1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <DisplayHardware/Hal.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/DisplayColorProfile.h>
20 #include <compositionengine/LayerFECompositionState.h>
21 #include <compositionengine/Output.h>
22 #include <compositionengine/impl/HwcBufferCache.h>
23 #include <compositionengine/impl/OutputCompositionState.h>
24 #include <compositionengine/impl/OutputLayer.h>
25 #include <compositionengine/impl/OutputLayerCompositionState.h>
26 #include <ui/FloatRect.h>
27 #include <ui/HdrRenderTypeUtils.h>
28 #include <cstdint>
29 #include <limits>
30 #include "system/graphics-base-v1.0.h"
31
32 #include <com_android_graphics_libgui_flags.h>
33
34 // TODO(b/129481165): remove the #pragma below and fix conversion issues
35 #pragma clang diagnostic push
36 #pragma clang diagnostic ignored "-Wconversion"
37
38 #include "DisplayHardware/HWComposer.h"
39
40 // TODO(b/129481165): remove the #pragma below and fix conversion issues
41 #pragma clang diagnostic pop // ignored "-Wconversion"
42
43 using aidl::android::hardware::graphics::composer3::Composition;
44 using aidl::android::hardware::graphics::composer3::Luts;
45
46 namespace android::compositionengine {
47
48 OutputLayer::~OutputLayer() = default;
49
50 namespace impl {
51
52 namespace {
53
reduce(const FloatRect & win,const Region & exclude)54 FloatRect reduce(const FloatRect& win, const Region& exclude) {
55 if (CC_LIKELY(exclude.isEmpty())) {
56 return win;
57 }
58 // Convert through Rect (by rounding) for lack of FloatRegion
59 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
60 }
61
62 } // namespace
63
createOutputLayer(const compositionengine::Output & output,const sp<compositionengine::LayerFE> & layerFE)64 std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
65 const sp<compositionengine::LayerFE>& layerFE) {
66 return createOutputLayerTemplated<OutputLayer>(output, layerFE);
67 }
68
69 OutputLayer::~OutputLayer() = default;
70
setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer)71 void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
72 auto& state = editState();
73 if (hwcLayer) {
74 state.hwc.emplace(std::move(hwcLayer));
75 } else {
76 state.hwc.reset();
77 }
78 }
79
calculateInitialCrop() const80 Rect OutputLayer::calculateInitialCrop() const {
81 const auto& layerState = *getLayerFE().getCompositionState();
82
83 // apply the projection's clipping to the window crop in
84 // layerstack space, and convert-back to layer space.
85 // if there are no window scaling involved, this operation will map to full
86 // pixels in the buffer.
87
88 FloatRect activeCropFloat =
89 reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
90
91 const Rect& viewport = getOutput().getState().layerStackSpace.getContent();
92 const ui::Transform& layerTransform = layerState.geomLayerTransform;
93 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
94 // Transform to screen space.
95 activeCropFloat = layerTransform.transform(activeCropFloat);
96 activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
97 // Back to layer space to work with the content crop.
98 activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
99
100 // This needs to be here as transform.transform(Rect) computes the
101 // transformed rect and then takes the bounding box of the result before
102 // returning. This means
103 // transform.inverse().transform(transform.transform(Rect)) != Rect
104 // in which case we need to make sure the final rect is clipped to the
105 // display bounds.
106 Rect activeCrop{activeCropFloat};
107 if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
108 activeCrop.clear();
109 }
110 return activeCrop;
111 }
112
calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const113 FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const {
114 const auto& layerState = *getLayerFE().getCompositionState();
115
116 if (!layerState.geomUsesSourceCrop) {
117 return {};
118 }
119
120 // the content crop is the area of the content that gets scaled to the
121 // layer's size. This is in buffer space.
122 FloatRect crop = layerState.geomContentCrop.toFloatRect();
123
124 // In addition there is a WM-specified crop we pull from our drawing state.
125 Rect activeCrop = calculateInitialCrop();
126 const Rect& bufferSize = layerState.geomBufferSize;
127
128 int winWidth = bufferSize.getWidth();
129 int winHeight = bufferSize.getHeight();
130
131 // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
132 // if display frame hasn't been set and the parent is an unbounded layer.
133 if (winWidth < 0 && winHeight < 0) {
134 return crop;
135 }
136
137 // Transform the window crop to match the buffer coordinate system,
138 // which means using the inverse of the current transform set on the
139 // SurfaceFlingerConsumer.
140 uint32_t invTransform = layerState.geomBufferTransform;
141 if (layerState.geomBufferUsesDisplayInverseTransform) {
142 /*
143 * the code below applies the primary display's inverse transform to the
144 * buffer
145 */
146 uint32_t invTransformOrient = internalDisplayRotationFlags;
147 // calculate the inverse transform
148 if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
149 invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
150 }
151 // and apply to the current transform
152 invTransform =
153 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
154 }
155
156 if (invTransform & HAL_TRANSFORM_ROT_90) {
157 // If the activeCrop has been rotate the ends are rotated but not
158 // the space itself so when transforming ends back we can't rely on
159 // a modification of the axes of rotation. To account for this we
160 // need to reorient the inverse rotation in terms of the current
161 // axes of rotation.
162 bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
163 bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
164 if (isHFlipped == isVFlipped) {
165 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
166 }
167 std::swap(winWidth, winHeight);
168 }
169 const Rect winCrop =
170 activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
171
172 // below, crop is intersected with winCrop expressed in crop's coordinate space
173 const float xScale = crop.getWidth() / float(winWidth);
174 const float yScale = crop.getHeight() / float(winHeight);
175
176 const float insetLeft = winCrop.left * xScale;
177 const float insetTop = winCrop.top * yScale;
178 const float insetRight = (winWidth - winCrop.right) * xScale;
179 const float insetBottom = (winHeight - winCrop.bottom) * yScale;
180
181 crop.left += insetLeft;
182 crop.top += insetTop;
183 crop.right -= insetRight;
184 crop.bottom -= insetBottom;
185
186 return crop;
187 }
188
calculateOutputDisplayFrame() const189 Rect OutputLayer::calculateOutputDisplayFrame() const {
190 const auto& layerState = *getLayerFE().getCompositionState();
191 const auto& outputState = getOutput().getState();
192
193 // Convert from layer space to layerStackSpace
194 // apply the layer's transform, followed by the display's global transform
195 // here we're guaranteed that the layer's transform preserves rects
196 const ui::Transform& layerTransform = layerState.geomLayerTransform;
197 Region activeTransparentRegion = layerTransform.transform(layerState.transparentRegionHint);
198 if (!layerState.geomCrop.isEmpty() && layerState.geomBufferSize.isValid()) {
199 FloatRect activeCrop = layerTransform.transform(layerState.geomCrop);
200 activeCrop = activeCrop.intersect(outputState.layerStackSpace.getContent().toFloatRect());
201 const FloatRect& bufferSize =
202 layerTransform.transform(layerState.geomBufferSize.toFloatRect());
203 activeCrop = activeCrop.intersect(bufferSize);
204
205 // mark regions outside the crop as transparent
206 Rect topRegion = Rect(layerTransform.transform(
207 FloatRect(0, 0, layerState.geomBufferSize.getWidth(), layerState.geomCrop.top)));
208 Rect bottomRegion = Rect(layerTransform.transform(
209 FloatRect(0, layerState.geomCrop.bottom, layerState.geomBufferSize.getWidth(),
210 layerState.geomBufferSize.getHeight())));
211 Rect leftRegion = Rect(layerTransform.transform(FloatRect(0, layerState.geomCrop.top,
212 layerState.geomCrop.left,
213 layerState.geomCrop.bottom)));
214 Rect rightRegion = Rect(layerTransform.transform(
215 FloatRect(layerState.geomCrop.right, layerState.geomCrop.top,
216 layerState.geomBufferSize.getWidth(), layerState.geomCrop.bottom)));
217
218 activeTransparentRegion.orSelf(topRegion);
219 activeTransparentRegion.orSelf(bottomRegion);
220 activeTransparentRegion.orSelf(leftRegion);
221 activeTransparentRegion.orSelf(rightRegion);
222 }
223
224 // reduce uses a FloatRect to provide more accuracy during the
225 // transformation. We then round upon constructing 'frame'.
226 FloatRect geomLayerBounds = layerState.geomLayerBounds;
227
228 // Some HWCs may clip client composited input to its displayFrame. Make sure
229 // that this does not cut off the shadow.
230 if (layerState.forceClientComposition && layerState.shadowSettings.length > 0.0f) {
231 // RenderEngine currently blurs shadows to smooth out edges, so outset by
232 // 2x the length instead of 1x to compensate
233 const auto outset = layerState.shadowSettings.length * 2;
234 geomLayerBounds.left -= outset;
235 geomLayerBounds.top -= outset;
236 geomLayerBounds.right += outset;
237 geomLayerBounds.bottom += outset;
238 }
239
240 geomLayerBounds = layerTransform.transform(geomLayerBounds);
241 FloatRect frame = reduce(geomLayerBounds, activeTransparentRegion);
242 frame = frame.intersect(outputState.layerStackSpace.getContent().toFloatRect());
243
244 // convert from layerStackSpace to displaySpace
245 const ui::Transform displayTransform{outputState.transform};
246 return Rect(displayTransform.transform(frame));
247 }
248
calculateOutputRelativeBufferTransform(uint32_t internalDisplayRotationFlags) const249 uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
250 uint32_t internalDisplayRotationFlags) const {
251 const auto& layerState = *getLayerFE().getCompositionState();
252 const auto& outputState = getOutput().getState();
253
254 /*
255 * Transformations are applied in this order:
256 * 1) buffer orientation/flip/mirror
257 * 2) state transformation (window manager)
258 * 3) layer orientation (screen orientation)
259 * (NOTE: the matrices are multiplied in reverse order)
260 */
261 const ui::Transform& layerTransform = layerState.geomLayerTransform;
262 const ui::Transform displayTransform{outputState.transform};
263 const ui::Transform bufferTransform{layerState.geomBufferTransform};
264 ui::Transform transform(displayTransform * layerTransform * bufferTransform);
265
266 if (layerState.geomBufferUsesDisplayInverseTransform) {
267 /*
268 * We must apply the internal display's inverse transform to the buffer
269 * transform, and not the one for the output this layer is on.
270 */
271 uint32_t invTransform = internalDisplayRotationFlags;
272
273 // calculate the inverse transform
274 if (invTransform & HAL_TRANSFORM_ROT_90) {
275 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
276 }
277
278 /*
279 * Here we cancel out the orientation component of the WM transform.
280 * The scaling and translate components are already included in our bounds
281 * computation so it's enough to just omit it in the composition.
282 * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
283 */
284 transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
285 }
286
287 // this gives us only the "orientation" component of the transform
288 return transform.getOrientation();
289 }
290
updateLuts(const LayerFECompositionState & layerFEState,const std::optional<std::vector<std::optional<LutProperties>>> & properties)291 void OutputLayer::updateLuts(
292 const LayerFECompositionState& layerFEState,
293 const std::optional<std::vector<std::optional<LutProperties>>>& properties) {
294 auto& luts = layerFEState.luts;
295 if (!luts) {
296 return;
297 }
298
299 auto& state = editState();
300
301 if (!properties) {
302 // GPU composition if no Hwc Luts
303 state.forceClientComposition = true;
304 return;
305 }
306
307 std::vector<LutProperties> hwcLutProperties;
308 for (auto& p : *properties) {
309 if (p) {
310 hwcLutProperties.emplace_back(*p);
311 }
312 }
313
314 for (const auto& inputLut : luts->lutProperties) {
315 bool foundInHwcLuts = false;
316 for (const auto& hwcLut : hwcLutProperties) {
317 if (static_cast<int32_t>(hwcLut.dimension) ==
318 static_cast<int32_t>(inputLut.dimension) &&
319 hwcLut.size == inputLut.size &&
320 std::find(hwcLut.samplingKeys.begin(), hwcLut.samplingKeys.end(),
321 static_cast<LutProperties::SamplingKey>(inputLut.samplingKey)) !=
322 hwcLut.samplingKeys.end()) {
323 foundInHwcLuts = true;
324 break;
325 }
326 }
327 // if any lut properties of luts can not be found in hwcLutProperties,
328 // GPU composition instead
329 if (!foundInHwcLuts) {
330 state.forceClientComposition = true;
331 return;
332 }
333 }
334 }
335
updateCompositionState(bool includeGeometry,bool forceClientComposition,ui::Transform::RotationFlags internalDisplayRotationFlags,const std::optional<std::vector<std::optional<LutProperties>>> properties)336 void OutputLayer::updateCompositionState(
337 bool includeGeometry, bool forceClientComposition,
338 ui::Transform::RotationFlags internalDisplayRotationFlags,
339 const std::optional<std::vector<std::optional<LutProperties>>> properties) {
340 const auto* layerFEState = getLayerFE().getCompositionState();
341 if (!layerFEState) {
342 return;
343 }
344
345 const auto& outputState = getOutput().getState();
346 const auto& profile = *getOutput().getDisplayColorProfile();
347 auto& state = editState();
348
349 if (includeGeometry) {
350 // Clear the forceClientComposition flag before it is set for any
351 // reason. Note that since it can be set by some checks below when
352 // updating the geometry state, we only clear it when updating the
353 // geometry since those conditions for forcing client composition won't
354 // go away otherwise.
355 state.forceClientComposition = false;
356
357 state.displayFrame = calculateOutputDisplayFrame();
358 state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags);
359 state.bufferTransform = static_cast<Hwc2::Transform>(
360 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
361
362 if ((layerFEState->isSecure && !outputState.isSecure) ||
363 (state.bufferTransform & ui::Transform::ROT_INVALID)) {
364 state.forceClientComposition = true;
365 }
366 }
367
368 auto pixelFormat = layerFEState->buffer ? std::make_optional(static_cast<ui::PixelFormat>(
369 layerFEState->buffer->getPixelFormat()))
370 : std::nullopt;
371
372 auto hdrRenderType =
373 getHdrRenderType(outputState.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
374
375 // Determine the output dependent dataspace for this layer. If it is
376 // colorspace agnostic, it just uses the dataspace chosen for the output to
377 // avoid the need for color conversion.
378 // For now, also respect the colorspace agnostic flag if we're drawing to HDR, to avoid drastic
379 // luminance shift. TODO(b/292162273): we should check if that's true though.
380 state.dataspace = layerFEState->isColorspaceAgnostic && hdrRenderType == HdrRenderType::SDR
381 ? outputState.dataspace
382 : layerFEState->dataspace;
383
384 // Override the dataspace transfer from 170M to sRGB if the device configuration requests this.
385 // We do this here instead of in buffer info so that dumpsys can still report layers that are
386 // using the 170M transfer. Also we only do this if the colorspace is not agnostic for the
387 // layer, in case the color profile uses a 170M transfer function.
388 if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic &&
389 (state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) {
390 state.dataspace = static_cast<ui::Dataspace>(
391 (state.dataspace & HAL_DATASPACE_STANDARD_MASK) |
392 (state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB);
393 }
394
395 // re-get HdrRenderType after the dataspace gets changed.
396 hdrRenderType =
397 getHdrRenderType(state.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
398
399 // For hdr content, treat the white point as the display brightness - HDR content should not be
400 // boosted or dimmed.
401 // If the layer explicitly requests to disable dimming, then don't dim either.
402 if (getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits ||
403 getOutput().getState().displayBrightnessNits <= 0.f || !layerFEState->dimmingEnabled) {
404 state.dimmingRatio = 1.f;
405 state.whitePointNits = getOutput().getState().displayBrightnessNits;
406 } else if (hdrRenderType == HdrRenderType::GENERIC_HDR) {
407 float deviceHeadroom = getOutput().getState().displayBrightnessNits /
408 getOutput().getState().sdrWhitePointNits;
409 float idealizedMaxHeadroom = deviceHeadroom;
410
411 if (FlagManager::getInstance().begone_bright_hlg()) {
412 idealizedMaxHeadroom =
413 std::min(idealizedMaxHeadroom, getIdealizedMaxHeadroom(state.dataspace));
414 }
415
416 state.dimmingRatio = std::min(idealizedMaxHeadroom / deviceHeadroom, 1.0f);
417 state.whitePointNits = getOutput().getState().displayBrightnessNits * state.dimmingRatio;
418 } else {
419 float layerBrightnessNits = getOutput().getState().sdrWhitePointNits;
420 // RANGE_EXTENDED can "self-promote" to HDR, but is still rendered for a particular
421 // range that we may need to re-adjust to the current display conditions
422 if (hdrRenderType == HdrRenderType::DISPLAY_HDR) {
423 layerBrightnessNits *= layerFEState->currentHdrSdrRatio;
424 }
425 state.dimmingRatio =
426 std::clamp(layerBrightnessNits / getOutput().getState().displayBrightnessNits, 0.f,
427 1.f);
428 state.whitePointNits = layerBrightnessNits;
429 }
430
431 updateLuts(*layerFEState, properties);
432
433 // These are evaluated every frame as they can potentially change at any
434 // time.
435 if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
436 forceClientComposition) {
437 state.forceClientComposition = true;
438 }
439 }
440
commitPictureProfileToCompositionState()441 void OutputLayer::commitPictureProfileToCompositionState() {
442 if (!com_android_graphics_libgui_flags_apply_picture_profiles()) {
443 return;
444 }
445 const auto* layerState = getLayerFE().getCompositionState();
446 if (layerState) {
447 editState().pictureProfileHandle = layerState->pictureProfileHandle;
448 }
449 }
450
writeStateToHWC(bool includeGeometry,bool skipLayer,uint32_t z,bool zIsOverridden,bool isPeekingThrough)451 void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z,
452 bool zIsOverridden, bool isPeekingThrough) {
453 const auto& state = getState();
454 // Skip doing this if there is no HWC interface
455 if (!state.hwc) {
456 return;
457 }
458
459 auto& hwcLayer = (*state.hwc).hwcLayer;
460 if (!hwcLayer) {
461 ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
462 getLayerFE().getDebugName(), getOutput().getName().c_str());
463 return;
464 }
465
466 const auto* outputIndependentState = getLayerFE().getCompositionState();
467 if (!outputIndependentState) {
468 return;
469 }
470
471 auto requestedCompositionType = outputIndependentState->compositionType;
472
473 if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) {
474 requestedCompositionType = Composition::DEVICE;
475 }
476
477 // TODO(b/181172795): We now update geometry for all flattened layers. We should update it
478 // only when the geometry actually changes
479 const bool isOverridden =
480 state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden;
481 const bool prevOverridden = state.hwc->stateOverridden;
482 if (isOverridden || prevOverridden || skipLayer || includeGeometry) {
483 writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z);
484 writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState,
485 skipLayer);
486 }
487
488 writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
489 writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState,
490 requestedCompositionType, skipLayer);
491
492 writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough,
493 skipLayer);
494
495 writeLutToHWC(hwcLayer.get(), *outputIndependentState);
496
497 if (requestedCompositionType == Composition::SOLID_COLOR) {
498 writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
499 }
500
501 editState().hwc->stateOverridden = isOverridden;
502 editState().hwc->layerSkipped = skipLayer;
503 }
504
writeOutputDependentGeometryStateToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,uint32_t z)505 void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer,
506 Composition requestedCompositionType,
507 uint32_t z) {
508 const auto& outputDependentState = getState();
509
510 Rect displayFrame = outputDependentState.displayFrame;
511 FloatRect sourceCrop = outputDependentState.sourceCrop;
512
513 if (outputDependentState.overrideInfo.buffer != nullptr) {
514 displayFrame = outputDependentState.overrideInfo.displayFrame;
515 sourceCrop =
516 FloatRect(0.f, 0.f,
517 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
518 ->getWidth()),
519 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
520 ->getHeight()));
521 }
522
523 ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top,
524 displayFrame.right, displayFrame.bottom);
525
526 if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) {
527 ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
528 getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right,
529 displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
530 }
531
532 if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) {
533 ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
534 "%s (%d)",
535 getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right,
536 sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
537 }
538
539 if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) {
540 ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z,
541 to_string(error).c_str(), static_cast<int32_t>(error));
542 }
543
544 // Solid-color layers and overridden buffers should always use an identity transform.
545 const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR &&
546 getState().overrideInfo.buffer == nullptr)
547 ? outputDependentState.bufferTransform
548 : static_cast<hal::Transform>(0);
549 if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
550 error != hal::Error::NONE) {
551 ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
552 toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
553 static_cast<int32_t>(error));
554 }
555 }
556
writeOutputIndependentGeometryStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)557 void OutputLayer::writeOutputIndependentGeometryStateToHWC(
558 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
559 bool skipLayer) {
560 // If there is a peekThroughLayer, then this layer has a hole in it. We need to use
561 // PREMULTIPLIED so it will peek through.
562 const auto& overrideInfo = getState().overrideInfo;
563 const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer
564 ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED
565 : outputIndependentState.blendMode;
566 if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) {
567 ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
568 toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
569 }
570
571 const float alpha = skipLayer
572 ? 0.0f
573 : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha);
574 ALOGV("Writing alpha %f", alpha);
575
576 if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) {
577 ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha,
578 to_string(error).c_str(), static_cast<int32_t>(error));
579 }
580
581 for (const auto& [name, entry] : outputIndependentState.metadata) {
582 if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
583 error != hal::Error::NONE) {
584 ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
585 name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
586 }
587 }
588 }
589
writeLutToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)590 void OutputLayer::writeLutToHWC(HWC2::Layer* hwcLayer,
591 const LayerFECompositionState& outputIndependentState) {
592 if (!outputIndependentState.luts) {
593 return;
594 }
595 auto& lutFileDescriptor = outputIndependentState.luts->getLutFileDescriptor();
596 auto lutOffsets = outputIndependentState.luts->offsets;
597 auto& lutProperties = outputIndependentState.luts->lutProperties;
598
599 std::vector<LutProperties> aidlProperties;
600 aidlProperties.reserve(lutProperties.size());
601 for (size_t i = 0; i < lutOffsets.size(); i++) {
602 LutProperties properties;
603 properties.dimension = static_cast<LutProperties::Dimension>(lutProperties[i].dimension);
604 properties.size = lutProperties[i].size;
605 properties.samplingKeys = {
606 static_cast<LutProperties::SamplingKey>(lutProperties[i].samplingKey)};
607 aidlProperties.emplace_back(properties);
608 }
609
610 Luts luts;
611 luts.pfd = ndk::ScopedFileDescriptor(dup(lutFileDescriptor.get()));
612 luts.offsets = lutOffsets;
613 luts.lutProperties = std::move(aidlProperties);
614
615 switch (auto error = hwcLayer->setLuts(luts)) {
616 case hal::Error::NONE:
617 break;
618 default:
619 ALOGE("[%s] Failed to set Luts: %s (%d)", getLayerFE().getDebugName(),
620 to_string(error).c_str(), static_cast<int32_t>(error));
621 }
622 }
623
writeOutputDependentPerFrameStateToHWC(HWC2::Layer * hwcLayer)624 void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
625 const auto& outputDependentState = getState();
626
627 // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
628 // state and should not change every frame.
629 Region visibleRegion = outputDependentState.overrideInfo.buffer
630 ? Region(outputDependentState.overrideInfo.visibleRegion)
631 : outputDependentState.outputSpaceVisibleRegion;
632 if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) {
633 ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
634 to_string(error).c_str(), static_cast<int32_t>(error));
635 visibleRegion.dump(LOG_TAG);
636 }
637
638 if (auto error =
639 hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint);
640 error != hal::Error::NONE) {
641 ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(),
642 to_string(error).c_str(), static_cast<int32_t>(error));
643 outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG);
644 }
645
646 const auto dataspace = outputDependentState.overrideInfo.buffer
647 ? outputDependentState.overrideInfo.dataspace
648 : outputDependentState.dataspace;
649
650 if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) {
651 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace,
652 to_string(error).c_str(), static_cast<int32_t>(error));
653 }
654
655 // Cached layers are not dimmed, which means that composer should attempt to dim.
656 // Note that if the dimming ratio is large, then this may cause the cached layer
657 // to kick back into GPU composition :(
658 // Also note that this assumes that there are no HDR layers that are able to be cached.
659 // Otherwise, this could cause HDR layers to be dimmed twice.
660 const auto dimmingRatio = outputDependentState.overrideInfo.buffer
661 ? (getOutput().getState().displayBrightnessNits != 0.f
662 ? std::clamp(getOutput().getState().sdrWhitePointNits /
663 getOutput().getState().displayBrightnessNits,
664 0.f, 1.f)
665 : 1.f)
666 : outputDependentState.dimmingRatio;
667
668 if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) {
669 ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(),
670 dimmingRatio, to_string(error).c_str(), static_cast<int32_t>(error));
671 }
672
673 if (com_android_graphics_libgui_flags_apply_picture_profiles() &&
674 outputDependentState.pictureProfileHandle) {
675 if (auto error =
676 hwcLayer->setPictureProfileHandle(outputDependentState.pictureProfileHandle);
677 error != hal::Error::NONE) {
678 ALOGE("[%s] Failed to set picture profile handle: %s (%d)", getLayerFE().getDebugName(),
679 toString(outputDependentState.pictureProfileHandle).c_str(),
680 static_cast<int32_t>(error));
681 }
682 // Reset the picture profile state, as it needs to be re-committed on each present cycle
683 // when Output decides that the limited picture-processing hardware should be used by this
684 // layer.
685 editState().pictureProfileHandle = PictureProfileHandle::NONE;
686 }
687 }
688
writeOutputIndependentPerFrameStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,Composition compositionType,bool skipLayer)689 void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
690 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
691 Composition compositionType, bool skipLayer) {
692 switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
693 case hal::Error::NONE:
694 break;
695 case hal::Error::UNSUPPORTED:
696 editState().forceClientComposition = true;
697 break;
698 default:
699 ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
700 to_string(error).c_str(), static_cast<int32_t>(error));
701 }
702
703 const Region& surfaceDamage = getState().overrideInfo.buffer
704 ? getState().overrideInfo.damageRegion
705 : (getState().hwc->stateOverridden ? Region::INVALID_REGION
706 : outputIndependentState.surfaceDamage);
707
708 if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) {
709 ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
710 to_string(error).c_str(), static_cast<int32_t>(error));
711 outputIndependentState.surfaceDamage.dump(LOG_TAG);
712 }
713
714 // Content-specific per-frame state
715 switch (compositionType) {
716 case Composition::SOLID_COLOR:
717 // For compatibility, should be written AFTER the composition type.
718 break;
719 case Composition::SIDEBAND:
720 writeSidebandStateToHWC(hwcLayer, outputIndependentState);
721 break;
722 case Composition::CURSOR:
723 case Composition::DEVICE:
724 case Composition::DISPLAY_DECORATION:
725 case Composition::REFRESH_RATE_INDICATOR:
726 writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer);
727 break;
728 case Composition::INVALID:
729 case Composition::CLIENT:
730 // Ignored
731 break;
732 }
733 }
734
writeSolidColorStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)735 void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
736 const LayerFECompositionState& outputIndependentState) {
737 aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r,
738 outputIndependentState.color.g,
739 outputIndependentState.color.b,
740 1.0f};
741
742 if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
743 ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
744 to_string(error).c_str(), static_cast<int32_t>(error));
745 }
746 }
747
writeSidebandStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)748 void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
749 const LayerFECompositionState& outputIndependentState) {
750 if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
751 error != hal::Error::NONE) {
752 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
753 outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
754 static_cast<int32_t>(error));
755 }
756 }
757
uncacheBuffers(const std::vector<uint64_t> & bufferIdsToUncache)758 void OutputLayer::uncacheBuffers(const std::vector<uint64_t>& bufferIdsToUncache) {
759 auto& state = editState();
760 // Skip doing this if there is no HWC interface
761 if (!state.hwc) {
762 return;
763 }
764
765 // Uncache the active buffer last so that it's the first buffer to be purged from the cache
766 // next time a buffer is sent to this layer.
767 bool uncacheActiveBuffer = false;
768
769 std::vector<uint32_t> slotsToClear;
770 for (uint64_t bufferId : bufferIdsToUncache) {
771 if (bufferId == state.hwc->activeBufferId) {
772 uncacheActiveBuffer = true;
773 } else {
774 uint32_t slot = state.hwc->hwcBufferCache.uncache(bufferId);
775 if (slot != UINT32_MAX) {
776 slotsToClear.push_back(slot);
777 }
778 }
779 }
780 if (uncacheActiveBuffer) {
781 slotsToClear.push_back(state.hwc->hwcBufferCache.uncache(state.hwc->activeBufferId));
782 }
783
784 hal::Error error =
785 state.hwc->hwcLayer->setBufferSlotsToClear(slotsToClear, state.hwc->activeBufferSlot);
786 if (error != hal::Error::NONE) {
787 ALOGE("[%s] Failed to clear buffer slots: %s (%d)", getLayerFE().getDebugName(),
788 to_string(error).c_str(), static_cast<int32_t>(error));
789 }
790 }
791
getPictureProfilePriority() const792 int64_t OutputLayer::getPictureProfilePriority() const {
793 const auto* layerState = getLayerFE().getCompositionState();
794 return layerState ? layerState->pictureProfilePriority : 0;
795 }
796
getPictureProfileHandle() const797 const PictureProfileHandle& OutputLayer::getPictureProfileHandle() const {
798 const auto* layerState = getLayerFE().getCompositionState();
799 return layerState ? layerState->pictureProfileHandle : PictureProfileHandle::NONE;
800 }
801
writeBufferStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)802 void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
803 const LayerFECompositionState& outputIndependentState,
804 bool skipLayer) {
805 if (skipLayer && outputIndependentState.buffer == nullptr) {
806 return;
807 }
808 auto supportedPerFrameMetadata =
809 getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
810 if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
811 outputIndependentState.hdrMetadata);
812 error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
813 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
814 to_string(error).c_str(), static_cast<int32_t>(error));
815 }
816
817 HwcSlotAndBuffer hwcSlotAndBuffer;
818 sp<Fence> hwcFence;
819 {
820 // Editing the state only because we update the HWC buffer cache and active buffer.
821 auto& state = editState();
822 // Override buffers use a special cache slot so that they don't evict client buffers.
823 if (state.overrideInfo.buffer != nullptr && !skipLayer) {
824 hwcSlotAndBuffer = state.hwc->hwcBufferCache.getOverrideHwcSlotAndBuffer(
825 state.overrideInfo.buffer->getBuffer());
826 hwcFence = state.overrideInfo.acquireFence;
827 // Keep track of the active buffer ID so when it's discarded we uncache it last so its
828 // slot will be used first, allowing the memory to be freed as soon as possible.
829 state.hwc->activeBufferId = state.overrideInfo.buffer->getBuffer()->getId();
830 } else {
831 hwcSlotAndBuffer =
832 state.hwc->hwcBufferCache.getHwcSlotAndBuffer(outputIndependentState.buffer);
833 hwcFence = outputIndependentState.acquireFence;
834 // Keep track of the active buffer ID so when it's discarded we uncache it last so its
835 // slot will be used first, allowing the memory to be freed as soon as possible.
836 state.hwc->activeBufferId = outputIndependentState.buffer->getId();
837 }
838 // Keep track of the active buffer slot, so we can restore it after clearing other buffer
839 // slots.
840 state.hwc->activeBufferSlot = hwcSlotAndBuffer.slot;
841 }
842
843 if (auto error = hwcLayer->setBuffer(hwcSlotAndBuffer.slot, hwcSlotAndBuffer.buffer, hwcFence);
844 error != hal::Error::NONE) {
845 ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(),
846 hwcSlotAndBuffer.buffer->handle, to_string(error).c_str(),
847 static_cast<int32_t>(error));
848 }
849 }
850
writeCompositionTypeToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,bool isPeekingThrough,bool skipLayer)851 void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
852 Composition requestedCompositionType,
853 bool isPeekingThrough, bool skipLayer) {
854 auto& outputDependentState = editState();
855
856 if (isClientCompositionForced(isPeekingThrough)) {
857 // If we are forcing client composition, we need to tell the HWC
858 requestedCompositionType = Composition::CLIENT;
859 }
860
861 // Set the requested composition type with the HWC whenever it changes
862 // We also resend the composition type when this layer was previously skipped, to ensure that
863 // the composition type is up-to-date.
864 if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType ||
865 (outputDependentState.hwc->layerSkipped && !skipLayer)) {
866 outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
867
868 if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
869 error != hal::Error::NONE) {
870 ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
871 to_string(requestedCompositionType).c_str(), to_string(error).c_str(),
872 static_cast<int32_t>(error));
873 }
874 }
875 }
876
writeCursorPositionToHWC() const877 void OutputLayer::writeCursorPositionToHWC() const {
878 // Skip doing this if there is no HWC interface
879 auto hwcLayer = getHwcLayer();
880 if (!hwcLayer) {
881 return;
882 }
883
884 const auto* layerState = getLayerFE().getCompositionState();
885 if (!layerState) {
886 return;
887 }
888
889 const auto& outputState = getOutput().getState();
890
891 Rect frame = layerState->cursorFrame;
892 frame.intersect(outputState.layerStackSpace.getContent(), &frame);
893 Rect position = outputState.transform.transform(frame);
894
895 if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
896 error != hal::Error::NONE) {
897 ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
898 getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
899 static_cast<int32_t>(error));
900 }
901 }
902
getHwcLayer() const903 HWC2::Layer* OutputLayer::getHwcLayer() const {
904 const auto& state = getState();
905 return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
906 }
907
requiresClientComposition() const908 bool OutputLayer::requiresClientComposition() const {
909 const auto& state = getState();
910 return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT;
911 }
912
isHardwareCursor() const913 bool OutputLayer::isHardwareCursor() const {
914 const auto& state = getState();
915 return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR;
916 }
917
detectDisallowedCompositionTypeChange(Composition from,Composition to) const918 void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const {
919 bool result = false;
920 switch (from) {
921 case Composition::INVALID:
922 case Composition::CLIENT:
923 result = false;
924 break;
925
926 case Composition::DEVICE:
927 case Composition::SOLID_COLOR:
928 result = (to == Composition::CLIENT);
929 break;
930
931 case Composition::CURSOR:
932 case Composition::SIDEBAND:
933 case Composition::DISPLAY_DECORATION:
934 case Composition::REFRESH_RATE_INDICATOR:
935 result = (to == Composition::CLIENT || to == Composition::DEVICE);
936 break;
937 }
938
939 if (!result) {
940 ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
941 getLayerFE().getDebugName(), to_string(from).c_str(), static_cast<int>(from),
942 to_string(to).c_str(), static_cast<int>(to));
943 }
944 }
945
isClientCompositionForced(bool isPeekingThrough) const946 bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const {
947 return getState().forceClientComposition ||
948 (!isPeekingThrough && getLayerFE().hasRoundedCorners());
949 }
950
applyDeviceCompositionTypeChange(Composition compositionType)951 void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) {
952 auto& state = editState();
953 LOG_FATAL_IF(!state.hwc);
954 auto& hwcState = *state.hwc;
955
956 // Only detected disallowed changes if this was not a skip layer, because the
957 // validated composition type may be arbitrary (usually DEVICE, to reflect that there were
958 // fewer GPU layers)
959 if (!hwcState.layerSkipped) {
960 detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
961 }
962
963 hwcState.hwcCompositionType = compositionType;
964 }
965
prepareForDeviceLayerRequests()966 void OutputLayer::prepareForDeviceLayerRequests() {
967 auto& state = editState();
968 state.clearClientTarget = false;
969 }
970
applyDeviceLayerRequest(hal::LayerRequest request)971 void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
972 auto& state = editState();
973 switch (request) {
974 case hal::LayerRequest::CLEAR_CLIENT_TARGET:
975 state.clearClientTarget = true;
976 break;
977
978 default:
979 ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
980 toString(request).c_str(), static_cast<int>(request));
981 break;
982 }
983 }
984
applyDeviceLayerLut(ndk::ScopedFileDescriptor lutFileDescriptor,std::vector<std::pair<int,LutProperties>> lutOffsetsAndProperties)985 void OutputLayer::applyDeviceLayerLut(
986 ndk::ScopedFileDescriptor lutFileDescriptor,
987 std::vector<std::pair<int, LutProperties>> lutOffsetsAndProperties) {
988 auto& state = editState();
989 LOG_FATAL_IF(!state.hwc);
990 auto& hwcState = *state.hwc;
991 std::vector<int32_t> offsets;
992 std::vector<int32_t> dimensions;
993 std::vector<int32_t> sizes;
994 std::vector<int32_t> samplingKeys;
995 for (const auto& [offset, properties] : lutOffsetsAndProperties) {
996 // The Lut(s) that comes back through CommandResultPayload should be
997 // only one sampling key.
998 if (properties.samplingKeys.size() == 1) {
999 offsets.emplace_back(offset);
1000 dimensions.emplace_back(static_cast<int32_t>(properties.dimension));
1001 sizes.emplace_back(static_cast<int32_t>(properties.size));
1002 samplingKeys.emplace_back(static_cast<int32_t>(properties.samplingKeys[0]));
1003 }
1004 }
1005 hwcState.luts = std::make_shared<gui::DisplayLuts>(base::unique_fd(lutFileDescriptor.release()),
1006 std::move(offsets), std::move(dimensions),
1007 std::move(sizes), std::move(samplingKeys));
1008 }
1009
needsFiltering() const1010 bool OutputLayer::needsFiltering() const {
1011 const auto& state = getState();
1012 const auto& sourceCrop = state.sourceCrop;
1013 auto displayFrameWidth = static_cast<float>(state.displayFrame.getWidth());
1014 auto displayFrameHeight = static_cast<float>(state.displayFrame.getHeight());
1015
1016 if (state.bufferTransform & HAL_TRANSFORM_ROT_90) {
1017 std::swap(displayFrameWidth, displayFrameHeight);
1018 }
1019
1020 return sourceCrop.getHeight() != displayFrameHeight ||
1021 sourceCrop.getWidth() != displayFrameWidth;
1022 }
1023
getOverrideCompositionSettings() const1024 std::optional<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionSettings() const {
1025 if (getState().overrideInfo.buffer == nullptr) {
1026 return {};
1027 }
1028
1029 // Compute the geometry boundaries in layer stack space: we need to transform from the
1030 // framebuffer space of the override buffer to layer space.
1031 const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace;
1032 const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace);
1033 const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame);
1034
1035 LayerFE::LayerSettings settings;
1036 settings.geometry = renderengine::Geometry{
1037 .boundaries = boundaries.toFloatRect(),
1038 };
1039 settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId();
1040 settings.source = renderengine::PixelSource{
1041 .buffer = renderengine::Buffer{
1042 .buffer = getState().overrideInfo.buffer,
1043 .fence = getState().overrideInfo.acquireFence,
1044 // If the transform from layer space to display space contains a rotation, we
1045 // need to undo the rotation in the texture transform
1046 .textureTransform =
1047 ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(),
1048 }};
1049 settings.sourceDataspace = getState().overrideInfo.dataspace;
1050 settings.alpha = 1.0f;
1051 settings.whitePointNits = getOutput().getState().sdrWhitePointNits;
1052
1053 return settings;
1054 }
1055
dump(std::string & out) const1056 void OutputLayer::dump(std::string& out) const {
1057 using android::base::StringAppendF;
1058
1059 StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
1060 dumpState(out);
1061 }
1062
1063 } // namespace impl
1064 } // namespace android::compositionengine
1065