1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <[email protected]>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_pkvm.h>
19 #include <asm/kvm_ras.h>
20 #include <asm/kvm_asm.h>
21 #include <asm/kvm_emulate.h>
22 #include <asm/virt.h>
23 
24 #include "trace.h"
25 
26 static struct kvm_pgtable *hyp_pgtable;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28 
29 static unsigned long __ro_after_init hyp_idmap_start;
30 static unsigned long __ro_after_init hyp_idmap_end;
31 static phys_addr_t __ro_after_init hyp_idmap_vector;
32 
33 u32 __ro_after_init __hyp_va_bits;
34 
35 static unsigned long __ro_after_init io_map_base;
36 
37 #define KVM_PGT_FN(fn)		(!is_protected_kvm_enabled() ? fn : p ## fn)
38 
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)39 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
40 					   phys_addr_t size)
41 {
42 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
43 
44 	return (boundary - 1 < end - 1) ? boundary : end;
45 }
46 
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)47 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
48 {
49 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
50 
51 	return __stage2_range_addr_end(addr, end, size);
52 }
53 
54 /*
55  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
56  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
57  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
58  * long will also starve other vCPUs. We have to also make sure that the page
59  * tables are not freed while we released the lock.
60  */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)61 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
62 			      phys_addr_t end,
63 			      int (*fn)(struct kvm_pgtable *, u64, u64),
64 			      bool resched)
65 {
66 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
67 	int ret;
68 	u64 next;
69 
70 	do {
71 		struct kvm_pgtable *pgt = mmu->pgt;
72 		if (!pgt)
73 			return -EINVAL;
74 
75 		next = stage2_range_addr_end(addr, end);
76 		ret = fn(pgt, addr, next - addr);
77 		if (ret)
78 			break;
79 
80 		if (resched && next != end)
81 			cond_resched_rwlock_write(&kvm->mmu_lock);
82 	} while (addr = next, addr != end);
83 
84 	return ret;
85 }
86 
87 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
88 	stage2_apply_range(mmu, addr, end, fn, true)
89 
90 /*
91  * Get the maximum number of page-tables pages needed to split a range
92  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
93  * mapped at level 2, or at level 1 if allowed.
94  */
kvm_mmu_split_nr_page_tables(u64 range)95 static int kvm_mmu_split_nr_page_tables(u64 range)
96 {
97 	int n = 0;
98 
99 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
100 		n += DIV_ROUND_UP(range, PUD_SIZE);
101 	n += DIV_ROUND_UP(range, PMD_SIZE);
102 	return n;
103 }
104 
need_split_memcache_topup_or_resched(struct kvm * kvm)105 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
106 {
107 	struct kvm_mmu_memory_cache *cache;
108 	u64 chunk_size, min;
109 
110 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
111 		return true;
112 
113 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
114 	min = kvm_mmu_split_nr_page_tables(chunk_size);
115 	cache = &kvm->arch.mmu.split_page_cache;
116 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
117 }
118 
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)119 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
120 				    phys_addr_t end)
121 {
122 	struct kvm_mmu_memory_cache *cache;
123 	struct kvm_pgtable *pgt;
124 	int ret, cache_capacity;
125 	u64 next, chunk_size;
126 
127 	lockdep_assert_held_write(&kvm->mmu_lock);
128 
129 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
130 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
131 
132 	if (chunk_size == 0)
133 		return 0;
134 
135 	cache = &kvm->arch.mmu.split_page_cache;
136 
137 	do {
138 		if (need_split_memcache_topup_or_resched(kvm)) {
139 			write_unlock(&kvm->mmu_lock);
140 			cond_resched();
141 			/* Eager page splitting is best-effort. */
142 			ret = __kvm_mmu_topup_memory_cache(cache,
143 							   cache_capacity,
144 							   cache_capacity);
145 			write_lock(&kvm->mmu_lock);
146 			if (ret)
147 				break;
148 		}
149 
150 		pgt = kvm->arch.mmu.pgt;
151 		if (!pgt)
152 			return -EINVAL;
153 
154 		next = __stage2_range_addr_end(addr, end, chunk_size);
155 		ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
156 		if (ret)
157 			break;
158 	} while (addr = next, addr != end);
159 
160 	return ret;
161 }
162 
memslot_is_logging(struct kvm_memory_slot * memslot)163 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
164 {
165 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
166 }
167 
168 /**
169  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
170  * @kvm:	pointer to kvm structure.
171  *
172  * Interface to HYP function to flush all VM TLB entries
173  */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)174 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
175 {
176 	if (is_protected_kvm_enabled())
177 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
178 	else
179 		kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
180 	return 0;
181 }
182 
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)183 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
184 				      gfn_t gfn, u64 nr_pages)
185 {
186 	u64 size = nr_pages << PAGE_SHIFT;
187 	u64 addr = gfn << PAGE_SHIFT;
188 
189 	if (is_protected_kvm_enabled())
190 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
191 	else
192 		kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
193 	return 0;
194 }
195 
kvm_is_device_pfn(unsigned long pfn)196 static bool kvm_is_device_pfn(unsigned long pfn)
197 {
198 	return !pfn_is_map_memory(pfn);
199 }
200 
stage2_memcache_zalloc_page(void * arg)201 static void *stage2_memcache_zalloc_page(void *arg)
202 {
203 	struct kvm_mmu_memory_cache *mc = arg;
204 	void *virt;
205 
206 	/* Allocated with __GFP_ZERO, so no need to zero */
207 	virt = kvm_mmu_memory_cache_alloc(mc);
208 	if (virt)
209 		kvm_account_pgtable_pages(virt, 1);
210 	return virt;
211 }
212 
kvm_host_zalloc_pages_exact(size_t size)213 static void *kvm_host_zalloc_pages_exact(size_t size)
214 {
215 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
216 }
217 
kvm_s2_zalloc_pages_exact(size_t size)218 static void *kvm_s2_zalloc_pages_exact(size_t size)
219 {
220 	void *virt = kvm_host_zalloc_pages_exact(size);
221 
222 	if (virt)
223 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
224 	return virt;
225 }
226 
kvm_s2_free_pages_exact(void * virt,size_t size)227 static void kvm_s2_free_pages_exact(void *virt, size_t size)
228 {
229 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
230 	free_pages_exact(virt, size);
231 }
232 
233 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
234 
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)235 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
236 {
237 	struct page *page = container_of(head, struct page, rcu_head);
238 	void *pgtable = page_to_virt(page);
239 	s8 level = page_private(page);
240 
241 	KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
242 }
243 
stage2_free_unlinked_table(void * addr,s8 level)244 static void stage2_free_unlinked_table(void *addr, s8 level)
245 {
246 	struct page *page = virt_to_page(addr);
247 
248 	set_page_private(page, (unsigned long)level);
249 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
250 }
251 
kvm_host_get_page(void * addr)252 static void kvm_host_get_page(void *addr)
253 {
254 	get_page(virt_to_page(addr));
255 }
256 
kvm_host_put_page(void * addr)257 static void kvm_host_put_page(void *addr)
258 {
259 	put_page(virt_to_page(addr));
260 }
261 
kvm_s2_put_page(void * addr)262 static void kvm_s2_put_page(void *addr)
263 {
264 	struct page *p = virt_to_page(addr);
265 	/* Dropping last refcount, the page will be freed */
266 	if (page_count(p) == 1)
267 		kvm_account_pgtable_pages(addr, -1);
268 	put_page(p);
269 }
270 
kvm_host_page_count(void * addr)271 static int kvm_host_page_count(void *addr)
272 {
273 	return page_count(virt_to_page(addr));
274 }
275 
kvm_host_pa(void * addr)276 static phys_addr_t kvm_host_pa(void *addr)
277 {
278 	return __pa(addr);
279 }
280 
kvm_host_va(phys_addr_t phys)281 static void *kvm_host_va(phys_addr_t phys)
282 {
283 	return __va(phys);
284 }
285 
clean_dcache_guest_page(void * va,size_t size)286 static void clean_dcache_guest_page(void *va, size_t size)
287 {
288 	__clean_dcache_guest_page(va, size);
289 }
290 
invalidate_icache_guest_page(void * va,size_t size)291 static void invalidate_icache_guest_page(void *va, size_t size)
292 {
293 	__invalidate_icache_guest_page(va, size);
294 }
295 
296 /*
297  * Unmapping vs dcache management:
298  *
299  * If a guest maps certain memory pages as uncached, all writes will
300  * bypass the data cache and go directly to RAM.  However, the CPUs
301  * can still speculate reads (not writes) and fill cache lines with
302  * data.
303  *
304  * Those cache lines will be *clean* cache lines though, so a
305  * clean+invalidate operation is equivalent to an invalidate
306  * operation, because no cache lines are marked dirty.
307  *
308  * Those clean cache lines could be filled prior to an uncached write
309  * by the guest, and the cache coherent IO subsystem would therefore
310  * end up writing old data to disk.
311  *
312  * This is why right after unmapping a page/section and invalidating
313  * the corresponding TLBs, we flush to make sure the IO subsystem will
314  * never hit in the cache.
315  *
316  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
317  * we then fully enforce cacheability of RAM, no matter what the guest
318  * does.
319  */
320 /**
321  * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
322  * @mmu:   The KVM stage-2 MMU pointer
323  * @start: The intermediate physical base address of the range to unmap
324  * @size:  The size of the area to unmap
325  * @may_block: Whether or not we are permitted to block
326  *
327  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
328  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
329  * destroying the VM), otherwise another faulting VCPU may come in and mess
330  * with things behind our backs.
331  */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)332 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
333 				 bool may_block)
334 {
335 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
336 	phys_addr_t end = start + size;
337 
338 	lockdep_assert_held_write(&kvm->mmu_lock);
339 	WARN_ON(size & ~PAGE_MASK);
340 	WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
341 				   may_block));
342 }
343 
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)344 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
345 			    u64 size, bool may_block)
346 {
347 	__unmap_stage2_range(mmu, start, size, may_block);
348 }
349 
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)350 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
351 {
352 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
353 }
354 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)355 static void stage2_flush_memslot(struct kvm *kvm,
356 				 struct kvm_memory_slot *memslot)
357 {
358 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
359 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
360 
361 	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
362 }
363 
364 /**
365  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
366  * @kvm: The struct kvm pointer
367  *
368  * Go through the stage 2 page tables and invalidate any cache lines
369  * backing memory already mapped to the VM.
370  */
stage2_flush_vm(struct kvm * kvm)371 static void stage2_flush_vm(struct kvm *kvm)
372 {
373 	struct kvm_memslots *slots;
374 	struct kvm_memory_slot *memslot;
375 	int idx, bkt;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	write_lock(&kvm->mmu_lock);
379 
380 	slots = kvm_memslots(kvm);
381 	kvm_for_each_memslot(memslot, bkt, slots)
382 		stage2_flush_memslot(kvm, memslot);
383 
384 	kvm_nested_s2_flush(kvm);
385 
386 	write_unlock(&kvm->mmu_lock);
387 	srcu_read_unlock(&kvm->srcu, idx);
388 }
389 
390 /**
391  * free_hyp_pgds - free Hyp-mode page tables
392  */
free_hyp_pgds(void)393 void __init free_hyp_pgds(void)
394 {
395 	mutex_lock(&kvm_hyp_pgd_mutex);
396 	if (hyp_pgtable) {
397 		kvm_pgtable_hyp_destroy(hyp_pgtable);
398 		kfree(hyp_pgtable);
399 		hyp_pgtable = NULL;
400 	}
401 	mutex_unlock(&kvm_hyp_pgd_mutex);
402 }
403 
kvm_host_owns_hyp_mappings(void)404 static bool kvm_host_owns_hyp_mappings(void)
405 {
406 	if (is_kernel_in_hyp_mode())
407 		return false;
408 
409 	if (static_branch_likely(&kvm_protected_mode_initialized))
410 		return false;
411 
412 	/*
413 	 * This can happen at boot time when __create_hyp_mappings() is called
414 	 * after the hyp protection has been enabled, but the static key has
415 	 * not been flipped yet.
416 	 */
417 	if (!hyp_pgtable && is_protected_kvm_enabled())
418 		return false;
419 
420 	WARN_ON(!hyp_pgtable);
421 
422 	return true;
423 }
424 
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)425 int __create_hyp_mappings(unsigned long start, unsigned long size,
426 			  unsigned long phys, enum kvm_pgtable_prot prot)
427 {
428 	int err;
429 
430 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
431 		return -EINVAL;
432 
433 	mutex_lock(&kvm_hyp_pgd_mutex);
434 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
435 	mutex_unlock(&kvm_hyp_pgd_mutex);
436 
437 	return err;
438 }
439 
kvm_kaddr_to_phys(void * kaddr)440 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
441 {
442 	if (!is_vmalloc_addr(kaddr)) {
443 		BUG_ON(!virt_addr_valid(kaddr));
444 		return __pa(kaddr);
445 	} else {
446 		return page_to_phys(vmalloc_to_page(kaddr)) +
447 		       offset_in_page(kaddr);
448 	}
449 }
450 
451 struct hyp_shared_pfn {
452 	u64 pfn;
453 	int count;
454 	struct rb_node node;
455 };
456 
457 static DEFINE_MUTEX(hyp_shared_pfns_lock);
458 static struct rb_root hyp_shared_pfns = RB_ROOT;
459 
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)460 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
461 					      struct rb_node **parent)
462 {
463 	struct hyp_shared_pfn *this;
464 
465 	*node = &hyp_shared_pfns.rb_node;
466 	*parent = NULL;
467 	while (**node) {
468 		this = container_of(**node, struct hyp_shared_pfn, node);
469 		*parent = **node;
470 		if (this->pfn < pfn)
471 			*node = &((**node)->rb_left);
472 		else if (this->pfn > pfn)
473 			*node = &((**node)->rb_right);
474 		else
475 			return this;
476 	}
477 
478 	return NULL;
479 }
480 
share_pfn_hyp(u64 pfn)481 static int share_pfn_hyp(u64 pfn)
482 {
483 	struct rb_node **node, *parent;
484 	struct hyp_shared_pfn *this;
485 	int ret = 0;
486 
487 	mutex_lock(&hyp_shared_pfns_lock);
488 	this = find_shared_pfn(pfn, &node, &parent);
489 	if (this) {
490 		this->count++;
491 		goto unlock;
492 	}
493 
494 	this = kzalloc(sizeof(*this), GFP_KERNEL);
495 	if (!this) {
496 		ret = -ENOMEM;
497 		goto unlock;
498 	}
499 
500 	this->pfn = pfn;
501 	this->count = 1;
502 	rb_link_node(&this->node, parent, node);
503 	rb_insert_color(&this->node, &hyp_shared_pfns);
504 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
505 unlock:
506 	mutex_unlock(&hyp_shared_pfns_lock);
507 
508 	return ret;
509 }
510 
unshare_pfn_hyp(u64 pfn)511 static int unshare_pfn_hyp(u64 pfn)
512 {
513 	struct rb_node **node, *parent;
514 	struct hyp_shared_pfn *this;
515 	int ret = 0;
516 
517 	mutex_lock(&hyp_shared_pfns_lock);
518 	this = find_shared_pfn(pfn, &node, &parent);
519 	if (WARN_ON(!this)) {
520 		ret = -ENOENT;
521 		goto unlock;
522 	}
523 
524 	this->count--;
525 	if (this->count)
526 		goto unlock;
527 
528 	rb_erase(&this->node, &hyp_shared_pfns);
529 	kfree(this);
530 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
531 unlock:
532 	mutex_unlock(&hyp_shared_pfns_lock);
533 
534 	return ret;
535 }
536 
kvm_share_hyp(void * from,void * to)537 int kvm_share_hyp(void *from, void *to)
538 {
539 	phys_addr_t start, end, cur;
540 	u64 pfn;
541 	int ret;
542 
543 	if (is_kernel_in_hyp_mode())
544 		return 0;
545 
546 	/*
547 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
548 	 * VA space, so we can only share physically contiguous data-structures
549 	 * for now.
550 	 */
551 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
552 		return -EINVAL;
553 
554 	if (kvm_host_owns_hyp_mappings())
555 		return create_hyp_mappings(from, to, PAGE_HYP);
556 
557 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
558 	end = PAGE_ALIGN(__pa(to));
559 	for (cur = start; cur < end; cur += PAGE_SIZE) {
560 		pfn = __phys_to_pfn(cur);
561 		ret = share_pfn_hyp(pfn);
562 		if (ret)
563 			return ret;
564 	}
565 
566 	return 0;
567 }
568 
kvm_unshare_hyp(void * from,void * to)569 void kvm_unshare_hyp(void *from, void *to)
570 {
571 	phys_addr_t start, end, cur;
572 	u64 pfn;
573 
574 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
575 		return;
576 
577 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
578 	end = PAGE_ALIGN(__pa(to));
579 	for (cur = start; cur < end; cur += PAGE_SIZE) {
580 		pfn = __phys_to_pfn(cur);
581 		WARN_ON(unshare_pfn_hyp(pfn));
582 	}
583 }
584 
585 /**
586  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587  * @from:	The virtual kernel start address of the range
588  * @to:		The virtual kernel end address of the range (exclusive)
589  * @prot:	The protection to be applied to this range
590  *
591  * The same virtual address as the kernel virtual address is also used
592  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
593  * physical pages.
594  */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)595 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
596 {
597 	phys_addr_t phys_addr;
598 	unsigned long virt_addr;
599 	unsigned long start = kern_hyp_va((unsigned long)from);
600 	unsigned long end = kern_hyp_va((unsigned long)to);
601 
602 	if (is_kernel_in_hyp_mode())
603 		return 0;
604 
605 	if (!kvm_host_owns_hyp_mappings())
606 		return -EPERM;
607 
608 	start = start & PAGE_MASK;
609 	end = PAGE_ALIGN(end);
610 
611 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
612 		int err;
613 
614 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
615 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
616 					    prot);
617 		if (err)
618 			return err;
619 	}
620 
621 	return 0;
622 }
623 
__hyp_alloc_private_va_range(unsigned long base)624 static int __hyp_alloc_private_va_range(unsigned long base)
625 {
626 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
627 
628 	if (!PAGE_ALIGNED(base))
629 		return -EINVAL;
630 
631 	/*
632 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
633 	 * allocating the new area, as it would indicate we've
634 	 * overflowed the idmap/IO address range.
635 	 */
636 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
637 		return -ENOMEM;
638 
639 	io_map_base = base;
640 
641 	return 0;
642 }
643 
644 /**
645  * hyp_alloc_private_va_range - Allocates a private VA range.
646  * @size:	The size of the VA range to reserve.
647  * @haddr:	The hypervisor virtual start address of the allocation.
648  *
649  * The private virtual address (VA) range is allocated below io_map_base
650  * and aligned based on the order of @size.
651  *
652  * Return: 0 on success or negative error code on failure.
653  */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)654 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
655 {
656 	unsigned long base;
657 	int ret = 0;
658 
659 	mutex_lock(&kvm_hyp_pgd_mutex);
660 
661 	/*
662 	 * This assumes that we have enough space below the idmap
663 	 * page to allocate our VAs. If not, the check in
664 	 * __hyp_alloc_private_va_range() will kick. A potential
665 	 * alternative would be to detect that overflow and switch
666 	 * to an allocation above the idmap.
667 	 *
668 	 * The allocated size is always a multiple of PAGE_SIZE.
669 	 */
670 	size = PAGE_ALIGN(size);
671 	base = io_map_base - size;
672 	ret = __hyp_alloc_private_va_range(base);
673 
674 	mutex_unlock(&kvm_hyp_pgd_mutex);
675 
676 	if (!ret)
677 		*haddr = base;
678 
679 	return ret;
680 }
681 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)682 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
683 					unsigned long *haddr,
684 					enum kvm_pgtable_prot prot)
685 {
686 	unsigned long addr;
687 	int ret = 0;
688 
689 	if (!kvm_host_owns_hyp_mappings()) {
690 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
691 					 phys_addr, size, prot);
692 		if (IS_ERR_VALUE(addr))
693 			return addr;
694 		*haddr = addr;
695 
696 		return 0;
697 	}
698 
699 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
700 	ret = hyp_alloc_private_va_range(size, &addr);
701 	if (ret)
702 		return ret;
703 
704 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
705 	if (ret)
706 		return ret;
707 
708 	*haddr = addr + offset_in_page(phys_addr);
709 	return ret;
710 }
711 
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)712 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
713 {
714 	unsigned long base;
715 	size_t size;
716 	int ret;
717 
718 	mutex_lock(&kvm_hyp_pgd_mutex);
719 	/*
720 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
721 	 * an alignment of our allocation on the order of the size.
722 	 */
723 	size = NVHE_STACK_SIZE * 2;
724 	base = ALIGN_DOWN(io_map_base - size, size);
725 
726 	ret = __hyp_alloc_private_va_range(base);
727 
728 	mutex_unlock(&kvm_hyp_pgd_mutex);
729 
730 	if (ret) {
731 		kvm_err("Cannot allocate hyp stack guard page\n");
732 		return ret;
733 	}
734 
735 	/*
736 	 * Since the stack grows downwards, map the stack to the page
737 	 * at the higher address and leave the lower guard page
738 	 * unbacked.
739 	 *
740 	 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
741 	 * and addresses corresponding to the guard page have the
742 	 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
743 	 */
744 	ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
745 				    phys_addr, PAGE_HYP);
746 	if (ret)
747 		kvm_err("Cannot map hyp stack\n");
748 
749 	*haddr = base + size;
750 
751 	return ret;
752 }
753 
754 /**
755  * create_hyp_io_mappings - Map IO into both kernel and HYP
756  * @phys_addr:	The physical start address which gets mapped
757  * @size:	Size of the region being mapped
758  * @kaddr:	Kernel VA for this mapping
759  * @haddr:	HYP VA for this mapping
760  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)761 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
762 			   void __iomem **kaddr,
763 			   void __iomem **haddr)
764 {
765 	unsigned long addr;
766 	int ret;
767 
768 	if (is_protected_kvm_enabled())
769 		return -EPERM;
770 
771 	*kaddr = ioremap(phys_addr, size);
772 	if (!*kaddr)
773 		return -ENOMEM;
774 
775 	if (is_kernel_in_hyp_mode()) {
776 		*haddr = *kaddr;
777 		return 0;
778 	}
779 
780 	ret = __create_hyp_private_mapping(phys_addr, size,
781 					   &addr, PAGE_HYP_DEVICE);
782 	if (ret) {
783 		iounmap(*kaddr);
784 		*kaddr = NULL;
785 		*haddr = NULL;
786 		return ret;
787 	}
788 
789 	*haddr = (void __iomem *)addr;
790 	return 0;
791 }
792 
793 /**
794  * create_hyp_exec_mappings - Map an executable range into HYP
795  * @phys_addr:	The physical start address which gets mapped
796  * @size:	Size of the region being mapped
797  * @haddr:	HYP VA for this mapping
798  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)799 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
800 			     void **haddr)
801 {
802 	unsigned long addr;
803 	int ret;
804 
805 	BUG_ON(is_kernel_in_hyp_mode());
806 
807 	ret = __create_hyp_private_mapping(phys_addr, size,
808 					   &addr, PAGE_HYP_EXEC);
809 	if (ret) {
810 		*haddr = NULL;
811 		return ret;
812 	}
813 
814 	*haddr = (void *)addr;
815 	return 0;
816 }
817 
818 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
819 	/* We shouldn't need any other callback to walk the PT */
820 	.phys_to_virt		= kvm_host_va,
821 };
822 
get_user_mapping_size(struct kvm * kvm,u64 addr)823 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
824 {
825 	struct kvm_pgtable pgt = {
826 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
827 		.ia_bits	= vabits_actual,
828 		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
829 				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
830 		.mm_ops		= &kvm_user_mm_ops,
831 	};
832 	unsigned long flags;
833 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
834 	s8 level = S8_MAX;
835 	int ret;
836 
837 	/*
838 	 * Disable IRQs so that we hazard against a concurrent
839 	 * teardown of the userspace page tables (which relies on
840 	 * IPI-ing threads).
841 	 */
842 	local_irq_save(flags);
843 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
844 	local_irq_restore(flags);
845 
846 	if (ret)
847 		return ret;
848 
849 	/*
850 	 * Not seeing an error, but not updating level? Something went
851 	 * deeply wrong...
852 	 */
853 	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
854 		return -EFAULT;
855 	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
856 		return -EFAULT;
857 
858 	/* Oops, the userspace PTs are gone... Replay the fault */
859 	if (!kvm_pte_valid(pte))
860 		return -EAGAIN;
861 
862 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
863 }
864 
865 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
866 	.zalloc_page		= stage2_memcache_zalloc_page,
867 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
868 	.free_pages_exact	= kvm_s2_free_pages_exact,
869 	.free_unlinked_table	= stage2_free_unlinked_table,
870 	.get_page		= kvm_host_get_page,
871 	.put_page		= kvm_s2_put_page,
872 	.page_count		= kvm_host_page_count,
873 	.phys_to_virt		= kvm_host_va,
874 	.virt_to_phys		= kvm_host_pa,
875 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
876 	.icache_inval_pou	= invalidate_icache_guest_page,
877 };
878 
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)879 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
880 {
881 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
882 	u64 mmfr0, mmfr1;
883 	u32 phys_shift;
884 
885 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
886 		return -EINVAL;
887 
888 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
889 	if (is_protected_kvm_enabled()) {
890 		phys_shift = kvm_ipa_limit;
891 	} else if (phys_shift) {
892 		if (phys_shift > kvm_ipa_limit ||
893 		    phys_shift < ARM64_MIN_PARANGE_BITS)
894 			return -EINVAL;
895 	} else {
896 		phys_shift = KVM_PHYS_SHIFT;
897 		if (phys_shift > kvm_ipa_limit) {
898 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
899 				     current->comm);
900 			return -EINVAL;
901 		}
902 	}
903 
904 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
905 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
906 	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
907 
908 	return 0;
909 }
910 
911 /**
912  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
913  * @kvm:	The pointer to the KVM structure
914  * @mmu:	The pointer to the s2 MMU structure
915  * @type:	The machine type of the virtual machine
916  *
917  * Allocates only the stage-2 HW PGD level table(s).
918  * Note we don't need locking here as this is only called in two cases:
919  *
920  * - when the VM is created, which can't race against anything
921  *
922  * - when secondary kvm_s2_mmu structures are initialised for NV
923  *   guests, and the caller must hold kvm->lock as this is called on a
924  *   per-vcpu basis.
925  */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)926 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
927 {
928 	int cpu, err;
929 	struct kvm_pgtable *pgt;
930 
931 	/*
932 	 * If we already have our page tables in place, and that the
933 	 * MMU context is the canonical one, we have a bug somewhere,
934 	 * as this is only supposed to ever happen once per VM.
935 	 *
936 	 * Otherwise, we're building nested page tables, and that's
937 	 * probably because userspace called KVM_ARM_VCPU_INIT more
938 	 * than once on the same vcpu. Since that's actually legal,
939 	 * don't kick a fuss and leave gracefully.
940 	 */
941 	if (mmu->pgt != NULL) {
942 		if (kvm_is_nested_s2_mmu(kvm, mmu))
943 			return 0;
944 
945 		kvm_err("kvm_arch already initialized?\n");
946 		return -EINVAL;
947 	}
948 
949 	err = kvm_init_ipa_range(mmu, type);
950 	if (err)
951 		return err;
952 
953 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
954 	if (!pgt)
955 		return -ENOMEM;
956 
957 	mmu->arch = &kvm->arch;
958 	err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
959 	if (err)
960 		goto out_free_pgtable;
961 
962 	mmu->pgt = pgt;
963 	if (is_protected_kvm_enabled())
964 		return 0;
965 
966 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
967 	if (!mmu->last_vcpu_ran) {
968 		err = -ENOMEM;
969 		goto out_destroy_pgtable;
970 	}
971 
972 	for_each_possible_cpu(cpu)
973 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
974 
975 	 /* The eager page splitting is disabled by default */
976 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
977 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
978 
979 	mmu->pgd_phys = __pa(pgt->pgd);
980 
981 	if (kvm_is_nested_s2_mmu(kvm, mmu))
982 		kvm_init_nested_s2_mmu(mmu);
983 
984 	return 0;
985 
986 out_destroy_pgtable:
987 	KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
988 out_free_pgtable:
989 	kfree(pgt);
990 	return err;
991 }
992 
kvm_uninit_stage2_mmu(struct kvm * kvm)993 void kvm_uninit_stage2_mmu(struct kvm *kvm)
994 {
995 	kvm_free_stage2_pgd(&kvm->arch.mmu);
996 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
997 }
998 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)999 static void stage2_unmap_memslot(struct kvm *kvm,
1000 				 struct kvm_memory_slot *memslot)
1001 {
1002 	hva_t hva = memslot->userspace_addr;
1003 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1004 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1005 	hva_t reg_end = hva + size;
1006 
1007 	/*
1008 	 * A memory region could potentially cover multiple VMAs, and any holes
1009 	 * between them, so iterate over all of them to find out if we should
1010 	 * unmap any of them.
1011 	 *
1012 	 *     +--------------------------------------------+
1013 	 * +---------------+----------------+   +----------------+
1014 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1015 	 * +---------------+----------------+   +----------------+
1016 	 *     |               memory region                |
1017 	 *     +--------------------------------------------+
1018 	 */
1019 	do {
1020 		struct vm_area_struct *vma;
1021 		hva_t vm_start, vm_end;
1022 
1023 		vma = find_vma_intersection(current->mm, hva, reg_end);
1024 		if (!vma)
1025 			break;
1026 
1027 		/*
1028 		 * Take the intersection of this VMA with the memory region
1029 		 */
1030 		vm_start = max(hva, vma->vm_start);
1031 		vm_end = min(reg_end, vma->vm_end);
1032 
1033 		if (!(vma->vm_flags & VM_PFNMAP)) {
1034 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1035 			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1036 		}
1037 		hva = vm_end;
1038 	} while (hva < reg_end);
1039 }
1040 
1041 /**
1042  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1043  * @kvm: The struct kvm pointer
1044  *
1045  * Go through the memregions and unmap any regular RAM
1046  * backing memory already mapped to the VM.
1047  */
stage2_unmap_vm(struct kvm * kvm)1048 void stage2_unmap_vm(struct kvm *kvm)
1049 {
1050 	struct kvm_memslots *slots;
1051 	struct kvm_memory_slot *memslot;
1052 	int idx, bkt;
1053 
1054 	idx = srcu_read_lock(&kvm->srcu);
1055 	mmap_read_lock(current->mm);
1056 	write_lock(&kvm->mmu_lock);
1057 
1058 	slots = kvm_memslots(kvm);
1059 	kvm_for_each_memslot(memslot, bkt, slots)
1060 		stage2_unmap_memslot(kvm, memslot);
1061 
1062 	kvm_nested_s2_unmap(kvm, true);
1063 
1064 	write_unlock(&kvm->mmu_lock);
1065 	mmap_read_unlock(current->mm);
1066 	srcu_read_unlock(&kvm->srcu, idx);
1067 }
1068 
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1069 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1070 {
1071 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1072 	struct kvm_pgtable *pgt = NULL;
1073 
1074 	write_lock(&kvm->mmu_lock);
1075 	pgt = mmu->pgt;
1076 	if (pgt) {
1077 		mmu->pgd_phys = 0;
1078 		mmu->pgt = NULL;
1079 		free_percpu(mmu->last_vcpu_ran);
1080 	}
1081 	write_unlock(&kvm->mmu_lock);
1082 
1083 	if (pgt) {
1084 		KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
1085 		kfree(pgt);
1086 	}
1087 }
1088 
hyp_mc_free_fn(void * addr,void * unused)1089 static void hyp_mc_free_fn(void *addr, void *unused)
1090 {
1091 	free_page((unsigned long)addr);
1092 }
1093 
hyp_mc_alloc_fn(void * unused)1094 static void *hyp_mc_alloc_fn(void *unused)
1095 {
1096 	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1097 }
1098 
free_hyp_memcache(struct kvm_hyp_memcache * mc)1099 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1100 {
1101 	if (!is_protected_kvm_enabled())
1102 		return;
1103 
1104 	kfree(mc->mapping);
1105 	__free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, NULL);
1106 }
1107 
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1108 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1109 {
1110 	if (!is_protected_kvm_enabled())
1111 		return 0;
1112 
1113 	if (!mc->mapping) {
1114 		mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1115 		if (!mc->mapping)
1116 			return -ENOMEM;
1117 	}
1118 
1119 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1120 				    kvm_host_pa, NULL);
1121 }
1122 
1123 /**
1124  * kvm_phys_addr_ioremap - map a device range to guest IPA
1125  *
1126  * @kvm:	The KVM pointer
1127  * @guest_ipa:	The IPA at which to insert the mapping
1128  * @pa:		The physical address of the device
1129  * @size:	The size of the mapping
1130  * @writable:   Whether or not to create a writable mapping
1131  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1132 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1133 			  phys_addr_t pa, unsigned long size, bool writable)
1134 {
1135 	phys_addr_t addr;
1136 	int ret = 0;
1137 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1138 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1139 	struct kvm_pgtable *pgt = mmu->pgt;
1140 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1141 				     KVM_PGTABLE_PROT_R |
1142 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1143 
1144 	if (is_protected_kvm_enabled())
1145 		return -EPERM;
1146 
1147 	size += offset_in_page(guest_ipa);
1148 	guest_ipa &= PAGE_MASK;
1149 
1150 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1151 		ret = kvm_mmu_topup_memory_cache(&cache,
1152 						 kvm_mmu_cache_min_pages(mmu));
1153 		if (ret)
1154 			break;
1155 
1156 		write_lock(&kvm->mmu_lock);
1157 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1158 				 pa, prot, &cache, 0);
1159 		write_unlock(&kvm->mmu_lock);
1160 		if (ret)
1161 			break;
1162 
1163 		pa += PAGE_SIZE;
1164 	}
1165 
1166 	kvm_mmu_free_memory_cache(&cache);
1167 	return ret;
1168 }
1169 
1170 /**
1171  * kvm_stage2_wp_range() - write protect stage2 memory region range
1172  * @mmu:        The KVM stage-2 MMU pointer
1173  * @addr:	Start address of range
1174  * @end:	End address of range
1175  */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1176 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1177 {
1178 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1179 }
1180 
1181 /**
1182  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1183  * @kvm:	The KVM pointer
1184  * @slot:	The memory slot to write protect
1185  *
1186  * Called to start logging dirty pages after memory region
1187  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1188  * all present PUD, PMD and PTEs are write protected in the memory region.
1189  * Afterwards read of dirty page log can be called.
1190  *
1191  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1192  * serializing operations for VM memory regions.
1193  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1194 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1195 {
1196 	struct kvm_memslots *slots = kvm_memslots(kvm);
1197 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1198 	phys_addr_t start, end;
1199 
1200 	if (WARN_ON_ONCE(!memslot))
1201 		return;
1202 
1203 	start = memslot->base_gfn << PAGE_SHIFT;
1204 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1205 
1206 	write_lock(&kvm->mmu_lock);
1207 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1208 	kvm_nested_s2_wp(kvm);
1209 	write_unlock(&kvm->mmu_lock);
1210 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1211 }
1212 
1213 /**
1214  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1215  *				   pages for memory slot
1216  * @kvm:	The KVM pointer
1217  * @slot:	The memory slot to split
1218  *
1219  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1220  * serializing operations for VM memory regions.
1221  */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1222 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1223 {
1224 	struct kvm_memslots *slots;
1225 	struct kvm_memory_slot *memslot;
1226 	phys_addr_t start, end;
1227 
1228 	lockdep_assert_held(&kvm->slots_lock);
1229 
1230 	slots = kvm_memslots(kvm);
1231 	memslot = id_to_memslot(slots, slot);
1232 
1233 	start = memslot->base_gfn << PAGE_SHIFT;
1234 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1235 
1236 	write_lock(&kvm->mmu_lock);
1237 	kvm_mmu_split_huge_pages(kvm, start, end);
1238 	write_unlock(&kvm->mmu_lock);
1239 }
1240 
1241 /*
1242  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1243  * @kvm:	The KVM pointer
1244  * @slot:	The memory slot associated with mask
1245  * @gfn_offset:	The gfn offset in memory slot
1246  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1247  *		slot to enable dirty logging on
1248  *
1249  * Writes protect selected pages to enable dirty logging, and then
1250  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1251  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1252 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1253 		struct kvm_memory_slot *slot,
1254 		gfn_t gfn_offset, unsigned long mask)
1255 {
1256 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1257 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1258 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1259 
1260 	lockdep_assert_held_write(&kvm->mmu_lock);
1261 
1262 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1263 
1264 	/*
1265 	 * Eager-splitting is done when manual-protect is set.  We
1266 	 * also check for initially-all-set because we can avoid
1267 	 * eager-splitting if initially-all-set is false.
1268 	 * Initially-all-set equal false implies that huge-pages were
1269 	 * already split when enabling dirty logging: no need to do it
1270 	 * again.
1271 	 */
1272 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1273 		kvm_mmu_split_huge_pages(kvm, start, end);
1274 
1275 	kvm_nested_s2_wp(kvm);
1276 }
1277 
kvm_send_hwpoison_signal(unsigned long address,short lsb)1278 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1279 {
1280 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1281 }
1282 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1283 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1284 					       unsigned long hva,
1285 					       unsigned long map_size)
1286 {
1287 	gpa_t gpa_start;
1288 	hva_t uaddr_start, uaddr_end;
1289 	size_t size;
1290 
1291 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1292 	if (map_size == PAGE_SIZE)
1293 		return true;
1294 
1295 	size = memslot->npages * PAGE_SIZE;
1296 
1297 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1298 
1299 	uaddr_start = memslot->userspace_addr;
1300 	uaddr_end = uaddr_start + size;
1301 
1302 	/*
1303 	 * Pages belonging to memslots that don't have the same alignment
1304 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1305 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1306 	 *
1307 	 * Consider a layout like the following:
1308 	 *
1309 	 *    memslot->userspace_addr:
1310 	 *    +-----+--------------------+--------------------+---+
1311 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1312 	 *    +-----+--------------------+--------------------+---+
1313 	 *
1314 	 *    memslot->base_gfn << PAGE_SHIFT:
1315 	 *      +---+--------------------+--------------------+-----+
1316 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1317 	 *      +---+--------------------+--------------------+-----+
1318 	 *
1319 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1320 	 * mapping:
1321 	 *   d -> f
1322 	 *   e -> g
1323 	 *   f -> h
1324 	 */
1325 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1326 		return false;
1327 
1328 	/*
1329 	 * Next, let's make sure we're not trying to map anything not covered
1330 	 * by the memslot. This means we have to prohibit block size mappings
1331 	 * for the beginning and end of a non-block aligned and non-block sized
1332 	 * memory slot (illustrated by the head and tail parts of the
1333 	 * userspace view above containing pages 'abcde' and 'xyz',
1334 	 * respectively).
1335 	 *
1336 	 * Note that it doesn't matter if we do the check using the
1337 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1338 	 * the check above) and equally sized.
1339 	 */
1340 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1341 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1342 }
1343 
1344 /*
1345  * Check if the given hva is backed by a transparent huge page (THP) and
1346  * whether it can be mapped using block mapping in stage2. If so, adjust
1347  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1348  * supported. This will need to be updated to support other THP sizes.
1349  *
1350  * Returns the size of the mapping.
1351  */
1352 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1353 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1354 			    unsigned long hva, kvm_pfn_t *pfnp,
1355 			    phys_addr_t *ipap)
1356 {
1357 	kvm_pfn_t pfn = *pfnp;
1358 
1359 	/*
1360 	 * Make sure the adjustment is done only for THP pages. Also make
1361 	 * sure that the HVA and IPA are sufficiently aligned and that the
1362 	 * block map is contained within the memslot.
1363 	 */
1364 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1365 		int sz = get_user_mapping_size(kvm, hva);
1366 
1367 		if (sz < 0)
1368 			return sz;
1369 
1370 		if (sz < PMD_SIZE)
1371 			return PAGE_SIZE;
1372 
1373 		*ipap &= PMD_MASK;
1374 		pfn &= ~(PTRS_PER_PMD - 1);
1375 		*pfnp = pfn;
1376 
1377 		return PMD_SIZE;
1378 	}
1379 
1380 	/* Use page mapping if we cannot use block mapping. */
1381 	return PAGE_SIZE;
1382 }
1383 
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1384 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1385 {
1386 	unsigned long pa;
1387 
1388 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1389 		return huge_page_shift(hstate_vma(vma));
1390 
1391 	if (!(vma->vm_flags & VM_PFNMAP))
1392 		return PAGE_SHIFT;
1393 
1394 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1395 
1396 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1397 
1398 #ifndef __PAGETABLE_PMD_FOLDED
1399 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1400 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1401 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1402 		return PUD_SHIFT;
1403 #endif
1404 
1405 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1406 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1407 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1408 		return PMD_SHIFT;
1409 
1410 	return PAGE_SHIFT;
1411 }
1412 
1413 /*
1414  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1415  * able to see the page's tags and therefore they must be initialised first. If
1416  * PG_mte_tagged is set, tags have already been initialised.
1417  *
1418  * The race in the test/set of the PG_mte_tagged flag is handled by:
1419  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1420  *   racing to santise the same page
1421  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1422  *   an mprotect() to add VM_MTE
1423  */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1424 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1425 			      unsigned long size)
1426 {
1427 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1428 	struct page *page = pfn_to_page(pfn);
1429 	struct folio *folio = page_folio(page);
1430 
1431 	if (!kvm_has_mte(kvm))
1432 		return;
1433 
1434 	if (folio_test_hugetlb(folio)) {
1435 		/* Hugetlb has MTE flags set on head page only */
1436 		if (folio_try_hugetlb_mte_tagging(folio)) {
1437 			for (i = 0; i < nr_pages; i++, page++)
1438 				mte_clear_page_tags(page_address(page));
1439 			folio_set_hugetlb_mte_tagged(folio);
1440 		}
1441 		return;
1442 	}
1443 
1444 	for (i = 0; i < nr_pages; i++, page++) {
1445 		if (try_page_mte_tagging(page)) {
1446 			mte_clear_page_tags(page_address(page));
1447 			set_page_mte_tagged(page);
1448 		}
1449 	}
1450 }
1451 
kvm_vma_mte_allowed(struct vm_area_struct * vma)1452 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1453 {
1454 	return vma->vm_flags & VM_MTE_ALLOWED;
1455 }
1456 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1457 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1458 			  struct kvm_s2_trans *nested,
1459 			  struct kvm_memory_slot *memslot, unsigned long hva,
1460 			  bool fault_is_perm)
1461 {
1462 	int ret = 0;
1463 	bool write_fault, writable, force_pte = false;
1464 	bool exec_fault, mte_allowed;
1465 	bool device = false, vfio_allow_any_uc = false;
1466 	unsigned long mmu_seq;
1467 	phys_addr_t ipa = fault_ipa;
1468 	struct kvm *kvm = vcpu->kvm;
1469 	struct vm_area_struct *vma;
1470 	short vma_shift;
1471 	void *memcache;
1472 	gfn_t gfn;
1473 	kvm_pfn_t pfn;
1474 	bool logging_active = memslot_is_logging(memslot);
1475 	long vma_pagesize, fault_granule;
1476 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1477 	struct kvm_pgtable *pgt;
1478 	struct page *page;
1479 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1480 
1481 	if (fault_is_perm)
1482 		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1483 	write_fault = kvm_is_write_fault(vcpu);
1484 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1485 	VM_BUG_ON(write_fault && exec_fault);
1486 
1487 	if (fault_is_perm && !write_fault && !exec_fault) {
1488 		kvm_err("Unexpected L2 read permission error\n");
1489 		return -EFAULT;
1490 	}
1491 
1492 	/*
1493 	 * Permission faults just need to update the existing leaf entry,
1494 	 * and so normally don't require allocations from the memcache. The
1495 	 * only exception to this is when dirty logging is enabled at runtime
1496 	 * and a write fault needs to collapse a block entry into a table.
1497 	 */
1498 	if (!fault_is_perm || (logging_active && write_fault)) {
1499 		int min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1500 
1501 		if (!is_protected_kvm_enabled()) {
1502 			memcache = &vcpu->arch.mmu_page_cache;
1503 			ret = kvm_mmu_topup_memory_cache(memcache, min_pages);
1504 		} else {
1505 			memcache = &vcpu->arch.pkvm_memcache;
1506 			ret = topup_hyp_memcache(memcache, min_pages);
1507 		}
1508 		if (ret)
1509 			return ret;
1510 	}
1511 
1512 	/*
1513 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1514 	 * get block mapping for device MMIO region.
1515 	 */
1516 	mmap_read_lock(current->mm);
1517 	vma = vma_lookup(current->mm, hva);
1518 	if (unlikely(!vma)) {
1519 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1520 		mmap_read_unlock(current->mm);
1521 		return -EFAULT;
1522 	}
1523 
1524 	/*
1525 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1526 	 * memslots.
1527 	 */
1528 	if (logging_active || is_protected_kvm_enabled()) {
1529 		force_pte = true;
1530 		vma_shift = PAGE_SHIFT;
1531 	} else {
1532 		vma_shift = get_vma_page_shift(vma, hva);
1533 	}
1534 
1535 	switch (vma_shift) {
1536 #ifndef __PAGETABLE_PMD_FOLDED
1537 	case PUD_SHIFT:
1538 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1539 			break;
1540 		fallthrough;
1541 #endif
1542 	case CONT_PMD_SHIFT:
1543 		vma_shift = PMD_SHIFT;
1544 		fallthrough;
1545 	case PMD_SHIFT:
1546 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1547 			break;
1548 		fallthrough;
1549 	case CONT_PTE_SHIFT:
1550 		vma_shift = PAGE_SHIFT;
1551 		force_pte = true;
1552 		fallthrough;
1553 	case PAGE_SHIFT:
1554 		break;
1555 	default:
1556 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1557 	}
1558 
1559 	vma_pagesize = 1UL << vma_shift;
1560 
1561 	if (nested) {
1562 		unsigned long max_map_size;
1563 
1564 		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1565 
1566 		ipa = kvm_s2_trans_output(nested);
1567 
1568 		/*
1569 		 * If we're about to create a shadow stage 2 entry, then we
1570 		 * can only create a block mapping if the guest stage 2 page
1571 		 * table uses at least as big a mapping.
1572 		 */
1573 		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1574 
1575 		/*
1576 		 * Be careful that if the mapping size falls between
1577 		 * two host sizes, take the smallest of the two.
1578 		 */
1579 		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1580 			max_map_size = PMD_SIZE;
1581 		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1582 			max_map_size = PAGE_SIZE;
1583 
1584 		force_pte = (max_map_size == PAGE_SIZE);
1585 		vma_pagesize = min(vma_pagesize, (long)max_map_size);
1586 	}
1587 
1588 	/*
1589 	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1590 	 * ensure we find the right PFN and lay down the mapping in the right
1591 	 * place.
1592 	 */
1593 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1594 		fault_ipa &= ~(vma_pagesize - 1);
1595 		ipa &= ~(vma_pagesize - 1);
1596 	}
1597 
1598 	gfn = ipa >> PAGE_SHIFT;
1599 	mte_allowed = kvm_vma_mte_allowed(vma);
1600 
1601 	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1602 
1603 	/* Don't use the VMA after the unlock -- it may have vanished */
1604 	vma = NULL;
1605 
1606 	/*
1607 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1608 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1609 	 * acquiring kvm->mmu_lock.
1610 	 *
1611 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1612 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1613 	 */
1614 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1615 	mmap_read_unlock(current->mm);
1616 
1617 	pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1618 				&writable, &page);
1619 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1620 		kvm_send_hwpoison_signal(hva, vma_shift);
1621 		return 0;
1622 	}
1623 	if (is_error_noslot_pfn(pfn))
1624 		return -EFAULT;
1625 
1626 	if (kvm_is_device_pfn(pfn)) {
1627 		/*
1628 		 * If the page was identified as device early by looking at
1629 		 * the VMA flags, vma_pagesize is already representing the
1630 		 * largest quantity we can map.  If instead it was mapped
1631 		 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1632 		 * and must not be upgraded.
1633 		 *
1634 		 * In both cases, we don't let transparent_hugepage_adjust()
1635 		 * change things at the last minute.
1636 		 */
1637 		device = true;
1638 	} else if (logging_active && !write_fault) {
1639 		/*
1640 		 * Only actually map the page as writable if this was a write
1641 		 * fault.
1642 		 */
1643 		writable = false;
1644 	}
1645 
1646 	if (exec_fault && device)
1647 		return -ENOEXEC;
1648 
1649 	/*
1650 	 * Potentially reduce shadow S2 permissions to match the guest's own
1651 	 * S2. For exec faults, we'd only reach this point if the guest
1652 	 * actually allowed it (see kvm_s2_handle_perm_fault).
1653 	 *
1654 	 * Also encode the level of the original translation in the SW bits
1655 	 * of the leaf entry as a proxy for the span of that translation.
1656 	 * This will be retrieved on TLB invalidation from the guest and
1657 	 * used to limit the invalidation scope if a TTL hint or a range
1658 	 * isn't provided.
1659 	 */
1660 	if (nested) {
1661 		writable &= kvm_s2_trans_writable(nested);
1662 		if (!kvm_s2_trans_readable(nested))
1663 			prot &= ~KVM_PGTABLE_PROT_R;
1664 
1665 		prot |= kvm_encode_nested_level(nested);
1666 	}
1667 
1668 	kvm_fault_lock(kvm);
1669 	pgt = vcpu->arch.hw_mmu->pgt;
1670 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1671 		ret = -EAGAIN;
1672 		goto out_unlock;
1673 	}
1674 
1675 	/*
1676 	 * If we are not forced to use page mapping, check if we are
1677 	 * backed by a THP and thus use block mapping if possible.
1678 	 */
1679 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1680 		if (fault_is_perm && fault_granule > PAGE_SIZE)
1681 			vma_pagesize = fault_granule;
1682 		else
1683 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1684 								   hva, &pfn,
1685 								   &fault_ipa);
1686 
1687 		if (vma_pagesize < 0) {
1688 			ret = vma_pagesize;
1689 			goto out_unlock;
1690 		}
1691 	}
1692 
1693 	if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1694 		/* Check the VMM hasn't introduced a new disallowed VMA */
1695 		if (mte_allowed) {
1696 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1697 		} else {
1698 			ret = -EFAULT;
1699 			goto out_unlock;
1700 		}
1701 	}
1702 
1703 	if (writable)
1704 		prot |= KVM_PGTABLE_PROT_W;
1705 
1706 	if (exec_fault)
1707 		prot |= KVM_PGTABLE_PROT_X;
1708 
1709 	if (device) {
1710 		if (vfio_allow_any_uc)
1711 			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1712 		else
1713 			prot |= KVM_PGTABLE_PROT_DEVICE;
1714 	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1715 		   (!nested || kvm_s2_trans_executable(nested))) {
1716 		prot |= KVM_PGTABLE_PROT_X;
1717 	}
1718 
1719 	/*
1720 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1721 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1722 	 * kvm_pgtable_stage2_map() should be called to change block size.
1723 	 */
1724 	if (fault_is_perm && vma_pagesize == fault_granule) {
1725 		/*
1726 		 * Drop the SW bits in favour of those stored in the
1727 		 * PTE, which will be preserved.
1728 		 */
1729 		prot &= ~KVM_NV_GUEST_MAP_SZ;
1730 		ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1731 	} else {
1732 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1733 					     __pfn_to_phys(pfn), prot,
1734 					     memcache, flags);
1735 	}
1736 
1737 out_unlock:
1738 	kvm_release_faultin_page(kvm, page, !!ret, writable);
1739 	kvm_fault_unlock(kvm);
1740 
1741 	/* Mark the page dirty only if the fault is handled successfully */
1742 	if (writable && !ret)
1743 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1744 
1745 	return ret != -EAGAIN ? ret : 0;
1746 }
1747 
1748 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1749 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1750 {
1751 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1752 	struct kvm_s2_mmu *mmu;
1753 
1754 	trace_kvm_access_fault(fault_ipa);
1755 
1756 	read_lock(&vcpu->kvm->mmu_lock);
1757 	mmu = vcpu->arch.hw_mmu;
1758 	KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1759 	read_unlock(&vcpu->kvm->mmu_lock);
1760 }
1761 
1762 /**
1763  * kvm_handle_guest_abort - handles all 2nd stage aborts
1764  * @vcpu:	the VCPU pointer
1765  *
1766  * Any abort that gets to the host is almost guaranteed to be caused by a
1767  * missing second stage translation table entry, which can mean that either the
1768  * guest simply needs more memory and we must allocate an appropriate page or it
1769  * can mean that the guest tried to access I/O memory, which is emulated by user
1770  * space. The distinction is based on the IPA causing the fault and whether this
1771  * memory region has been registered as standard RAM by user space.
1772  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1773 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1774 {
1775 	struct kvm_s2_trans nested_trans, *nested = NULL;
1776 	unsigned long esr;
1777 	phys_addr_t fault_ipa; /* The address we faulted on */
1778 	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1779 	struct kvm_memory_slot *memslot;
1780 	unsigned long hva;
1781 	bool is_iabt, write_fault, writable;
1782 	gfn_t gfn;
1783 	int ret, idx;
1784 
1785 	esr = kvm_vcpu_get_esr(vcpu);
1786 
1787 	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1788 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1789 
1790 	if (esr_fsc_is_translation_fault(esr)) {
1791 		/* Beyond sanitised PARange (which is the IPA limit) */
1792 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1793 			kvm_inject_size_fault(vcpu);
1794 			return 1;
1795 		}
1796 
1797 		/* Falls between the IPA range and the PARange? */
1798 		if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
1799 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1800 
1801 			if (is_iabt)
1802 				kvm_inject_pabt(vcpu, fault_ipa);
1803 			else
1804 				kvm_inject_dabt(vcpu, fault_ipa);
1805 			return 1;
1806 		}
1807 	}
1808 
1809 	/* Synchronous External Abort? */
1810 	if (kvm_vcpu_abt_issea(vcpu)) {
1811 		/*
1812 		 * For RAS the host kernel may handle this abort.
1813 		 * There is no need to pass the error into the guest.
1814 		 */
1815 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1816 			kvm_inject_vabt(vcpu);
1817 
1818 		return 1;
1819 	}
1820 
1821 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1822 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1823 
1824 	/* Check the stage-2 fault is trans. fault or write fault */
1825 	if (!esr_fsc_is_translation_fault(esr) &&
1826 	    !esr_fsc_is_permission_fault(esr) &&
1827 	    !esr_fsc_is_access_flag_fault(esr)) {
1828 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1829 			kvm_vcpu_trap_get_class(vcpu),
1830 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1831 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1832 		return -EFAULT;
1833 	}
1834 
1835 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1836 
1837 	/*
1838 	 * We may have faulted on a shadow stage 2 page table if we are
1839 	 * running a nested guest.  In this case, we have to resolve the L2
1840 	 * IPA to the L1 IPA first, before knowing what kind of memory should
1841 	 * back the L1 IPA.
1842 	 *
1843 	 * If the shadow stage 2 page table walk faults, then we simply inject
1844 	 * this to the guest and carry on.
1845 	 *
1846 	 * If there are no shadow S2 PTs because S2 is disabled, there is
1847 	 * nothing to walk and we treat it as a 1:1 before going through the
1848 	 * canonical translation.
1849 	 */
1850 	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1851 	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
1852 		u32 esr;
1853 
1854 		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1855 		if (ret) {
1856 			esr = kvm_s2_trans_esr(&nested_trans);
1857 			kvm_inject_s2_fault(vcpu, esr);
1858 			goto out_unlock;
1859 		}
1860 
1861 		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1862 		if (ret) {
1863 			esr = kvm_s2_trans_esr(&nested_trans);
1864 			kvm_inject_s2_fault(vcpu, esr);
1865 			goto out_unlock;
1866 		}
1867 
1868 		ipa = kvm_s2_trans_output(&nested_trans);
1869 		nested = &nested_trans;
1870 	}
1871 
1872 	gfn = ipa >> PAGE_SHIFT;
1873 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1874 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1875 	write_fault = kvm_is_write_fault(vcpu);
1876 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1877 		/*
1878 		 * The guest has put either its instructions or its page-tables
1879 		 * somewhere it shouldn't have. Userspace won't be able to do
1880 		 * anything about this (there's no syndrome for a start), so
1881 		 * re-inject the abort back into the guest.
1882 		 */
1883 		if (is_iabt) {
1884 			ret = -ENOEXEC;
1885 			goto out;
1886 		}
1887 
1888 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1889 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1890 			ret = 1;
1891 			goto out_unlock;
1892 		}
1893 
1894 		/*
1895 		 * Check for a cache maintenance operation. Since we
1896 		 * ended-up here, we know it is outside of any memory
1897 		 * slot. But we can't find out if that is for a device,
1898 		 * or if the guest is just being stupid. The only thing
1899 		 * we know for sure is that this range cannot be cached.
1900 		 *
1901 		 * So let's assume that the guest is just being
1902 		 * cautious, and skip the instruction.
1903 		 */
1904 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1905 			kvm_incr_pc(vcpu);
1906 			ret = 1;
1907 			goto out_unlock;
1908 		}
1909 
1910 		/*
1911 		 * The IPA is reported as [MAX:12], so we need to
1912 		 * complement it with the bottom 12 bits from the
1913 		 * faulting VA. This is always 12 bits, irrespective
1914 		 * of the page size.
1915 		 */
1916 		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1917 		ret = io_mem_abort(vcpu, ipa);
1918 		goto out_unlock;
1919 	}
1920 
1921 	/* Userspace should not be able to register out-of-bounds IPAs */
1922 	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1923 
1924 	if (esr_fsc_is_access_flag_fault(esr)) {
1925 		handle_access_fault(vcpu, fault_ipa);
1926 		ret = 1;
1927 		goto out_unlock;
1928 	}
1929 
1930 	ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1931 			     esr_fsc_is_permission_fault(esr));
1932 	if (ret == 0)
1933 		ret = 1;
1934 out:
1935 	if (ret == -ENOEXEC) {
1936 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1937 		ret = 1;
1938 	}
1939 out_unlock:
1940 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1941 	return ret;
1942 }
1943 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1944 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1945 {
1946 	if (!kvm->arch.mmu.pgt)
1947 		return false;
1948 
1949 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1950 			     (range->end - range->start) << PAGE_SHIFT,
1951 			     range->may_block);
1952 
1953 	kvm_nested_s2_unmap(kvm, range->may_block);
1954 	return false;
1955 }
1956 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1957 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1958 {
1959 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1960 
1961 	if (!kvm->arch.mmu.pgt)
1962 		return false;
1963 
1964 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
1965 						   range->start << PAGE_SHIFT,
1966 						   size, true);
1967 	/*
1968 	 * TODO: Handle nested_mmu structures here using the reverse mapping in
1969 	 * a later version of patch series.
1970 	 */
1971 }
1972 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1973 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1974 {
1975 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1976 
1977 	if (!kvm->arch.mmu.pgt)
1978 		return false;
1979 
1980 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
1981 						   range->start << PAGE_SHIFT,
1982 						   size, false);
1983 }
1984 
kvm_mmu_get_httbr(void)1985 phys_addr_t kvm_mmu_get_httbr(void)
1986 {
1987 	return __pa(hyp_pgtable->pgd);
1988 }
1989 
kvm_get_idmap_vector(void)1990 phys_addr_t kvm_get_idmap_vector(void)
1991 {
1992 	return hyp_idmap_vector;
1993 }
1994 
kvm_map_idmap_text(void)1995 static int kvm_map_idmap_text(void)
1996 {
1997 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1998 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1999 					PAGE_HYP_EXEC);
2000 	if (err)
2001 		kvm_err("Failed to idmap %lx-%lx\n",
2002 			hyp_idmap_start, hyp_idmap_end);
2003 
2004 	return err;
2005 }
2006 
kvm_hyp_zalloc_page(void * arg)2007 static void *kvm_hyp_zalloc_page(void *arg)
2008 {
2009 	return (void *)get_zeroed_page(GFP_KERNEL);
2010 }
2011 
2012 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2013 	.zalloc_page		= kvm_hyp_zalloc_page,
2014 	.get_page		= kvm_host_get_page,
2015 	.put_page		= kvm_host_put_page,
2016 	.phys_to_virt		= kvm_host_va,
2017 	.virt_to_phys		= kvm_host_pa,
2018 };
2019 
kvm_mmu_init(u32 * hyp_va_bits)2020 int __init kvm_mmu_init(u32 *hyp_va_bits)
2021 {
2022 	int err;
2023 	u32 idmap_bits;
2024 	u32 kernel_bits;
2025 
2026 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2027 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2028 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2029 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2030 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2031 
2032 	/*
2033 	 * We rely on the linker script to ensure at build time that the HYP
2034 	 * init code does not cross a page boundary.
2035 	 */
2036 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2037 
2038 	/*
2039 	 * The ID map is always configured for 48 bits of translation, which
2040 	 * may be fewer than the number of VA bits used by the regular kernel
2041 	 * stage 1, when VA_BITS=52.
2042 	 *
2043 	 * At EL2, there is only one TTBR register, and we can't switch between
2044 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2045 	 * line: we need to use the extended range with *both* our translation
2046 	 * tables.
2047 	 *
2048 	 * So use the maximum of the idmap VA bits and the regular kernel stage
2049 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2050 	 * and map any kernel memory.
2051 	 */
2052 	idmap_bits = IDMAP_VA_BITS;
2053 	kernel_bits = vabits_actual;
2054 	*hyp_va_bits = max(idmap_bits, kernel_bits);
2055 
2056 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2057 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2058 	kvm_debug("HYP VA range: %lx:%lx\n",
2059 		  kern_hyp_va(PAGE_OFFSET),
2060 		  kern_hyp_va((unsigned long)high_memory - 1));
2061 
2062 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2063 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2064 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2065 		/*
2066 		 * The idmap page is intersecting with the VA space,
2067 		 * it is not safe to continue further.
2068 		 */
2069 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2070 		err = -EINVAL;
2071 		goto out;
2072 	}
2073 
2074 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2075 	if (!hyp_pgtable) {
2076 		kvm_err("Hyp mode page-table not allocated\n");
2077 		err = -ENOMEM;
2078 		goto out;
2079 	}
2080 
2081 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2082 	if (err)
2083 		goto out_free_pgtable;
2084 
2085 	err = kvm_map_idmap_text();
2086 	if (err)
2087 		goto out_destroy_pgtable;
2088 
2089 	io_map_base = hyp_idmap_start;
2090 	__hyp_va_bits = *hyp_va_bits;
2091 	return 0;
2092 
2093 out_destroy_pgtable:
2094 	kvm_pgtable_hyp_destroy(hyp_pgtable);
2095 out_free_pgtable:
2096 	kfree(hyp_pgtable);
2097 	hyp_pgtable = NULL;
2098 out:
2099 	return err;
2100 }
2101 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2102 void kvm_arch_commit_memory_region(struct kvm *kvm,
2103 				   struct kvm_memory_slot *old,
2104 				   const struct kvm_memory_slot *new,
2105 				   enum kvm_mr_change change)
2106 {
2107 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2108 
2109 	/*
2110 	 * At this point memslot has been committed and there is an
2111 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2112 	 * memory slot is write protected.
2113 	 */
2114 	if (log_dirty_pages) {
2115 
2116 		if (change == KVM_MR_DELETE)
2117 			return;
2118 
2119 		/*
2120 		 * Huge and normal pages are write-protected and split
2121 		 * on either of these two cases:
2122 		 *
2123 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2124 		 */
2125 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2126 			return;
2127 		/*
2128 		 * or
2129 		 * 2. without initial-all-set: all in one shot when
2130 		 *    enabling dirty logging.
2131 		 */
2132 		kvm_mmu_wp_memory_region(kvm, new->id);
2133 		kvm_mmu_split_memory_region(kvm, new->id);
2134 	} else {
2135 		/*
2136 		 * Free any leftovers from the eager page splitting cache. Do
2137 		 * this when deleting, moving, disabling dirty logging, or
2138 		 * creating the memslot (a nop). Doing it for deletes makes
2139 		 * sure we don't leak memory, and there's no need to keep the
2140 		 * cache around for any of the other cases.
2141 		 */
2142 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2143 	}
2144 }
2145 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2146 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2147 				   const struct kvm_memory_slot *old,
2148 				   struct kvm_memory_slot *new,
2149 				   enum kvm_mr_change change)
2150 {
2151 	hva_t hva, reg_end;
2152 	int ret = 0;
2153 
2154 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2155 			change != KVM_MR_FLAGS_ONLY)
2156 		return 0;
2157 
2158 	/*
2159 	 * Prevent userspace from creating a memory region outside of the IPA
2160 	 * space addressable by the KVM guest IPA space.
2161 	 */
2162 	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2163 		return -EFAULT;
2164 
2165 	hva = new->userspace_addr;
2166 	reg_end = hva + (new->npages << PAGE_SHIFT);
2167 
2168 	mmap_read_lock(current->mm);
2169 	/*
2170 	 * A memory region could potentially cover multiple VMAs, and any holes
2171 	 * between them, so iterate over all of them.
2172 	 *
2173 	 *     +--------------------------------------------+
2174 	 * +---------------+----------------+   +----------------+
2175 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2176 	 * +---------------+----------------+   +----------------+
2177 	 *     |               memory region                |
2178 	 *     +--------------------------------------------+
2179 	 */
2180 	do {
2181 		struct vm_area_struct *vma;
2182 
2183 		vma = find_vma_intersection(current->mm, hva, reg_end);
2184 		if (!vma)
2185 			break;
2186 
2187 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2188 			ret = -EINVAL;
2189 			break;
2190 		}
2191 
2192 		if (vma->vm_flags & VM_PFNMAP) {
2193 			/* IO region dirty page logging not allowed */
2194 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2195 				ret = -EINVAL;
2196 				break;
2197 			}
2198 		}
2199 		hva = min(reg_end, vma->vm_end);
2200 	} while (hva < reg_end);
2201 
2202 	mmap_read_unlock(current->mm);
2203 	return ret;
2204 }
2205 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2206 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2207 {
2208 }
2209 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2210 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2211 {
2212 }
2213 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2214 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2215 				   struct kvm_memory_slot *slot)
2216 {
2217 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2218 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2219 
2220 	write_lock(&kvm->mmu_lock);
2221 	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2222 	kvm_nested_s2_unmap(kvm, true);
2223 	write_unlock(&kvm->mmu_lock);
2224 }
2225 
2226 /*
2227  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2228  *
2229  * Main problems:
2230  * - S/W ops are local to a CPU (not broadcast)
2231  * - We have line migration behind our back (speculation)
2232  * - System caches don't support S/W at all (damn!)
2233  *
2234  * In the face of the above, the best we can do is to try and convert
2235  * S/W ops to VA ops. Because the guest is not allowed to infer the
2236  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2237  * which is a rather good thing for us.
2238  *
2239  * Also, it is only used when turning caches on/off ("The expected
2240  * usage of the cache maintenance instructions that operate by set/way
2241  * is associated with the cache maintenance instructions associated
2242  * with the powerdown and powerup of caches, if this is required by
2243  * the implementation.").
2244  *
2245  * We use the following policy:
2246  *
2247  * - If we trap a S/W operation, we enable VM trapping to detect
2248  *   caches being turned on/off, and do a full clean.
2249  *
2250  * - We flush the caches on both caches being turned on and off.
2251  *
2252  * - Once the caches are enabled, we stop trapping VM ops.
2253  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2254 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2255 {
2256 	unsigned long hcr = *vcpu_hcr(vcpu);
2257 
2258 	/*
2259 	 * If this is the first time we do a S/W operation
2260 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2261 	 * VM trapping.
2262 	 *
2263 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2264 	 * Caches to be turned off. At that point, we'll be able to
2265 	 * clean the caches again.
2266 	 */
2267 	if (!(hcr & HCR_TVM)) {
2268 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2269 					vcpu_has_cache_enabled(vcpu));
2270 		stage2_flush_vm(vcpu->kvm);
2271 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2272 	}
2273 }
2274 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2275 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2276 {
2277 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2278 
2279 	/*
2280 	 * If switching the MMU+caches on, need to invalidate the caches.
2281 	 * If switching it off, need to clean the caches.
2282 	 * Clean + invalidate does the trick always.
2283 	 */
2284 	if (now_enabled != was_enabled)
2285 		stage2_flush_vm(vcpu->kvm);
2286 
2287 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2288 	if (now_enabled)
2289 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2290 
2291 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2292 }
2293