1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * A central FIFO sched_ext scheduler which demonstrates the followings:
4  *
5  * a. Making all scheduling decisions from one CPU:
6  *
7  *    The central CPU is the only one making scheduling decisions. All other
8  *    CPUs kick the central CPU when they run out of tasks to run.
9  *
10  *    There is one global BPF queue and the central CPU schedules all CPUs by
11  *    dispatching from the global queue to each CPU's local dsq from dispatch().
12  *    This isn't the most straightforward. e.g. It'd be easier to bounce
13  *    through per-CPU BPF queues. The current design is chosen to maximally
14  *    utilize and verify various SCX mechanisms such as LOCAL_ON dispatching.
15  *
16  * b. Tickless operation
17  *
18  *    All tasks are dispatched with the infinite slice which allows stopping the
19  *    ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full
20  *    parameter. The tickless operation can be observed through
21  *    /proc/interrupts.
22  *
23  *    Periodic switching is enforced by a periodic timer checking all CPUs and
24  *    preempting them as necessary. Unfortunately, BPF timer currently doesn't
25  *    have a way to pin to a specific CPU, so the periodic timer isn't pinned to
26  *    the central CPU.
27  *
28  * c. Preemption
29  *
30  *    Kthreads are unconditionally queued to the head of a matching local dsq
31  *    and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always
32  *    prioritized over user threads, which is required for ensuring forward
33  *    progress as e.g. the periodic timer may run on a ksoftirqd and if the
34  *    ksoftirqd gets starved by a user thread, there may not be anything else to
35  *    vacate that user thread.
36  *
37  *    SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the
38  *    next tasks.
39  *
40  * This scheduler is designed to maximize usage of various SCX mechanisms. A
41  * more practical implementation would likely put the scheduling loop outside
42  * the central CPU's dispatch() path and add some form of priority mechanism.
43  *
44  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
45  * Copyright (c) 2022 Tejun Heo <[email protected]>
46  * Copyright (c) 2022 David Vernet <[email protected]>
47  */
48 #include <scx/common.bpf.h>
49 
50 char _license[] SEC("license") = "GPL";
51 
52 enum {
53 	FALLBACK_DSQ_ID		= 0,
54 	MS_TO_NS		= 1000LLU * 1000,
55 	TIMER_INTERVAL_NS	= 1 * MS_TO_NS,
56 };
57 
58 const volatile s32 central_cpu;
59 const volatile u32 nr_cpu_ids = 1;	/* !0 for veristat, set during init */
60 const volatile u64 slice_ns;
61 
62 bool timer_pinned = true;
63 u64 nr_total, nr_locals, nr_queued, nr_lost_pids;
64 u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries;
65 u64 nr_overflows;
66 
67 UEI_DEFINE(uei);
68 
69 struct {
70 	__uint(type, BPF_MAP_TYPE_QUEUE);
71 	__uint(max_entries, 4096);
72 	__type(value, s32);
73 } central_q SEC(".maps");
74 
75 /* can't use percpu map due to bad lookups */
76 bool RESIZABLE_ARRAY(data, cpu_gimme_task);
77 u64 RESIZABLE_ARRAY(data, cpu_started_at);
78 
79 struct central_timer {
80 	struct bpf_timer timer;
81 };
82 
83 struct {
84 	__uint(type, BPF_MAP_TYPE_ARRAY);
85 	__uint(max_entries, 1);
86 	__type(key, u32);
87 	__type(value, struct central_timer);
88 } central_timer SEC(".maps");
89 
BPF_STRUCT_OPS(central_select_cpu,struct task_struct * p,s32 prev_cpu,u64 wake_flags)90 s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p,
91 		   s32 prev_cpu, u64 wake_flags)
92 {
93 	/*
94 	 * Steer wakeups to the central CPU as much as possible to avoid
95 	 * disturbing other CPUs. It's safe to blindly return the central cpu as
96 	 * select_cpu() is a hint and if @p can't be on it, the kernel will
97 	 * automatically pick a fallback CPU.
98 	 */
99 	return central_cpu;
100 }
101 
BPF_STRUCT_OPS(central_enqueue,struct task_struct * p,u64 enq_flags)102 void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags)
103 {
104 	s32 pid = p->pid;
105 
106 	__sync_fetch_and_add(&nr_total, 1);
107 
108 	/*
109 	 * Push per-cpu kthreads at the head of local dsq's and preempt the
110 	 * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked
111 	 * behind other threads which is necessary for forward progress
112 	 * guarantee as we depend on the BPF timer which may run from ksoftirqd.
113 	 */
114 	if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) {
115 		__sync_fetch_and_add(&nr_locals, 1);
116 		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_INF,
117 				   enq_flags | SCX_ENQ_PREEMPT);
118 		return;
119 	}
120 
121 	if (bpf_map_push_elem(&central_q, &pid, 0)) {
122 		__sync_fetch_and_add(&nr_overflows, 1);
123 		scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags);
124 		return;
125 	}
126 
127 	__sync_fetch_and_add(&nr_queued, 1);
128 
129 	if (!scx_bpf_task_running(p))
130 		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
131 }
132 
dispatch_to_cpu(s32 cpu)133 static bool dispatch_to_cpu(s32 cpu)
134 {
135 	struct task_struct *p;
136 	s32 pid;
137 
138 	bpf_repeat(BPF_MAX_LOOPS) {
139 		if (bpf_map_pop_elem(&central_q, &pid))
140 			break;
141 
142 		__sync_fetch_and_sub(&nr_queued, 1);
143 
144 		p = bpf_task_from_pid(pid);
145 		if (!p) {
146 			__sync_fetch_and_add(&nr_lost_pids, 1);
147 			continue;
148 		}
149 
150 		/*
151 		 * If we can't run the task at the top, do the dumb thing and
152 		 * bounce it to the fallback dsq.
153 		 */
154 		if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) {
155 			__sync_fetch_and_add(&nr_mismatches, 1);
156 			scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0);
157 			bpf_task_release(p);
158 			/*
159 			 * We might run out of dispatch buffer slots if we continue dispatching
160 			 * to the fallback DSQ, without dispatching to the local DSQ of the
161 			 * target CPU. In such a case, break the loop now as will fail the
162 			 * next dispatch operation.
163 			 */
164 			if (!scx_bpf_dispatch_nr_slots())
165 				break;
166 			continue;
167 		}
168 
169 		/* dispatch to local and mark that @cpu doesn't need more */
170 		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0);
171 
172 		if (cpu != central_cpu)
173 			scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
174 
175 		bpf_task_release(p);
176 		return true;
177 	}
178 
179 	return false;
180 }
181 
BPF_STRUCT_OPS(central_dispatch,s32 cpu,struct task_struct * prev)182 void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev)
183 {
184 	if (cpu == central_cpu) {
185 		/* dispatch for all other CPUs first */
186 		__sync_fetch_and_add(&nr_dispatches, 1);
187 
188 		bpf_for(cpu, 0, nr_cpu_ids) {
189 			bool *gimme;
190 
191 			if (!scx_bpf_dispatch_nr_slots())
192 				break;
193 
194 			/* central's gimme is never set */
195 			gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
196 			if (!gimme || !*gimme)
197 				continue;
198 
199 			if (dispatch_to_cpu(cpu))
200 				*gimme = false;
201 		}
202 
203 		/*
204 		 * Retry if we ran out of dispatch buffer slots as we might have
205 		 * skipped some CPUs and also need to dispatch for self. The ext
206 		 * core automatically retries if the local dsq is empty but we
207 		 * can't rely on that as we're dispatching for other CPUs too.
208 		 * Kick self explicitly to retry.
209 		 */
210 		if (!scx_bpf_dispatch_nr_slots()) {
211 			__sync_fetch_and_add(&nr_retries, 1);
212 			scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
213 			return;
214 		}
215 
216 		/* look for a task to run on the central CPU */
217 		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
218 			return;
219 		dispatch_to_cpu(central_cpu);
220 	} else {
221 		bool *gimme;
222 
223 		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
224 			return;
225 
226 		gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
227 		if (gimme)
228 			*gimme = true;
229 
230 		/*
231 		 * Force dispatch on the scheduling CPU so that it finds a task
232 		 * to run for us.
233 		 */
234 		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
235 	}
236 }
237 
BPF_STRUCT_OPS(central_running,struct task_struct * p)238 void BPF_STRUCT_OPS(central_running, struct task_struct *p)
239 {
240 	s32 cpu = scx_bpf_task_cpu(p);
241 	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
242 	if (started_at)
243 		*started_at = scx_bpf_now() ?: 1;	/* 0 indicates idle */
244 }
245 
BPF_STRUCT_OPS(central_stopping,struct task_struct * p,bool runnable)246 void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable)
247 {
248 	s32 cpu = scx_bpf_task_cpu(p);
249 	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
250 	if (started_at)
251 		*started_at = 0;
252 }
253 
central_timerfn(void * map,int * key,struct bpf_timer * timer)254 static int central_timerfn(void *map, int *key, struct bpf_timer *timer)
255 {
256 	u64 now = scx_bpf_now();
257 	u64 nr_to_kick = nr_queued;
258 	s32 i, curr_cpu;
259 
260 	curr_cpu = bpf_get_smp_processor_id();
261 	if (timer_pinned && (curr_cpu != central_cpu)) {
262 		scx_bpf_error("Central timer ran on CPU %d, not central CPU %d",
263 			      curr_cpu, central_cpu);
264 		return 0;
265 	}
266 
267 	bpf_for(i, 0, nr_cpu_ids) {
268 		s32 cpu = (nr_timers + i) % nr_cpu_ids;
269 		u64 *started_at;
270 
271 		if (cpu == central_cpu)
272 			continue;
273 
274 		/* kick iff the current one exhausted its slice */
275 		started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
276 		if (started_at && *started_at &&
277 		    time_before(now, *started_at + slice_ns))
278 			continue;
279 
280 		/* and there's something pending */
281 		if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) ||
282 		    scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu))
283 			;
284 		else if (nr_to_kick)
285 			nr_to_kick--;
286 		else
287 			continue;
288 
289 		scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT);
290 	}
291 
292 	bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
293 	__sync_fetch_and_add(&nr_timers, 1);
294 	return 0;
295 }
296 
BPF_STRUCT_OPS_SLEEPABLE(central_init)297 int BPF_STRUCT_OPS_SLEEPABLE(central_init)
298 {
299 	u32 key = 0;
300 	struct bpf_timer *timer;
301 	int ret;
302 
303 	ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1);
304 	if (ret)
305 		return ret;
306 
307 	timer = bpf_map_lookup_elem(&central_timer, &key);
308 	if (!timer)
309 		return -ESRCH;
310 
311 	if (bpf_get_smp_processor_id() != central_cpu) {
312 		scx_bpf_error("init from non-central CPU");
313 		return -EINVAL;
314 	}
315 
316 	bpf_timer_init(timer, &central_timer, CLOCK_MONOTONIC);
317 	bpf_timer_set_callback(timer, central_timerfn);
318 
319 	ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
320 	/*
321 	 * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a
322 	 * kernel which doesn't have it, bpf_timer_start() will return -EINVAL.
323 	 * Retry without the PIN. This would be the perfect use case for
324 	 * bpf_core_enum_value_exists() but the enum type doesn't have a name
325 	 * and can't be used with bpf_core_enum_value_exists(). Oh well...
326 	 */
327 	if (ret == -EINVAL) {
328 		timer_pinned = false;
329 		ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0);
330 	}
331 	if (ret)
332 		scx_bpf_error("bpf_timer_start failed (%d)", ret);
333 	return ret;
334 }
335 
BPF_STRUCT_OPS(central_exit,struct scx_exit_info * ei)336 void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei)
337 {
338 	UEI_RECORD(uei, ei);
339 }
340 
341 SCX_OPS_DEFINE(central_ops,
342 	       /*
343 		* We are offloading all scheduling decisions to the central CPU
344 		* and thus being the last task on a given CPU doesn't mean
345 		* anything special. Enqueue the last tasks like any other tasks.
346 		*/
347 	       .flags			= SCX_OPS_ENQ_LAST,
348 
349 	       .select_cpu		= (void *)central_select_cpu,
350 	       .enqueue			= (void *)central_enqueue,
351 	       .dispatch		= (void *)central_dispatch,
352 	       .running			= (void *)central_running,
353 	       .stopping		= (void *)central_stopping,
354 	       .init			= (void *)central_init,
355 	       .exit			= (void *)central_exit,
356 	       .name			= "central");
357