1 //! Generating UUIDs from timestamps.
2 //!
3 //! Timestamps are used in a few UUID versions as a source of decentralized
4 //! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
5 //! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
6 //! versions so this module provides a single [`Timestamp`] type that can
7 //! convert between them.
8 //!
9 //! # Timestamp representations in UUIDs
10 //!
11 //! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
12 //! number of 100ns ticks since `1582-10-15 00:00:00`, along with
13 //! a counter value to avoid duplicates.
14 //!
15 //! Version 7 UUIDs use a more standard timestamp that consists of the
16 //! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
17 //!
18 //! # References
19 //!
20 //! * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
21 //! * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
22
23 use crate::Uuid;
24
25 /// The number of 100 nanosecond ticks between the RFC4122 epoch
26 /// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
27 pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;
28
29 /// A timestamp that can be encoded into a UUID.
30 ///
31 /// This type abstracts the specific encoding, so versions 1, 6, and 7
32 /// UUIDs can both be supported through the same type, even
33 /// though they have a different representation of a timestamp.
34 ///
35 /// # References
36 ///
37 /// * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
38 /// * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
39 /// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
40 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
41 pub struct Timestamp {
42 pub(crate) seconds: u64,
43 pub(crate) nanos: u32,
44 #[cfg(any(feature = "v1", feature = "v6"))]
45 pub(crate) counter: u16,
46 }
47
48 impl Timestamp {
49 /// Get a timestamp representing the current system time.
50 ///
51 /// This method defers to the standard library's `SystemTime` type.
52 ///
53 /// # Panics
54 ///
55 /// This method will panic if calculating the elapsed time since the Unix epoch fails.
56 #[cfg(feature = "std")]
now(context: impl ClockSequence<Output = u16>) -> Self57 pub fn now(context: impl ClockSequence<Output = u16>) -> Self {
58 #[cfg(not(any(feature = "v1", feature = "v6")))]
59 {
60 let _ = context;
61 }
62
63 let (seconds, nanos) = now();
64
65 Timestamp {
66 seconds,
67 nanos,
68 #[cfg(any(feature = "v1", feature = "v6"))]
69 counter: context.generate_sequence(seconds, nanos),
70 }
71 }
72
73 /// Construct a `Timestamp` from an RFC4122 timestamp and counter, as used
74 /// in versions 1 and 6 UUIDs.
75 ///
76 /// # Overflow
77 ///
78 /// If conversion from RFC4122 ticks to the internal timestamp format would overflow
79 /// it will wrap.
from_rfc4122(ticks: u64, counter: u16) -> Self80 pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
81 #[cfg(not(any(feature = "v1", feature = "v6")))]
82 {
83 let _ = counter;
84 }
85
86 let (seconds, nanos) = Self::rfc4122_to_unix(ticks);
87
88 Timestamp {
89 seconds,
90 nanos,
91 #[cfg(any(feature = "v1", feature = "v6"))]
92 counter,
93 }
94 }
95
96 /// Construct a `Timestamp` from a Unix timestamp, as used in version 7 UUIDs.
97 ///
98 /// # Overflow
99 ///
100 /// If conversion from RFC4122 ticks to the internal timestamp format would overflow
101 /// it will wrap.
from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self102 pub fn from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self {
103 #[cfg(not(any(feature = "v1", feature = "v6")))]
104 {
105 let _ = context;
106
107 Timestamp { seconds, nanos }
108 }
109 #[cfg(any(feature = "v1", feature = "v6"))]
110 {
111 let counter = context.generate_sequence(seconds, nanos);
112
113 Timestamp {
114 seconds,
115 nanos,
116 counter,
117 }
118 }
119 }
120
121 /// Get the value of the timestamp as an RFC4122 timestamp and counter,
122 /// as used in versions 1 and 6 UUIDs.
123 ///
124 /// # Overflow
125 ///
126 /// If conversion from RFC4122 ticks to the internal timestamp format would overflow
127 /// it will wrap.
128 #[cfg(any(feature = "v1", feature = "v6"))]
to_rfc4122(&self) -> (u64, u16)129 pub const fn to_rfc4122(&self) -> (u64, u16) {
130 (
131 Self::unix_to_rfc4122_ticks(self.seconds, self.nanos),
132 self.counter,
133 )
134 }
135
136 /// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
137 ///
138 /// # Overflow
139 ///
140 /// If conversion from RFC4122 ticks to the internal timestamp format would overflow
141 /// it will wrap.
to_unix(&self) -> (u64, u32)142 pub const fn to_unix(&self) -> (u64, u32) {
143 (self.seconds, self.nanos)
144 }
145
146 #[cfg(any(feature = "v1", feature = "v6"))]
unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64147 const fn unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64 {
148 UUID_TICKS_BETWEEN_EPOCHS
149 .wrapping_add(seconds.wrapping_mul(10_000_000))
150 .wrapping_add(nanos as u64 / 100)
151 }
152
rfc4122_to_unix(ticks: u64) -> (u64, u32)153 const fn rfc4122_to_unix(ticks: u64) -> (u64, u32) {
154 (
155 ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
156 (ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
157 )
158 }
159
160 #[deprecated(note = "use `to_unix` instead; this method will be removed in a future release")]
161 /// Get the number of fractional nanoseconds in the Unix timestamp.
162 ///
163 /// This method is deprecated and probably doesn't do what you're expecting it to.
164 /// It doesn't return the timestamp as nanoseconds since the Unix epoch, it returns
165 /// the fractional seconds of the timestamp.
to_unix_nanos(&self) -> u32166 pub const fn to_unix_nanos(&self) -> u32 {
167 panic!("`Timestamp::to_unix_nanos` is deprecated and will be removed: use `Timestamp::to_unix` instead")
168 }
169 }
170
encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid171 pub(crate) const fn encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid {
172 let time_low = (ticks & 0xFFFF_FFFF) as u32;
173 let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
174 let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);
175
176 let mut d4 = [0; 8];
177
178 d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
179 d4[1] = (counter & 0xFF) as u8;
180 d4[2] = node_id[0];
181 d4[3] = node_id[1];
182 d4[4] = node_id[2];
183 d4[5] = node_id[3];
184 d4[6] = node_id[4];
185 d4[7] = node_id[5];
186
187 Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
188 }
189
decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16)190 pub(crate) const fn decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
191 let bytes = uuid.as_bytes();
192
193 let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
194 | (bytes[7] as u64) << 48
195 | (bytes[4] as u64) << 40
196 | (bytes[5] as u64) << 32
197 | (bytes[0] as u64) << 24
198 | (bytes[1] as u64) << 16
199 | (bytes[2] as u64) << 8
200 | (bytes[3] as u64);
201
202 let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
203
204 (ticks, counter)
205 }
206
encode_sorted_rfc4122_timestamp( ticks: u64, counter: u16, node_id: &[u8; 6], ) -> Uuid207 pub(crate) const fn encode_sorted_rfc4122_timestamp(
208 ticks: u64,
209 counter: u16,
210 node_id: &[u8; 6],
211 ) -> Uuid {
212 let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
213 let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
214 let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);
215
216 let mut d4 = [0; 8];
217
218 d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
219 d4[1] = (counter & 0xFF) as u8;
220 d4[2] = node_id[0];
221 d4[3] = node_id[1];
222 d4[4] = node_id[2];
223 d4[5] = node_id[3];
224 d4[6] = node_id[4];
225 d4[7] = node_id[5];
226
227 Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
228 }
229
decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16)230 pub(crate) const fn decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
231 let bytes = uuid.as_bytes();
232
233 let ticks: u64 = ((bytes[0]) as u64) << 52
234 | (bytes[1] as u64) << 44
235 | (bytes[2] as u64) << 36
236 | (bytes[3] as u64) << 28
237 | (bytes[4] as u64) << 20
238 | (bytes[5] as u64) << 12
239 | ((bytes[6] & 0xF) as u64) << 8
240 | (bytes[7] as u64);
241
242 let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
243
244 (ticks, counter)
245 }
246
encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid247 pub(crate) const fn encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid {
248 let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
249 let millis_low = (millis & 0xFFFF) as u16;
250
251 let random_and_version =
252 (random_bytes[1] as u16 | ((random_bytes[0] as u16) << 8) & 0x0FFF) | (0x7 << 12);
253
254 let mut d4 = [0; 8];
255
256 d4[0] = (random_bytes[2] & 0x3F) | 0x80;
257 d4[1] = random_bytes[3];
258 d4[2] = random_bytes[4];
259 d4[3] = random_bytes[5];
260 d4[4] = random_bytes[6];
261 d4[5] = random_bytes[7];
262 d4[6] = random_bytes[8];
263 d4[7] = random_bytes[9];
264
265 Uuid::from_fields(millis_high, millis_low, random_and_version, &d4)
266 }
267
decode_unix_timestamp_millis(uuid: &Uuid) -> u64268 pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
269 let bytes = uuid.as_bytes();
270
271 let millis: u64 = (bytes[0] as u64) << 40
272 | (bytes[1] as u64) << 32
273 | (bytes[2] as u64) << 24
274 | (bytes[3] as u64) << 16
275 | (bytes[4] as u64) << 8
276 | (bytes[5] as u64);
277
278 millis
279 }
280
281 #[cfg(all(
282 feature = "std",
283 feature = "js",
284 all(
285 target_arch = "wasm32",
286 target_vendor = "unknown",
287 target_os = "unknown"
288 )
289 ))]
now() -> (u64, u32)290 fn now() -> (u64, u32) {
291 use wasm_bindgen::prelude::*;
292
293 #[wasm_bindgen]
294 extern "C" {
295 // NOTE: This signature works around https://bugzilla.mozilla.org/show_bug.cgi?id=1787770
296 #[wasm_bindgen(js_namespace = Date, catch)]
297 fn now() -> Result<f64, JsValue>;
298 }
299
300 let now = now().unwrap_throw();
301
302 let secs = (now / 1_000.0) as u64;
303 let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;
304
305 (secs, nanos)
306 }
307
308 #[cfg(all(
309 feature = "std",
310 any(
311 not(feature = "js"),
312 not(all(
313 target_arch = "wasm32",
314 target_vendor = "unknown",
315 target_os = "unknown"
316 ))
317 )
318 ))]
now() -> (u64, u32)319 fn now() -> (u64, u32) {
320 let dur = std::time::SystemTime::UNIX_EPOCH.elapsed().expect(
321 "Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality",
322 );
323
324 (dur.as_secs(), dur.subsec_nanos())
325 }
326
327 /// A counter that can be used by version 1 and version 6 UUIDs to support
328 /// the uniqueness of timestamps.
329 ///
330 /// # References
331 ///
332 /// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
333 pub trait ClockSequence {
334 /// The type of sequence returned by this counter.
335 type Output;
336
337 /// Get the next value in the sequence to feed into a timestamp.
338 ///
339 /// This method will be called each time a [`Timestamp`] is constructed.
generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output340 fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;
341 }
342
343 impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
344 type Output = T::Output;
generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output345 fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
346 (**self).generate_sequence(seconds, subsec_nanos)
347 }
348 }
349
350 /// Default implementations for the [`ClockSequence`] trait.
351 pub mod context {
352 use super::ClockSequence;
353
354 #[cfg(any(feature = "v1", feature = "v6"))]
355 use atomic::{Atomic, Ordering};
356
357 /// An empty counter that will always return the value `0`.
358 ///
359 /// This type should be used when constructing timestamps for version 7 UUIDs,
360 /// since they don't need a counter for uniqueness.
361 #[derive(Debug, Clone, Copy, Default)]
362 pub struct NoContext;
363
364 impl ClockSequence for NoContext {
365 type Output = u16;
366
generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output367 fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
368 0
369 }
370 }
371
372 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
373 static CONTEXT: Context = Context {
374 count: Atomic::new(0),
375 };
376
377 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
378 static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);
379
380 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
shared_context() -> &'static Context381 pub(crate) fn shared_context() -> &'static Context {
382 // If the context is in its initial state then assign it to a random value
383 // It doesn't matter if multiple threads observe `false` here and initialize the context
384 if CONTEXT_INITIALIZED
385 .compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
386 .is_ok()
387 {
388 CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
389 }
390
391 &CONTEXT
392 }
393
394 /// A thread-safe, wrapping counter that produces 14-bit numbers.
395 ///
396 /// This type should be used when constructing version 1 and version 6 UUIDs.
397 #[derive(Debug)]
398 #[cfg(any(feature = "v1", feature = "v6"))]
399 pub struct Context {
400 count: Atomic<u16>,
401 }
402
403 #[cfg(any(feature = "v1", feature = "v6"))]
404 impl Context {
405 /// Construct a new context that's initialized with the given value.
406 ///
407 /// The starting value should be a random number, so that UUIDs from
408 /// different systems with the same timestamps are less likely to collide.
409 /// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
new(count: u16) -> Self410 pub const fn new(count: u16) -> Self {
411 Self {
412 count: Atomic::<u16>::new(count),
413 }
414 }
415
416 /// Construct a new context that's initialized with a random value.
417 #[cfg(feature = "rng")]
new_random() -> Self418 pub fn new_random() -> Self {
419 Self {
420 count: Atomic::<u16>::new(crate::rng::u16()),
421 }
422 }
423 }
424
425 #[cfg(any(feature = "v1", feature = "v6"))]
426 impl ClockSequence for Context {
427 type Output = u16;
428
generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output429 fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
430 // RFC4122 reserves 2 bits of the clock sequence so the actual
431 // maximum value is smaller than `u16::MAX`. Since we unconditionally
432 // increment the clock sequence we want to wrap once it becomes larger
433 // than what we can represent in a "u14". Otherwise there'd be patches
434 // where the clock sequence doesn't change regardless of the timestamp
435 self.count.fetch_add(1, Ordering::AcqRel) & (u16::MAX >> 2)
436 }
437 }
438 }
439
440 #[cfg(all(test, any(feature = "v1", feature = "v6")))]
441 mod tests {
442 use super::*;
443
444 #[cfg(all(
445 target_arch = "wasm32",
446 target_vendor = "unknown",
447 target_os = "unknown"
448 ))]
449 use wasm_bindgen_test::*;
450
451 #[test]
452 #[cfg_attr(
453 all(
454 target_arch = "wasm32",
455 target_vendor = "unknown",
456 target_os = "unknown"
457 ),
458 wasm_bindgen_test
459 )]
rfc4122_unix_does_not_panic()460 fn rfc4122_unix_does_not_panic() {
461 // Ensure timestamp conversions never panic
462 Timestamp::unix_to_rfc4122_ticks(u64::MAX, 0);
463 Timestamp::unix_to_rfc4122_ticks(0, u32::MAX);
464 Timestamp::unix_to_rfc4122_ticks(u64::MAX, u32::MAX);
465
466 Timestamp::rfc4122_to_unix(u64::MAX);
467 }
468 }
469