1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/cpufreq/cpufreq_governor.c
4  *
5  * CPUFREQ governors common code
6  *
7  * Copyright	(C) 2001 Russell King
8  *		(C) 2003 Venkatesh Pallipadi <[email protected]>.
9  *		(C) 2003 Jun Nakajima <[email protected]>
10  *		(C) 2009 Alexander Clouter <[email protected]>
11  *		(c) 2012 Viresh Kumar <[email protected]>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/export.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/slab.h>
19 
20 #include "cpufreq_governor.h"
21 
22 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL	(2 * TICK_NSEC / NSEC_PER_USEC)
23 
24 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
25 
26 static DEFINE_MUTEX(gov_dbs_data_mutex);
27 
28 /* Common sysfs tunables */
29 /*
30  * sampling_rate_store - update sampling rate effective immediately if needed.
31  *
32  * If new rate is smaller than the old, simply updating
33  * dbs.sampling_rate might not be appropriate. For example, if the
34  * original sampling_rate was 1 second and the requested new sampling rate is 10
35  * ms because the user needs immediate reaction from ondemand governor, but not
36  * sure if higher frequency will be required or not, then, the governor may
37  * change the sampling rate too late; up to 1 second later. Thus, if we are
38  * reducing the sampling rate, we need to make the new value effective
39  * immediately.
40  *
41  * This must be called with dbs_data->mutex held, otherwise traversing
42  * policy_dbs_list isn't safe.
43  */
sampling_rate_store(struct gov_attr_set * attr_set,const char * buf,size_t count)44 ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf,
45 			    size_t count)
46 {
47 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
48 	struct policy_dbs_info *policy_dbs;
49 	unsigned int sampling_interval;
50 	int ret;
51 
52 	ret = sscanf(buf, "%u", &sampling_interval);
53 	if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
54 		return -EINVAL;
55 
56 	dbs_data->sampling_rate = sampling_interval;
57 
58 	/*
59 	 * We are operating under dbs_data->mutex and so the list and its
60 	 * entries can't be freed concurrently.
61 	 */
62 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63 		mutex_lock(&policy_dbs->update_mutex);
64 		/*
65 		 * On 32-bit architectures this may race with the
66 		 * sample_delay_ns read in dbs_update_util_handler(), but that
67 		 * really doesn't matter.  If the read returns a value that's
68 		 * too big, the sample will be skipped, but the next invocation
69 		 * of dbs_update_util_handler() (when the update has been
70 		 * completed) will take a sample.
71 		 *
72 		 * If this runs in parallel with dbs_work_handler(), we may end
73 		 * up overwriting the sample_delay_ns value that it has just
74 		 * written, but it will be corrected next time a sample is
75 		 * taken, so it shouldn't be significant.
76 		 */
77 		gov_update_sample_delay(policy_dbs, 0);
78 		mutex_unlock(&policy_dbs->update_mutex);
79 	}
80 
81 	return count;
82 }
83 EXPORT_SYMBOL_GPL(sampling_rate_store);
84 
85 /**
86  * gov_update_cpu_data - Update CPU load data.
87  * @dbs_data: Top-level governor data pointer.
88  *
89  * Update CPU load data for all CPUs in the domain governed by @dbs_data
90  * (that may be a single policy or a bunch of them if governor tunables are
91  * system-wide).
92  *
93  * Call under the @dbs_data mutex.
94  */
gov_update_cpu_data(struct dbs_data * dbs_data)95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97 	struct policy_dbs_info *policy_dbs;
98 
99 	list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100 		unsigned int j;
101 
102 		for_each_cpu(j, policy_dbs->policy->cpus) {
103 			struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104 
105 			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106 								  dbs_data->io_is_busy);
107 			if (dbs_data->ignore_nice_load)
108 				j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
109 		}
110 	}
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113 
dbs_update(struct cpufreq_policy * policy)114 unsigned int dbs_update(struct cpufreq_policy *policy)
115 {
116 	struct policy_dbs_info *policy_dbs = policy->governor_data;
117 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
118 	unsigned int ignore_nice = dbs_data->ignore_nice_load;
119 	unsigned int max_load = 0, idle_periods = UINT_MAX;
120 	unsigned int sampling_rate, io_busy, j;
121 
122 	/*
123 	 * Sometimes governors may use an additional multiplier to increase
124 	 * sample delays temporarily.  Apply that multiplier to sampling_rate
125 	 * so as to keep the wake-up-from-idle detection logic a bit
126 	 * conservative.
127 	 */
128 	sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129 	/*
130 	 * For the purpose of ondemand, waiting for disk IO is an indication
131 	 * that you're performance critical, and not that the system is actually
132 	 * idle, so do not add the iowait time to the CPU idle time then.
133 	 */
134 	io_busy = dbs_data->io_is_busy;
135 
136 	/* Get Absolute Load */
137 	for_each_cpu(j, policy->cpus) {
138 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139 		u64 update_time, cur_idle_time;
140 		unsigned int idle_time, time_elapsed;
141 		unsigned int load;
142 
143 		cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144 
145 		time_elapsed = update_time - j_cdbs->prev_update_time;
146 		j_cdbs->prev_update_time = update_time;
147 
148 		/*
149 		 * cur_idle_time could be smaller than j_cdbs->prev_cpu_idle if
150 		 * it's obtained from get_cpu_idle_time_jiffy() when NOHZ is
151 		 * off, where idle_time is calculated by the difference between
152 		 * time elapsed in jiffies and "busy time" obtained from CPU
153 		 * statistics.  If a CPU is 100% busy, the time elapsed and busy
154 		 * time should grow with the same amount in two consecutive
155 		 * samples, but in practice there could be a tiny difference,
156 		 * making the accumulated idle time decrease sometimes.  Hence,
157 		 * in this case, idle_time should be regarded as 0 in order to
158 		 * make the further process correct.
159 		 */
160 		if (cur_idle_time > j_cdbs->prev_cpu_idle)
161 			idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
162 		else
163 			idle_time = 0;
164 
165 		j_cdbs->prev_cpu_idle = cur_idle_time;
166 
167 		if (ignore_nice) {
168 			u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
169 
170 			idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
171 			j_cdbs->prev_cpu_nice = cur_nice;
172 		}
173 
174 		if (unlikely(!time_elapsed)) {
175 			/*
176 			 * That can only happen when this function is called
177 			 * twice in a row with a very short interval between the
178 			 * calls, so the previous load value can be used then.
179 			 */
180 			load = j_cdbs->prev_load;
181 		} else if (unlikely(idle_time > 2 * sampling_rate &&
182 				    j_cdbs->prev_load)) {
183 			/*
184 			 * If the CPU had gone completely idle and a task has
185 			 * just woken up on this CPU now, it would be unfair to
186 			 * calculate 'load' the usual way for this elapsed
187 			 * time-window, because it would show near-zero load,
188 			 * irrespective of how CPU intensive that task actually
189 			 * was. This is undesirable for latency-sensitive bursty
190 			 * workloads.
191 			 *
192 			 * To avoid this, reuse the 'load' from the previous
193 			 * time-window and give this task a chance to start with
194 			 * a reasonably high CPU frequency. However, that
195 			 * shouldn't be over-done, lest we get stuck at a high
196 			 * load (high frequency) for too long, even when the
197 			 * current system load has actually dropped down, so
198 			 * clear prev_load to guarantee that the load will be
199 			 * computed again next time.
200 			 *
201 			 * Detecting this situation is easy: an unusually large
202 			 * 'idle_time' (as compared to the sampling rate)
203 			 * indicates this scenario.
204 			 */
205 			load = j_cdbs->prev_load;
206 			j_cdbs->prev_load = 0;
207 		} else {
208 			if (time_elapsed > idle_time)
209 				load = 100 * (time_elapsed - idle_time) / time_elapsed;
210 			else
211 				load = 0;
212 
213 			j_cdbs->prev_load = load;
214 		}
215 
216 		if (unlikely(idle_time > 2 * sampling_rate)) {
217 			unsigned int periods = idle_time / sampling_rate;
218 
219 			if (periods < idle_periods)
220 				idle_periods = periods;
221 		}
222 
223 		if (load > max_load)
224 			max_load = load;
225 	}
226 
227 	policy_dbs->idle_periods = idle_periods;
228 
229 	return max_load;
230 }
231 EXPORT_SYMBOL_GPL(dbs_update);
232 
dbs_work_handler(struct work_struct * work)233 static void dbs_work_handler(struct work_struct *work)
234 {
235 	struct policy_dbs_info *policy_dbs;
236 	struct cpufreq_policy *policy;
237 	struct dbs_governor *gov;
238 
239 	policy_dbs = container_of(work, struct policy_dbs_info, work);
240 	policy = policy_dbs->policy;
241 	gov = dbs_governor_of(policy);
242 
243 	/*
244 	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
245 	 * ondemand governor isn't updating the sampling rate in parallel.
246 	 */
247 	mutex_lock(&policy_dbs->update_mutex);
248 	gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
249 	mutex_unlock(&policy_dbs->update_mutex);
250 
251 	/* Allow the utilization update handler to queue up more work. */
252 	atomic_set(&policy_dbs->work_count, 0);
253 	/*
254 	 * If the update below is reordered with respect to the sample delay
255 	 * modification, the utilization update handler may end up using a stale
256 	 * sample delay value.
257 	 */
258 	smp_wmb();
259 	policy_dbs->work_in_progress = false;
260 }
261 
dbs_irq_work(struct irq_work * irq_work)262 static void dbs_irq_work(struct irq_work *irq_work)
263 {
264 	struct policy_dbs_info *policy_dbs;
265 
266 	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
267 	schedule_work_on(smp_processor_id(), &policy_dbs->work);
268 }
269 
dbs_update_util_handler(struct update_util_data * data,u64 time,unsigned int flags)270 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
271 				    unsigned int flags)
272 {
273 	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
274 	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
275 	u64 delta_ns, lst;
276 
277 	if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
278 		return;
279 
280 	/*
281 	 * The work may not be allowed to be queued up right now.
282 	 * Possible reasons:
283 	 * - Work has already been queued up or is in progress.
284 	 * - It is too early (too little time from the previous sample).
285 	 */
286 	if (policy_dbs->work_in_progress)
287 		return;
288 
289 	/*
290 	 * If the reads below are reordered before the check above, the value
291 	 * of sample_delay_ns used in the computation may be stale.
292 	 */
293 	smp_rmb();
294 	lst = READ_ONCE(policy_dbs->last_sample_time);
295 	delta_ns = time - lst;
296 	if ((s64)delta_ns < policy_dbs->sample_delay_ns)
297 		return;
298 
299 	/*
300 	 * If the policy is not shared, the irq_work may be queued up right away
301 	 * at this point.  Otherwise, we need to ensure that only one of the
302 	 * CPUs sharing the policy will do that.
303 	 */
304 	if (policy_dbs->is_shared) {
305 		if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
306 			return;
307 
308 		/*
309 		 * If another CPU updated last_sample_time in the meantime, we
310 		 * shouldn't be here, so clear the work counter and bail out.
311 		 */
312 		if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
313 			atomic_set(&policy_dbs->work_count, 0);
314 			return;
315 		}
316 	}
317 
318 	policy_dbs->last_sample_time = time;
319 	policy_dbs->work_in_progress = true;
320 	irq_work_queue(&policy_dbs->irq_work);
321 }
322 
gov_set_update_util(struct policy_dbs_info * policy_dbs,unsigned int delay_us)323 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
324 				unsigned int delay_us)
325 {
326 	struct cpufreq_policy *policy = policy_dbs->policy;
327 	int cpu;
328 
329 	gov_update_sample_delay(policy_dbs, delay_us);
330 	policy_dbs->last_sample_time = 0;
331 
332 	for_each_cpu(cpu, policy->cpus) {
333 		struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
334 
335 		cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
336 					     dbs_update_util_handler);
337 	}
338 }
339 
gov_clear_update_util(struct cpufreq_policy * policy)340 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
341 {
342 	int i;
343 
344 	for_each_cpu(i, policy->cpus)
345 		cpufreq_remove_update_util_hook(i);
346 
347 	synchronize_rcu();
348 }
349 
alloc_policy_dbs_info(struct cpufreq_policy * policy,struct dbs_governor * gov)350 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
351 						     struct dbs_governor *gov)
352 {
353 	struct policy_dbs_info *policy_dbs;
354 	int j;
355 
356 	/* Allocate memory for per-policy governor data. */
357 	policy_dbs = gov->alloc();
358 	if (!policy_dbs)
359 		return NULL;
360 
361 	policy_dbs->policy = policy;
362 	mutex_init(&policy_dbs->update_mutex);
363 	atomic_set(&policy_dbs->work_count, 0);
364 	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
365 	INIT_WORK(&policy_dbs->work, dbs_work_handler);
366 
367 	/* Set policy_dbs for all CPUs, online+offline */
368 	for_each_cpu(j, policy->related_cpus) {
369 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
370 
371 		j_cdbs->policy_dbs = policy_dbs;
372 	}
373 	return policy_dbs;
374 }
375 
free_policy_dbs_info(struct policy_dbs_info * policy_dbs,struct dbs_governor * gov)376 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
377 				 struct dbs_governor *gov)
378 {
379 	int j;
380 
381 	mutex_destroy(&policy_dbs->update_mutex);
382 
383 	for_each_cpu(j, policy_dbs->policy->related_cpus) {
384 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
385 
386 		j_cdbs->policy_dbs = NULL;
387 		j_cdbs->update_util.func = NULL;
388 	}
389 	gov->free(policy_dbs);
390 }
391 
cpufreq_dbs_data_release(struct kobject * kobj)392 static void cpufreq_dbs_data_release(struct kobject *kobj)
393 {
394 	struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj));
395 	struct dbs_governor *gov = dbs_data->gov;
396 
397 	gov->exit(dbs_data);
398 	kfree(dbs_data);
399 }
400 
cpufreq_dbs_governor_init(struct cpufreq_policy * policy)401 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
402 {
403 	struct dbs_governor *gov = dbs_governor_of(policy);
404 	struct dbs_data *dbs_data;
405 	struct policy_dbs_info *policy_dbs;
406 	int ret = 0;
407 
408 	/* State should be equivalent to EXIT */
409 	if (policy->governor_data)
410 		return -EBUSY;
411 
412 	policy_dbs = alloc_policy_dbs_info(policy, gov);
413 	if (!policy_dbs)
414 		return -ENOMEM;
415 
416 	/* Protect gov->gdbs_data against concurrent updates. */
417 	mutex_lock(&gov_dbs_data_mutex);
418 
419 	dbs_data = gov->gdbs_data;
420 	if (dbs_data) {
421 		if (WARN_ON(have_governor_per_policy())) {
422 			ret = -EINVAL;
423 			goto free_policy_dbs_info;
424 		}
425 		policy_dbs->dbs_data = dbs_data;
426 		policy->governor_data = policy_dbs;
427 
428 		gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
429 		goto out;
430 	}
431 
432 	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
433 	if (!dbs_data) {
434 		ret = -ENOMEM;
435 		goto free_policy_dbs_info;
436 	}
437 
438 	dbs_data->gov = gov;
439 	gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
440 
441 	ret = gov->init(dbs_data);
442 	if (ret)
443 		goto free_dbs_data;
444 
445 	/*
446 	 * The sampling interval should not be less than the transition latency
447 	 * of the CPU and it also cannot be too small for dbs_update() to work
448 	 * correctly.
449 	 */
450 	dbs_data->sampling_rate = max_t(unsigned int,
451 					CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
452 					cpufreq_policy_transition_delay_us(policy));
453 
454 	if (!have_governor_per_policy())
455 		gov->gdbs_data = dbs_data;
456 
457 	policy_dbs->dbs_data = dbs_data;
458 	policy->governor_data = policy_dbs;
459 
460 	gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
461 	gov->kobj_type.release = cpufreq_dbs_data_release;
462 	ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
463 				   get_governor_parent_kobj(policy),
464 				   "%s", gov->gov.name);
465 	if (!ret)
466 		goto out;
467 
468 	/* Failure, so roll back. */
469 	pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
470 
471 	kobject_put(&dbs_data->attr_set.kobj);
472 
473 	policy->governor_data = NULL;
474 
475 	if (!have_governor_per_policy())
476 		gov->gdbs_data = NULL;
477 	gov->exit(dbs_data);
478 
479 free_dbs_data:
480 	kfree(dbs_data);
481 
482 free_policy_dbs_info:
483 	free_policy_dbs_info(policy_dbs, gov);
484 
485 out:
486 	mutex_unlock(&gov_dbs_data_mutex);
487 	return ret;
488 }
489 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
490 
cpufreq_dbs_governor_exit(struct cpufreq_policy * policy)491 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
492 {
493 	struct dbs_governor *gov = dbs_governor_of(policy);
494 	struct policy_dbs_info *policy_dbs = policy->governor_data;
495 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
496 	unsigned int count;
497 
498 	/* Protect gov->gdbs_data against concurrent updates. */
499 	mutex_lock(&gov_dbs_data_mutex);
500 
501 	count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
502 
503 	policy->governor_data = NULL;
504 
505 	if (!count && !have_governor_per_policy())
506 		gov->gdbs_data = NULL;
507 
508 	free_policy_dbs_info(policy_dbs, gov);
509 
510 	mutex_unlock(&gov_dbs_data_mutex);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
513 
cpufreq_dbs_governor_start(struct cpufreq_policy * policy)514 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
515 {
516 	struct dbs_governor *gov = dbs_governor_of(policy);
517 	struct policy_dbs_info *policy_dbs = policy->governor_data;
518 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
519 	unsigned int sampling_rate, ignore_nice, j;
520 	unsigned int io_busy;
521 
522 	if (!policy->cur)
523 		return -EINVAL;
524 
525 	policy_dbs->is_shared = policy_is_shared(policy);
526 	policy_dbs->rate_mult = 1;
527 
528 	sampling_rate = dbs_data->sampling_rate;
529 	ignore_nice = dbs_data->ignore_nice_load;
530 	io_busy = dbs_data->io_is_busy;
531 
532 	for_each_cpu(j, policy->cpus) {
533 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
534 
535 		j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
536 		/*
537 		 * Make the first invocation of dbs_update() compute the load.
538 		 */
539 		j_cdbs->prev_load = 0;
540 
541 		if (ignore_nice)
542 			j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
543 	}
544 
545 	gov->start(policy);
546 
547 	gov_set_update_util(policy_dbs, sampling_rate);
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
551 
cpufreq_dbs_governor_stop(struct cpufreq_policy * policy)552 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
553 {
554 	struct policy_dbs_info *policy_dbs = policy->governor_data;
555 
556 	gov_clear_update_util(policy_dbs->policy);
557 	irq_work_sync(&policy_dbs->irq_work);
558 	cancel_work_sync(&policy_dbs->work);
559 	atomic_set(&policy_dbs->work_count, 0);
560 	policy_dbs->work_in_progress = false;
561 }
562 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
563 
cpufreq_dbs_governor_limits(struct cpufreq_policy * policy)564 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
565 {
566 	struct policy_dbs_info *policy_dbs;
567 
568 	/* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
569 	mutex_lock(&gov_dbs_data_mutex);
570 	policy_dbs = policy->governor_data;
571 	if (!policy_dbs)
572 		goto out;
573 
574 	mutex_lock(&policy_dbs->update_mutex);
575 	cpufreq_policy_apply_limits(policy);
576 	gov_update_sample_delay(policy_dbs, 0);
577 	mutex_unlock(&policy_dbs->update_mutex);
578 
579 out:
580 	mutex_unlock(&gov_dbs_data_mutex);
581 }
582 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);
583