 	buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0);
1266 	buffer.data = malloc(buffer_len);
1267 	buffer.size = buffer_len;
1268 
1269 	if (decompress(CBFS_SUBHEADER(entry), compressed_size,
1270 		       buffer.data, buffer.size, NULL)) {
1271 		ERROR("decompression failed for %s\n", entry_name);
1272 		buffer_delete(&buffer);
1273 		return -1;
1274 	}
1275 
1276 	/*
1277 	 * We want to export stages and payloads as ELFs, not with coreboot's
1278 	 * custom stage/SELF binary formats, so we need to do extra processing
1279 	 * to turn them back into an ELF.
1280 	 */
1281 	if (do_processing) {
1282 		int (*make_elf)(struct buffer *, uint32_t,
1283 				struct cbfs_file *) = NULL;
1284 		switch (be32toh(entry->type)) {
1285 		case CBFS_TYPE_STAGE:
1286 			make_elf = cbfs_stage_make_elf;
1287 			break;
1288 		case CBFS_TYPE_SELF:
1289 			make_elf = cbfs_payload_make_elf;
1290 			break;
1291 		}
1292 		if (make_elf && make_elf(&buffer, arch, entry)) {
1293 			ERROR("Failed to write %s into %s.\n",
1294 			      entry_name, filename);
1295 			buffer_delete(&buffer);
1296 			return -1;
1297 		}
1298 	}
1299 
1300 	if (buffer_write_file(&buffer, filename) != 0) {
1301 		ERROR("Failed to write %s into %s.\n",
1302 		      entry_name, filename);
1303 		buffer_delete(&buffer);
1304 		return -1;
1305 	}
1306 
1307 	buffer_delete(&buffer);
1308 	INFO("Successfully dumped the file to: %s\n", filename);
1309 	return 0;
1310 }
1311 
cbfs_remove_entry(struct cbfs_image * image,const char * name)1312 int cbfs_remove_entry(struct cbfs_image *image, const char *name)
1313 {
1314 	struct cbfs_file *entry;
1315 	entry = cbfs_get_entry(image, name);
1316 	if (!entry) {
1317 		ERROR("CBFS file %s not found.\n", name);
1318 		return -1;
1319 	}
1320 	DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
1321 	      entry->filename, cbfs_get_entry_addr(image, entry));
1322 	entry->type = htobe32(CBFS_TYPE_DELETED);
1323 	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
1324 	return 0;
1325 }
1326 
cbfs_print_header_info(struct cbfs_image * image)1327 int cbfs_print_header_info(struct cbfs_image *image)
1328 {
1329 	char *name = strdup(image->buffer.name);
1330 	assert(image);
1331 	printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
1332 	       "alignment: %d bytes, architecture: %s\n\n",
1333 	       basename(name),
1334 	       image->buffer.size / 1024,
1335 	       image->header.bootblocksize,
1336 	       image->header.romsize,
1337 	       image->header.offset,
1338 	       image->header.align,
1339 	       arch_to_string(image->header.architecture));
1340 	free(name);
1341 	return 0;
1342 }
1343 
cbfs_print_stage_info(struct cbfs_file * entry,FILE * fp)1344 static int cbfs_print_stage_info(struct cbfs_file *entry, FILE* fp)
1345 {
1346 
1347 	struct cbfs_file_attr_stageheader *stage = NULL;
1348 	for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
1349 	     attr != NULL; attr = cbfs_file_next_attr(entry, attr)) {
1350 		if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) {
1351 			stage = (struct cbfs_file_attr_stageheader *)attr;
1352 			break;
1353 		}
1354 	}
1355 
1356 	if (stage == NULL) {
1357 		fprintf(fp, "    ERROR: stage header not found!\n");
1358 		return -1;
1359 	}
1360 
1361 	fprintf(fp,
1362 		"    entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
1363 		"memlen: %d\n",
1364 		be64toh(stage->loadaddr) + be32toh(stage->entry_offset),
1365 		be64toh(stage->loadaddr),
1366 		be32toh(stage->memlen));
1367 	return 0;
1368 }
1369 
cbfs_print_decoded_payload_segment_info(struct cbfs_payload_segment * seg,FILE * fp)1370 static int cbfs_print_decoded_payload_segment_info(
1371 		struct cbfs_payload_segment *seg, FILE *fp)
1372 {
1373 	/* The input (seg) must be already decoded by
1374 	 * cbfs_decode_payload_segment.
1375 	 */
1376 	switch (seg->type) {
1377 	case PAYLOAD_SEGMENT_CODE:
1378 	case PAYLOAD_SEGMENT_DATA:
1379 		fprintf(fp, "    %s (%s compression, offset: 0x%x, "
1380 			"load: 0x%" PRIx64 ", length: %d/%d)\n",
1381 			(seg->type == PAYLOAD_SEGMENT_CODE ?
1382 			 "code " : "data"),
1383 			lookup_name_by_type(types_cbfs_compression,
1384 					    seg->compression,
1385 					    "(unknown)"),
1386 			seg->offset, seg->load_addr, seg->len,
1387 			seg->mem_len);
1388 		break;
1389 
1390 	case PAYLOAD_SEGMENT_ENTRY:
1391 		fprintf(fp, "    entry (0x%" PRIx64 ")\n",
1392 			seg->load_addr);
1393 		break;
1394 
1395 	case PAYLOAD_SEGMENT_BSS:
1396 		fprintf(fp, "    BSS (address 0x%016" PRIx64 ", "
1397 			"length 0x%x)\n",
1398 			seg->load_addr, seg->len);
1399 		break;
1400 
1401 	case PAYLOAD_SEGMENT_DEPRECATED_PARAMS:
1402 		fprintf(fp, "    parameters (deprecated)\n");
1403 		break;
1404 
1405 	default:
1406 		fprintf(fp, "   0x%x (%s compression, offset: 0x%x, "
1407 			"load: 0x%" PRIx64 ", length: %d/%d\n",
1408 			seg->type,
1409 			lookup_name_by_type(types_cbfs_compression,
1410 					    seg->compression,
1411 					    "(unknown)"),
1412 			seg->offset, seg->load_addr, seg->len,
1413 			seg->mem_len);
1414 		break;
1415 	}
1416 	return 0;
1417 }
1418 
cbfs_print_entry_info(struct cbfs_image * image,struct cbfs_file * entry,void * arg)1419 int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
1420 			  void *arg)
1421 {
1422 	const char *name = entry->filename;
1423 	struct cbfs_payload_segment *payload;
1424 	FILE *fp = (FILE *)arg;
1425 
1426 	if (!cbfs_is_valid_entry(image, entry)) {
1427 		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
1428 		      cbfs_get_entry_addr(image, entry));
1429 		return -1;
1430 	}
1431 	if (!fp)
1432 		fp = stdout;
1433 
1434 	unsigned int decompressed_size = 0;
1435 	unsigned int compression = cbfs_file_get_compression_info(entry,
1436 		&decompressed_size);
1437 	const char *compression_name = lookup_name_by_type(
1438 			types_cbfs_compression, compression, "????");
1439 
1440 	if (compression == CBFS_COMPRESS_NONE)
1441 		fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s\n",
1442 			*name ? name : "(empty)",
1443 			cbfs_get_entry_addr(image, entry),
1444 			get_cbfs_entry_type_name(be32toh(entry->type)),
1445 			be32toh(entry->len),
1446 			compression_name
1447 			);
1448 	else
1449 		fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s (%d decompressed)\n",
1450 			*name ? name : "(empty)",
1451 			cbfs_get_entry_addr(image, entry),
1452 			get_cbfs_entry_type_name(be32toh(entry->type)),
1453 			be32toh(entry->len),
1454 			compression_name,
1455 			decompressed_size
1456 			);
1457 
1458 	if (!verbose)
1459 		return 0;
1460 
1461 	struct cbfs_file_attr_hash *attr = NULL;
1462 	while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
1463 		size_t hash_len = vb2_digest_size(attr->hash.algo);
1464 		if (!hash_len) {
1465 			fprintf(fp, "invalid/unsupported hash algorithm: %d\n",
1466 				attr->hash.algo);
1467 			break;
1468 		}
1469 		char *hash_str = bintohex(attr->hash.raw, hash_len);
1470 		int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry),
1471 			be32toh(entry->len), &attr->hash) == VB2_SUCCESS;
1472 		const char *valid_str = valid ? "valid" : "invalid";
1473 
1474 		fprintf(fp, "    hash %s:%s %s\n",
1475 			vb2_get_hash_algorithm_name(attr->hash.algo),
1476 			hash_str, valid_str);
1477 		free(hash_str);
1478 	}
1479 
1480 	DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
1481 	      cbfs_get_entry_addr(image, entry), be32toh(entry->offset),
1482 	      cbfs_get_entry_addr(image, entry) + be32toh(entry->offset),
1483 	      be32toh(entry->len));
1484 
1485 	/* note the components of the subheader may be in host order ... */
1486 	switch (be32toh(entry->type)) {
1487 	case CBFS_TYPE_STAGE:
1488 		cbfs_print_stage_info(entry, fp);
1489 		break;
1490 
1491 	case CBFS_TYPE_SELF:
1492 		payload = (struct cbfs_payload_segment *)
1493 				CBFS_SUBHEADER(entry);
1494 		while (payload) {
1495 			struct cbfs_payload_segment seg;
1496 			cbfs_decode_payload_segment(&seg, payload);
1497 			cbfs_print_decoded_payload_segment_info(
1498 					&seg, fp);
1499 			if (seg.type == PAYLOAD_SEGMENT_ENTRY)
1500 				break;
1501 			else
1502 			payload ++;
1503 		}
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 	return 0;
1509 }
1510 
1511 /*
1512  * The format of this output has been stable for many years. Since it is meant
1513  * to be parsed by scripts, we should probably not lightly make changes to it as
1514  * that could break older scripts expecting a different format.
1515  *
1516  * Until CB:41119, the `-v` flag made no difference when `-k` was selected, so
1517  * presumably no scripts were using that combination. That's why that patch left
1518  * the output for `-k` by itself alone to avoid breaking legacy scripts, and
1519  * expanded `-k -v` to allow an arbitrary number of `<key>:<value>` tokens at
1520  * the end of each row behind the legacy column output. So the new output format
1521  * stability rules should be that `-k` will stay as it is, and `-k -v` may be
1522  * expanded to add more `<key>:<value>` tokens to the end of a row. Scripts that
1523  * want to parse `-k -v` output should be written to gracefully ignore any extra
1524  * such tokens where they don't recognize the key.
1525  *
1526  * The `-k -v` output may also include extra rows that start with a `[`. These
1527  * do not represent a CBFS file and can instead be used to display data that is
1528  * associated with the CBFS as a whole and not any single file. Currently
1529  * defined are `[FMAP REGION]\t<region name>` and
1530  * `[METADATA HASH]\t<hash>:<algo>`. More may be defined in the future and
1531  * scripts parsing `-k -v` output should be written to gracefully ignore any
1532  * rows starting with `[` that they don't recognize.
1533  *
1534  * The format for existing `<key:value>` tokens or `[` rows should never be
1535  * changed once they are added.
1536  */
cbfs_print_parseable_entry_info(struct cbfs_image * image,struct cbfs_file * entry,void * arg)1537 static int cbfs_print_parseable_entry_info(struct cbfs_image *image,
1538 					struct cbfs_file *entry, void *arg)
1539 {
1540 	FILE *fp = (FILE *)arg;
1541 	const char *name;
1542 	const char *type;
1543 	size_t offset;
1544 	size_t metadata_size;
1545 	size_t data_size;
1546 	const char *sep = "\t";
1547 
1548 	if (!cbfs_is_valid_entry(image, entry)) {
1549 		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
1550 		      cbfs_get_entry_addr(image, entry));
1551 		return -1;
1552 	}
1553 
1554 	name = entry->filename;
1555 	if (*name == '\0')
1556 		name = "(empty)";
1557 	type = get_cbfs_entry_type_name(be32toh(entry->type)),
1558 	metadata_size = be32toh(entry->offset);
1559 	data_size = be32toh(entry->len);
1560 	offset = cbfs_get_entry_addr(image, entry);
1561 
1562 	fprintf(fp, "%s%s", name, sep);
1563 	fprintf(fp, "0x%zx%s", offset, sep);
1564 	fprintf(fp, "%s%s", type, sep);
1565 	fprintf(fp, "0x%zx%s", metadata_size, sep);
1566 	fprintf(fp, "0x%zx%s", data_size, sep);
1567 	fprintf(fp, "0x%zx", metadata_size + data_size);
1568 
1569 	if (verbose) {
1570 		unsigned int decompressed_size = 0;
1571 		unsigned int compression = cbfs_file_get_compression_info(entry,
1572 			&decompressed_size);
1573 		if (compression != CBFS_COMPRESS_NONE)
1574 			fprintf(fp, "%scomp:%s:0x%x", sep, lookup_name_by_type(
1575 				types_cbfs_compression, compression, "????"),
1576 				decompressed_size);
1577 
1578 		struct cbfs_file_attr_hash *attr = NULL;
1579 		while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
1580 			size_t hash_len = vb2_digest_size(attr->hash.algo);
1581 			if (!hash_len)
1582 				continue;
1583 			char *hash_str = bintohex(attr->hash.raw, hash_len);
1584 			int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry),
1585 				be32toh(entry->len), &attr->hash) == VB2_SUCCESS;
1586 			fprintf(fp, "%shash:%s:%s:%s", sep,
1587 				vb2_get_hash_algorithm_name(attr->hash.algo),
1588 				hash_str, valid ? "valid" : "invalid");
1589 			free(hash_str);
1590 		}
1591 	}
1592 	fprintf(fp, "\n");
1593 
1594 	return 0;
1595 }
1596 
cbfs_print_directory(struct cbfs_image * image)1597 void cbfs_print_directory(struct cbfs_image *image)
1598 {
1599 	if (cbfs_is_legacy_cbfs(image))
1600 		cbfs_print_header_info(image);
1601 	printf("%-30s %-10s %-12s   Size   Comp\n", "Name", "Offset", "Type");
1602 	cbfs_legacy_walk(image, cbfs_print_entry_info, NULL);
1603 }
1604 
cbfs_print_parseable_directory(struct cbfs_image * image)1605 void cbfs_print_parseable_directory(struct cbfs_image *image)
1606 {
1607 	size_t i;
1608 	const char *header[] = {
1609 		"Name",
1610 		"Offset",
1611 		"Type",
1612 		"Metadata Size",
1613 		"Data Size",
1614 		"Total Size",
1615 	};
1616 	const char *sep = "\t";
1617 
1618 	for (i = 0; i < ARRAY_SIZE(header) - 1; i++)
1619 		fprintf(stdout, "%s%s", header[i], sep);
1620 	fprintf(stdout, "%s\n", header[i]);
1621 	cbfs_legacy_walk(image, cbfs_print_parseable_entry_info, stdout);
1622 }
1623 
cbfs_merge_empty_entry(struct cbfs_image * image,struct cbfs_file * entry,unused void * arg)1624 int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
1625 			   unused void *arg)
1626 {
1627 	struct cbfs_file *next;
1628 	uint32_t next_addr = 0;
1629 
1630 	/* We don't return here even if this entry is already empty because we
1631 	   want to merge the empty entries following after it. */
1632 
1633 	/* Loop until non-empty entry is found, starting from the current entry.
1634 	   After the loop, next_addr points to the next non-empty entry. */
1635 	next = entry;
1636 	while (be32toh(next->type) == CBFS_TYPE_DELETED ||
1637 			be32toh(next->type) == CBFS_TYPE_NULL) {
1638 		next = cbfs_find_next_entry(image, next);
1639 		if (!next)
1640 			break;
1641 		next_addr = cbfs_get_entry_addr(image, next);
1642 		if (!cbfs_is_valid_entry(image, next))
1643 			/* 'next' could be the end of cbfs */
1644 			break;
1645 	}
1646 
1647 	if (!next_addr)
1648 		/* Nothing to empty */
1649 		return 0;
1650 
1651 	/* We can return here if we find only a single empty entry.
1652 	   For simplicity, we just proceed (and make it empty again). */
1653 
1654 	/* We're creating one empty entry for combined empty spaces */
1655 	uint32_t addr = cbfs_get_entry_addr(image, entry);
1656 	size_t len = next_addr - addr - cbfs_calculate_file_header_size("");
1657 	DEBUG("join_empty_entry: [0x%x, 0x%x) len=%zu\n", addr, next_addr, len);
1658 	return cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "");
1659 }
1660 
cbfs_legacy_walk(struct cbfs_image * image,cbfs_entry_callback callback,void * arg)1661 int cbfs_legacy_walk(struct cbfs_image *image, cbfs_entry_callback callback,
1662 	      void *arg)
1663 {
1664 	int count = 0;
1665 	struct cbfs_file *entry;
1666 	for (entry = cbfs_find_first_entry(image);
1667 	     entry && cbfs_is_valid_entry(image, entry);
1668 	     entry = cbfs_find_next_entry(image, entry)) {
1669 		count ++;
1670 		if (callback(image, entry, arg) != 0)
1671 			break;
1672 	}
1673 	return count;
1674 }
1675 
cbfs_header_valid(struct cbfs_header * header)1676 static int cbfs_header_valid(struct cbfs_header *header)
1677 {
1678 	if ((be32toh(header->magic) == CBFS_HEADER_MAGIC) &&
1679 	    ((be32toh(header->version) == CBFS_HEADER_VERSION1) ||
1680 	     (be32toh(header->version) == CBFS_HEADER_VERSION2)) &&
1681 	    (be32toh(header->offset) < be32toh(header->romsize)))
1682 		return 1;
1683 	return 0;
1684 }
1685 
cbfs_find_header(char * data,size_t size,uint32_t forced_offset)1686 struct cbfs_header *cbfs_find_header(char *data, size_t size,
1687 				     uint32_t forced_offset)
1688 {
1689 	size_t offset;
1690 	int found = 0;
1691 	int32_t rel_offset;
1692 	struct cbfs_header *header, *result = NULL;
1693 
1694 	if (forced_offset < (size - sizeof(struct cbfs_header))) {
1695 		/* Check if the forced header is valid. */
1696 		header = (struct cbfs_header *)(data + forced_offset);
1697 		if (cbfs_header_valid(header))
1698 			return header;
1699 		return NULL;
1700 	}
1701 
1702 	// Try finding relative offset of master header at end of file first.
1703 	rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
1704 	offset = size + rel_offset;
1705 	DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
1706 	      (size_t)rel_offset, (size_t)-rel_offset, offset);
1707 
1708 	if (offset >= size - sizeof(*header) ||
1709 	    !cbfs_header_valid((struct cbfs_header *)(data + offset))) {
1710 		// Some use cases append non-CBFS data to the end of the ROM.
1711 		DEBUG("relative offset seems wrong, scanning whole image...\n");
1712 		offset = 0;
1713 	}
1714 
1715 	for (; offset + sizeof(*header) < size; offset++) {
1716 		header = (struct cbfs_header *)(data + offset);
1717 		if (!cbfs_header_valid(header))
1718 			continue;
1719 		if (!found++)
1720 			result = header;
1721 	}
1722 	if (found > 1)
1723 		// Top-aligned images usually have a working relative offset
1724 		// field, so this is more likely to happen on bottom-aligned
1725 		// ones (where the first header is the "outermost" one)
1726 		WARN("Multiple (%d) CBFS headers found, using the first one.\n",
1727 		       found);
1728 	return result;
1729 }
1730 
1731 
cbfs_find_first_entry(struct cbfs_image * image)1732 struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
1733 {
1734 	assert(image);
1735 	if (image->has_header)
1736 		/* header.offset is relative to start of flash, not
1737 		 * start of region, so use it with the full image.
1738 		 */
1739 		return (struct cbfs_file *)
1740 			(buffer_get_original_backing(&image->buffer) +
1741 			image->header.offset);
1742 	else
1743 		return (struct cbfs_file *)buffer_get(&image->buffer);
1744 }
1745 
cbfs_find_next_entry(struct cbfs_image * image,struct cbfs_file * entry)1746 struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
1747 				       struct cbfs_file *entry)
1748 {
1749 	uint32_t addr = cbfs_get_entry_addr(image, entry);
1750 	int align = image->has_header ? image->header.align : CBFS_ALIGNMENT;
1751 	assert(entry && cbfs_is_valid_entry(image, entry));
1752 	addr += be32toh(entry->offset) + be32toh(entry->len);
1753 	addr = align_up(addr, align);
1754 	return (struct cbfs_file *)(image->buffer.data + addr);
1755 }
1756 
cbfs_get_entry_addr(struct cbfs_image * image,struct cbfs_file * entry)1757 uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
1758 {
1759 	assert(image && image->buffer.data && entry);
1760 	return (int32_t)((char *)entry - image->buffer.data);
1761 }
1762 
cbfs_is_valid_cbfs(struct cbfs_image * image)1763 int cbfs_is_valid_cbfs(struct cbfs_image *image)
1764 {
1765 	return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC,
1766 						strlen(CBFS_FILE_MAGIC));
1767 }
1768 
cbfs_is_legacy_cbfs(struct cbfs_image * image)1769 int cbfs_is_legacy_cbfs(struct cbfs_image *image)
1770 {
1771 	return image->has_header;
1772 }
1773 
cbfs_is_valid_entry(struct cbfs_image * image,struct cbfs_file * entry)1774 int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
1775 {
1776 	uint32_t offset = cbfs_get_entry_addr(image, entry);
1777 
1778 	if (offset >= image->buffer.size)
1779 		return 0;
1780 
1781 	struct buffer entry_data;
1782 	buffer_clone(&entry_data, &image->buffer);
1783 	buffer_seek(&entry_data, offset);
1784 	return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC,
1785 						strlen(CBFS_FILE_MAGIC));
1786 }
1787 
cbfs_create_file_header(int type,size_t len,const char * name)1788 struct cbfs_file *cbfs_create_file_header(int type,
1789 			    size_t len, const char *name)
1790 {
1791 	size_t header_size = cbfs_calculate_file_header_size(name);
1792 	if (header_size > CBFS_METADATA_MAX_SIZE) {
1793 		ERROR("'%s' name too long to fit in CBFS header\n", name);
1794 		return NULL;
1795 	}
1796 
1797 	struct cbfs_file *entry = malloc(CBFS_METADATA_MAX_SIZE);
1798 	memset(entry, CBFS_CONTENT_DEFAULT_VALUE, CBFS_METADATA_MAX_SIZE);
1799 	memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
1800 	entry->type = htobe32(type);
1801 	entry->len = htobe32(len);
1802 	entry->attributes_offset = 0;
1803 	entry->offset = htobe32(header_size);
1804 	memset(entry->filename, 0, be32toh(entry->offset) - sizeof(*entry));
1805 	strcpy(entry->filename, name);
1806 	return entry;
1807 }
1808 
cbfs_create_empty_entry(struct cbfs_file * entry,int type,size_t len,const char * name)1809 int cbfs_create_empty_entry(struct cbfs_file *entry, int type,
1810 			    size_t len, const char *name)
1811 {
1812 	struct cbfs_file *tmp = cbfs_create_file_header(type, len, name);
1813 	if (!tmp)
1814 		return -1;
1815 
1816 	memcpy(entry, tmp, be32toh(tmp->offset));
1817 	free(tmp);
1818 	memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
1819 	return 0;
1820 }
1821 
cbfs_file_first_attr(struct cbfs_file * file)1822 struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file)
1823 {
1824 	/* attributes_offset should be 0 when there is no attribute, but all
1825 	 * values that point into the cbfs_file header are invalid, too. */
1826 	if (be32toh(file->attributes_offset) <= sizeof(*file))
1827 		return NULL;
1828 
1829 	/* There needs to be enough space for the file header and one
1830 	 * attribute header for this to make sense. */
1831 	if (be32toh(file->offset) <=
1832 		sizeof(*file) + sizeof(struct cbfs_file_attribute))
1833 		return NULL;
1834 
1835 	return (struct cbfs_file_attribute *)
1836 		(((uint8_t *)file) + be32toh(file->attributes_offset));
1837 }
1838 
cbfs_file_next_attr(struct cbfs_file * file,struct cbfs_file_attribute * attr)1839 struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file,
1840 	struct cbfs_file_attribute *attr)
1841 {
1842 	/* ex falso sequitur quodlibet */
1843 	if (attr == NULL)
1844 		return NULL;
1845 
1846 	/* Is there enough space for another attribute? */
1847 	if ((uint8_t *)attr + be32toh(attr->len) +
1848 		sizeof(struct cbfs_file_attribute) >
1849 		(uint8_t *)file + be32toh(file->offset))
1850 		return NULL;
1851 
1852 	struct cbfs_file_attribute *next = (struct cbfs_file_attribute *)
1853 		(((uint8_t *)attr) + be32toh(attr->len));
1854 	/* If any, "unused" attributes must come last. */
1855 	if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED)
1856 		return NULL;
1857 	if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2)
1858 		return NULL;
1859 
1860 	return next;
1861 }
1862 
cbfs_add_file_attr(struct cbfs_file * header,uint32_t tag,uint32_t size)1863 struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header,
1864 					       uint32_t tag,
1865 					       uint32_t size)
1866 {
1867 	assert(IS_ALIGNED(size, CBFS_ATTRIBUTE_ALIGN));
1868 	struct cbfs_file_attribute *attr, *next;
1869 	next = cbfs_file_first_attr(header);
1870 	do {
1871 		attr = next;
1872 		next = cbfs_file_next_attr(header, attr);
1873 	} while (next != NULL);
1874 	uint32_t header_size = be32toh(header->offset) + size;
1875 	if (header_size > CBFS_METADATA_MAX_SIZE) {
1876 		DEBUG("exceeding allocated space for cbfs_file headers");
1877 		return NULL;
1878 	}
1879 	/* attr points to the last valid attribute now.
1880 	 * If NULL, we have to create the first one. */
1881 	if (attr == NULL) {
1882 		/* New attributes start where the header ends.
1883 		 * header->offset is later set to accommodate the
1884 		 * additional structure.
1885 		 * No endianness translation necessary here, because both
1886 		 * fields are encoded the same way. */
1887 		header->attributes_offset = header->offset;
1888 		attr = (struct cbfs_file_attribute *)
1889 			(((uint8_t *)header) +
1890 			be32toh(header->attributes_offset));
1891 	} else {
1892 		attr = (struct cbfs_file_attribute *)
1893 			(((uint8_t *)attr) +
1894 			be32toh(attr->len));
1895 	}
1896 	header->offset = htobe32(header_size);
1897 	/* Attributes are expected to be small (much smaller than a flash page)
1898 	   and not really meant to be overwritten in-place. To avoid surprising
1899 	   values in reserved fields of attribute structures, initialize them to
1900 	   0, not 0xff. */
1901 	memset(attr, 0, size);
1902 	attr->tag = htobe32(tag);
1903 	attr->len = htobe32(size);
1904 	return attr;
1905 }
1906 
cbfs_add_file_hash(struct cbfs_file * header,struct buffer * buffer,enum vb2_hash_algorithm alg)1907 int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer,
1908 	enum vb2_hash_algorithm alg)
1909 {
1910 	if (!vb2_digest_size(alg))
1911 		return -1;
1912 
1913 	struct cbfs_file_attr_hash *attr =
1914 		(struct cbfs_file_attr_hash *)cbfs_add_file_attr(header,
1915 			CBFS_FILE_ATTR_TAG_HASH, cbfs_file_attr_hash_size(alg));
1916 
1917 	if (attr == NULL)
1918 		return -1;
1919 
1920 	if (vb2_hash_calculate(false, buffer_get(buffer), buffer_size(buffer),
1921 			       alg, &attr->hash) != VB2_SUCCESS)
1922 		return -1;
1923 
1924 	return 0;
1925 }
1926 
1927 /* Finds a place to hold whole data in same memory page. */
is_in_same_page(uint32_t start,uint32_t size,uint32_t page)1928 static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
1929 {
1930 	if (!page)
1931 		return 1;
1932 	return (start / page) == (start + size - 1) / page;
1933 }
1934 
1935 /* Tests if data can fit in a range by given offset:
1936  *  start ->| metadata_size | offset (+ size) |<- end
1937  */
is_in_range(size_t start,size_t end,size_t metadata_size,size_t offset,size_t size)1938 static int is_in_range(size_t start, size_t end, size_t metadata_size,
1939 		       size_t offset, size_t size)
1940 {
1941 	return (offset >= start + metadata_size && offset + size <= end);
1942 }
1943 
absolute_align(const struct cbfs_image * image,size_t val,size_t align)1944 static size_t absolute_align(const struct cbfs_image *image, size_t val,
1945 				size_t align)
1946 {
1947 	const size_t region_offset = buffer_offset(&image->buffer);
1948 	/* To perform alignment on absolute address, take the region offset */
1949 	/* of the image into account.					    */
1950 	return align_up(val + region_offset, align) - region_offset;
1951 
1952 }
1953 
cbfs_locate_entry(struct cbfs_image * image,size_t size,size_t page_size,size_t align,size_t metadata_size)1954 int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size,
1955 			  size_t page_size, size_t align, size_t metadata_size)
1956 {
1957 	struct cbfs_file *entry;
1958 	size_t need_len;
1959 	size_t addr, addr_next, addr2, addr3, offset;
1960 
1961 	/* Default values: allow fitting anywhere in ROM. */
1962 	if (!page_size)
1963 		page_size = image->has_header ? image->header.romsize :
1964 							image->buffer.size;
1965 	if (!align)
1966 		align = 1;
1967 
1968 	if (size > page_size)
1969 		ERROR("Input file size (%zd) greater than page size (%zd).\n",
1970 		      size, page_size);
1971 
1972 	size_t image_align = image->has_header ? image->header.align :
1973 							CBFS_ALIGNMENT;
1974 	if (page_size % image_align)
1975 		WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n",
1976 		     __func__, page_size, image_align);
1977 
1978 	need_len = metadata_size + size;
1979 
1980 	// Merge empty entries to build get max available space.
1981 	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
1982 
1983 	/* Three cases of content location on memory page:
1984 	 * case 1.
1985 	 *          |  PAGE 1  |   PAGE 2  |
1986 	 *          |     <header><content>| Fit. Return start of content.
1987 	 *
1988 	 * case 2.
1989 	 *          |  PAGE 1  |   PAGE 2  |
1990 	 *          | <header><content>    | Fits when we shift content to align
1991 	 *  shift-> |  <header>|<content>  | at starting of PAGE 2.
1992 	 *
1993 	 * case 3. (large content filling whole page)
1994 	 *  | PAGE 1 |  PAGE 2  | PAGE 3 |
1995 	 *  |  <header>< content >       | Can't fit. If we shift content to
1996 	 *  |trial-> <header>< content > | PAGE 2, header can't fit in free
1997 	 *  |  shift->  <header><content> space, so we must use PAGE 3.
1998 	 *
1999 	 * The returned address can be then used as "base-address" (-b) in add-*
2000 	 * commands (will be re-calculated and positioned by cbfs_add_entry_at).
2001 	 * For stage targets, the address is also used to re-link stage before
2002 	 * being added into CBFS.
2003 	 */
2004 	for (entry = cbfs_find_first_entry(image);
2005 	     entry && cbfs_is_valid_entry(image, entry);
2006 	     entry = cbfs_find_next_entry(image, entry)) {
2007 
2008 		uint32_t type = be32toh(entry->type);
2009 		if (type != CBFS_TYPE_NULL)
2010 			continue;
2011 
2012 		addr = cbfs_get_entry_addr(image, entry);
2013 		addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
2014 				image, entry));
2015 		if (addr_next - addr < need_len)
2016 			continue;
2017 
2018 		offset = absolute_align(image, addr + metadata_size, align);
2019 		if (is_in_same_page(offset, size, page_size) &&
2020 		    is_in_range(addr, addr_next, metadata_size, offset, size)) {
2021 			DEBUG("cbfs_locate_entry: FIT (PAGE1).");
2022 			return offset;
2023 		}
2024 
2025 		addr2 = align_up(addr, page_size);
2026 		offset = absolute_align(image, addr2, align);
2027 		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
2028 			DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
2029 			return offset;
2030 		}
2031 
2032 		/* Assume page_size >= metadata_size so adding one page will
2033 		 * definitely provide the space for header. */
2034 		assert(page_size >= metadata_size);
2035 		addr3 = addr2 + page_size;
2036 		offset = absolute_align(image, addr3, align);
2037 		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
2038 			DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
2039 			return offset;
2040 		}
2041 	}
2042 	return -1;
2043 }
2044