1 /*
2 * Copyright 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <cstring>
18 #include <cmath>
19
20 #include "ultrahdr/ultrahdrcommon.h"
21 #include "ultrahdr/icc.h"
22
23 namespace ultrahdr {
24
Matrix3x3_apply(const Matrix3x3 * m,float * x)25 static void Matrix3x3_apply(const Matrix3x3* m, float* x) {
26 float y0 = x[0] * m->vals[0][0] + x[1] * m->vals[0][1] + x[2] * m->vals[0][2];
27 float y1 = x[0] * m->vals[1][0] + x[1] * m->vals[1][1] + x[2] * m->vals[1][2];
28 float y2 = x[0] * m->vals[2][0] + x[1] * m->vals[2][1] + x[2] * m->vals[2][2];
29 x[0] = y0;
30 x[1] = y1;
31 x[2] = y2;
32 }
33
Matrix3x3_invert(const Matrix3x3 * src,Matrix3x3 * dst)34 bool Matrix3x3_invert(const Matrix3x3* src, Matrix3x3* dst) {
35 double a00 = src->vals[0][0];
36 double a01 = src->vals[1][0];
37 double a02 = src->vals[2][0];
38 double a10 = src->vals[0][1];
39 double a11 = src->vals[1][1];
40 double a12 = src->vals[2][1];
41 double a20 = src->vals[0][2];
42 double a21 = src->vals[1][2];
43 double a22 = src->vals[2][2];
44
45 double b0 = a00 * a11 - a01 * a10;
46 double b1 = a00 * a12 - a02 * a10;
47 double b2 = a01 * a12 - a02 * a11;
48 double b3 = a20;
49 double b4 = a21;
50 double b5 = a22;
51
52 double determinant = b0 * b5 - b1 * b4 + b2 * b3;
53
54 if (determinant == 0) {
55 return false;
56 }
57
58 double invdet = 1.0 / determinant;
59 if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
60 return false;
61 }
62
63 b0 *= invdet;
64 b1 *= invdet;
65 b2 *= invdet;
66 b3 *= invdet;
67 b4 *= invdet;
68 b5 *= invdet;
69
70 dst->vals[0][0] = (float)(a11 * b5 - a12 * b4);
71 dst->vals[1][0] = (float)(a02 * b4 - a01 * b5);
72 dst->vals[2][0] = (float)(+b2);
73 dst->vals[0][1] = (float)(a12 * b3 - a10 * b5);
74 dst->vals[1][1] = (float)(a00 * b5 - a02 * b3);
75 dst->vals[2][1] = (float)(-b1);
76 dst->vals[0][2] = (float)(a10 * b4 - a11 * b3);
77 dst->vals[1][2] = (float)(a01 * b3 - a00 * b4);
78 dst->vals[2][2] = (float)(+b0);
79
80 for (int r = 0; r < 3; ++r)
81 for (int c = 0; c < 3; ++c) {
82 if (!isfinitef_(dst->vals[r][c])) {
83 return false;
84 }
85 }
86 return true;
87 }
88
Matrix3x3_concat(const Matrix3x3 * A,const Matrix3x3 * B)89 static Matrix3x3 Matrix3x3_concat(const Matrix3x3* A, const Matrix3x3* B) {
90 Matrix3x3 m = {{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}};
91 for (int r = 0; r < 3; r++)
92 for (int c = 0; c < 3; c++) {
93 m.vals[r][c] = A->vals[r][0] * B->vals[0][c] + A->vals[r][1] * B->vals[1][c] +
94 A->vals[r][2] * B->vals[2][c];
95 }
96 return m;
97 }
98
float_XYZD50_to_grid16_lab(const float * xyz_float,uint8_t * grid16_lab)99 static void float_XYZD50_to_grid16_lab(const float* xyz_float, uint8_t* grid16_lab) {
100 float v[3] = {
101 xyz_float[0] / kD50_x,
102 xyz_float[1] / kD50_y,
103 xyz_float[2] / kD50_z,
104 };
105 for (size_t i = 0; i < 3; ++i) {
106 v[i] = v[i] > 0.008856f ? cbrtf(v[i]) : v[i] * 7.787f + (16 / 116.0f);
107 }
108 const float L = v[1] * 116.0f - 16.0f;
109 const float a = (v[0] - v[1]) * 500.0f;
110 const float b = (v[1] - v[2]) * 200.0f;
111 const float Lab_unorm[3] = {
112 L * (1 / 100.f),
113 (a + 128.0f) * (1 / 255.0f),
114 (b + 128.0f) * (1 / 255.0f),
115 };
116 // This will encode L=1 as 0xFFFF. This matches how skcms will interpret the
117 // table, but the spec appears to indicate that the value should be 0xFF00.
118 // https://crbug.com/skia/13807
119 for (size_t i = 0; i < 3; ++i) {
120 reinterpret_cast<uint16_t*>(grid16_lab)[i] =
121 Endian_SwapBE16(float_round_to_unorm16(Lab_unorm[i]));
122 }
123 }
124
get_desc_string(const uhdr_color_transfer_t tf,const uhdr_color_gamut_t gamut)125 std::string IccHelper::get_desc_string(const uhdr_color_transfer_t tf,
126 const uhdr_color_gamut_t gamut) {
127 std::string result;
128 switch (gamut) {
129 case UHDR_CG_BT_709:
130 result += "sRGB";
131 break;
132 case UHDR_CG_DISPLAY_P3:
133 result += "Display P3";
134 break;
135 case UHDR_CG_BT_2100:
136 result += "Rec2020";
137 break;
138 default:
139 result += "Unknown";
140 break;
141 }
142 result += " Gamut with ";
143 switch (tf) {
144 case UHDR_CT_SRGB:
145 result += "sRGB";
146 break;
147 case UHDR_CT_LINEAR:
148 result += "Linear";
149 break;
150 case UHDR_CT_PQ:
151 result += "PQ";
152 break;
153 case UHDR_CT_HLG:
154 result += "HLG";
155 break;
156 default:
157 result += "Unknown";
158 break;
159 }
160 result += " Transfer";
161 return result;
162 }
163
write_text_tag(const char * text)164 std::shared_ptr<DataStruct> IccHelper::write_text_tag(const char* text) {
165 uint32_t text_length = strlen(text);
166 uint32_t header[] = {
167 Endian_SwapBE32(kTAG_TextType), // Type signature
168 0, // Reserved
169 Endian_SwapBE32(1), // Number of records
170 Endian_SwapBE32(12), // Record size (must be 12)
171 Endian_SwapBE32(SetFourByteTag('e', 'n', 'U', 'S')), // English USA
172 Endian_SwapBE32(2 * text_length), // Length of string in bytes
173 Endian_SwapBE32(28), // Offset of string
174 };
175
176 uint32_t total_length = text_length * 2 + sizeof(header);
177 total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
178 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
179
180 if (!dataStruct->write(header, sizeof(header))) {
181 ALOGE("write_text_tag(): error in writing data");
182 return dataStruct;
183 }
184
185 for (size_t i = 0; i < text_length; i++) {
186 // Convert ASCII to big-endian UTF-16.
187 dataStruct->write8(0);
188 dataStruct->write8(text[i]);
189 }
190
191 return dataStruct;
192 }
193
write_xyz_tag(float x,float y,float z)194 std::shared_ptr<DataStruct> IccHelper::write_xyz_tag(float x, float y, float z) {
195 uint32_t data[] = {
196 Endian_SwapBE32(kXYZ_PCSSpace),
197 0,
198 static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(x))),
199 static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(y))),
200 static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(z))),
201 };
202 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(sizeof(data));
203 dataStruct->write(&data, sizeof(data));
204 return dataStruct;
205 }
206
write_trc_tag(const int table_entries,const void * table_16)207 std::shared_ptr<DataStruct> IccHelper::write_trc_tag(const int table_entries,
208 const void* table_16) {
209 int total_length = 4 + 4 + 4 + table_entries * 2;
210 total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
211 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
212 dataStruct->write32(Endian_SwapBE32(kTAG_CurveType)); // Type
213 dataStruct->write32(0); // Reserved
214 dataStruct->write32(Endian_SwapBE32(table_entries)); // Value count
215 for (int i = 0; i < table_entries; ++i) {
216 uint16_t value = reinterpret_cast<const uint16_t*>(table_16)[i];
217 dataStruct->write16(value);
218 }
219 return dataStruct;
220 }
221
write_trc_tag(const TransferFunction & fn)222 std::shared_ptr<DataStruct> IccHelper::write_trc_tag(const TransferFunction& fn) {
223 if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f && fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) {
224 int total_length = 16;
225 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
226 dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
227 dataStruct->write32(0); // Reserved
228 dataStruct->write32(Endian_SwapBE16(kExponential_ParaCurveType));
229 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
230 return dataStruct;
231 }
232
233 int total_length = 40;
234 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
235 dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
236 dataStruct->write32(0); // Reserved
237 dataStruct->write32(Endian_SwapBE16(kGABCDEF_ParaCurveType));
238 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
239 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.a)));
240 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.b)));
241 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.c)));
242 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.d)));
243 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.e)));
244 dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.f)));
245 return dataStruct;
246 }
247
compute_tone_map_gain(const uhdr_color_transfer_t tf,float L)248 float IccHelper::compute_tone_map_gain(const uhdr_color_transfer_t tf, float L) {
249 if (L <= 0.f) {
250 return 1.f;
251 }
252 if (tf == UHDR_CT_PQ) {
253 // The PQ transfer function will map to the range [0, 1]. Linearly scale
254 // it up to the range [0, 10,000/203]. We will then tone map that back
255 // down to [0, 1].
256 constexpr float kInputMaxLuminance = 10000 / 203.f;
257 constexpr float kOutputMaxLuminance = 1.0;
258 L *= kInputMaxLuminance;
259
260 // Compute the tone map gain which will tone map from 10,000/203 to 1.0.
261 constexpr float kToneMapA = kOutputMaxLuminance / (kInputMaxLuminance * kInputMaxLuminance);
262 constexpr float kToneMapB = 1.f / kOutputMaxLuminance;
263 return kInputMaxLuminance * (1.f + kToneMapA * L) / (1.f + kToneMapB * L);
264 }
265 if (tf == UHDR_CT_HLG) {
266 // Let Lw be the brightness of the display in nits.
267 constexpr float Lw = 203.f;
268 const float gamma = 1.2f + 0.42f * std::log(Lw / 1000.f) / std::log(10.f);
269 return std::pow(L, gamma - 1.f);
270 }
271 return 1.f;
272 }
273
write_cicp_tag(uint32_t color_primaries,uint32_t transfer_characteristics)274 std::shared_ptr<DataStruct> IccHelper::write_cicp_tag(uint32_t color_primaries,
275 uint32_t transfer_characteristics) {
276 int total_length = 12; // 4 + 4 + 1 + 1 + 1 + 1
277 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
278 dataStruct->write32(Endian_SwapBE32(kTAG_cicp)); // Type signature
279 dataStruct->write32(0); // Reserved
280 dataStruct->write8(color_primaries); // Color primaries
281 dataStruct->write8(transfer_characteristics); // Transfer characteristics
282 dataStruct->write8(0); // RGB matrix
283 dataStruct->write8(1); // Full range
284 return dataStruct;
285 }
286
compute_lut_entry(const Matrix3x3 & src_to_XYZD50,float rgb[3])287 void IccHelper::compute_lut_entry(const Matrix3x3& src_to_XYZD50, float rgb[3]) {
288 // Compute the matrices to convert from source to Rec2020, and from Rec2020 to XYZD50.
289 Matrix3x3 src_to_rec2020;
290 const Matrix3x3 rec2020_to_XYZD50 = kRec2020;
291 {
292 Matrix3x3 XYZD50_to_rec2020;
293 Matrix3x3_invert(&rec2020_to_XYZD50, &XYZD50_to_rec2020);
294 src_to_rec2020 = Matrix3x3_concat(&XYZD50_to_rec2020, &src_to_XYZD50);
295 }
296
297 // Convert the source signal to linear.
298 for (size_t i = 0; i < kNumChannels; ++i) {
299 rgb[i] = pqOetf(rgb[i]);
300 }
301
302 // Convert source gamut to Rec2020.
303 Matrix3x3_apply(&src_to_rec2020, rgb);
304
305 // Compute the luminance of the signal.
306 float L = bt2100Luminance({{{rgb[0], rgb[1], rgb[2]}}});
307
308 // Compute the tone map gain based on the luminance.
309 float tone_map_gain = compute_tone_map_gain(UHDR_CT_PQ, L);
310
311 // Apply the tone map gain.
312 for (size_t i = 0; i < kNumChannels; ++i) {
313 rgb[i] *= tone_map_gain;
314 }
315
316 // Convert from Rec2020-linear to XYZD50.
317 Matrix3x3_apply(&rec2020_to_XYZD50, rgb);
318 }
319
write_clut(const uint8_t * grid_points,const uint8_t * grid_16)320 std::shared_ptr<DataStruct> IccHelper::write_clut(const uint8_t* grid_points,
321 const uint8_t* grid_16) {
322 uint32_t value_count = kNumChannels;
323 for (uint32_t i = 0; i < kNumChannels; ++i) {
324 value_count *= grid_points[i];
325 }
326
327 int total_length = 20 + 2 * value_count;
328 total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
329 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
330
331 for (size_t i = 0; i < 16; ++i) {
332 dataStruct->write8(i < kNumChannels ? grid_points[i] : 0); // Grid size
333 }
334 dataStruct->write8(2); // Grid byte width (always 16-bit)
335 dataStruct->write8(0); // Reserved
336 dataStruct->write8(0); // Reserved
337 dataStruct->write8(0); // Reserved
338
339 for (uint32_t i = 0; i < value_count; ++i) {
340 uint16_t value = reinterpret_cast<const uint16_t*>(grid_16)[i];
341 dataStruct->write16(value);
342 }
343
344 return dataStruct;
345 }
346
write_mAB_or_mBA_tag(uint32_t type,bool has_a_curves,const uint8_t * grid_points,const uint8_t * grid_16)347 std::shared_ptr<DataStruct> IccHelper::write_mAB_or_mBA_tag(uint32_t type, bool has_a_curves,
348 const uint8_t* grid_points,
349 const uint8_t* grid_16) {
350 const size_t b_curves_offset = 32;
351 std::shared_ptr<DataStruct> b_curves_data[kNumChannels];
352 std::shared_ptr<DataStruct> a_curves_data[kNumChannels];
353 size_t clut_offset = 0;
354 std::shared_ptr<DataStruct> clut;
355 size_t a_curves_offset = 0;
356
357 // The "B" curve is required.
358 for (size_t i = 0; i < kNumChannels; ++i) {
359 b_curves_data[i] = write_trc_tag(kLinear_TransFun);
360 }
361
362 // The "A" curve and CLUT are optional.
363 if (has_a_curves) {
364 clut_offset = b_curves_offset;
365 for (size_t i = 0; i < kNumChannels; ++i) {
366 clut_offset += b_curves_data[i]->getLength();
367 }
368 clut = write_clut(grid_points, grid_16);
369
370 a_curves_offset = clut_offset + clut->getLength();
371 for (size_t i = 0; i < kNumChannels; ++i) {
372 a_curves_data[i] = write_trc_tag(kLinear_TransFun);
373 }
374 }
375
376 int total_length = b_curves_offset;
377 for (size_t i = 0; i < kNumChannels; ++i) {
378 total_length += b_curves_data[i]->getLength();
379 }
380 if (has_a_curves) {
381 total_length += clut->getLength();
382 for (size_t i = 0; i < kNumChannels; ++i) {
383 total_length += a_curves_data[i]->getLength();
384 }
385 }
386 std::shared_ptr<DataStruct> dataStruct = std::make_shared<DataStruct>(total_length);
387 dataStruct->write32(Endian_SwapBE32(type)); // Type signature
388 dataStruct->write32(0); // Reserved
389 dataStruct->write8(kNumChannels); // Input channels
390 dataStruct->write8(kNumChannels); // Output channels
391 dataStruct->write16(0); // Reserved
392 dataStruct->write32(Endian_SwapBE32(b_curves_offset)); // B curve offset
393 dataStruct->write32(Endian_SwapBE32(0)); // Matrix offset (ignored)
394 dataStruct->write32(Endian_SwapBE32(0)); // M curve offset (ignored)
395 dataStruct->write32(Endian_SwapBE32(clut_offset)); // CLUT offset
396 dataStruct->write32(Endian_SwapBE32(a_curves_offset)); // A curve offset
397 for (size_t i = 0; i < kNumChannels; ++i) {
398 if (dataStruct->write(b_curves_data[i]->getData(), b_curves_data[i]->getLength())) {
399 return dataStruct;
400 }
401 }
402 if (has_a_curves) {
403 dataStruct->write(clut->getData(), clut->getLength());
404 for (size_t i = 0; i < kNumChannels; ++i) {
405 dataStruct->write(a_curves_data[i]->getData(), a_curves_data[i]->getLength());
406 }
407 }
408 return dataStruct;
409 }
410
writeIccProfile(uhdr_color_transfer_t tf,uhdr_color_gamut_t gamut)411 std::shared_ptr<DataStruct> IccHelper::writeIccProfile(uhdr_color_transfer_t tf,
412 uhdr_color_gamut_t gamut) {
413 ICCHeader header;
414
415 std::vector<std::pair<uint32_t, std::shared_ptr<DataStruct>>> tags;
416
417 // Compute profile description tag
418 std::string desc = get_desc_string(tf, gamut);
419
420 tags.emplace_back(kTAG_desc, write_text_tag(desc.c_str()));
421
422 Matrix3x3 toXYZD50;
423 switch (gamut) {
424 case UHDR_CG_BT_709:
425 toXYZD50 = kSRGB;
426 break;
427 case UHDR_CG_DISPLAY_P3:
428 toXYZD50 = kDisplayP3;
429 break;
430 case UHDR_CG_BT_2100:
431 toXYZD50 = kRec2020;
432 break;
433 default:
434 // Should not fall here.
435 return nullptr;
436 }
437
438 // Compute primaries.
439 {
440 tags.emplace_back(kTAG_rXYZ,
441 write_xyz_tag(toXYZD50.vals[0][0], toXYZD50.vals[1][0], toXYZD50.vals[2][0]));
442 tags.emplace_back(kTAG_gXYZ,
443 write_xyz_tag(toXYZD50.vals[0][1], toXYZD50.vals[1][1], toXYZD50.vals[2][1]));
444 tags.emplace_back(kTAG_bXYZ,
445 write_xyz_tag(toXYZD50.vals[0][2], toXYZD50.vals[1][2], toXYZD50.vals[2][2]));
446 }
447
448 // Compute white point tag (must be D50)
449 tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z));
450
451 // Compute transfer curves.
452 if (tf != UHDR_CT_PQ) {
453 if (tf == UHDR_CT_HLG) {
454 std::vector<uint8_t> trc_table;
455 trc_table.resize(kTrcTableSize * 2);
456 for (uint32_t i = 0; i < kTrcTableSize; ++i) {
457 float x = i / (kTrcTableSize - 1.f);
458 float y = hlgOetf(x);
459 y *= compute_tone_map_gain(tf, y);
460 float_to_table16(y, &trc_table[2 * i]);
461 }
462
463 tags.emplace_back(kTAG_rTRC,
464 write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
465 tags.emplace_back(kTAG_gTRC,
466 write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
467 tags.emplace_back(kTAG_bTRC,
468 write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
469 } else {
470 tags.emplace_back(kTAG_rTRC, write_trc_tag(kSRGB_TransFun));
471 tags.emplace_back(kTAG_gTRC, write_trc_tag(kSRGB_TransFun));
472 tags.emplace_back(kTAG_bTRC, write_trc_tag(kSRGB_TransFun));
473 }
474 }
475
476 // Compute CICP.
477 if (tf == UHDR_CT_HLG || tf == UHDR_CT_PQ) {
478 // The CICP tag is present in ICC 4.4, so update the header's version.
479 header.version = Endian_SwapBE32(0x04400000);
480
481 uint32_t color_primaries = 0;
482 if (gamut == UHDR_CG_BT_709) {
483 color_primaries = kCICPPrimariesSRGB;
484 } else if (gamut == UHDR_CG_DISPLAY_P3) {
485 color_primaries = kCICPPrimariesP3;
486 }
487
488 uint32_t transfer_characteristics = 0;
489 if (tf == UHDR_CT_SRGB) {
490 transfer_characteristics = kCICPTrfnSRGB;
491 } else if (tf == UHDR_CT_LINEAR) {
492 transfer_characteristics = kCICPTrfnLinear;
493 } else if (tf == UHDR_CT_PQ) {
494 transfer_characteristics = kCICPTrfnPQ;
495 } else if (tf == UHDR_CT_HLG) {
496 transfer_characteristics = kCICPTrfnHLG;
497 }
498 tags.emplace_back(kTAG_cicp, write_cicp_tag(color_primaries, transfer_characteristics));
499 }
500
501 // Compute A2B0.
502 if (tf == UHDR_CT_PQ) {
503 std::vector<uint8_t> a2b_grid;
504 a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels * 2);
505 size_t a2b_grid_index = 0;
506 for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) {
507 for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) {
508 for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) {
509 float rgb[3] = {
510 r_index / (kGridSize - 1.f),
511 g_index / (kGridSize - 1.f),
512 b_index / (kGridSize - 1.f),
513 };
514 compute_lut_entry(toXYZD50, rgb);
515 float_XYZD50_to_grid16_lab(rgb, &a2b_grid[a2b_grid_index]);
516 a2b_grid_index += 6;
517 }
518 }
519 }
520 const uint8_t* grid_16 = reinterpret_cast<const uint8_t*>(a2b_grid.data());
521
522 uint8_t grid_points[kNumChannels];
523 for (size_t i = 0; i < kNumChannels; ++i) {
524 grid_points[i] = kGridSize;
525 }
526
527 auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType,
528 /* has_a_curves */ true, grid_points, grid_16);
529 tags.emplace_back(kTAG_A2B0, std::move(a2b_data));
530 }
531
532 // Compute B2A0.
533 if (tf == UHDR_CT_PQ) {
534 auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType,
535 /* has_a_curves */ false,
536 /* grid_points */ nullptr,
537 /* grid_16 */ nullptr);
538 tags.emplace_back(kTAG_B2A0, std::move(b2a_data));
539 }
540
541 // Compute copyright tag
542 tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2022"));
543
544 // Compute the size of the profile.
545 size_t tag_data_size = 0;
546 for (const auto& tag : tags) {
547 tag_data_size += tag.second->getLength();
548 }
549 size_t tag_table_size = kICCTagTableEntrySize * tags.size();
550 size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size;
551
552 std::shared_ptr<DataStruct> dataStruct =
553 std::make_shared<DataStruct>(profile_size + kICCIdentifierSize);
554
555 // Write identifier, chunk count, and chunk ID
556 if (!dataStruct->write(kICCIdentifier, sizeof(kICCIdentifier)) || !dataStruct->write8(1) ||
557 !dataStruct->write8(1)) {
558 ALOGE("writeIccProfile(): error in identifier");
559 return dataStruct;
560 }
561
562 // Write the header.
563 header.data_color_space = Endian_SwapBE32(Signature_RGB);
564 header.pcs = Endian_SwapBE32(tf == UHDR_CT_PQ ? Signature_Lab : Signature_XYZ);
565 header.size = Endian_SwapBE32(profile_size);
566 header.tag_count = Endian_SwapBE32(tags.size());
567
568 if (!dataStruct->write(&header, sizeof(header))) {
569 ALOGE("writeIccProfile(): error in header");
570 return dataStruct;
571 }
572
573 // Write the tag table. Track the offset and size of the previous tag to
574 // compute each tag's offset. An empty SkData indicates that the previous
575 // tag is to be reused.
576 uint32_t last_tag_offset = sizeof(header) + tag_table_size;
577 uint32_t last_tag_size = 0;
578 for (const auto& tag : tags) {
579 last_tag_offset = last_tag_offset + last_tag_size;
580 last_tag_size = tag.second->getLength();
581 uint32_t tag_table_entry[3] = {
582 Endian_SwapBE32(tag.first),
583 Endian_SwapBE32(last_tag_offset),
584 Endian_SwapBE32(last_tag_size),
585 };
586 if (!dataStruct->write(tag_table_entry, sizeof(tag_table_entry))) {
587 ALOGE("writeIccProfile(): error in writing tag table");
588 return dataStruct;
589 }
590 }
591
592 // Write the tags.
593 for (const auto& tag : tags) {
594 if (!dataStruct->write(tag.second->getData(), tag.second->getLength())) {
595 ALOGE("writeIccProfile(): error in writing tags");
596 return dataStruct;
597 }
598 }
599
600 return dataStruct;
601 }
602
tagsEqualToMatrix(const Matrix3x3 & matrix,const uint8_t * red_tag,const uint8_t * green_tag,const uint8_t * blue_tag)603 bool IccHelper::tagsEqualToMatrix(const Matrix3x3& matrix, const uint8_t* red_tag,
604 const uint8_t* green_tag, const uint8_t* blue_tag) {
605 const float tolerance = 0.001;
606 Fixed r_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[2]);
607 Fixed r_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[3]);
608 Fixed r_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(red_tag))[4]);
609 float r_x = FixedToFloat(r_x_fixed);
610 float r_y = FixedToFloat(r_y_fixed);
611 float r_z = FixedToFloat(r_z_fixed);
612 if (fabs(r_x - matrix.vals[0][0]) > tolerance || fabs(r_y - matrix.vals[1][0]) > tolerance ||
613 fabs(r_z - matrix.vals[2][0]) > tolerance) {
614 return false;
615 }
616
617 Fixed g_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[2]);
618 Fixed g_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[3]);
619 Fixed g_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(green_tag))[4]);
620 float g_x = FixedToFloat(g_x_fixed);
621 float g_y = FixedToFloat(g_y_fixed);
622 float g_z = FixedToFloat(g_z_fixed);
623 if (fabs(g_x - matrix.vals[0][1]) > tolerance || fabs(g_y - matrix.vals[1][1]) > tolerance ||
624 fabs(g_z - matrix.vals[2][1]) > tolerance) {
625 return false;
626 }
627
628 Fixed b_x_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[2]);
629 Fixed b_y_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[3]);
630 Fixed b_z_fixed = Endian_SwapBE32(reinterpret_cast<int32_t*>(const_cast<uint8_t*>(blue_tag))[4]);
631 float b_x = FixedToFloat(b_x_fixed);
632 float b_y = FixedToFloat(b_y_fixed);
633 float b_z = FixedToFloat(b_z_fixed);
634 if (fabs(b_x - matrix.vals[0][2]) > tolerance || fabs(b_y - matrix.vals[1][2]) > tolerance ||
635 fabs(b_z - matrix.vals[2][2]) > tolerance) {
636 return false;
637 }
638
639 return true;
640 }
641
readIccColorGamut(void * icc_data,size_t icc_size)642 uhdr_color_gamut_t IccHelper::readIccColorGamut(void* icc_data, size_t icc_size) {
643 // Each tag table entry consists of 3 fields of 4 bytes each.
644 static const size_t kTagTableEntrySize = 12;
645
646 if (icc_data == nullptr || icc_size < sizeof(ICCHeader) + kICCIdentifierSize) {
647 return UHDR_CG_UNSPECIFIED;
648 }
649
650 if (memcmp(icc_data, kICCIdentifier, sizeof(kICCIdentifier)) != 0) {
651 return UHDR_CG_UNSPECIFIED;
652 }
653
654 uint8_t* icc_bytes = reinterpret_cast<uint8_t*>(icc_data) + kICCIdentifierSize;
655 auto alignment_needs = alignof(ICCHeader);
656 uint8_t* aligned_block = nullptr;
657 if (((uintptr_t)icc_bytes) % alignment_needs != 0) {
658 aligned_block = static_cast<uint8_t*>(
659 ::operator new[](icc_size - kICCIdentifierSize, std::align_val_t(alignment_needs)));
660 if (!aligned_block) {
661 ALOGE("unable allocate memory, icc parsing failed");
662 return UHDR_CG_UNSPECIFIED;
663 }
664 std::memcpy(aligned_block, icc_bytes, icc_size - kICCIdentifierSize);
665 icc_bytes = aligned_block;
666 }
667 ICCHeader* header = reinterpret_cast<ICCHeader*>(icc_bytes);
668
669 // Use 0 to indicate not found, since offsets are always relative to start
670 // of ICC data and therefore a tag offset of zero would never be valid.
671 size_t red_primary_offset = 0, green_primary_offset = 0, blue_primary_offset = 0;
672 size_t red_primary_size = 0, green_primary_size = 0, blue_primary_size = 0;
673 for (size_t tag_idx = 0; tag_idx < Endian_SwapBE32(header->tag_count); ++tag_idx) {
674 if (icc_size < kICCIdentifierSize + sizeof(ICCHeader) + ((tag_idx + 1) * kTagTableEntrySize)) {
675 ALOGE(
676 "Insufficient buffer size during icc parsing. tag index %zu, header %zu, tag size %zu, "
677 "icc size %zu",
678 tag_idx, kICCIdentifierSize + sizeof(ICCHeader), kTagTableEntrySize, icc_size);
679 if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs));
680 return UHDR_CG_UNSPECIFIED;
681 }
682 uint32_t* tag_entry_start =
683 reinterpret_cast<uint32_t*>(icc_bytes + sizeof(ICCHeader) + tag_idx * kTagTableEntrySize);
684 // first 4 bytes are the tag signature, next 4 bytes are the tag offset,
685 // last 4 bytes are the tag length in bytes.
686 if (red_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_rXYZ)) {
687 red_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1));
688 red_primary_size = Endian_SwapBE32(*(tag_entry_start + 2));
689 } else if (green_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_gXYZ)) {
690 green_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1));
691 green_primary_size = Endian_SwapBE32(*(tag_entry_start + 2));
692 } else if (blue_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_bXYZ)) {
693 blue_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1));
694 blue_primary_size = Endian_SwapBE32(*(tag_entry_start + 2));
695 }
696 }
697
698 if (red_primary_offset == 0 || red_primary_size != kColorantTagSize ||
699 kICCIdentifierSize + red_primary_offset + red_primary_size > icc_size ||
700 green_primary_offset == 0 || green_primary_size != kColorantTagSize ||
701 kICCIdentifierSize + green_primary_offset + green_primary_size > icc_size ||
702 blue_primary_offset == 0 || blue_primary_size != kColorantTagSize ||
703 kICCIdentifierSize + blue_primary_offset + blue_primary_size > icc_size) {
704 if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs));
705 return UHDR_CG_UNSPECIFIED;
706 }
707
708 uint8_t* red_tag = icc_bytes + red_primary_offset;
709 uint8_t* green_tag = icc_bytes + green_primary_offset;
710 uint8_t* blue_tag = icc_bytes + blue_primary_offset;
711
712 // Serialize tags as we do on encode and compare what we find to that to
713 // determine the gamut (since we don't have a need yet for full deserialize).
714 uhdr_color_gamut_t gamut = UHDR_CG_UNSPECIFIED;
715 if (tagsEqualToMatrix(kSRGB, red_tag, green_tag, blue_tag)) {
716 gamut = UHDR_CG_BT_709;
717 } else if (tagsEqualToMatrix(kDisplayP3, red_tag, green_tag, blue_tag)) {
718 gamut = UHDR_CG_DISPLAY_P3;
719 } else if (tagsEqualToMatrix(kRec2020, red_tag, green_tag, blue_tag)) {
720 gamut = UHDR_CG_BT_2100;
721 }
722
723 if (aligned_block) ::operator delete[](aligned_block, std::align_val_t(alignment_needs));
724 // Didn't find a match to one of the profiles we write; indicate the gamut
725 // is unspecified since we don't understand it.
726 return gamut;
727 }
728
729 } // namespace ultrahdr
730