1 // Copyright 2020 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 #include <cassert>
15
16 #include "src/post_filter.h"
17 #include "src/utils/blocking_counter.h"
18 #include "src/utils/compiler_attributes.h"
19 #include "src/utils/constants.h"
20
21 namespace libgav1 {
22 namespace {
23
24 constexpr int kStep64x64 = 16; // =64/4.
25 constexpr int kCdefSkip = 8;
26
27 constexpr uint8_t kCdefUvDirection[2][2][8] = {
28 {{0, 1, 2, 3, 4, 5, 6, 7}, {1, 2, 2, 2, 3, 4, 6, 0}},
29 {{7, 0, 2, 4, 5, 6, 6, 6}, {0, 1, 2, 3, 4, 5, 6, 7}}};
30
31 constexpr int kCdefBorderRows[2][4] = {{0, 1, 62, 63}, {0, 1, 30, 31}};
32
33 template <typename Pixel>
CopyRowForCdef(const Pixel * src,int block_width,int unit_width,bool is_frame_left,bool is_frame_right,uint16_t * const dst,const Pixel * left_border=nullptr)34 void CopyRowForCdef(const Pixel* src, int block_width, int unit_width,
35 bool is_frame_left, bool is_frame_right,
36 uint16_t* const dst, const Pixel* left_border = nullptr) {
37 if (sizeof(src[0]) == sizeof(dst[0])) {
38 if (is_frame_left) {
39 Memset(dst - kCdefBorder, kCdefLargeValue, kCdefBorder);
40 } else if (left_border == nullptr) {
41 memcpy(dst - kCdefBorder, src - kCdefBorder,
42 kCdefBorder * sizeof(dst[0]));
43 } else {
44 memcpy(dst - kCdefBorder, left_border, kCdefBorder * sizeof(dst[0]));
45 }
46 memcpy(dst, src, block_width * sizeof(dst[0]));
47 if (is_frame_right) {
48 Memset(dst + block_width, kCdefLargeValue,
49 unit_width + kCdefBorder - block_width);
50 } else {
51 memcpy(dst + block_width, src + block_width,
52 (unit_width + kCdefBorder - block_width) * sizeof(dst[0]));
53 }
54 return;
55 }
56 if (is_frame_left) {
57 for (int x = -kCdefBorder; x < 0; ++x) {
58 dst[x] = static_cast<uint16_t>(kCdefLargeValue);
59 }
60 } else if (left_border == nullptr) {
61 for (int x = -kCdefBorder; x < 0; ++x) {
62 dst[x] = src[x];
63 }
64 } else {
65 for (int x = -kCdefBorder; x < 0; ++x) {
66 dst[x] = left_border[x + kCdefBorder];
67 }
68 }
69 for (int x = 0; x < block_width; ++x) {
70 dst[x] = src[x];
71 }
72 for (int x = block_width; x < unit_width + kCdefBorder; ++x) {
73 dst[x] = is_frame_right ? static_cast<uint16_t>(kCdefLargeValue) : src[x];
74 }
75 }
76
77 // GCC 13.x will report a false positive from the call to
78 // ApplyCdefForOneSuperBlockRowHelper() with a nullptr in
79 // ApplyCdefForOneSuperBlockRow(). The call to CopyPixels() in
80 // ApplyCdefForOneUnit() is only made when thread_pool_ != nullptr and
81 // border_columns[][] is a valid pointer.
82 #if defined(__GNUC__) && !defined(__clang__)
83 #pragma GCC diagnostic push
84 #pragma GCC diagnostic ignored "-Warray-bounds"
85 #pragma GCC diagnostic ignored "-Wstringop-overflow"
86 #endif
87 // For |height| rows, copy |width| pixels of size |pixel_size| from |src| to
88 // |dst|.
CopyPixels(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int width,int height,size_t pixel_size)89 void CopyPixels(const uint8_t* src, int src_stride, uint8_t* dst,
90 int dst_stride, int width, int height, size_t pixel_size) {
91 assert(src != nullptr);
92 assert(dst != nullptr);
93 assert(height > 0);
94 int y = height;
95 do {
96 memcpy(dst, src, width * pixel_size);
97 src += src_stride;
98 dst += dst_stride;
99 } while (--y != 0);
100 }
101 #if defined(__GNUC__) && !defined(__clang__)
102 #pragma GCC diagnostic pop
103 #endif
104
105 } // namespace
106
SetupCdefBorder(int row4x4)107 void PostFilter::SetupCdefBorder(int row4x4) {
108 assert(row4x4 >= 0);
109 assert(DoCdef());
110 int plane = kPlaneY;
111 do {
112 const ptrdiff_t src_stride = frame_buffer_.stride(plane);
113 const ptrdiff_t dst_stride = cdef_border_.stride(plane);
114 const int row_offset = DivideBy4(row4x4);
115 const int num_pixels = SubsampledValue(
116 MultiplyBy4(frame_header_.columns4x4), subsampling_x_[plane]);
117 const int row_width = num_pixels << pixel_size_log2_;
118 const int plane_height = SubsampledValue(MultiplyBy4(frame_header_.rows4x4),
119 subsampling_y_[plane]);
120 for (int i = 0; i < 4; ++i) {
121 const int row = kCdefBorderRows[subsampling_y_[plane]][i];
122 const int absolute_row =
123 (MultiplyBy4(row4x4) >> subsampling_y_[plane]) + row;
124 if (absolute_row >= plane_height) break;
125 const uint8_t* src =
126 GetSourceBuffer(static_cast<Plane>(plane), row4x4, 0) +
127 row * src_stride;
128 uint8_t* dst = cdef_border_.data(plane) + dst_stride * (row_offset + i);
129 memcpy(dst, src, row_width);
130 }
131 } while (++plane < planes_);
132 }
133
134 template <typename Pixel>
PrepareCdefBlock(int block_width4x4,int block_height4x4,int row4x4,int column4x4,uint16_t * cdef_source,ptrdiff_t cdef_stride,const bool y_plane,const uint8_t border_columns[kMaxPlanes][256],bool use_border_columns)135 void PostFilter::PrepareCdefBlock(int block_width4x4, int block_height4x4,
136 int row4x4, int column4x4,
137 uint16_t* cdef_source, ptrdiff_t cdef_stride,
138 const bool y_plane,
139 const uint8_t border_columns[kMaxPlanes][256],
140 bool use_border_columns) {
141 assert(y_plane || planes_ == kMaxPlanes);
142 const int max_planes = y_plane ? 1 : kMaxPlanes;
143 const int8_t subsampling_x = y_plane ? 0 : subsampling_x_[kPlaneU];
144 const int8_t subsampling_y = y_plane ? 0 : subsampling_y_[kPlaneU];
145 const int start_x = MultiplyBy4(column4x4) >> subsampling_x;
146 const int start_y = MultiplyBy4(row4x4) >> subsampling_y;
147 const int plane_width = SubsampledValue(frame_header_.width, subsampling_x);
148 const int plane_height = SubsampledValue(frame_header_.height, subsampling_y);
149 const int block_width = MultiplyBy4(block_width4x4) >> subsampling_x;
150 const int block_height = MultiplyBy4(block_height4x4) >> subsampling_y;
151 // unit_width, unit_height are the same as block_width, block_height unless
152 // it reaches the frame boundary, where block_width < 64 or
153 // block_height < 64. unit_width, unit_height guarantee we build blocks on
154 // a multiple of 8.
155 const int unit_width = Align(block_width, 8 >> subsampling_x);
156 const int unit_height = Align(block_height, 8 >> subsampling_y);
157 const bool is_frame_left = column4x4 == 0;
158 const bool is_frame_right = start_x + block_width >= plane_width;
159 const bool is_frame_top = row4x4 == 0;
160 const bool is_frame_bottom = start_y + block_height >= plane_height;
161 const int y_offset = is_frame_top ? 0 : kCdefBorder;
162 const int cdef_border_row_offset = DivideBy4(row4x4) - (is_frame_top ? 0 : 2);
163
164 for (int plane = y_plane ? kPlaneY : kPlaneU; plane < max_planes; ++plane) {
165 uint16_t* cdef_src = cdef_source + static_cast<int>(plane == kPlaneV) *
166 kCdefUnitSizeWithBorders *
167 kCdefUnitSizeWithBorders;
168 const int src_stride = frame_buffer_.stride(plane) / sizeof(Pixel);
169 const Pixel* src_buffer =
170 reinterpret_cast<const Pixel*>(source_buffer_[plane]) +
171 (start_y - y_offset) * src_stride + start_x;
172 const int cdef_border_stride = cdef_border_.stride(plane) / sizeof(Pixel);
173 const Pixel* cdef_border =
174 (thread_pool_ == nullptr)
175 ? nullptr
176 : reinterpret_cast<const Pixel*>(cdef_border_.data(plane)) +
177 cdef_border_row_offset * cdef_border_stride + start_x;
178
179 // All the copying code will use negative indices for populating the left
180 // border. So the starting point is set to kCdefBorder.
181 cdef_src += kCdefBorder;
182
183 // Copy the top 2 rows as follows;
184 // If is_frame_top is true, both the rows are set to kCdefLargeValue.
185 // Otherwise:
186 // If multi-threaded filtering is off, the rows are copied from
187 // |src_buffer|.
188 // Otherwise, the rows are copied from |cdef_border|.
189 if (is_frame_top) {
190 for (int y = 0; y < kCdefBorder; ++y) {
191 Memset(cdef_src - kCdefBorder, kCdefLargeValue,
192 unit_width + 2 * kCdefBorder);
193 cdef_src += cdef_stride;
194 }
195 } else {
196 const Pixel* top_border =
197 (thread_pool_ == nullptr) ? src_buffer : cdef_border;
198 const int top_border_stride =
199 (thread_pool_ == nullptr) ? src_stride : cdef_border_stride;
200 for (int y = 0; y < kCdefBorder; ++y) {
201 CopyRowForCdef(top_border, block_width, unit_width, is_frame_left,
202 is_frame_right, cdef_src);
203 top_border += top_border_stride;
204 cdef_src += cdef_stride;
205 // We need to increment |src_buffer| and |cdef_border| in this loop to
206 // set them up for the subsequent loops below.
207 src_buffer += src_stride;
208 cdef_border += cdef_border_stride;
209 }
210 }
211
212 // Copy the body as follows;
213 // If multi-threaded filtering is off or if is_frame_bottom is true, all the
214 // rows are copied from |src_buffer|.
215 // Otherwise, the first |block_height|-kCdefBorder rows are copied from
216 // |src_buffer| and the last kCdefBorder rows are coped from |cdef_border|.
217 int y = block_height;
218 const int y_threshold =
219 (thread_pool_ == nullptr || is_frame_bottom) ? 0 : kCdefBorder;
220 const Pixel* left_border =
221 (thread_pool_ == nullptr || !use_border_columns)
222 ? nullptr
223 : reinterpret_cast<const Pixel*>(border_columns[plane]);
224 do {
225 CopyRowForCdef(src_buffer, block_width, unit_width, is_frame_left,
226 is_frame_right, cdef_src, left_border);
227 cdef_src += cdef_stride;
228 src_buffer += src_stride;
229 if (left_border != nullptr) left_border += kCdefBorder;
230 } while (--y != y_threshold);
231
232 if (y > 0) {
233 assert(y == kCdefBorder);
234 // |cdef_border| now points to the top 2 rows of the current block. For
235 // the next loop, we need it to point to the bottom 2 rows of the
236 // current block. So increment it by 2 rows.
237 cdef_border += MultiplyBy2(cdef_border_stride);
238 for (int i = 0; i < kCdefBorder; ++i) {
239 CopyRowForCdef(cdef_border, block_width, unit_width, is_frame_left,
240 is_frame_right, cdef_src);
241 cdef_src += cdef_stride;
242 cdef_border += cdef_border_stride;
243 }
244 }
245
246 // Copy the bottom 2 rows as follows;
247 // If is_frame_bottom is true, both the rows are set to kCdefLargeValue.
248 // Otherwise:
249 // If multi-threaded filtering is off, the rows are copied from
250 // |src_buffer|.
251 // Otherwise, the rows are copied from |cdef_border|.
252 y = 0;
253 if (is_frame_bottom) {
254 do {
255 Memset(cdef_src - kCdefBorder, kCdefLargeValue,
256 unit_width + 2 * kCdefBorder);
257 cdef_src += cdef_stride;
258 } while (++y < kCdefBorder + unit_height - block_height);
259 } else {
260 const Pixel* bottom_border =
261 (thread_pool_ == nullptr) ? src_buffer : cdef_border;
262 const int bottom_border_stride =
263 (thread_pool_ == nullptr) ? src_stride : cdef_border_stride;
264 do {
265 CopyRowForCdef(bottom_border, block_width, unit_width, is_frame_left,
266 is_frame_right, cdef_src);
267 bottom_border += bottom_border_stride;
268 cdef_src += cdef_stride;
269 } while (++y < kCdefBorder + unit_height - block_height);
270 }
271 }
272 }
273
274 template <typename Pixel>
ApplyCdefForOneUnit(uint16_t * cdef_block,const int index,const int block_width4x4,const int block_height4x4,const int row4x4_start,const int column4x4_start,uint8_t border_columns[2][kMaxPlanes][256],bool use_border_columns[2][2])275 void PostFilter::ApplyCdefForOneUnit(uint16_t* cdef_block, const int index,
276 const int block_width4x4,
277 const int block_height4x4,
278 const int row4x4_start,
279 const int column4x4_start,
280 uint8_t border_columns[2][kMaxPlanes][256],
281 bool use_border_columns[2][2]) {
282 // Cdef operates in 8x8 blocks (4x4 for chroma with subsampling).
283 static constexpr int kStep = 8;
284 static constexpr int kStep4x4 = 2;
285
286 int cdef_buffer_row_base_stride[kMaxPlanes];
287 uint8_t* cdef_buffer_row_base[kMaxPlanes];
288 int src_buffer_row_base_stride[kMaxPlanes];
289 const uint8_t* src_buffer_row_base[kMaxPlanes];
290 const uint16_t* cdef_src_row_base[kMaxPlanes];
291 int cdef_src_row_base_stride[kMaxPlanes];
292 int column_step[kMaxPlanes];
293 assert(planes_ == kMaxPlanesMonochrome || planes_ == kMaxPlanes);
294 int plane = kPlaneY;
295 do {
296 cdef_buffer_row_base[plane] =
297 GetCdefBuffer(static_cast<Plane>(plane), row4x4_start, column4x4_start);
298 cdef_buffer_row_base_stride[plane] =
299 frame_buffer_.stride(plane) * (kStep >> subsampling_y_[plane]);
300 src_buffer_row_base[plane] = GetSourceBuffer(static_cast<Plane>(plane),
301 row4x4_start, column4x4_start);
302 src_buffer_row_base_stride[plane] =
303 frame_buffer_.stride(plane) * (kStep >> subsampling_y_[plane]);
304 cdef_src_row_base[plane] =
305 cdef_block +
306 static_cast<int>(plane == kPlaneV) * kCdefUnitSizeWithBorders *
307 kCdefUnitSizeWithBorders +
308 kCdefBorder * kCdefUnitSizeWithBorders + kCdefBorder;
309 cdef_src_row_base_stride[plane] =
310 kCdefUnitSizeWithBorders * (kStep >> subsampling_y_[plane]);
311 column_step[plane] = (kStep >> subsampling_x_[plane]) * sizeof(Pixel);
312 } while (++plane < planes_);
313
314 // |border_columns| contains two buffers. In each call to this function, we
315 // will use one of them as the "destination" for the current call. And the
316 // other one as the "source" for the current call (which would have been the
317 // "destination" of the previous call). We will use the src_index to populate
318 // the borders which were backed up in the previous call. We will use the
319 // dst_index to populate the borders to be used in the next call.
320 const int border_columns_src_index = DivideBy16(column4x4_start) & 1;
321 const int border_columns_dst_index = border_columns_src_index ^ 1;
322
323 if (index == -1) {
324 if (thread_pool_ == nullptr) {
325 int plane = kPlaneY;
326 do {
327 CopyPixels(src_buffer_row_base[plane], frame_buffer_.stride(plane),
328 cdef_buffer_row_base[plane], frame_buffer_.stride(plane),
329 MultiplyBy4(block_width4x4) >> subsampling_x_[plane],
330 MultiplyBy4(block_height4x4) >> subsampling_y_[plane],
331 sizeof(Pixel));
332 } while (++plane < planes_);
333 }
334 use_border_columns[border_columns_dst_index][0] = false;
335 use_border_columns[border_columns_dst_index][1] = false;
336 return;
337 }
338
339 const bool is_frame_right =
340 MultiplyBy4(column4x4_start + block_width4x4) >= frame_header_.width;
341 if (!is_frame_right && thread_pool_ != nullptr) {
342 // Backup the last 2 columns for use in the next iteration.
343 use_border_columns[border_columns_dst_index][0] = true;
344 const uint8_t* src_line =
345 GetSourceBuffer(kPlaneY, row4x4_start,
346 column4x4_start + block_width4x4) -
347 kCdefBorder * sizeof(Pixel);
348 assert(border_columns != nullptr);
349 CopyPixels(src_line, frame_buffer_.stride(kPlaneY),
350 border_columns[border_columns_dst_index][kPlaneY],
351 kCdefBorder * sizeof(Pixel), kCdefBorder,
352 MultiplyBy4(block_height4x4), sizeof(Pixel));
353 }
354
355 PrepareCdefBlock<Pixel>(
356 block_width4x4, block_height4x4, row4x4_start, column4x4_start,
357 cdef_block, kCdefUnitSizeWithBorders, true,
358 (border_columns != nullptr) ? border_columns[border_columns_src_index]
359 : nullptr,
360 use_border_columns[border_columns_src_index][0]);
361
362 // Stored direction used during the u/v pass. If bit 3 is set, then block is
363 // a skip.
364 uint8_t direction_y[8 * 8];
365 int y_index = 0;
366
367 const uint8_t y_primary_strength =
368 frame_header_.cdef.y_primary_strength[index];
369 const uint8_t y_secondary_strength =
370 frame_header_.cdef.y_secondary_strength[index];
371 // y_strength_index is 0 for both primary and secondary strengths being
372 // non-zero, 1 for primary only, 2 for secondary only. This will be updated
373 // with y_primary_strength after variance is applied.
374 int y_strength_index = static_cast<int>(y_secondary_strength == 0);
375
376 const bool compute_direction_and_variance =
377 (y_primary_strength | frame_header_.cdef.uv_primary_strength[index]) != 0;
378 const uint8_t* skip_row =
379 &cdef_skip_[row4x4_start >> 1][column4x4_start >> 4];
380 const int skip_stride = cdef_skip_.columns();
381 int row4x4 = row4x4_start;
382 do {
383 uint8_t* cdef_buffer_base = cdef_buffer_row_base[kPlaneY];
384 const uint8_t* src_buffer_base = src_buffer_row_base[kPlaneY];
385 const uint16_t* cdef_src_base = cdef_src_row_base[kPlaneY];
386 int column4x4 = column4x4_start;
387
388 if (*skip_row == 0) {
389 for (int i = 0; i < DivideBy2(block_width4x4); ++i, ++y_index) {
390 direction_y[y_index] = kCdefSkip;
391 }
392 if (thread_pool_ == nullptr) {
393 CopyPixels(src_buffer_base, frame_buffer_.stride(kPlaneY),
394 cdef_buffer_base, frame_buffer_.stride(kPlaneY), 64, kStep,
395 sizeof(Pixel));
396 }
397 } else {
398 do {
399 const int block_width = kStep;
400 const int block_height = kStep;
401 const int cdef_stride = frame_buffer_.stride(kPlaneY);
402 uint8_t* const cdef_buffer = cdef_buffer_base;
403 const uint16_t* const cdef_src = cdef_src_base;
404 const int src_stride = frame_buffer_.stride(kPlaneY);
405 const uint8_t* const src_buffer = src_buffer_base;
406
407 const uint8_t skip_shift = (column4x4 >> 1) & 0x7;
408 const bool skip = ((*skip_row >> skip_shift) & 1) == 0;
409 if (skip) { // No cdef filtering.
410 direction_y[y_index] = kCdefSkip;
411 if (thread_pool_ == nullptr) {
412 CopyPixels(src_buffer, src_stride, cdef_buffer, cdef_stride,
413 block_width, block_height, sizeof(Pixel));
414 }
415 } else {
416 // Zero out residual skip flag.
417 direction_y[y_index] = 0;
418
419 int variance = 0;
420 if (compute_direction_and_variance) {
421 if (thread_pool_ == nullptr ||
422 row4x4 + kStep4x4 < row4x4_start + block_height4x4) {
423 dsp_.cdef_direction(src_buffer, src_stride, &direction_y[y_index],
424 &variance);
425 } else if (sizeof(Pixel) == 2) {
426 dsp_.cdef_direction(cdef_src, kCdefUnitSizeWithBorders * 2,
427 &direction_y[y_index], &variance);
428 } else {
429 // If we are in the last row4x4 for this unit, then the last two
430 // input rows have to come from |cdef_border_|. Since we already
431 // have |cdef_src| populated correctly, use that as the input
432 // for the direction process.
433 uint8_t direction_src[8][8];
434 const uint16_t* cdef_src_line = cdef_src;
435 for (auto& direction_src_line : direction_src) {
436 for (int i = 0; i < 8; ++i) {
437 direction_src_line[i] = cdef_src_line[i];
438 }
439 cdef_src_line += kCdefUnitSizeWithBorders;
440 }
441 dsp_.cdef_direction(direction_src, 8, &direction_y[y_index],
442 &variance);
443 }
444 }
445 const int direction =
446 (y_primary_strength == 0) ? 0 : direction_y[y_index];
447 const int variance_strength =
448 ((variance >> 6) != 0) ? std::min(FloorLog2(variance >> 6), 12)
449 : 0;
450 const uint8_t primary_strength =
451 (variance != 0)
452 ? (y_primary_strength * (4 + variance_strength) + 8) >> 4
453 : 0;
454 if ((primary_strength | y_secondary_strength) == 0) {
455 if (thread_pool_ == nullptr) {
456 CopyPixels(src_buffer, src_stride, cdef_buffer, cdef_stride,
457 block_width, block_height, sizeof(Pixel));
458 }
459 } else {
460 const int strength_index =
461 y_strength_index |
462 (static_cast<int>(primary_strength == 0) << 1);
463 dsp_.cdef_filters[1][strength_index](
464 cdef_src, kCdefUnitSizeWithBorders, block_height,
465 primary_strength, y_secondary_strength,
466 frame_header_.cdef.damping, direction, cdef_buffer,
467 cdef_stride);
468 }
469 }
470 cdef_buffer_base += column_step[kPlaneY];
471 src_buffer_base += column_step[kPlaneY];
472 cdef_src_base += column_step[kPlaneY] / sizeof(Pixel);
473
474 column4x4 += kStep4x4;
475 y_index++;
476 } while (column4x4 < column4x4_start + block_width4x4);
477 }
478
479 cdef_buffer_row_base[kPlaneY] += cdef_buffer_row_base_stride[kPlaneY];
480 src_buffer_row_base[kPlaneY] += src_buffer_row_base_stride[kPlaneY];
481 cdef_src_row_base[kPlaneY] += cdef_src_row_base_stride[kPlaneY];
482 skip_row += skip_stride;
483 row4x4 += kStep4x4;
484 } while (row4x4 < row4x4_start + block_height4x4);
485
486 if (planes_ == kMaxPlanesMonochrome) {
487 return;
488 }
489
490 const uint8_t uv_primary_strength =
491 frame_header_.cdef.uv_primary_strength[index];
492 const uint8_t uv_secondary_strength =
493 frame_header_.cdef.uv_secondary_strength[index];
494
495 if ((uv_primary_strength | uv_secondary_strength) == 0) {
496 if (thread_pool_ == nullptr) {
497 for (int plane = kPlaneU; plane <= kPlaneV; ++plane) {
498 CopyPixels(src_buffer_row_base[plane], frame_buffer_.stride(plane),
499 cdef_buffer_row_base[plane], frame_buffer_.stride(plane),
500 MultiplyBy4(block_width4x4) >> subsampling_x_[plane],
501 MultiplyBy4(block_height4x4) >> subsampling_y_[plane],
502 sizeof(Pixel));
503 }
504 }
505 use_border_columns[border_columns_dst_index][1] = false;
506 return;
507 }
508
509 if (!is_frame_right && thread_pool_ != nullptr) {
510 use_border_columns[border_columns_dst_index][1] = true;
511 for (int plane = kPlaneU; plane <= kPlaneV; ++plane) {
512 // Backup the last 2 columns for use in the next iteration.
513 const uint8_t* src_line =
514 GetSourceBuffer(static_cast<Plane>(plane), row4x4_start,
515 column4x4_start + block_width4x4) -
516 kCdefBorder * sizeof(Pixel);
517 CopyPixels(src_line, frame_buffer_.stride(plane),
518 border_columns[border_columns_dst_index][plane],
519 kCdefBorder * sizeof(Pixel), kCdefBorder,
520 MultiplyBy4(block_height4x4) >> subsampling_y_[plane],
521 sizeof(Pixel));
522 }
523 }
524
525 PrepareCdefBlock<Pixel>(
526 block_width4x4, block_height4x4, row4x4_start, column4x4_start,
527 cdef_block, kCdefUnitSizeWithBorders, false,
528 (border_columns != nullptr) ? border_columns[border_columns_src_index]
529 : nullptr,
530 use_border_columns[border_columns_src_index][1]);
531
532 // uv_strength_index is 0 for both primary and secondary strengths being
533 // non-zero, 1 for primary only, 2 for secondary only.
534 const int uv_strength_index =
535 (static_cast<int>(uv_primary_strength == 0) << 1) |
536 static_cast<int>(uv_secondary_strength == 0);
537 for (int plane = kPlaneU; plane <= kPlaneV; ++plane) {
538 const int8_t subsampling_x = subsampling_x_[plane];
539 const int8_t subsampling_y = subsampling_y_[plane];
540 const int block_width = kStep >> subsampling_x;
541 const int block_height = kStep >> subsampling_y;
542 int row4x4 = row4x4_start;
543
544 y_index = 0;
545 do {
546 uint8_t* cdef_buffer_base = cdef_buffer_row_base[plane];
547 const uint8_t* src_buffer_base = src_buffer_row_base[plane];
548 const uint16_t* cdef_src_base = cdef_src_row_base[plane];
549 int column4x4 = column4x4_start;
550 do {
551 const int cdef_stride = frame_buffer_.stride(plane);
552 uint8_t* const cdef_buffer = cdef_buffer_base;
553 const int src_stride = frame_buffer_.stride(plane);
554 const uint8_t* const src_buffer = src_buffer_base;
555 const uint16_t* const cdef_src = cdef_src_base;
556 const bool skip = (direction_y[y_index] & kCdefSkip) != 0;
557 int dual_cdef = 0;
558
559 if (skip) { // No cdef filtering.
560 if (thread_pool_ == nullptr) {
561 CopyPixels(src_buffer, src_stride, cdef_buffer, cdef_stride,
562 block_width, block_height, sizeof(Pixel));
563 }
564 } else {
565 // Make sure block pair is not out of bounds.
566 if (column4x4 + (kStep4x4 * 2) <= column4x4_start + block_width4x4) {
567 // Enable dual processing if subsampling_x is 1.
568 dual_cdef = subsampling_x;
569 }
570
571 int direction = (uv_primary_strength == 0)
572 ? 0
573 : kCdefUvDirection[subsampling_x][subsampling_y]
574 [direction_y[y_index]];
575
576 if (dual_cdef != 0) {
577 if (uv_primary_strength &&
578 direction_y[y_index] != direction_y[y_index + 1]) {
579 // Disable dual processing if the second block of the pair does
580 // not have the same direction.
581 dual_cdef = 0;
582 }
583
584 // Disable dual processing if the second block of the pair is a
585 // skip.
586 if (direction_y[y_index + 1] == kCdefSkip) {
587 dual_cdef = 0;
588 }
589 }
590
591 // Block width is 8 if either dual_cdef is true or subsampling_x == 0.
592 const int width_index = dual_cdef | (subsampling_x ^ 1);
593 dsp_.cdef_filters[width_index][uv_strength_index](
594 cdef_src, kCdefUnitSizeWithBorders, block_height,
595 uv_primary_strength, uv_secondary_strength,
596 frame_header_.cdef.damping - 1, direction, cdef_buffer,
597 cdef_stride);
598 }
599 // When dual_cdef is set, the above cdef_filter() will process 2 blocks,
600 // so adjust the pointers and indexes for 2 blocks.
601 cdef_buffer_base += column_step[plane] << dual_cdef;
602 src_buffer_base += column_step[plane] << dual_cdef;
603 cdef_src_base += (column_step[plane] / sizeof(Pixel)) << dual_cdef;
604 column4x4 += kStep4x4 << dual_cdef;
605 y_index += 1 << dual_cdef;
606 } while (column4x4 < column4x4_start + block_width4x4);
607
608 cdef_buffer_row_base[plane] += cdef_buffer_row_base_stride[plane];
609 src_buffer_row_base[plane] += src_buffer_row_base_stride[plane];
610 cdef_src_row_base[plane] += cdef_src_row_base_stride[plane];
611 row4x4 += kStep4x4;
612 } while (row4x4 < row4x4_start + block_height4x4);
613 }
614 }
615
ApplyCdefForOneSuperBlockRowHelper(uint16_t * cdef_block,uint8_t border_columns[2][kMaxPlanes][256],int row4x4,int block_height4x4)616 void PostFilter::ApplyCdefForOneSuperBlockRowHelper(
617 uint16_t* cdef_block, uint8_t border_columns[2][kMaxPlanes][256],
618 int row4x4, int block_height4x4) {
619 bool use_border_columns[2][2] = {};
620 const bool non_zero_index = frame_header_.cdef.bits > 0;
621 const int8_t* cdef_index =
622 non_zero_index ? cdef_index_[DivideBy16(row4x4)] : nullptr;
623 int column4x4 = 0;
624 do {
625 const int index = non_zero_index ? *cdef_index++ : 0;
626 const int block_width4x4 =
627 std::min(kStep64x64, frame_header_.columns4x4 - column4x4);
628
629 #if LIBGAV1_MAX_BITDEPTH >= 10
630 if (bitdepth_ >= 10) {
631 ApplyCdefForOneUnit<uint16_t>(cdef_block, index, block_width4x4,
632 block_height4x4, row4x4, column4x4,
633 border_columns, use_border_columns);
634 } else // NOLINT
635 #endif // LIBGAV1_MAX_BITDEPTH >= 10
636 {
637 ApplyCdefForOneUnit<uint8_t>(cdef_block, index, block_width4x4,
638 block_height4x4, row4x4, column4x4,
639 border_columns, use_border_columns);
640 }
641 column4x4 += kStep64x64;
642 } while (column4x4 < frame_header_.columns4x4);
643 }
644
ApplyCdefForOneSuperBlockRow(int row4x4_start,int sb4x4,bool is_last_row)645 void PostFilter::ApplyCdefForOneSuperBlockRow(int row4x4_start, int sb4x4,
646 bool is_last_row) {
647 assert(row4x4_start >= 0);
648 assert(DoCdef());
649 int row4x4 = row4x4_start;
650 const int row4x4_limit = row4x4_start + sb4x4;
651 do {
652 if (row4x4 >= frame_header_.rows4x4) return;
653
654 // Apply cdef for the last 8 rows of the previous superblock row.
655 // One exception: If the superblock size is 128x128 and is_last_row is true,
656 // then we simply apply cdef for the entire superblock row without any lag.
657 // In that case, apply cdef for the previous superblock row only during the
658 // first iteration (row4x4 == row4x4_start).
659 if (row4x4 > 0 && (!is_last_row || row4x4 == row4x4_start)) {
660 assert(row4x4 >= 16);
661 ApplyCdefForOneSuperBlockRowHelper(cdef_block_, nullptr, row4x4 - 2, 2);
662 }
663
664 // Apply cdef for the current superblock row. If this is the last superblock
665 // row we apply cdef for all the rows, otherwise we leave out the last 8
666 // rows.
667 const int block_height4x4 =
668 std::min(kStep64x64, frame_header_.rows4x4 - row4x4);
669 const int height4x4 = block_height4x4 - (is_last_row ? 0 : 2);
670 if (height4x4 > 0) {
671 ApplyCdefForOneSuperBlockRowHelper(cdef_block_, nullptr, row4x4,
672 height4x4);
673 }
674 row4x4 += kStep64x64;
675 } while (row4x4 < row4x4_limit);
676 }
677
ApplyCdefWorker(std::atomic<int> * row4x4_atomic)678 void PostFilter::ApplyCdefWorker(std::atomic<int>* row4x4_atomic) {
679 int row4x4;
680 uint16_t cdef_block[kCdefUnitSizeWithBorders * kCdefUnitSizeWithBorders * 2];
681 // Each border_column buffer has to store 64 rows and 2 columns for each
682 // plane. For 10bit, that is 64*2*2 = 256 bytes.
683 alignas(kMaxAlignment) uint8_t border_columns[2][kMaxPlanes][256];
684 while ((row4x4 = row4x4_atomic->fetch_add(
685 kStep64x64, std::memory_order_relaxed)) < frame_header_.rows4x4) {
686 const int block_height4x4 =
687 std::min(kStep64x64, frame_header_.rows4x4 - row4x4);
688 ApplyCdefForOneSuperBlockRowHelper(cdef_block, border_columns, row4x4,
689 block_height4x4);
690 }
691 }
692
693 } // namespace libgav1
694