1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/geometry/GrAAConvexTessellator.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkPath.h"
12 #include "include/core/SkPoint.h"
13 #include "include/core/SkRect.h"
14 #include "include/private/base/SkAssert.h"
15 #include "include/private/base/SkFloatingPoint.h"
16 #include "include/private/base/SkTPin.h"
17 #include "src/core/SkPathPriv.h"
18 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
19
20 #include <algorithm>
21
22 // Next steps:
23 // add an interactive sample app slide
24 // add debug check that all points are suitably far apart
25 // test more degenerate cases
26
27 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
28 static constexpr SkScalar kClose = (SK_Scalar1 / 16);
29 static constexpr SkScalar kCloseSqd = kClose * kClose;
30
31 // tesselation tolerance values, in device space pixels
32 static constexpr SkScalar kQuadTolerance = 0.2f;
33 static constexpr SkScalar kCubicTolerance = 0.2f;
34 static constexpr SkScalar kQuadToleranceSqd = kQuadTolerance * kQuadTolerance;
35 static constexpr SkScalar kCubicToleranceSqd = kCubicTolerance * kCubicTolerance;
36 static constexpr SkScalar kConicTolerance = 0.25f;
37
38 // dot product below which we use a round cap between curve segments
39 static constexpr SkScalar kRoundCapThreshold = 0.8f;
40
41 // dot product above which we consider two adjacent curves to be part of the "same" curve
42 static constexpr SkScalar kCurveConnectionThreshold = 0.8f;
43
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)44 static bool intersect(const SkPoint& p0, const SkPoint& n0,
45 const SkPoint& p1, const SkPoint& n1,
46 SkScalar* t) {
47 const SkPoint v = p1 - p0;
48 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
49 if (SkScalarNearlyZero(perpDot)) {
50 return false;
51 }
52 *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
53 return SkIsFinite(*t);
54 }
55
56 // This is a special case version of intersect where we have the vector
57 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp,SkScalar * t)58 static bool perp_intersect(const SkPoint& p0, const SkPoint& n0,
59 const SkPoint& p1, const SkPoint& perp,
60 SkScalar* t) {
61 const SkPoint v = p1 - p0;
62 SkScalar perpDot = n0.dot(perp);
63 if (SkScalarNearlyZero(perpDot)) {
64 return false;
65 }
66 *t = v.dot(perp) / perpDot;
67 return SkIsFinite(*t);
68 }
69
duplicate_pt(const SkPoint & p0,const SkPoint & p1)70 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
71 SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
72 return distSq < kCloseSqd;
73 }
74
points_are_colinear_and_b_is_middle(const SkPoint & a,const SkPoint & b,const SkPoint & c,float * accumError)75 static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
76 const SkPoint& c, float* accumError) {
77 // First check distance from b to the infinite line through a, c
78 SkVector aToC = c - a;
79 SkVector n = {aToC.fY, -aToC.fX};
80 n.normalize();
81
82 SkScalar distBToLineAC = SkScalarAbs(n.dot(b) - n.dot(a));
83 if (*accumError + distBToLineAC >= kClose || aToC.dot(b - a) <= 0.f || aToC.dot(c - b) <= 0.f) {
84 // Too far from the line or not between the line segment from a to c
85 return false;
86 } else {
87 // Accumulate the distance from b to |ac| that goes "away" when this near-colinear point
88 // is removed to simplify the path.
89 *accumError += distBToLineAC;
90 return true;
91 }
92 }
93
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)94 int GrAAConvexTessellator::addPt(const SkPoint& pt,
95 SkScalar depth,
96 SkScalar coverage,
97 bool movable,
98 CurveState curve) {
99 SkASSERT(pt.isFinite());
100 this->validate();
101
102 int index = fPts.size();
103 *fPts.append() = pt;
104 *fCoverages.append() = coverage;
105 *fMovable.append() = movable;
106 *fCurveState.append() = curve;
107
108 this->validate();
109 return index;
110 }
111
popLastPt()112 void GrAAConvexTessellator::popLastPt() {
113 this->validate();
114
115 fPts.pop_back();
116 fCoverages.pop_back();
117 fMovable.pop_back();
118 fCurveState.pop_back();
119
120 this->validate();
121 }
122
popFirstPtShuffle()123 void GrAAConvexTessellator::popFirstPtShuffle() {
124 this->validate();
125
126 fPts.removeShuffle(0);
127 fCoverages.removeShuffle(0);
128 fMovable.removeShuffle(0);
129 fCurveState.removeShuffle(0);
130
131 this->validate();
132 }
133
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)134 void GrAAConvexTessellator::updatePt(int index,
135 const SkPoint& pt,
136 SkScalar depth,
137 SkScalar coverage) {
138 this->validate();
139 SkASSERT(fMovable[index]);
140
141 fPts[index] = pt;
142 fCoverages[index] = coverage;
143 }
144
addTri(int i0,int i1,int i2)145 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
146 if (i0 == i1 || i1 == i2 || i2 == i0) {
147 return;
148 }
149
150 *fIndices.append() = i0;
151 *fIndices.append() = i1;
152 *fIndices.append() = i2;
153 }
154
rewind()155 void GrAAConvexTessellator::rewind() {
156 fPts.clear();
157 fCoverages.clear();
158 fMovable.clear();
159 fIndices.clear();
160 fNorms.clear();
161 fCurveState.clear();
162 fInitialRing.rewind();
163 fCandidateVerts.rewind();
164 #if GR_AA_CONVEX_TESSELLATOR_VIZ
165 fRings.rewind(); // TODO: leak in this case!
166 #else
167 fRings[0].rewind();
168 fRings[1].rewind();
169 #endif
170 }
171
computeNormals()172 void GrAAConvexTessellator::computeNormals() {
173 auto normalToVector = [this](SkVector v) {
174 SkVector n = SkPointPriv::MakeOrthog(v, fSide);
175 SkAssertResult(n.normalize());
176 SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
177 return n;
178 };
179
180 // Check the cross product of the final trio
181 fNorms.append(fPts.size());
182 fNorms[0] = fPts[1] - fPts[0];
183 fNorms.back() = fPts[0] - fPts.back();
184 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.back());
185 fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
186 fNorms[0] = normalToVector(fNorms[0]);
187 for (int cur = 1; cur < fNorms.size() - 1; ++cur) {
188 fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
189 }
190 fNorms.back() = normalToVector(fNorms.back());
191 }
192
computeBisectors()193 void GrAAConvexTessellator::computeBisectors() {
194 fBisectors.resize(fNorms.size());
195
196 int prev = fBisectors.size() - 1;
197 for (int cur = 0; cur < fBisectors.size(); prev = cur, ++cur) {
198 fBisectors[cur] = fNorms[cur] + fNorms[prev];
199 if (!fBisectors[cur].normalize()) {
200 fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
201 SkPointPriv::MakeOrthog(fNorms[prev], fSide);
202 SkAssertResult(fBisectors[cur].normalize());
203 } else {
204 fBisectors[cur].negate(); // make the bisector face in
205 }
206 if (fCurveState[prev] == kIndeterminate_CurveState) {
207 if (fCurveState[cur] == kSharp_CurveState) {
208 fCurveState[prev] = kSharp_CurveState;
209 } else {
210 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
211 fCurveState[prev] = kCurve_CurveState;
212 fCurveState[cur] = kCurve_CurveState;
213 } else {
214 fCurveState[prev] = kSharp_CurveState;
215 fCurveState[cur] = kSharp_CurveState;
216 }
217 }
218 }
219
220 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
221 }
222 }
223
224 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
225 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)226 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
227 SkScalar initialCoverage, SkScalar targetDepth,
228 SkScalar targetCoverage, Ring** finalRing) {
229 static const int kMaxNumRings = 8;
230
231 if (previousRing.numPts() < 3) {
232 return false;
233 }
234 Ring* currentRing = &previousRing;
235 int i;
236 for (i = 0; i < kMaxNumRings; ++i) {
237 Ring* nextRing = this->getNextRing(currentRing);
238 SkASSERT(nextRing != currentRing);
239
240 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
241 targetDepth, targetCoverage, i == 0);
242 currentRing = nextRing;
243 if (done) {
244 break;
245 }
246 currentRing->init(*this);
247 }
248
249 if (kMaxNumRings == i) {
250 // Bail if we've exceeded the amount of time we want to throw at this.
251 this->terminate(*currentRing);
252 return false;
253 }
254 bool done = currentRing->numPts() >= 3;
255 if (done) {
256 currentRing->init(*this);
257 }
258 *finalRing = currentRing;
259 return done;
260 }
261
262 // The general idea here is to, conceptually, start with the original polygon and slide
263 // the vertices along the bisectors until the first intersection. At that
264 // point two of the edges collapse and the process repeats on the new polygon.
265 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
266 // controls the iteration. The CandidateVerts holds the formative points for the
267 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)268 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
269 if (!this->extractFromPath(m, path)) {
270 return false;
271 }
272
273 SkScalar coverage = 1.0f;
274 SkScalar scaleFactor = 0.0f;
275
276 if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
277 SkASSERT(m.isSimilarity());
278 scaleFactor = m.getMaxScale(); // x and y scale are the same
279 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
280 Ring outerStrokeAndAARing;
281 this->createOuterRing(fInitialRing,
282 effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
283 &outerStrokeAndAARing);
284
285 // discard all the triangles added between the originating ring and the new outer ring
286 fIndices.clear();
287
288 outerStrokeAndAARing.init(*this);
289
290 outerStrokeAndAARing.makeOriginalRing();
291
292 // Add the outer stroke ring's normals to the originating ring's normals
293 // so it can also act as an originating ring
294 fNorms.resize(fNorms.size() + outerStrokeAndAARing.numPts());
295 for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
296 SkASSERT(outerStrokeAndAARing.index(i) < fNorms.size());
297 fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
298 }
299
300 // the bisectors are only needed for the computation of the outer ring
301 fBisectors.clear();
302
303 Ring* insetAARing;
304 this->createInsetRings(outerStrokeAndAARing,
305 0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
306 &insetAARing);
307
308 SkDEBUGCODE(this->validate();)
309 return true;
310 }
311
312 if (SkStrokeRec::kStroke_Style == fStyle) {
313 SkASSERT(fStrokeWidth >= 0.0f);
314 SkASSERT(m.isSimilarity());
315 scaleFactor = m.getMaxScale(); // x and y scale are the same
316 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
317 Ring outerStrokeRing;
318 this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
319 coverage, &outerStrokeRing);
320 outerStrokeRing.init(*this);
321 Ring outerAARing;
322 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
323 } else {
324 Ring outerAARing;
325 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
326 }
327
328 // the bisectors are only needed for the computation of the outer ring
329 fBisectors.clear();
330 if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
331 SkASSERT(fStrokeWidth >= 0.0f);
332 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
333 Ring* insetStrokeRing;
334 SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
335 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
336 &insetStrokeRing)) {
337 Ring* insetAARing;
338 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
339 kAntialiasingRadius * 2, 0.0f, &insetAARing);
340 }
341 } else {
342 Ring* insetAARing;
343 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
344 }
345
346 SkDEBUGCODE(this->validate();)
347 return true;
348 }
349
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const350 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
351 SkASSERT(edgeIdx < fNorms.size());
352
353 SkPoint v = p - fPts[edgeIdx];
354 SkScalar depth = -fNorms[edgeIdx].dot(v);
355 return depth;
356 }
357
358 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
359 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const360 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
361 const SkVector& bisector,
362 int edgeIdx,
363 SkScalar desiredDepth,
364 SkPoint* result) const {
365 const SkPoint& norm = fNorms[edgeIdx];
366
367 // First find the point where the edge and the bisector intersect
368 SkPoint newP;
369
370 SkScalar t;
371 if (!perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm, &t)) {
372 return false;
373 }
374 if (SkScalarNearlyEqual(t, 0.0f)) {
375 // the start point was one of the original ring points
376 SkASSERT(startIdx < fPts.size());
377 newP = fPts[startIdx];
378 } else if (t < 0.0f) {
379 newP = bisector;
380 newP.scale(t);
381 newP += fPts[startIdx];
382 } else {
383 return false;
384 }
385
386 // Then offset along the bisector from that point the correct distance
387 SkScalar dot = bisector.dot(norm);
388 t = -desiredDepth / dot;
389 *result = bisector;
390 result->scale(t);
391 *result += newP;
392
393 return true;
394 }
395
extractFromPath(const SkMatrix & m,const SkPath & path)396 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
397 SkASSERT(path.isConvex());
398
399 SkRect bounds = path.getBounds();
400 m.mapRect(&bounds);
401 if (!bounds.isFinite()) {
402 // We could do something smarter here like clip the path based on the bounds of the dst.
403 // We'd have to be careful about strokes to ensure we don't draw something wrong.
404 return false;
405 }
406
407 // Outer ring: 3*numPts
408 // Middle ring: numPts
409 // Presumptive inner ring: numPts
410 this->reservePts(5*path.countPoints());
411 // Outer ring: 12*numPts
412 // Middle ring: 0
413 // Presumptive inner ring: 6*numPts + 6
414 fIndices.reserve(18*path.countPoints() + 6);
415
416 // Reset the accumulated error for all the future lineTo() calls when iterating over the path.
417 fAccumLinearError = 0.f;
418 // TODO: is there a faster way to extract the points from the path? Perhaps
419 // get all the points via a new entry point, transform them all in bulk
420 // and then walk them to find duplicates?
421 SkPathEdgeIter iter(path);
422 while (auto e = iter.next()) {
423 switch (e.fEdge) {
424 case SkPathEdgeIter::Edge::kLine:
425 if (!SkPathPriv::AllPointsEq(e.fPts, 2)) {
426 this->lineTo(m, e.fPts[1], kSharp_CurveState);
427 }
428 break;
429 case SkPathEdgeIter::Edge::kQuad:
430 if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
431 this->quadTo(m, e.fPts);
432 }
433 break;
434 case SkPathEdgeIter::Edge::kCubic:
435 if (!SkPathPriv::AllPointsEq(e.fPts, 4)) {
436 this->cubicTo(m, e.fPts);
437 }
438 break;
439 case SkPathEdgeIter::Edge::kConic:
440 if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
441 this->conicTo(m, e.fPts, iter.conicWeight());
442 }
443 break;
444 }
445 }
446
447 if (this->numPts() < 2) {
448 return false;
449 }
450
451 // check if last point is a duplicate of the first point. If so, remove it.
452 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
453 this->popLastPt();
454 }
455
456 // Remove any lingering colinear points where the path wraps around
457 fAccumLinearError = 0.f;
458 bool noRemovalsToDo = false;
459 while (!noRemovalsToDo && this->numPts() >= 3) {
460 if (points_are_colinear_and_b_is_middle(fPts[fPts.size() - 2], fPts.back(), fPts[0],
461 &fAccumLinearError)) {
462 this->popLastPt();
463 } else if (points_are_colinear_and_b_is_middle(fPts.back(), fPts[0], fPts[1],
464 &fAccumLinearError)) {
465 this->popFirstPtShuffle();
466 } else {
467 noRemovalsToDo = true;
468 }
469 }
470
471 // Compute the normals and bisectors.
472 SkASSERT(fNorms.empty());
473 if (this->numPts() >= 3) {
474 this->computeNormals();
475 this->computeBisectors();
476 } else if (this->numPts() == 2) {
477 // We've got two points, so we're degenerate.
478 if (fStyle == SkStrokeRec::kFill_Style) {
479 // it's a fill, so we don't need to worry about degenerate paths
480 return false;
481 }
482 // For stroking, we still need to process the degenerate path, so fix it up
483 fSide = SkPointPriv::kLeft_Side;
484
485 fNorms.append(2);
486 fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
487 fNorms[0].normalize();
488 fNorms[1] = -fNorms[0];
489 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
490 // we won't actually use the bisectors, so just push zeroes
491 fBisectors.push_back(SkPoint::Make(0.0, 0.0));
492 fBisectors.push_back(SkPoint::Make(0.0, 0.0));
493 } else {
494 return false;
495 }
496
497 fCandidateVerts.setReserve(this->numPts());
498 fInitialRing.setReserve(this->numPts());
499 for (int i = 0; i < this->numPts(); ++i) {
500 fInitialRing.addIdx(i, i);
501 }
502 fInitialRing.init(fNorms, fBisectors);
503
504 this->validate();
505 return true;
506 }
507
getNextRing(Ring * lastRing)508 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
509 #if GR_AA_CONVEX_TESSELLATOR_VIZ
510 Ring* ring = *fRings.push() = new Ring;
511 ring->setReserve(fInitialRing.numPts());
512 ring->rewind();
513 return ring;
514 #else
515 // Flip flop back and forth between fRings[0] & fRings[1]
516 int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
517 fRings[nextRing].setReserve(fInitialRing.numPts());
518 fRings[nextRing].rewind();
519 return &fRings[nextRing];
520 #endif
521 }
522
fanRing(const Ring & ring)523 void GrAAConvexTessellator::fanRing(const Ring& ring) {
524 // fan out from point 0
525 int startIdx = ring.index(0);
526 for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
527 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
528 }
529 }
530
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)531 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
532 SkScalar coverage, Ring* nextRing) {
533 const int numPts = previousRing.numPts();
534 if (numPts == 0) {
535 return;
536 }
537
538 int prev = numPts - 1;
539 int lastPerpIdx = -1, firstPerpIdx = -1;
540
541 const SkScalar outsetSq = outset * outset;
542 SkScalar miterLimitSq = outset * fMiterLimit;
543 miterLimitSq = miterLimitSq * miterLimitSq;
544 for (int cur = 0; cur < numPts; ++cur) {
545 int originalIdx = previousRing.index(cur);
546 // For each vertex of the original polygon we add at least two points to the
547 // outset polygon - one extending perpendicular to each impinging edge. Connecting these
548 // two points yields a bevel join. We need one additional point for a mitered join, and
549 // a round join requires one or more points depending upon curvature.
550
551 // The perpendicular point for the last edge
552 SkPoint normal1 = previousRing.norm(prev);
553 SkPoint perp1 = normal1;
554 perp1.scale(outset);
555 perp1 += this->point(originalIdx);
556
557 // The perpendicular point for the next edge.
558 SkPoint normal2 = previousRing.norm(cur);
559 SkPoint perp2 = normal2;
560 perp2.scale(outset);
561 perp2 += fPts[originalIdx];
562
563 CurveState curve = fCurveState[originalIdx];
564
565 // We know it isn't a duplicate of the prior point (since it and this
566 // one are just perpendicular offsets from the non-merged polygon points)
567 int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
568 nextRing->addIdx(perp1Idx, originalIdx);
569
570 int perp2Idx;
571 // For very shallow angles all the corner points could fuse.
572 if (duplicate_pt(perp2, this->point(perp1Idx))) {
573 perp2Idx = perp1Idx;
574 } else {
575 perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
576 }
577
578 if (perp2Idx != perp1Idx) {
579 if (curve == kCurve_CurveState) {
580 // bevel or round depending upon curvature
581 SkScalar dotProd = normal1.dot(normal2);
582 if (dotProd < kRoundCapThreshold) {
583 // Currently we "round" by creating a single extra point, which produces
584 // good results for common cases. For thick strokes with high curvature, we will
585 // need to add more points; for the time being we simply fall back to software
586 // rendering for thick strokes.
587 SkPoint miter = previousRing.bisector(cur);
588 miter.setLength(-outset);
589 miter += fPts[originalIdx];
590
591 // For very shallow angles all the corner points could fuse
592 if (!duplicate_pt(miter, this->point(perp1Idx))) {
593 int miterIdx;
594 miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
595 nextRing->addIdx(miterIdx, originalIdx);
596 // The two triangles for the corner
597 this->addTri(originalIdx, perp1Idx, miterIdx);
598 this->addTri(originalIdx, miterIdx, perp2Idx);
599 }
600 } else {
601 this->addTri(originalIdx, perp1Idx, perp2Idx);
602 }
603 } else {
604 switch (fJoin) {
605 case SkPaint::Join::kMiter_Join: {
606 // The bisector outset point
607 SkPoint miter = previousRing.bisector(cur);
608 SkScalar dotProd = normal1.dot(normal2);
609 // The max is because this could go slightly negative if precision causes
610 // us to become slightly concave.
611 SkScalar sinHalfAngleSq = std::max(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
612 SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
613 if (lengthSq > miterLimitSq) {
614 // just bevel it
615 this->addTri(originalIdx, perp1Idx, perp2Idx);
616 break;
617 }
618 miter.setLength(-SkScalarSqrt(lengthSq));
619 miter += fPts[originalIdx];
620
621 // For very shallow angles all the corner points could fuse
622 if (!duplicate_pt(miter, this->point(perp1Idx))) {
623 int miterIdx;
624 miterIdx = this->addPt(miter, -outset, coverage, false,
625 kSharp_CurveState);
626 nextRing->addIdx(miterIdx, originalIdx);
627 // The two triangles for the corner
628 this->addTri(originalIdx, perp1Idx, miterIdx);
629 this->addTri(originalIdx, miterIdx, perp2Idx);
630 } else {
631 // ignore the miter point as it's so close to perp1/perp2 and simply
632 // bevel.
633 this->addTri(originalIdx, perp1Idx, perp2Idx);
634 }
635 break;
636 }
637 case SkPaint::Join::kBevel_Join:
638 this->addTri(originalIdx, perp1Idx, perp2Idx);
639 break;
640 default:
641 // kRound_Join is unsupported for now. AALinearizingConvexPathRenderer is
642 // only willing to draw mitered or beveled, so we should never get here.
643 SkASSERT(false);
644 }
645 }
646
647 nextRing->addIdx(perp2Idx, originalIdx);
648 }
649
650 if (0 == cur) {
651 // Store the index of the first perpendicular point to finish up
652 firstPerpIdx = perp1Idx;
653 SkASSERT(-1 == lastPerpIdx);
654 } else {
655 // The triangles for the previous edge
656 int prevIdx = previousRing.index(prev);
657 this->addTri(prevIdx, perp1Idx, originalIdx);
658 this->addTri(prevIdx, lastPerpIdx, perp1Idx);
659 }
660
661 // Track the last perpendicular outset point so we can construct the
662 // trailing edge triangles.
663 lastPerpIdx = perp2Idx;
664 prev = cur;
665 }
666
667 // pick up the final edge rect
668 int lastIdx = previousRing.index(numPts - 1);
669 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
670 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
671
672 this->validate();
673 }
674
675 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
676 // and fan it.
terminate(const Ring & ring)677 void GrAAConvexTessellator::terminate(const Ring& ring) {
678 if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
679 this->fanRing(ring);
680 }
681 }
682
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)683 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
684 SkScalar targetDepth, SkScalar targetCoverage) {
685 if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
686 return targetCoverage;
687 }
688 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
689 (targetCoverage - initialCoverage) + initialCoverage;
690 return SkTPin(result, 0.0f, 1.0f);
691 }
692
693 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)694 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
695 SkScalar initialDepth, SkScalar initialCoverage,
696 SkScalar targetDepth, SkScalar targetCoverage,
697 bool forceNew) {
698 bool done = false;
699
700 fCandidateVerts.rewind();
701
702 // Loop through all the points in the ring and find the intersection with the smallest depth
703 SkScalar minDist = SK_ScalarMax, minT = 0.0f;
704 int minEdgeIdx = -1;
705
706 for (int cur = 0; cur < lastRing.numPts(); ++cur) {
707 int next = (cur + 1) % lastRing.numPts();
708
709 SkScalar t;
710 bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
711 this->point(lastRing.index(next)), lastRing.bisector(next),
712 &t);
713 // The bisectors may be parallel (!result) or the previous ring may have become slightly
714 // concave due to accumulated error (t <= 0).
715 if (!result || t <= 0) {
716 continue;
717 }
718 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
719
720 if (minDist > dist) {
721 minDist = dist;
722 minT = t;
723 minEdgeIdx = cur;
724 }
725 }
726
727 if (minEdgeIdx == -1) {
728 return false;
729 }
730 SkPoint newPt = lastRing.bisector(minEdgeIdx);
731 newPt.scale(minT);
732 newPt += this->point(lastRing.index(minEdgeIdx));
733
734 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
735 if (depth >= targetDepth) {
736 // None of the bisectors intersect before reaching the desired depth.
737 // Just step them all to the desired depth
738 depth = targetDepth;
739 done = true;
740 }
741
742 // 'dst' stores where each point in the last ring maps to/transforms into
743 // in the next ring.
744 SkTDArray<int> dst;
745 dst.resize(lastRing.numPts());
746
747 // Create the first point (who compares with no one)
748 if (!this->computePtAlongBisector(lastRing.index(0),
749 lastRing.bisector(0),
750 lastRing.origEdgeID(0),
751 depth, &newPt)) {
752 this->terminate(lastRing);
753 return true;
754 }
755 dst[0] = fCandidateVerts.addNewPt(newPt,
756 lastRing.index(0), lastRing.origEdgeID(0),
757 !this->movable(lastRing.index(0)));
758
759 // Handle the middle points (who only compare with the prior point)
760 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
761 if (!this->computePtAlongBisector(lastRing.index(cur),
762 lastRing.bisector(cur),
763 lastRing.origEdgeID(cur),
764 depth, &newPt)) {
765 this->terminate(lastRing);
766 return true;
767 }
768 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
769 dst[cur] = fCandidateVerts.addNewPt(newPt,
770 lastRing.index(cur), lastRing.origEdgeID(cur),
771 !this->movable(lastRing.index(cur)));
772 } else {
773 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
774 }
775 }
776
777 // Check on the last point (handling the wrap around)
778 int cur = lastRing.numPts()-1;
779 if (!this->computePtAlongBisector(lastRing.index(cur),
780 lastRing.bisector(cur),
781 lastRing.origEdgeID(cur),
782 depth, &newPt)) {
783 this->terminate(lastRing);
784 return true;
785 }
786 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
787 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
788
789 if (!dupPrev && !dupNext) {
790 dst[cur] = fCandidateVerts.addNewPt(newPt,
791 lastRing.index(cur), lastRing.origEdgeID(cur),
792 !this->movable(lastRing.index(cur)));
793 } else if (dupPrev && !dupNext) {
794 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
795 } else if (!dupPrev && dupNext) {
796 dst[cur] = fCandidateVerts.fuseWithNext();
797 } else {
798 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
799
800 if (!dupPrevVsNext) {
801 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
802 } else {
803 const int fused = fCandidateVerts.fuseWithBoth();
804 dst[cur] = fused;
805 const int targetIdx = dst[cur - 1];
806 for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
807 dst[i] = fused;
808 }
809 }
810 }
811
812 // Fold the new ring's points into the global pool
813 for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
814 int newIdx;
815 if (fCandidateVerts.needsToBeNew(i) || forceNew) {
816 // if the originating index is still valid then this point wasn't
817 // fused (and is thus movable)
818 SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
819 targetDepth, targetCoverage);
820 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
821 fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
822 } else {
823 SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
824 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
825 targetCoverage);
826 newIdx = fCandidateVerts.originatingIdx(i);
827 }
828
829 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
830 }
831
832 // 'dst' currently has indices into the ring. Remap these to be indices
833 // into the global pool since the triangulation operates in that space.
834 for (int i = 0; i < dst.size(); ++i) {
835 dst[i] = nextRing->index(dst[i]);
836 }
837
838 for (int i = 0; i < lastRing.numPts(); ++i) {
839 int next = (i + 1) % lastRing.numPts();
840
841 this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
842 this->addTri(lastRing.index(i), dst[next], dst[i]);
843 }
844
845 if (done && fStyle != SkStrokeRec::kStroke_Style) {
846 // fill or stroke-and-fill
847 this->fanRing(*nextRing);
848 }
849
850 if (nextRing->numPts() < 3) {
851 done = true;
852 }
853 return done;
854 }
855
validate() const856 void GrAAConvexTessellator::validate() const {
857 SkASSERT(fPts.size() == fMovable.size());
858 SkASSERT(fPts.size() == fCoverages.size());
859 SkASSERT(fPts.size() == fCurveState.size());
860 SkASSERT(0 == (fIndices.size() % 3));
861 SkASSERT(fBisectors.empty() || fBisectors.size() == fNorms.size());
862 }
863
864 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)865 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
866 this->computeNormals(tess);
867 this->computeBisectors(tess);
868 }
869
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)870 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
871 const SkTDArray<SkVector>& bisectors) {
872 for (int i = 0; i < fPts.size(); ++i) {
873 fPts[i].fNorm = norms[i];
874 fPts[i].fBisector = bisectors[i];
875 }
876 }
877
878 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)879 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
880 for (int cur = 0; cur < fPts.size(); ++cur) {
881 int next = (cur + 1) % fPts.size();
882
883 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
884 SkPoint::Normalize(&fPts[cur].fNorm);
885 fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
886 }
887 }
888
computeBisectors(const GrAAConvexTessellator & tess)889 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
890 int prev = fPts.size() - 1;
891 for (int cur = 0; cur < fPts.size(); prev = cur, ++cur) {
892 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
893 if (!fPts[cur].fBisector.normalize()) {
894 fPts[cur].fBisector =
895 SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
896 SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
897 SkAssertResult(fPts[cur].fBisector.normalize());
898 } else {
899 fPts[cur].fBisector.negate(); // make the bisector face in
900 }
901 }
902 }
903
904 //////////////////////////////////////////////////////////////////////////////
905 #ifdef SK_DEBUG
906 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const907 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
908 if (fPts.size() < 3) {
909 return true;
910 }
911
912 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.back().fIndex);
913 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
914 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
915 SkScalar maxDot = minDot;
916
917 prev = cur;
918 for (int i = 1; i < fPts.size(); ++i) {
919 int next = (i + 1) % fPts.size();
920
921 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
922 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
923
924 minDot = std::min(minDot, dot);
925 maxDot = std::max(maxDot, dot);
926
927 prev = cur;
928 }
929
930 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
931 maxDot = 0;
932 }
933 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
934 minDot = 0;
935 }
936 return (maxDot >= 0.0f) == (minDot >= 0.0f);
937 }
938
939 #endif
940
lineTo(const SkPoint & p,CurveState curve)941 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
942 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
943 return;
944 }
945
946 if (this->numPts() >= 2 &&
947 points_are_colinear_and_b_is_middle(fPts[fPts.size() - 2], fPts.back(), p,
948 &fAccumLinearError)) {
949 // The old last point is on the line from the second to last to the new point
950 this->popLastPt();
951 // double-check that the new last point is not a duplicate of the new point. In an ideal
952 // world this wouldn't be necessary (since it's only possible for non-convex paths), but
953 // floating point precision issues mean it can actually happen on paths that were
954 // determined to be convex.
955 if (duplicate_pt(p, this->lastPoint())) {
956 return;
957 }
958 } else {
959 fAccumLinearError = 0.f;
960 }
961 SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
962 this->addPt(p, 0.0f, initialRingCoverage, false, curve);
963 }
964
lineTo(const SkMatrix & m,const SkPoint & p,CurveState curve)965 void GrAAConvexTessellator::lineTo(const SkMatrix& m, const SkPoint& p, CurveState curve) {
966 this->lineTo(m.mapXY(p.fX, p.fY), curve);
967 }
968
quadTo(const SkPoint pts[3])969 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
970 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
971 fPointBuffer.resize(maxCount);
972 SkPoint* target = fPointBuffer.begin();
973 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
974 kQuadToleranceSqd, &target, maxCount);
975 fPointBuffer.resize(count);
976 for (int i = 0; i < count - 1; i++) {
977 this->lineTo(fPointBuffer[i], kCurve_CurveState);
978 }
979 this->lineTo(fPointBuffer[count - 1],
980 count == 1 ? kSharp_CurveState : kIndeterminate_CurveState);
981 }
982
quadTo(const SkMatrix & m,const SkPoint srcPts[3])983 void GrAAConvexTessellator::quadTo(const SkMatrix& m, const SkPoint srcPts[3]) {
984 SkPoint pts[3];
985 m.mapPoints(pts, srcPts, 3);
986 this->quadTo(pts);
987 }
988
cubicTo(const SkMatrix & m,const SkPoint srcPts[4])989 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, const SkPoint srcPts[4]) {
990 SkPoint pts[4];
991 m.mapPoints(pts, srcPts, 4);
992 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
993 fPointBuffer.resize(maxCount);
994 SkPoint* target = fPointBuffer.begin();
995 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
996 kCubicToleranceSqd, &target, maxCount);
997 fPointBuffer.resize(count);
998 for (int i = 0; i < count - 1; i++) {
999 this->lineTo(fPointBuffer[i], kCurve_CurveState);
1000 }
1001 this->lineTo(fPointBuffer[count - 1],
1002 count == 1 ? kSharp_CurveState : kIndeterminate_CurveState);
1003 }
1004
1005 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
1006 #include "src/core/SkGeometry.h"
1007
conicTo(const SkMatrix & m,const SkPoint srcPts[3],SkScalar w)1008 void GrAAConvexTessellator::conicTo(const SkMatrix& m, const SkPoint srcPts[3], SkScalar w) {
1009 SkPoint pts[3];
1010 m.mapPoints(pts, srcPts, 3);
1011 SkAutoConicToQuads quadder;
1012 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
1013 SkPoint lastPoint = *(quads++);
1014 int count = quadder.countQuads();
1015 for (int i = 0; i < count; ++i) {
1016 SkPoint quadPts[3];
1017 quadPts[0] = lastPoint;
1018 quadPts[1] = quads[0];
1019 quadPts[2] = i == count - 1 ? pts[2] : quads[1];
1020 this->quadTo(quadPts);
1021 lastPoint = quadPts[2];
1022 quads += 2;
1023 }
1024 }
1025
1026 //////////////////////////////////////////////////////////////////////////////
1027 #if GR_AA_CONVEX_TESSELLATOR_VIZ
1028 static const SkScalar kPointRadius = 0.02f;
1029 static const SkScalar kArrowStrokeWidth = 0.0f;
1030 static const SkScalar kArrowLength = 0.2f;
1031 static const SkScalar kEdgeTextSize = 0.1f;
1032 static const SkScalar kPointTextSize = 0.02f;
1033
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)1034 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
1035 SkPaint paint;
1036 SkASSERT(paramValue <= 1.0f);
1037 int gs = int(255*paramValue);
1038 paint.setARGB(255, gs, gs, gs);
1039
1040 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1041
1042 if (stroke) {
1043 SkPaint stroke;
1044 stroke.setColor(SK_ColorYELLOW);
1045 stroke.setStyle(SkPaint::kStroke_Style);
1046 stroke.setStrokeWidth(kPointRadius/3.0f);
1047 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1048 }
1049 }
1050
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1051 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1052 SkPaint p;
1053 p.setColor(color);
1054
1055 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1056 }
1057
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1058 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1059 SkScalar len, SkColor color) {
1060 SkPaint paint;
1061 paint.setColor(color);
1062 paint.setStrokeWidth(kArrowStrokeWidth);
1063 paint.setStyle(SkPaint::kStroke_Style);
1064
1065 canvas->drawLine(p.fX, p.fY,
1066 p.fX + len * n.fX, p.fY + len * n.fY,
1067 paint);
1068 }
1069
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1070 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1071 SkPaint paint;
1072 paint.setTextSize(kEdgeTextSize);
1073
1074 for (int cur = 0; cur < fPts.count(); ++cur) {
1075 int next = (cur + 1) % fPts.count();
1076
1077 draw_line(canvas,
1078 tess.point(fPts[cur].fIndex),
1079 tess.point(fPts[next].fIndex),
1080 SK_ColorGREEN);
1081
1082 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1083 mid.scale(0.5f);
1084
1085 if (fPts.count()) {
1086 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1087 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1088 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1089 }
1090
1091 SkString num;
1092 num.printf("%d", this->origEdgeID(cur));
1093 canvas->drawString(num, mid.fX, mid.fY, paint);
1094
1095 if (fPts.count()) {
1096 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1097 kArrowLength, SK_ColorBLUE);
1098 }
1099 }
1100 }
1101
draw(SkCanvas * canvas) const1102 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1103 for (int i = 0; i < fIndices.count(); i += 3) {
1104 SkASSERT(fIndices[i] < this->numPts()) ;
1105 SkASSERT(fIndices[i+1] < this->numPts()) ;
1106 SkASSERT(fIndices[i+2] < this->numPts()) ;
1107
1108 draw_line(canvas,
1109 this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1110 SK_ColorBLACK);
1111 draw_line(canvas,
1112 this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1113 SK_ColorBLACK);
1114 draw_line(canvas,
1115 this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1116 SK_ColorBLACK);
1117 }
1118
1119 fInitialRing.draw(canvas, *this);
1120 for (int i = 0; i < fRings.count(); ++i) {
1121 fRings[i]->draw(canvas, *this);
1122 }
1123
1124 for (int i = 0; i < this->numPts(); ++i) {
1125 draw_point(canvas,
1126 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1127 !this->movable(i));
1128
1129 SkPaint paint;
1130 paint.setTextSize(kPointTextSize);
1131 if (this->depth(i) <= -kAntialiasingRadius) {
1132 paint.setColor(SK_ColorWHITE);
1133 }
1134
1135 SkString num;
1136 num.printf("%d", i);
1137 canvas->drawString(num,
1138 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1139 paint);
1140 }
1141 }
1142
1143 #endif
1144