xref: /aosp_15_r20/external/skia/src/pathops/SkPathWriter.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/pathops/SkPathWriter.h"
8 
9 #include "include/core/SkTypes.h"
10 #include "include/private/base/SkMath.h"
11 #include "src/base/SkTSort.h"
12 #include "src/pathops/SkOpSegment.h"
13 #include "src/pathops/SkOpSpan.h"
14 #include "src/pathops/SkPathOpsDebug.h"
15 #include "src/pathops/SkPathOpsTypes.h"
16 
17 using namespace skia_private;
18 
19 // wrap path to keep track of whether the contour is initialized and non-empty
SkPathWriter(SkPath & path)20 SkPathWriter::SkPathWriter(SkPath& path)
21     : fPathPtr(&path)
22 {
23     init();
24 }
25 
close()26 void SkPathWriter::close() {
27     if (fCurrent.isEmpty()) {
28         return;
29     }
30     SkASSERT(this->isClosed());
31 #if DEBUG_PATH_CONSTRUCTION
32     SkDebugf("path.close();\n");
33 #endif
34     fCurrent.close();
35     fPathPtr->addPath(fCurrent);
36     fCurrent.reset();
37     init();
38 }
39 
conicTo(const SkPoint & pt1,const SkOpPtT * pt2,SkScalar weight)40 void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) {
41     SkPoint pt2pt = this->update(pt2);
42 #if DEBUG_PATH_CONSTRUCTION
43     SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n",
44             pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY, weight);
45 #endif
46     fCurrent.conicTo(pt1, pt2pt, weight);
47 }
48 
cubicTo(const SkPoint & pt1,const SkPoint & pt2,const SkOpPtT * pt3)49 void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) {
50     SkPoint pt3pt = this->update(pt3);
51 #if DEBUG_PATH_CONSTRUCTION
52     SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
53             pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3pt.fX, pt3pt.fY);
54 #endif
55     fCurrent.cubicTo(pt1, pt2, pt3pt);
56 }
57 
deferredLine(const SkOpPtT * pt)58 bool SkPathWriter::deferredLine(const SkOpPtT* pt) {
59     SkASSERT(fFirstPtT);
60     SkASSERT(fDefer[0]);
61     if (fDefer[0] == pt) {
62         // FIXME: why we're adding a degenerate line? Caller should have preflighted this.
63         return true;
64     }
65     if (pt->contains(fDefer[0])) {
66         // FIXME: why we're adding a degenerate line?
67         return true;
68     }
69     if (this->matchedLast(pt)) {
70         return false;
71     }
72     if (fDefer[1] && this->changedSlopes(pt)) {
73         this->lineTo();
74         fDefer[0] = fDefer[1];
75     }
76     fDefer[1] = pt;
77     return true;
78 }
79 
deferredMove(const SkOpPtT * pt)80 void SkPathWriter::deferredMove(const SkOpPtT* pt) {
81     if (!fDefer[1]) {
82         fFirstPtT = fDefer[0] = pt;
83         return;
84     }
85     SkASSERT(fDefer[0]);
86     if (!this->matchedLast(pt)) {
87         this->finishContour();
88         fFirstPtT = fDefer[0] = pt;
89     }
90 }
91 
finishContour()92 void SkPathWriter::finishContour() {
93     if (!this->matchedLast(fDefer[0])) {
94         if (!fDefer[1]) {
95           return;
96         }
97         this->lineTo();
98     }
99     if (fCurrent.isEmpty()) {
100         return;
101     }
102     if (this->isClosed()) {
103         this->close();
104     } else {
105         SkASSERT(fDefer[1]);
106         fEndPtTs.push_back(fFirstPtT);
107         fEndPtTs.push_back(fDefer[1]);
108         fPartials.push_back(fCurrent);
109         this->init();
110     }
111 }
112 
init()113 void SkPathWriter::init() {
114     fCurrent.reset();
115     fFirstPtT = fDefer[0] = fDefer[1] = nullptr;
116 }
117 
isClosed() const118 bool SkPathWriter::isClosed() const {
119     return this->matchedLast(fFirstPtT);
120 }
121 
lineTo()122 void SkPathWriter::lineTo() {
123     if (fCurrent.isEmpty()) {
124         this->moveTo();
125     }
126 #if DEBUG_PATH_CONSTRUCTION
127     SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY);
128 #endif
129     fCurrent.lineTo(fDefer[1]->fPt);
130 }
131 
matchedLast(const SkOpPtT * test) const132 bool SkPathWriter::matchedLast(const SkOpPtT* test) const {
133     if (test == fDefer[1]) {
134         return true;
135     }
136     if (!test) {
137         return false;
138     }
139     if (!fDefer[1]) {
140         return false;
141     }
142     return test->contains(fDefer[1]);
143 }
144 
moveTo()145 void SkPathWriter::moveTo() {
146 #if DEBUG_PATH_CONSTRUCTION
147     SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY);
148 #endif
149     fCurrent.moveTo(fFirstPtT->fPt);
150 }
151 
quadTo(const SkPoint & pt1,const SkOpPtT * pt2)152 void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) {
153     SkPoint pt2pt = this->update(pt2);
154 #if DEBUG_PATH_CONSTRUCTION
155     SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
156             pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY);
157 #endif
158     fCurrent.quadTo(pt1, pt2pt);
159 }
160 
161 // if last point to be written matches the current path's first point, alter the
162 // last to avoid writing a degenerate lineTo when the path is closed
update(const SkOpPtT * pt)163 SkPoint SkPathWriter::update(const SkOpPtT* pt) {
164     if (!fDefer[1]) {
165         this->moveTo();
166     } else if (!this->matchedLast(fDefer[0])) {
167         this->lineTo();
168     }
169     SkPoint result = pt->fPt;
170     if (fFirstPtT && result != fFirstPtT->fPt && fFirstPtT->contains(pt)) {
171         result = fFirstPtT->fPt;
172     }
173     fDefer[0] = fDefer[1] = pt;  // set both to know that there is not a pending deferred line
174     return result;
175 }
176 
someAssemblyRequired()177 bool SkPathWriter::someAssemblyRequired() {
178     this->finishContour();
179     return !fEndPtTs.empty();
180 }
181 
changedSlopes(const SkOpPtT * ptT) const182 bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const {
183     if (matchedLast(fDefer[0])) {
184         return false;
185     }
186     SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt;
187     SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt;
188     return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX;
189 }
190 
191 class DistanceLessThan {
192 public:
DistanceLessThan(double * distances)193     DistanceLessThan(double* distances) : fDistances(distances) { }
194     double* fDistances;
operator ()(const int one,const int two) const195     bool operator()(const int one, const int two) const {
196         return fDistances[one] < fDistances[two];
197     }
198 };
199 
200     /*
201         check start and end of each contour
202         if not the same, record them
203         match them up
204         connect closest
205         reassemble contour pieces into new path
206     */
assemble()207 void SkPathWriter::assemble() {
208     if (!this->someAssemblyRequired()) {
209         return;
210     }
211 #if DEBUG_PATH_CONSTRUCTION
212     SkDebugf("%s\n", __FUNCTION__);
213 #endif
214     SkOpPtT const* const* runs = fEndPtTs.begin();  // starts, ends of partial contours
215     int endCount = fEndPtTs.size(); // all starts and ends
216     SkASSERT(endCount > 0);
217     SkASSERT(endCount == fPartials.size() * 2);
218 #if DEBUG_ASSEMBLE
219     for (int index = 0; index < endCount; index += 2) {
220         const SkOpPtT* eStart = runs[index];
221         const SkOpPtT* eEnd = runs[index + 1];
222         SkASSERT(eStart != eEnd);
223         SkASSERT(!eStart->contains(eEnd));
224         SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__,
225                 eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY);
226     }
227 #endif
228     // lengthen any partial contour adjacent to a simple segment
229     for (int pIndex = 0; pIndex < endCount; pIndex++) {
230         SkOpPtT* opPtT = const_cast<SkOpPtT*>(runs[pIndex]);
231         SkPath p;
232         SkPathWriter partWriter(p);
233         do {
234             if (!zero_or_one(opPtT->fT)) {
235                 break;
236             }
237             SkOpSpanBase* opSpanBase = opPtT->span();
238             SkOpSpanBase* start = opPtT->fT ? opSpanBase->prev() : opSpanBase->upCast()->next();
239             int step = opPtT->fT ? 1 : -1;
240             const SkOpSegment* opSegment = opSpanBase->segment();
241             const SkOpSegment* nextSegment = opSegment->isSimple(&start, &step);
242             if (!nextSegment) {
243                 break;
244             }
245             SkOpSpanBase* opSpanEnd = start->t() ? start->prev() : start->upCast()->next();
246             if (start->starter(opSpanEnd)->alreadyAdded()) {
247                 break;
248             }
249             nextSegment->addCurveTo(start, opSpanEnd, &partWriter);
250             opPtT = opSpanEnd->ptT();
251             SkOpPtT** runsPtr = const_cast<SkOpPtT**>(&runs[pIndex]);
252             *runsPtr = opPtT;
253         } while (true);
254         partWriter.finishContour();
255         const TArray<SkPath>& partPartials = partWriter.partials();
256         if (partPartials.empty()) {
257             continue;
258         }
259         // if pIndex is even, reverse and prepend to fPartials; otherwise, append
260         SkPath& partial = const_cast<SkPath&>(fPartials[pIndex >> 1]);
261         const SkPath& part = partPartials[0];
262         if (pIndex & 1) {
263             partial.addPath(part, SkPath::kExtend_AddPathMode);
264         } else {
265             SkPath reverse;
266             reverse.reverseAddPath(part);
267             reverse.addPath(partial, SkPath::kExtend_AddPathMode);
268             partial = reverse;
269         }
270     }
271     SkTDArray<int> sLink, eLink;
272     int linkCount = endCount / 2; // number of partial contours
273     sLink.append(linkCount);
274     eLink.append(linkCount);
275     int rIndex, iIndex;
276     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
277         sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
278     }
279     const int entries = endCount * (endCount - 1) / 2;  // folded triangle
280     STArray<8, double, true> distances(entries);
281     STArray<8, int, true> sortedDist(entries);
282     STArray<8, int, true> distLookup(entries);
283     int rRow = 0;
284     int dIndex = 0;
285     for (rIndex = 0; rIndex < endCount - 1; ++rIndex) {
286         const SkOpPtT* oPtT = runs[rIndex];
287         for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) {
288             const SkOpPtT* iPtT = runs[iIndex];
289             double dx = iPtT->fPt.fX - oPtT->fPt.fX;
290             double dy = iPtT->fPt.fY - oPtT->fPt.fY;
291             double dist = dx * dx + dy * dy;
292             distLookup.push_back(rRow + iIndex);
293             distances.push_back(dist);  // oStart distance from iStart
294             sortedDist.push_back(dIndex++);
295         }
296         rRow += endCount;
297     }
298     SkASSERT(dIndex == entries);
299     SkTQSort<int>(sortedDist.begin(), sortedDist.end(), DistanceLessThan(distances.begin()));
300     int remaining = linkCount;  // number of start/end pairs
301     for (rIndex = 0; rIndex < entries; ++rIndex) {
302         int pair = sortedDist[rIndex];
303         pair = distLookup[pair];
304         int row = pair / endCount;
305         int col = pair - row * endCount;
306         int ndxOne = row >> 1;
307         bool endOne = row & 1;
308         int* linkOne = endOne ? eLink.begin() : sLink.begin();
309         if (linkOne[ndxOne] != SK_MaxS32) {
310             continue;
311         }
312         int ndxTwo = col >> 1;
313         bool endTwo = col & 1;
314         int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
315         if (linkTwo[ndxTwo] != SK_MaxS32) {
316             continue;
317         }
318         SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
319         bool flip = endOne == endTwo;
320         linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
321         linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
322         if (!--remaining) {
323             break;
324         }
325     }
326     SkASSERT(!remaining);
327 #if DEBUG_ASSEMBLE
328     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
329         int s = sLink[rIndex];
330         int e = eLink[rIndex];
331         SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
332                 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
333     }
334 #endif
335     rIndex = 0;
336     do {
337         bool forward = true;
338         bool first = true;
339         int sIndex = sLink[rIndex];
340         SkASSERT(sIndex != SK_MaxS32);
341         sLink[rIndex] = SK_MaxS32;
342         int eIndex;
343         if (sIndex < 0) {
344             eIndex = sLink[~sIndex];
345             sLink[~sIndex] = SK_MaxS32;
346         } else {
347             eIndex = eLink[sIndex];
348             eLink[sIndex] = SK_MaxS32;
349         }
350         SkASSERT(eIndex != SK_MaxS32);
351 #if DEBUG_ASSEMBLE
352         SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
353                     sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
354                     eIndex < 0 ? ~eIndex : eIndex);
355 #endif
356         do {
357             const SkPath& contour = fPartials[rIndex];
358             if (!first) {
359                 SkPoint prior, next;
360                 if (!fPathPtr->getLastPt(&prior)) {
361                     return;
362                 }
363                 if (forward) {
364                     next = contour.getPoint(0);
365                 } else {
366                     SkAssertResult(contour.getLastPt(&next));
367                 }
368                 if (prior != next) {
369                     /* TODO: if there is a gap between open path written so far and path to come,
370                        connect by following segments from one to the other, rather than introducing
371                        a diagonal to connect the two.
372                      */
373                 }
374             }
375             if (forward) {
376                 fPathPtr->addPath(contour,
377                         first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode);
378             } else {
379                 SkASSERT(!first);
380                 fPathPtr->reversePathTo(contour);
381             }
382             if (first) {
383                 first = false;
384             }
385 #if DEBUG_ASSEMBLE
386             SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
387                 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
388                 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
389 #endif
390             if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
391                 fPathPtr->close();
392                 break;
393             }
394             if (forward) {
395                 eIndex = eLink[rIndex];
396                 SkASSERT(eIndex != SK_MaxS32);
397                 eLink[rIndex] = SK_MaxS32;
398                 if (eIndex >= 0) {
399                     SkASSERT(sLink[eIndex] == rIndex);
400                     sLink[eIndex] = SK_MaxS32;
401                 } else {
402                     SkASSERT(eLink[~eIndex] == ~rIndex);
403                     eLink[~eIndex] = SK_MaxS32;
404                 }
405             } else {
406                 eIndex = sLink[rIndex];
407                 SkASSERT(eIndex != SK_MaxS32);
408                 sLink[rIndex] = SK_MaxS32;
409                 if (eIndex >= 0) {
410                     SkASSERT(eLink[eIndex] == rIndex);
411                     eLink[eIndex] = SK_MaxS32;
412                 } else {
413                     SkASSERT(sLink[~eIndex] == ~rIndex);
414                     sLink[~eIndex] = SK_MaxS32;
415                 }
416             }
417             rIndex = eIndex;
418             if (rIndex < 0) {
419                 forward ^= 1;
420                 rIndex = ~rIndex;
421             }
422         } while (true);
423         for (rIndex = 0; rIndex < linkCount; ++rIndex) {
424             if (sLink[rIndex] != SK_MaxS32) {
425                 break;
426             }
427         }
428     } while (rIndex < linkCount);
429 #if DEBUG_ASSEMBLE
430     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
431        SkASSERT(sLink[rIndex] == SK_MaxS32);
432        SkASSERT(eLink[rIndex] == SK_MaxS32);
433     }
434 #endif
435 }
436