1// Copyright 2019 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TODO/NICETOHAVE: 6// - eliminate DW_CLS_ if not used 7// - package info in compilation units 8// - assign types to their packages 9// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg 10// ptype struct '[]uint8' and qualifiers need to be quoted away 11// - file:line info for variables 12// - make strings a typedef so prettyprinters can see the underlying string type 13 14package ld 15 16import ( 17 "cmd/internal/dwarf" 18 "cmd/internal/obj" 19 "cmd/internal/objabi" 20 "cmd/internal/src" 21 "cmd/internal/sys" 22 "cmd/link/internal/loader" 23 "cmd/link/internal/sym" 24 "fmt" 25 "internal/abi" 26 "internal/buildcfg" 27 "log" 28 "path" 29 "runtime" 30 "sort" 31 "strings" 32 "sync" 33) 34 35// dwctxt is a wrapper intended to satisfy the method set of 36// dwarf.Context, so that functions like dwarf.PutAttrs will work with 37// DIEs that use loader.Sym as opposed to *sym.Symbol. It is also 38// being used as a place to store tables/maps that are useful as part 39// of type conversion (this is just a convenience; it would be easy to 40// split these things out into another type if need be). 41type dwctxt struct { 42 linkctxt *Link 43 ldr *loader.Loader 44 arch *sys.Arch 45 46 // This maps type name string (e.g. "uintptr") to loader symbol for 47 // the DWARF DIE for that type (e.g. "go:info.type.uintptr") 48 tmap map[string]loader.Sym 49 50 // This maps loader symbol for the DWARF DIE symbol generated for 51 // a type (e.g. "go:info.uintptr") to the type symbol itself 52 // ("type:uintptr"). 53 // FIXME: try converting this map (and the next one) to a single 54 // array indexed by loader.Sym -- this may perform better. 55 rtmap map[loader.Sym]loader.Sym 56 57 // This maps Go type symbol (e.g. "type:XXX") to loader symbol for 58 // the typedef DIE for that type (e.g. "go:info.XXX..def") 59 tdmap map[loader.Sym]loader.Sym 60 61 // Cache these type symbols, so as to avoid repeatedly looking them up 62 typeRuntimeEface loader.Sym 63 typeRuntimeIface loader.Sym 64 uintptrInfoSym loader.Sym 65 66 // Used at various points in that parallel portion of DWARF gen to 67 // protect against conflicting updates to globals (such as "gdbscript") 68 dwmu *sync.Mutex 69} 70 71// dwSym wraps a loader.Sym; this type is meant to obey the interface 72// rules for dwarf.Sym from the cmd/internal/dwarf package. DwDie and 73// DwAttr objects contain references to symbols via this type. 74type dwSym loader.Sym 75 76func (c dwctxt) PtrSize() int { 77 return c.arch.PtrSize 78} 79 80func (c dwctxt) Size(s dwarf.Sym) int64 { 81 return int64(len(c.ldr.Data(loader.Sym(s.(dwSym))))) 82} 83 84func (c dwctxt) AddInt(s dwarf.Sym, size int, i int64) { 85 ds := loader.Sym(s.(dwSym)) 86 dsu := c.ldr.MakeSymbolUpdater(ds) 87 dsu.AddUintXX(c.arch, uint64(i), size) 88} 89 90func (c dwctxt) AddBytes(s dwarf.Sym, b []byte) { 91 ds := loader.Sym(s.(dwSym)) 92 dsu := c.ldr.MakeSymbolUpdater(ds) 93 dsu.AddBytes(b) 94} 95 96func (c dwctxt) AddString(s dwarf.Sym, v string) { 97 ds := loader.Sym(s.(dwSym)) 98 dsu := c.ldr.MakeSymbolUpdater(ds) 99 dsu.Addstring(v) 100} 101 102func (c dwctxt) AddAddress(s dwarf.Sym, data interface{}, value int64) { 103 ds := loader.Sym(s.(dwSym)) 104 dsu := c.ldr.MakeSymbolUpdater(ds) 105 if value != 0 { 106 value -= dsu.Value() 107 } 108 tgtds := loader.Sym(data.(dwSym)) 109 dsu.AddAddrPlus(c.arch, tgtds, value) 110} 111 112func (c dwctxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) { 113 ds := loader.Sym(s.(dwSym)) 114 dsu := c.ldr.MakeSymbolUpdater(ds) 115 if value != 0 { 116 value -= dsu.Value() 117 } 118 tgtds := loader.Sym(data.(dwSym)) 119 dsu.AddCURelativeAddrPlus(c.arch, tgtds, value) 120} 121 122func (c dwctxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) { 123 ds := loader.Sym(s.(dwSym)) 124 dsu := c.ldr.MakeSymbolUpdater(ds) 125 tds := loader.Sym(t.(dwSym)) 126 switch size { 127 default: 128 c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size) 129 case c.arch.PtrSize, 4: 130 } 131 dsu.AddSymRef(c.arch, tds, ofs, objabi.R_ADDROFF, size) 132} 133 134func (c dwctxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) { 135 size := 4 136 if isDwarf64(c.linkctxt) { 137 size = 8 138 } 139 ds := loader.Sym(s.(dwSym)) 140 dsu := c.ldr.MakeSymbolUpdater(ds) 141 tds := loader.Sym(t.(dwSym)) 142 switch size { 143 default: 144 c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size) 145 case c.arch.PtrSize, 4: 146 } 147 dsu.AddSymRef(c.arch, tds, ofs, objabi.R_DWARFSECREF, size) 148} 149 150func (c dwctxt) Logf(format string, args ...interface{}) { 151 c.linkctxt.Logf(format, args...) 152} 153 154// At the moment these interfaces are only used in the compiler. 155 156func (c dwctxt) CurrentOffset(s dwarf.Sym) int64 { 157 panic("should be used only in the compiler") 158} 159 160func (c dwctxt) RecordDclReference(s dwarf.Sym, t dwarf.Sym, dclIdx int, inlIndex int) { 161 panic("should be used only in the compiler") 162} 163 164func (c dwctxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) { 165 panic("should be used only in the compiler") 166} 167 168func isDwarf64(ctxt *Link) bool { 169 return ctxt.HeadType == objabi.Haix 170} 171 172// https://sourceware.org/gdb/onlinedocs/gdb/dotdebug_005fgdb_005fscripts-section.html 173// Each entry inside .debug_gdb_scripts section begins with a non-null prefix 174// byte that specifies the kind of entry. The following entries are supported: 175const ( 176 GdbScriptPythonFileId = 1 177 GdbScriptSchemeFileId = 3 178 GdbScriptPythonTextId = 4 179 GdbScriptSchemeTextId = 6 180) 181 182var gdbscript string 183 184// dwarfSecInfo holds information about a DWARF output section, 185// specifically a section symbol and a list of symbols contained in 186// that section. On the syms list, the first symbol will always be the 187// section symbol, then any remaining symbols (if any) will be 188// sub-symbols in that section. Note that for some sections (eg: 189// .debug_abbrev), the section symbol is all there is (all content is 190// contained in it). For other sections (eg: .debug_info), the section 191// symbol is empty and all the content is in the sub-symbols. Finally 192// there are some sections (eg: .debug_ranges) where it is a mix (both 193// the section symbol and the sub-symbols have content) 194type dwarfSecInfo struct { 195 syms []loader.Sym 196} 197 198// secSym returns the section symbol for the section. 199func (dsi *dwarfSecInfo) secSym() loader.Sym { 200 if len(dsi.syms) == 0 { 201 return 0 202 } 203 return dsi.syms[0] 204} 205 206// subSyms returns a list of sub-symbols for the section. 207func (dsi *dwarfSecInfo) subSyms() []loader.Sym { 208 if len(dsi.syms) == 0 { 209 return []loader.Sym{} 210 } 211 return dsi.syms[1:] 212} 213 214// dwarfp stores the collected DWARF symbols created during 215// dwarf generation. 216var dwarfp []dwarfSecInfo 217 218func (d *dwctxt) writeabbrev() dwarfSecInfo { 219 abrvs := d.ldr.CreateSymForUpdate(".debug_abbrev", 0) 220 abrvs.SetType(sym.SDWARFSECT) 221 abrvs.AddBytes(dwarf.GetAbbrev()) 222 return dwarfSecInfo{syms: []loader.Sym{abrvs.Sym()}} 223} 224 225var dwtypes dwarf.DWDie 226 227// newattr attaches a new attribute to the specified DIE. 228// 229// FIXME: at the moment attributes are stored in a linked list in a 230// fairly space-inefficient way -- it might be better to instead look 231// up all attrs in a single large table, then store indices into the 232// table in the DIE. This would allow us to common up storage for 233// attributes that are shared by many DIEs (ex: byte size of N). 234func newattr(die *dwarf.DWDie, attr uint16, cls int, value int64, data interface{}) { 235 a := new(dwarf.DWAttr) 236 a.Link = die.Attr 237 die.Attr = a 238 a.Atr = attr 239 a.Cls = uint8(cls) 240 a.Value = value 241 a.Data = data 242} 243 244// Each DIE (except the root ones) has at least 1 attribute: its 245// name. getattr moves the desired one to the front so 246// frequently searched ones are found faster. 247func getattr(die *dwarf.DWDie, attr uint16) *dwarf.DWAttr { 248 if die.Attr.Atr == attr { 249 return die.Attr 250 } 251 252 a := die.Attr 253 b := a.Link 254 for b != nil { 255 if b.Atr == attr { 256 a.Link = b.Link 257 b.Link = die.Attr 258 die.Attr = b 259 return b 260 } 261 262 a = b 263 b = b.Link 264 } 265 266 return nil 267} 268 269// Every DIE manufactured by the linker has at least an AT_name 270// attribute (but it will only be written out if it is listed in the abbrev). 271// The compiler does create nameless DWARF DIEs (ex: concrete subprogram 272// instance). 273// FIXME: it would be more efficient to bulk-allocate DIEs. 274func (d *dwctxt) newdie(parent *dwarf.DWDie, abbrev int, name string) *dwarf.DWDie { 275 die := new(dwarf.DWDie) 276 die.Abbrev = abbrev 277 die.Link = parent.Child 278 parent.Child = die 279 280 newattr(die, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len(name)), name) 281 282 // Sanity check: all DIEs created in the linker should be named. 283 if name == "" { 284 panic("nameless DWARF DIE") 285 } 286 287 var st sym.SymKind 288 switch abbrev { 289 case dwarf.DW_ABRV_FUNCTYPEPARAM, dwarf.DW_ABRV_DOTDOTDOT, dwarf.DW_ABRV_STRUCTFIELD, dwarf.DW_ABRV_ARRAYRANGE: 290 // There are no relocations against these dies, and their names 291 // are not unique, so don't create a symbol. 292 return die 293 case dwarf.DW_ABRV_COMPUNIT, dwarf.DW_ABRV_COMPUNIT_TEXTLESS: 294 // Avoid collisions with "real" symbol names. 295 name = fmt.Sprintf(".pkg.%s.%d", name, len(d.linkctxt.compUnits)) 296 st = sym.SDWARFCUINFO 297 case dwarf.DW_ABRV_VARIABLE: 298 st = sym.SDWARFVAR 299 default: 300 // Everything else is assigned a type of SDWARFTYPE. that 301 // this also includes loose ends such as STRUCT_FIELD. 302 st = sym.SDWARFTYPE 303 } 304 ds := d.ldr.LookupOrCreateSym(dwarf.InfoPrefix+name, 0) 305 dsu := d.ldr.MakeSymbolUpdater(ds) 306 dsu.SetType(st) 307 d.ldr.SetAttrNotInSymbolTable(ds, true) 308 d.ldr.SetAttrReachable(ds, true) 309 die.Sym = dwSym(ds) 310 if abbrev >= dwarf.DW_ABRV_NULLTYPE && abbrev <= dwarf.DW_ABRV_TYPEDECL { 311 d.tmap[name] = ds 312 } 313 314 return die 315} 316 317func walktypedef(die *dwarf.DWDie) *dwarf.DWDie { 318 if die == nil { 319 return nil 320 } 321 // Resolve typedef if present. 322 if die.Abbrev == dwarf.DW_ABRV_TYPEDECL { 323 for attr := die.Attr; attr != nil; attr = attr.Link { 324 if attr.Atr == dwarf.DW_AT_type && attr.Cls == dwarf.DW_CLS_REFERENCE && attr.Data != nil { 325 return attr.Data.(*dwarf.DWDie) 326 } 327 } 328 } 329 330 return die 331} 332 333func (d *dwctxt) walksymtypedef(symIdx loader.Sym) loader.Sym { 334 335 // We're being given the loader symbol for the type DIE, e.g. 336 // "go:info.type.uintptr". Map that first to the type symbol (e.g. 337 // "type:uintptr") and then to the typedef DIE for the type. 338 // FIXME: this seems clunky, maybe there is a better way to do this. 339 340 if ts, ok := d.rtmap[symIdx]; ok { 341 if def, ok := d.tdmap[ts]; ok { 342 return def 343 } 344 d.linkctxt.Errorf(ts, "internal error: no entry for sym %d in tdmap\n", ts) 345 return 0 346 } 347 d.linkctxt.Errorf(symIdx, "internal error: no entry for sym %d in rtmap\n", symIdx) 348 return 0 349} 350 351// Find child by AT_name using hashtable if available or linear scan 352// if not. 353func findchild(die *dwarf.DWDie, name string) *dwarf.DWDie { 354 var prev *dwarf.DWDie 355 for ; die != prev; prev, die = die, walktypedef(die) { 356 for a := die.Child; a != nil; a = a.Link { 357 if name == getattr(a, dwarf.DW_AT_name).Data { 358 return a 359 } 360 } 361 continue 362 } 363 return nil 364} 365 366// find looks up the loader symbol for the DWARF DIE generated for the 367// type with the specified name. 368func (d *dwctxt) find(name string) loader.Sym { 369 return d.tmap[name] 370} 371 372func (d *dwctxt) mustFind(name string) loader.Sym { 373 r := d.find(name) 374 if r == 0 { 375 Exitf("dwarf find: cannot find %s", name) 376 } 377 return r 378} 379 380func (d *dwctxt) adddwarfref(sb *loader.SymbolBuilder, t loader.Sym, size int) { 381 switch size { 382 default: 383 d.linkctxt.Errorf(sb.Sym(), "invalid size %d in adddwarfref\n", size) 384 case d.arch.PtrSize, 4: 385 } 386 sb.AddSymRef(d.arch, t, 0, objabi.R_DWARFSECREF, size) 387} 388 389func (d *dwctxt) newrefattr(die *dwarf.DWDie, attr uint16, ref loader.Sym) { 390 if ref == 0 { 391 return 392 } 393 newattr(die, attr, dwarf.DW_CLS_REFERENCE, 0, dwSym(ref)) 394} 395 396func (d *dwctxt) dtolsym(s dwarf.Sym) loader.Sym { 397 if s == nil { 398 return 0 399 } 400 dws := loader.Sym(s.(dwSym)) 401 return dws 402} 403 404func (d *dwctxt) putdie(syms []loader.Sym, die *dwarf.DWDie) []loader.Sym { 405 s := d.dtolsym(die.Sym) 406 if s == 0 { 407 s = syms[len(syms)-1] 408 } else { 409 syms = append(syms, s) 410 } 411 sDwsym := dwSym(s) 412 dwarf.Uleb128put(d, sDwsym, int64(die.Abbrev)) 413 dwarf.PutAttrs(d, sDwsym, die.Abbrev, die.Attr) 414 if dwarf.HasChildren(die) { 415 for die := die.Child; die != nil; die = die.Link { 416 syms = d.putdie(syms, die) 417 } 418 dsu := d.ldr.MakeSymbolUpdater(syms[len(syms)-1]) 419 dsu.AddUint8(0) 420 } 421 return syms 422} 423 424func reverselist(list **dwarf.DWDie) { 425 curr := *list 426 var prev *dwarf.DWDie 427 for curr != nil { 428 next := curr.Link 429 curr.Link = prev 430 prev = curr 431 curr = next 432 } 433 434 *list = prev 435} 436 437func reversetree(list **dwarf.DWDie) { 438 reverselist(list) 439 for die := *list; die != nil; die = die.Link { 440 if dwarf.HasChildren(die) { 441 reversetree(&die.Child) 442 } 443 } 444} 445 446func newmemberoffsetattr(die *dwarf.DWDie, offs int32) { 447 newattr(die, dwarf.DW_AT_data_member_location, dwarf.DW_CLS_CONSTANT, int64(offs), nil) 448} 449 450func (d *dwctxt) lookupOrDiag(n string) loader.Sym { 451 symIdx := d.ldr.Lookup(n, 0) 452 if symIdx == 0 { 453 Exitf("dwarf: missing type: %s", n) 454 } 455 if len(d.ldr.Data(symIdx)) == 0 { 456 Exitf("dwarf: missing type (no data): %s", n) 457 } 458 459 return symIdx 460} 461 462func (d *dwctxt) dotypedef(parent *dwarf.DWDie, name string, def *dwarf.DWDie) *dwarf.DWDie { 463 // Only emit typedefs for real names. 464 if strings.HasPrefix(name, "map[") { 465 return nil 466 } 467 if strings.HasPrefix(name, "struct {") { 468 return nil 469 } 470 // cmd/compile uses "noalg.struct {...}" as type name when hash and eq algorithm generation of 471 // this struct type is suppressed. 472 if strings.HasPrefix(name, "noalg.struct {") { 473 return nil 474 } 475 if strings.HasPrefix(name, "chan ") { 476 return nil 477 } 478 if name[0] == '[' || name[0] == '*' { 479 return nil 480 } 481 if def == nil { 482 Errorf(nil, "dwarf: bad def in dotypedef") 483 } 484 485 // Create a new loader symbol for the typedef. We no longer 486 // do lookups of typedef symbols by name, so this is going 487 // to be an anonymous symbol (we want this for perf reasons). 488 tds := d.ldr.CreateExtSym("", 0) 489 tdsu := d.ldr.MakeSymbolUpdater(tds) 490 tdsu.SetType(sym.SDWARFTYPE) 491 def.Sym = dwSym(tds) 492 d.ldr.SetAttrNotInSymbolTable(tds, true) 493 d.ldr.SetAttrReachable(tds, true) 494 495 // The typedef entry must be created after the def, 496 // so that future lookups will find the typedef instead 497 // of the real definition. This hooks the typedef into any 498 // circular definition loops, so that gdb can understand them. 499 die := d.newdie(parent, dwarf.DW_ABRV_TYPEDECL, name) 500 501 d.newrefattr(die, dwarf.DW_AT_type, tds) 502 503 return die 504} 505 506// Define gotype, for composite ones recurse into constituents. 507func (d *dwctxt) defgotype(gotype loader.Sym) loader.Sym { 508 if gotype == 0 { 509 return d.mustFind("<unspecified>") 510 } 511 512 // If we already have a tdmap entry for the gotype, return it. 513 if ds, ok := d.tdmap[gotype]; ok { 514 return ds 515 } 516 517 sn := d.ldr.SymName(gotype) 518 if !strings.HasPrefix(sn, "type:") { 519 d.linkctxt.Errorf(gotype, "dwarf: type name doesn't start with \"type:\"") 520 return d.mustFind("<unspecified>") 521 } 522 name := sn[5:] // could also decode from Type.string 523 524 sdie := d.find(name) 525 if sdie != 0 { 526 return sdie 527 } 528 529 gtdwSym := d.newtype(gotype) 530 d.tdmap[gotype] = loader.Sym(gtdwSym.Sym.(dwSym)) 531 return loader.Sym(gtdwSym.Sym.(dwSym)) 532} 533 534func (d *dwctxt) newtype(gotype loader.Sym) *dwarf.DWDie { 535 sn := d.ldr.SymName(gotype) 536 name := sn[5:] // could also decode from Type.string 537 tdata := d.ldr.Data(gotype) 538 if len(tdata) == 0 { 539 d.linkctxt.Errorf(gotype, "missing type") 540 } 541 kind := decodetypeKind(d.arch, tdata) 542 bytesize := decodetypeSize(d.arch, tdata) 543 544 var die, typedefdie *dwarf.DWDie 545 switch kind { 546 case abi.Bool: 547 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) 548 newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_boolean, 0) 549 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 550 551 case abi.Int, 552 abi.Int8, 553 abi.Int16, 554 abi.Int32, 555 abi.Int64: 556 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) 557 newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_signed, 0) 558 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 559 560 case abi.Uint, 561 abi.Uint8, 562 abi.Uint16, 563 abi.Uint32, 564 abi.Uint64, 565 abi.Uintptr: 566 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) 567 newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0) 568 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 569 570 case abi.Float32, 571 abi.Float64: 572 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) 573 newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_float, 0) 574 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 575 576 case abi.Complex64, 577 abi.Complex128: 578 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) 579 newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_complex_float, 0) 580 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 581 582 case abi.Array: 583 die = d.newdie(&dwtypes, dwarf.DW_ABRV_ARRAYTYPE, name) 584 typedefdie = d.dotypedef(&dwtypes, name, die) 585 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 586 s := decodetypeArrayElem(d.ldr, d.arch, gotype) 587 d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) 588 fld := d.newdie(die, dwarf.DW_ABRV_ARRAYRANGE, "range") 589 590 // use actual length not upper bound; correct for 0-length arrays. 591 newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, decodetypeArrayLen(d.ldr, d.arch, gotype), 0) 592 593 d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) 594 595 case abi.Chan: 596 die = d.newdie(&dwtypes, dwarf.DW_ABRV_CHANTYPE, name) 597 s := decodetypeChanElem(d.ldr, d.arch, gotype) 598 d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s)) 599 // Save elem type for synthesizechantypes. We could synthesize here 600 // but that would change the order of DIEs we output. 601 d.newrefattr(die, dwarf.DW_AT_type, s) 602 603 case abi.Func: 604 die = d.newdie(&dwtypes, dwarf.DW_ABRV_FUNCTYPE, name) 605 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 606 typedefdie = d.dotypedef(&dwtypes, name, die) 607 data := d.ldr.Data(gotype) 608 // FIXME: add caching or reuse reloc slice. 609 relocs := d.ldr.Relocs(gotype) 610 nfields := decodetypeFuncInCount(d.arch, data) 611 for i := 0; i < nfields; i++ { 612 s := decodetypeFuncInType(d.ldr, d.arch, gotype, &relocs, i) 613 sn := d.ldr.SymName(s) 614 fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:]) 615 d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s)) 616 } 617 618 if decodetypeFuncDotdotdot(d.arch, data) { 619 d.newdie(die, dwarf.DW_ABRV_DOTDOTDOT, "...") 620 } 621 nfields = decodetypeFuncOutCount(d.arch, data) 622 for i := 0; i < nfields; i++ { 623 s := decodetypeFuncOutType(d.ldr, d.arch, gotype, &relocs, i) 624 sn := d.ldr.SymName(s) 625 fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:]) 626 d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.defgotype(s))) 627 } 628 629 case abi.Interface: 630 die = d.newdie(&dwtypes, dwarf.DW_ABRV_IFACETYPE, name) 631 typedefdie = d.dotypedef(&dwtypes, name, die) 632 data := d.ldr.Data(gotype) 633 nfields := int(decodetypeIfaceMethodCount(d.arch, data)) 634 var s loader.Sym 635 if nfields == 0 { 636 s = d.typeRuntimeEface 637 } else { 638 s = d.typeRuntimeIface 639 } 640 d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) 641 642 case abi.Map: 643 die = d.newdie(&dwtypes, dwarf.DW_ABRV_MAPTYPE, name) 644 s := decodetypeMapKey(d.ldr, d.arch, gotype) 645 d.newrefattr(die, dwarf.DW_AT_go_key, d.defgotype(s)) 646 s = decodetypeMapValue(d.ldr, d.arch, gotype) 647 d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s)) 648 // Save gotype for use in synthesizemaptypes. We could synthesize here, 649 // but that would change the order of the DIEs. 650 d.newrefattr(die, dwarf.DW_AT_type, gotype) 651 652 case abi.Pointer: 653 die = d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, name) 654 typedefdie = d.dotypedef(&dwtypes, name, die) 655 s := decodetypePtrElem(d.ldr, d.arch, gotype) 656 d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) 657 658 case abi.Slice: 659 die = d.newdie(&dwtypes, dwarf.DW_ABRV_SLICETYPE, name) 660 typedefdie = d.dotypedef(&dwtypes, name, die) 661 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 662 s := decodetypeArrayElem(d.ldr, d.arch, gotype) 663 elem := d.defgotype(s) 664 d.newrefattr(die, dwarf.DW_AT_go_elem, elem) 665 666 case abi.String: 667 die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRINGTYPE, name) 668 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 669 670 case abi.Struct: 671 die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRUCTTYPE, name) 672 typedefdie = d.dotypedef(&dwtypes, name, die) 673 newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) 674 nfields := decodetypeStructFieldCount(d.ldr, d.arch, gotype) 675 for i := 0; i < nfields; i++ { 676 f := decodetypeStructFieldName(d.ldr, d.arch, gotype, i) 677 s := decodetypeStructFieldType(d.ldr, d.arch, gotype, i) 678 if f == "" { 679 sn := d.ldr.SymName(s) 680 f = sn[5:] // skip "type:" 681 } 682 fld := d.newdie(die, dwarf.DW_ABRV_STRUCTFIELD, f) 683 d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s)) 684 offset := decodetypeStructFieldOffset(d.ldr, d.arch, gotype, i) 685 newmemberoffsetattr(fld, int32(offset)) 686 if decodetypeStructFieldEmbedded(d.ldr, d.arch, gotype, i) { 687 newattr(fld, dwarf.DW_AT_go_embedded_field, dwarf.DW_CLS_FLAG, 1, 0) 688 } 689 } 690 691 case abi.UnsafePointer: 692 die = d.newdie(&dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, name) 693 694 default: 695 d.linkctxt.Errorf(gotype, "dwarf: definition of unknown kind %d", kind) 696 die = d.newdie(&dwtypes, dwarf.DW_ABRV_TYPEDECL, name) 697 d.newrefattr(die, dwarf.DW_AT_type, d.mustFind("<unspecified>")) 698 } 699 700 newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(kind), 0) 701 702 if d.ldr.AttrReachable(gotype) { 703 newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gotype)) 704 } 705 706 // Sanity check. 707 if _, ok := d.rtmap[gotype]; ok { 708 log.Fatalf("internal error: rtmap entry already installed\n") 709 } 710 711 ds := loader.Sym(die.Sym.(dwSym)) 712 if typedefdie != nil { 713 ds = loader.Sym(typedefdie.Sym.(dwSym)) 714 } 715 d.rtmap[ds] = gotype 716 717 if _, ok := prototypedies[sn]; ok { 718 prototypedies[sn] = die 719 } 720 721 if typedefdie != nil { 722 return typedefdie 723 } 724 return die 725} 726 727func (d *dwctxt) nameFromDIESym(dwtypeDIESym loader.Sym) string { 728 sn := d.ldr.SymName(dwtypeDIESym) 729 return sn[len(dwarf.InfoPrefix):] 730} 731 732func (d *dwctxt) defptrto(dwtype loader.Sym) loader.Sym { 733 734 // FIXME: it would be nice if the compiler attached an aux symbol 735 // ref from the element type to the pointer type -- it would be 736 // more efficient to do it this way as opposed to via name lookups. 737 738 ptrname := "*" + d.nameFromDIESym(dwtype) 739 if die := d.find(ptrname); die != 0 { 740 return die 741 } 742 743 pdie := d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, ptrname) 744 d.newrefattr(pdie, dwarf.DW_AT_type, dwtype) 745 746 // The DWARF info synthesizes pointer types that don't exist at the 747 // language level, like *hash<...> and *bucket<...>, and the data 748 // pointers of slices. Link to the ones we can find. 749 gts := d.ldr.Lookup("type:"+ptrname, 0) 750 if gts != 0 && d.ldr.AttrReachable(gts) { 751 newattr(pdie, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(abi.Pointer), 0) 752 newattr(pdie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gts)) 753 } 754 755 if gts != 0 { 756 ds := loader.Sym(pdie.Sym.(dwSym)) 757 d.rtmap[ds] = gts 758 d.tdmap[gts] = ds 759 } 760 761 return d.dtolsym(pdie.Sym) 762} 763 764// Copies src's children into dst. Copies attributes by value. 765// DWAttr.data is copied as pointer only. If except is one of 766// the top-level children, it will not be copied. 767func (d *dwctxt) copychildrenexcept(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie, except *dwarf.DWDie) { 768 for src = src.Child; src != nil; src = src.Link { 769 if src == except { 770 continue 771 } 772 c := d.newdie(dst, src.Abbrev, getattr(src, dwarf.DW_AT_name).Data.(string)) 773 for a := src.Attr; a != nil; a = a.Link { 774 newattr(c, a.Atr, int(a.Cls), a.Value, a.Data) 775 } 776 d.copychildrenexcept(ctxt, c, src, nil) 777 } 778 779 reverselist(&dst.Child) 780} 781 782func (d *dwctxt) copychildren(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie) { 783 d.copychildrenexcept(ctxt, dst, src, nil) 784} 785 786// Search children (assumed to have TAG_member) for the one named 787// field and set its AT_type to dwtype 788func (d *dwctxt) substitutetype(structdie *dwarf.DWDie, field string, dwtype loader.Sym) { 789 child := findchild(structdie, field) 790 if child == nil { 791 Exitf("dwarf substitutetype: %s does not have member %s", 792 getattr(structdie, dwarf.DW_AT_name).Data, field) 793 return 794 } 795 796 a := getattr(child, dwarf.DW_AT_type) 797 if a != nil { 798 a.Data = dwSym(dwtype) 799 } else { 800 d.newrefattr(child, dwarf.DW_AT_type, dwtype) 801 } 802} 803 804func (d *dwctxt) findprotodie(ctxt *Link, name string) *dwarf.DWDie { 805 die, ok := prototypedies[name] 806 if ok && die == nil { 807 d.defgotype(d.lookupOrDiag(name)) 808 die = prototypedies[name] 809 } 810 if die == nil { 811 log.Fatalf("internal error: DIE generation failed for %s\n", name) 812 } 813 return die 814} 815 816func (d *dwctxt) synthesizestringtypes(ctxt *Link, die *dwarf.DWDie) { 817 prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.stringStructDWARF")) 818 if prototype == nil { 819 return 820 } 821 822 for ; die != nil; die = die.Link { 823 if die.Abbrev != dwarf.DW_ABRV_STRINGTYPE { 824 continue 825 } 826 d.copychildren(ctxt, die, prototype) 827 } 828} 829 830func (d *dwctxt) synthesizeslicetypes(ctxt *Link, die *dwarf.DWDie) { 831 prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.slice")) 832 if prototype == nil { 833 return 834 } 835 836 for ; die != nil; die = die.Link { 837 if die.Abbrev != dwarf.DW_ABRV_SLICETYPE { 838 continue 839 } 840 d.copychildren(ctxt, die, prototype) 841 elem := loader.Sym(getattr(die, dwarf.DW_AT_go_elem).Data.(dwSym)) 842 d.substitutetype(die, "array", d.defptrto(elem)) 843 } 844} 845 846func mkinternaltypename(base string, arg1 string, arg2 string) string { 847 if arg2 == "" { 848 return fmt.Sprintf("%s<%s>", base, arg1) 849 } 850 return fmt.Sprintf("%s<%s,%s>", base, arg1, arg2) 851} 852 853func (d *dwctxt) mkinternaltype(ctxt *Link, abbrev int, typename, keyname, valname string, f func(*dwarf.DWDie)) loader.Sym { 854 name := mkinternaltypename(typename, keyname, valname) 855 symname := dwarf.InfoPrefix + name 856 s := d.ldr.Lookup(symname, 0) 857 if s != 0 && d.ldr.SymType(s) == sym.SDWARFTYPE { 858 return s 859 } 860 die := d.newdie(&dwtypes, abbrev, name) 861 f(die) 862 return d.dtolsym(die.Sym) 863} 864 865func (d *dwctxt) synthesizemaptypes(ctxt *Link, die *dwarf.DWDie) { 866 hash := walktypedef(d.findprotodie(ctxt, "type:runtime.hmap")) 867 bucket := walktypedef(d.findprotodie(ctxt, "type:runtime.bmap")) 868 869 if hash == nil { 870 return 871 } 872 873 for ; die != nil; die = die.Link { 874 if die.Abbrev != dwarf.DW_ABRV_MAPTYPE { 875 continue 876 } 877 gotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym)) 878 keytype := decodetypeMapKey(d.ldr, d.arch, gotype) 879 valtype := decodetypeMapValue(d.ldr, d.arch, gotype) 880 keydata := d.ldr.Data(keytype) 881 valdata := d.ldr.Data(valtype) 882 keysize, valsize := decodetypeSize(d.arch, keydata), decodetypeSize(d.arch, valdata) 883 keytype, valtype = d.walksymtypedef(d.defgotype(keytype)), d.walksymtypedef(d.defgotype(valtype)) 884 885 // compute size info like hashmap.c does. 886 indirectKey, indirectVal := false, false 887 if keysize > abi.MapMaxKeyBytes { 888 keysize = int64(d.arch.PtrSize) 889 indirectKey = true 890 } 891 if valsize > abi.MapMaxElemBytes { 892 valsize = int64(d.arch.PtrSize) 893 indirectVal = true 894 } 895 896 // Construct type to represent an array of BucketSize keys 897 keyname := d.nameFromDIESym(keytype) 898 dwhks := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) { 899 newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.MapBucketCount*keysize, 0) 900 t := keytype 901 if indirectKey { 902 t = d.defptrto(keytype) 903 } 904 d.newrefattr(dwhk, dwarf.DW_AT_type, t) 905 fld := d.newdie(dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size") 906 newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.MapBucketCount, 0) 907 d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) 908 }) 909 910 // Construct type to represent an array of BucketSize values 911 valname := d.nameFromDIESym(valtype) 912 dwhvs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) { 913 newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.MapBucketCount*valsize, 0) 914 t := valtype 915 if indirectVal { 916 t = d.defptrto(valtype) 917 } 918 d.newrefattr(dwhv, dwarf.DW_AT_type, t) 919 fld := d.newdie(dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size") 920 newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.MapBucketCount, 0) 921 d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) 922 }) 923 924 // Construct bucket<K,V> 925 dwhbs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) { 926 // Copy over all fields except the field "data" from the generic 927 // bucket. "data" will be replaced with keys/values below. 928 d.copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data")) 929 930 fld := d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys") 931 d.newrefattr(fld, dwarf.DW_AT_type, dwhks) 932 newmemberoffsetattr(fld, abi.MapBucketCount) 933 fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values") 934 d.newrefattr(fld, dwarf.DW_AT_type, dwhvs) 935 newmemberoffsetattr(fld, abi.MapBucketCount+abi.MapBucketCount*int32(keysize)) 936 fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow") 937 d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.dtolsym(dwhb.Sym))) 938 newmemberoffsetattr(fld, abi.MapBucketCount+abi.MapBucketCount*(int32(keysize)+int32(valsize))) 939 if d.arch.RegSize > d.arch.PtrSize { 940 fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad") 941 d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) 942 newmemberoffsetattr(fld, abi.MapBucketCount+abi.MapBucketCount*(int32(keysize)+int32(valsize))+int32(d.arch.PtrSize)) 943 } 944 945 newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.MapBucketCount+abi.MapBucketCount*keysize+abi.MapBucketCount*valsize+int64(d.arch.RegSize), 0) 946 }) 947 948 // Construct hash<K,V> 949 dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) { 950 d.copychildren(ctxt, dwh, hash) 951 d.substitutetype(dwh, "buckets", d.defptrto(dwhbs)) 952 d.substitutetype(dwh, "oldbuckets", d.defptrto(dwhbs)) 953 newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil) 954 }) 955 956 // make map type a pointer to hash<K,V> 957 d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs)) 958 } 959} 960 961func (d *dwctxt) synthesizechantypes(ctxt *Link, die *dwarf.DWDie) { 962 sudog := walktypedef(d.findprotodie(ctxt, "type:runtime.sudog")) 963 waitq := walktypedef(d.findprotodie(ctxt, "type:runtime.waitq")) 964 hchan := walktypedef(d.findprotodie(ctxt, "type:runtime.hchan")) 965 if sudog == nil || waitq == nil || hchan == nil { 966 return 967 } 968 969 sudogsize := int(getattr(sudog, dwarf.DW_AT_byte_size).Value) 970 971 for ; die != nil; die = die.Link { 972 if die.Abbrev != dwarf.DW_ABRV_CHANTYPE { 973 continue 974 } 975 elemgotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym)) 976 tname := d.ldr.SymName(elemgotype) 977 elemname := tname[5:] 978 elemtype := d.walksymtypedef(d.defgotype(d.lookupOrDiag(tname))) 979 980 // sudog<T> 981 dwss := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *dwarf.DWDie) { 982 d.copychildren(ctxt, dws, sudog) 983 d.substitutetype(dws, "elem", d.defptrto(elemtype)) 984 newattr(dws, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(sudogsize), nil) 985 }) 986 987 // waitq<T> 988 dwws := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *dwarf.DWDie) { 989 990 d.copychildren(ctxt, dww, waitq) 991 d.substitutetype(dww, "first", d.defptrto(dwss)) 992 d.substitutetype(dww, "last", d.defptrto(dwss)) 993 newattr(dww, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(waitq, dwarf.DW_AT_byte_size).Value, nil) 994 }) 995 996 // hchan<T> 997 dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *dwarf.DWDie) { 998 d.copychildren(ctxt, dwh, hchan) 999 d.substitutetype(dwh, "recvq", dwws) 1000 d.substitutetype(dwh, "sendq", dwws) 1001 newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hchan, dwarf.DW_AT_byte_size).Value, nil) 1002 }) 1003 1004 d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs)) 1005 } 1006} 1007 1008// createUnitLength creates the initial length field with value v and update 1009// offset of unit_length if needed. 1010func (d *dwctxt) createUnitLength(su *loader.SymbolBuilder, v uint64) { 1011 if isDwarf64(d.linkctxt) { 1012 su.AddUint32(d.arch, 0xFFFFFFFF) 1013 } 1014 d.addDwarfAddrField(su, v) 1015} 1016 1017// addDwarfAddrField adds a DWARF field in DWARF 64bits or 32bits. 1018func (d *dwctxt) addDwarfAddrField(sb *loader.SymbolBuilder, v uint64) { 1019 if isDwarf64(d.linkctxt) { 1020 sb.AddUint(d.arch, v) 1021 } else { 1022 sb.AddUint32(d.arch, uint32(v)) 1023 } 1024} 1025 1026// addDwarfAddrRef adds a DWARF pointer in DWARF 64bits or 32bits. 1027func (d *dwctxt) addDwarfAddrRef(sb *loader.SymbolBuilder, t loader.Sym) { 1028 if isDwarf64(d.linkctxt) { 1029 d.adddwarfref(sb, t, 8) 1030 } else { 1031 d.adddwarfref(sb, t, 4) 1032 } 1033} 1034 1035// calcCompUnitRanges calculates the PC ranges of the compilation units. 1036func (d *dwctxt) calcCompUnitRanges() { 1037 var prevUnit *sym.CompilationUnit 1038 for _, s := range d.linkctxt.Textp { 1039 sym := loader.Sym(s) 1040 1041 fi := d.ldr.FuncInfo(sym) 1042 if !fi.Valid() { 1043 continue 1044 } 1045 1046 // Skip linker-created functions (ex: runtime.addmoduledata), since they 1047 // don't have DWARF to begin with. 1048 unit := d.ldr.SymUnit(sym) 1049 if unit == nil { 1050 continue 1051 } 1052 1053 // Update PC ranges. 1054 // 1055 // We don't simply compare the end of the previous 1056 // symbol with the start of the next because there's 1057 // often a little padding between them. Instead, we 1058 // only create boundaries between symbols from 1059 // different units. 1060 sval := d.ldr.SymValue(sym) 1061 u0val := d.ldr.SymValue(loader.Sym(unit.Textp[0])) 1062 if prevUnit != unit { 1063 unit.PCs = append(unit.PCs, dwarf.Range{Start: sval - u0val}) 1064 prevUnit = unit 1065 } 1066 unit.PCs[len(unit.PCs)-1].End = sval - u0val + int64(len(d.ldr.Data(sym))) 1067 } 1068} 1069 1070func movetomodule(ctxt *Link, parent *dwarf.DWDie) { 1071 die := ctxt.runtimeCU.DWInfo.Child 1072 if die == nil { 1073 ctxt.runtimeCU.DWInfo.Child = parent.Child 1074 return 1075 } 1076 for die.Link != nil { 1077 die = die.Link 1078 } 1079 die.Link = parent.Child 1080} 1081 1082/* 1083 * Generate a sequence of opcodes that is as short as possible. 1084 * See section 6.2.5 1085 */ 1086const ( 1087 LINE_BASE = -4 1088 LINE_RANGE = 10 1089 PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE 1090 OPCODE_BASE = 11 1091) 1092 1093/* 1094 * Walk prog table, emit line program and build DIE tree. 1095 */ 1096 1097func getCompilationDir() string { 1098 // OSX requires this be set to something, but it's not easy to choose 1099 // a value. Linking takes place in a temporary directory, so there's 1100 // no point including it here. Paths in the file table are usually 1101 // absolute, in which case debuggers will ignore this value. -trimpath 1102 // produces relative paths, but we don't know where they start, so 1103 // all we can do here is try not to make things worse. 1104 return "." 1105} 1106 1107func (d *dwctxt) importInfoSymbol(dsym loader.Sym) { 1108 d.ldr.SetAttrReachable(dsym, true) 1109 d.ldr.SetAttrNotInSymbolTable(dsym, true) 1110 dst := d.ldr.SymType(dsym) 1111 if dst != sym.SDWARFCONST && dst != sym.SDWARFABSFCN { 1112 log.Fatalf("error: DWARF info sym %d/%s with incorrect type %s", dsym, d.ldr.SymName(dsym), d.ldr.SymType(dsym).String()) 1113 } 1114 relocs := d.ldr.Relocs(dsym) 1115 for i := 0; i < relocs.Count(); i++ { 1116 r := relocs.At(i) 1117 if r.Type() != objabi.R_DWARFSECREF { 1118 continue 1119 } 1120 rsym := r.Sym() 1121 // If there is an entry for the symbol in our rtmap, then it 1122 // means we've processed the type already, and can skip this one. 1123 if _, ok := d.rtmap[rsym]; ok { 1124 // type already generated 1125 continue 1126 } 1127 // FIXME: is there a way we could avoid materializing the 1128 // symbol name here? 1129 sn := d.ldr.SymName(rsym) 1130 tn := sn[len(dwarf.InfoPrefix):] 1131 ts := d.ldr.Lookup("type:"+tn, 0) 1132 d.defgotype(ts) 1133 } 1134} 1135 1136func expandFile(fname string) string { 1137 fname = strings.TrimPrefix(fname, src.FileSymPrefix) 1138 return expandGoroot(fname) 1139} 1140 1141// writeDirFileTables emits the portion of the DWARF line table 1142// prologue containing the include directories and file names, 1143// described in section 6.2.4 of the DWARF 4 standard. It walks the 1144// filepaths for the unit to discover any common directories, which 1145// are emitted to the directory table first, then the file table is 1146// emitted after that. 1147func (d *dwctxt) writeDirFileTables(unit *sym.CompilationUnit, lsu *loader.SymbolBuilder) { 1148 type fileDir struct { 1149 base string 1150 dir int 1151 } 1152 dirNums := make(map[string]int) 1153 dirs := []string{""} 1154 files := []fileDir{} 1155 1156 // Preprocess files to collect directories. This assumes that the 1157 // file table is already de-duped. 1158 for i, name := range unit.FileTable { 1159 name := expandFile(name) 1160 if len(name) == 0 { 1161 // Can't have empty filenames, and having a unique 1162 // filename is quite useful for debugging. 1163 name = fmt.Sprintf("<missing>_%d", i) 1164 } 1165 // Note the use of "path" here and not "filepath". The compiler 1166 // hard-codes to use "/" in DWARF paths (even for Windows), so we 1167 // want to maintain that here. 1168 file := path.Base(name) 1169 dir := path.Dir(name) 1170 dirIdx, ok := dirNums[dir] 1171 if !ok && dir != "." { 1172 dirIdx = len(dirNums) + 1 1173 dirNums[dir] = dirIdx 1174 dirs = append(dirs, dir) 1175 } 1176 files = append(files, fileDir{base: file, dir: dirIdx}) 1177 1178 // We can't use something that may be dead-code 1179 // eliminated from a binary here. proc.go contains 1180 // main and the scheduler, so it's not going anywhere. 1181 if i := strings.Index(name, "runtime/proc.go"); i >= 0 && unit.Lib.Pkg == "runtime" { 1182 d.dwmu.Lock() 1183 if gdbscript == "" { 1184 k := strings.Index(name, "runtime/proc.go") 1185 gdbscript = name[:k] + "runtime/runtime-gdb.py" 1186 } 1187 d.dwmu.Unlock() 1188 } 1189 } 1190 1191 // Emit directory section. This is a series of nul terminated 1192 // strings, followed by a single zero byte. 1193 lsDwsym := dwSym(lsu.Sym()) 1194 for k := 1; k < len(dirs); k++ { 1195 d.AddString(lsDwsym, dirs[k]) 1196 } 1197 lsu.AddUint8(0) // terminator 1198 1199 // Emit file section. 1200 for k := 0; k < len(files); k++ { 1201 d.AddString(lsDwsym, files[k].base) 1202 dwarf.Uleb128put(d, lsDwsym, int64(files[k].dir)) 1203 lsu.AddUint8(0) // mtime 1204 lsu.AddUint8(0) // length 1205 } 1206 lsu.AddUint8(0) // terminator 1207} 1208 1209// writelines collects up and chains together the symbols needed to 1210// form the DWARF line table for the specified compilation unit, 1211// returning a list of symbols. The returned list will include an 1212// initial symbol containing the line table header and prologue (with 1213// file table), then a series of compiler-emitted line table symbols 1214// (one per live function), and finally an epilog symbol containing an 1215// end-of-sequence operator. The prologue and epilog symbols are passed 1216// in (having been created earlier); here we add content to them. 1217func (d *dwctxt) writelines(unit *sym.CompilationUnit, lineProlog loader.Sym) []loader.Sym { 1218 is_stmt := uint8(1) // initially = recommended default_is_stmt = 1, tracks is_stmt toggles. 1219 1220 unitstart := int64(-1) 1221 headerstart := int64(-1) 1222 headerend := int64(-1) 1223 1224 syms := make([]loader.Sym, 0, len(unit.Textp)+2) 1225 syms = append(syms, lineProlog) 1226 lsu := d.ldr.MakeSymbolUpdater(lineProlog) 1227 lsDwsym := dwSym(lineProlog) 1228 newattr(unit.DWInfo, dwarf.DW_AT_stmt_list, dwarf.DW_CLS_PTR, 0, lsDwsym) 1229 1230 // Write .debug_line Line Number Program Header (sec 6.2.4) 1231 // Fields marked with (*) must be changed for 64-bit dwarf 1232 unitLengthOffset := lsu.Size() 1233 d.createUnitLength(lsu, 0) // unit_length (*), filled in at end 1234 unitstart = lsu.Size() 1235 lsu.AddUint16(d.arch, 2) // dwarf version (appendix F) -- version 3 is incompatible w/ XCode 9.0's dsymutil, latest supported on OSX 10.12 as of 2018-05 1236 headerLengthOffset := lsu.Size() 1237 d.addDwarfAddrField(lsu, 0) // header_length (*), filled in at end 1238 headerstart = lsu.Size() 1239 1240 // cpos == unitstart + 4 + 2 + 4 1241 lsu.AddUint8(1) // minimum_instruction_length 1242 lsu.AddUint8(is_stmt) // default_is_stmt 1243 lsu.AddUint8(LINE_BASE & 0xFF) // line_base 1244 lsu.AddUint8(LINE_RANGE) // line_range 1245 lsu.AddUint8(OPCODE_BASE) // opcode_base 1246 lsu.AddUint8(0) // standard_opcode_lengths[1] 1247 lsu.AddUint8(1) // standard_opcode_lengths[2] 1248 lsu.AddUint8(1) // standard_opcode_lengths[3] 1249 lsu.AddUint8(1) // standard_opcode_lengths[4] 1250 lsu.AddUint8(1) // standard_opcode_lengths[5] 1251 lsu.AddUint8(0) // standard_opcode_lengths[6] 1252 lsu.AddUint8(0) // standard_opcode_lengths[7] 1253 lsu.AddUint8(0) // standard_opcode_lengths[8] 1254 lsu.AddUint8(1) // standard_opcode_lengths[9] 1255 lsu.AddUint8(0) // standard_opcode_lengths[10] 1256 1257 // Call helper to emit dir and file sections. 1258 d.writeDirFileTables(unit, lsu) 1259 1260 // capture length at end of file names. 1261 headerend = lsu.Size() 1262 unitlen := lsu.Size() - unitstart 1263 1264 // Output the state machine for each function remaining. 1265 for _, s := range unit.Textp { 1266 fnSym := loader.Sym(s) 1267 _, _, _, lines := d.ldr.GetFuncDwarfAuxSyms(fnSym) 1268 1269 // Chain the line symbol onto the list. 1270 if lines != 0 { 1271 syms = append(syms, lines) 1272 unitlen += int64(len(d.ldr.Data(lines))) 1273 } 1274 } 1275 1276 if d.linkctxt.HeadType == objabi.Haix { 1277 addDwsectCUSize(".debug_line", unit.Lib.Pkg, uint64(unitlen)) 1278 } 1279 1280 if isDwarf64(d.linkctxt) { 1281 lsu.SetUint(d.arch, unitLengthOffset+4, uint64(unitlen)) // +4 because of 0xFFFFFFFF 1282 lsu.SetUint(d.arch, headerLengthOffset, uint64(headerend-headerstart)) 1283 } else { 1284 lsu.SetUint32(d.arch, unitLengthOffset, uint32(unitlen)) 1285 lsu.SetUint32(d.arch, headerLengthOffset, uint32(headerend-headerstart)) 1286 } 1287 1288 return syms 1289} 1290 1291// writepcranges generates the DW_AT_ranges table for compilation unit 1292// "unit", and returns a collection of ranges symbols (one for the 1293// compilation unit DIE itself and the remainder from functions in the unit). 1294func (d *dwctxt) writepcranges(unit *sym.CompilationUnit, base loader.Sym, pcs []dwarf.Range, rangeProlog loader.Sym) []loader.Sym { 1295 1296 syms := make([]loader.Sym, 0, len(unit.RangeSyms)+1) 1297 syms = append(syms, rangeProlog) 1298 rsu := d.ldr.MakeSymbolUpdater(rangeProlog) 1299 rDwSym := dwSym(rangeProlog) 1300 1301 // Create PC ranges for the compilation unit DIE. 1302 newattr(unit.DWInfo, dwarf.DW_AT_ranges, dwarf.DW_CLS_PTR, rsu.Size(), rDwSym) 1303 newattr(unit.DWInfo, dwarf.DW_AT_low_pc, dwarf.DW_CLS_ADDRESS, 0, dwSym(base)) 1304 dwarf.PutBasedRanges(d, rDwSym, pcs) 1305 1306 // Collect up the ranges for functions in the unit. 1307 rsize := uint64(rsu.Size()) 1308 for _, ls := range unit.RangeSyms { 1309 s := loader.Sym(ls) 1310 syms = append(syms, s) 1311 rsize += uint64(d.ldr.SymSize(s)) 1312 } 1313 1314 if d.linkctxt.HeadType == objabi.Haix { 1315 addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, rsize) 1316 } 1317 1318 return syms 1319} 1320 1321/* 1322 * Emit .debug_frame 1323 */ 1324const ( 1325 dataAlignmentFactor = -4 1326) 1327 1328// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice. 1329func appendPCDeltaCFA(arch *sys.Arch, b []byte, deltapc, cfa int64) []byte { 1330 b = append(b, dwarf.DW_CFA_def_cfa_offset_sf) 1331 b = dwarf.AppendSleb128(b, cfa/dataAlignmentFactor) 1332 1333 switch { 1334 case deltapc < 0x40: 1335 b = append(b, uint8(dwarf.DW_CFA_advance_loc+deltapc)) 1336 case deltapc < 0x100: 1337 b = append(b, dwarf.DW_CFA_advance_loc1) 1338 b = append(b, uint8(deltapc)) 1339 case deltapc < 0x10000: 1340 b = append(b, dwarf.DW_CFA_advance_loc2, 0, 0) 1341 arch.ByteOrder.PutUint16(b[len(b)-2:], uint16(deltapc)) 1342 default: 1343 b = append(b, dwarf.DW_CFA_advance_loc4, 0, 0, 0, 0) 1344 arch.ByteOrder.PutUint32(b[len(b)-4:], uint32(deltapc)) 1345 } 1346 return b 1347} 1348 1349func (d *dwctxt) writeframes(fs loader.Sym) dwarfSecInfo { 1350 fsd := dwSym(fs) 1351 fsu := d.ldr.MakeSymbolUpdater(fs) 1352 fsu.SetType(sym.SDWARFSECT) 1353 isdw64 := isDwarf64(d.linkctxt) 1354 haslr := d.linkctxt.Arch.HasLR 1355 1356 // Length field is 4 bytes on Dwarf32 and 12 bytes on Dwarf64 1357 lengthFieldSize := int64(4) 1358 if isdw64 { 1359 lengthFieldSize += 8 1360 } 1361 1362 // Emit the CIE, Section 6.4.1 1363 cieReserve := uint32(16) 1364 if haslr { 1365 cieReserve = 32 1366 } 1367 if isdw64 { 1368 cieReserve += 4 // 4 bytes added for cid 1369 } 1370 d.createUnitLength(fsu, uint64(cieReserve)) // initial length, must be multiple of thearch.ptrsize 1371 d.addDwarfAddrField(fsu, ^uint64(0)) // cid 1372 fsu.AddUint8(3) // dwarf version (appendix F) 1373 fsu.AddUint8(0) // augmentation "" 1374 dwarf.Uleb128put(d, fsd, 1) // code_alignment_factor 1375 dwarf.Sleb128put(d, fsd, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor 1376 dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // return_address_register 1377 1378 fsu.AddUint8(dwarf.DW_CFA_def_cfa) // Set the current frame address.. 1379 dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)... 1380 if haslr { 1381 dwarf.Uleb128put(d, fsd, int64(0)) // ...plus a 0 offset. 1382 1383 fsu.AddUint8(dwarf.DW_CFA_same_value) // The platform's link register is unchanged during the prologue. 1384 dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) 1385 1386 fsu.AddUint8(dwarf.DW_CFA_val_offset) // The previous value... 1387 dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...of the platform's SP register... 1388 dwarf.Uleb128put(d, fsd, int64(0)) // ...is CFA+0. 1389 } else { 1390 dwarf.Uleb128put(d, fsd, int64(d.arch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame). 1391 1392 fsu.AddUint8(dwarf.DW_CFA_offset_extended) // The previous value... 1393 dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // ...of the return address... 1394 dwarf.Uleb128put(d, fsd, int64(-d.arch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)]. 1395 } 1396 1397 pad := int64(cieReserve) + lengthFieldSize - int64(len(d.ldr.Data(fs))) 1398 1399 if pad < 0 { 1400 Exitf("dwarf: cieReserve too small by %d bytes.", -pad) 1401 } 1402 1403 internalExec := d.linkctxt.BuildMode == BuildModeExe && d.linkctxt.IsInternal() 1404 addAddrPlus := loader.GenAddAddrPlusFunc(internalExec) 1405 1406 fsu.AddBytes(zeros[:pad]) 1407 1408 var deltaBuf []byte 1409 pcsp := obj.NewPCIter(uint32(d.arch.MinLC)) 1410 for _, s := range d.linkctxt.Textp { 1411 fn := loader.Sym(s) 1412 fi := d.ldr.FuncInfo(fn) 1413 if !fi.Valid() { 1414 continue 1415 } 1416 fpcsp := d.ldr.Pcsp(s) 1417 1418 // Emit a FDE, Section 6.4.1. 1419 // First build the section contents into a byte buffer. 1420 deltaBuf = deltaBuf[:0] 1421 if haslr && fi.TopFrame() { 1422 // Mark the link register as having an undefined value. 1423 // This stops call stack unwinders progressing any further. 1424 // TODO: similar mark on non-LR architectures. 1425 deltaBuf = append(deltaBuf, dwarf.DW_CFA_undefined) 1426 deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) 1427 } 1428 1429 for pcsp.Init(d.linkctxt.loader.Data(fpcsp)); !pcsp.Done; pcsp.Next() { 1430 nextpc := pcsp.NextPC 1431 1432 // pciterinit goes up to the end of the function, 1433 // but DWARF expects us to stop just before the end. 1434 if int64(nextpc) == int64(len(d.ldr.Data(fn))) { 1435 nextpc-- 1436 if nextpc < pcsp.PC { 1437 continue 1438 } 1439 } 1440 1441 spdelta := int64(pcsp.Value) 1442 if !haslr { 1443 // Return address has been pushed onto stack. 1444 spdelta += int64(d.arch.PtrSize) 1445 } 1446 1447 if haslr && !fi.TopFrame() { 1448 // TODO(bryanpkc): This is imprecise. In general, the instruction 1449 // that stores the return address to the stack frame is not the 1450 // same one that allocates the frame. 1451 if pcsp.Value > 0 { 1452 // The return address is preserved at (CFA-frame_size) 1453 // after a stack frame has been allocated. 1454 deltaBuf = append(deltaBuf, dwarf.DW_CFA_offset_extended_sf) 1455 deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) 1456 deltaBuf = dwarf.AppendSleb128(deltaBuf, -spdelta/dataAlignmentFactor) 1457 } else { 1458 // The return address is restored into the link register 1459 // when a stack frame has been de-allocated. 1460 deltaBuf = append(deltaBuf, dwarf.DW_CFA_same_value) 1461 deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) 1462 } 1463 } 1464 1465 deltaBuf = appendPCDeltaCFA(d.arch, deltaBuf, int64(nextpc)-int64(pcsp.PC), spdelta) 1466 } 1467 pad := int(Rnd(int64(len(deltaBuf)), int64(d.arch.PtrSize))) - len(deltaBuf) 1468 deltaBuf = append(deltaBuf, zeros[:pad]...) 1469 1470 // Emit the FDE header, Section 6.4.1. 1471 // 4 bytes: length, must be multiple of thearch.ptrsize 1472 // 4/8 bytes: Pointer to the CIE above, at offset 0 1473 // ptrsize: initial location 1474 // ptrsize: address range 1475 1476 fdeLength := uint64(4 + 2*d.arch.PtrSize + len(deltaBuf)) 1477 if isdw64 { 1478 fdeLength += 4 // 4 bytes added for CIE pointer 1479 } 1480 d.createUnitLength(fsu, fdeLength) 1481 1482 if d.linkctxt.LinkMode == LinkExternal { 1483 d.addDwarfAddrRef(fsu, fs) 1484 } else { 1485 d.addDwarfAddrField(fsu, 0) // CIE offset 1486 } 1487 addAddrPlus(fsu, d.arch, s, 0) 1488 fsu.AddUintXX(d.arch, uint64(len(d.ldr.Data(fn))), d.arch.PtrSize) // address range 1489 fsu.AddBytes(deltaBuf) 1490 1491 if d.linkctxt.HeadType == objabi.Haix { 1492 addDwsectCUSize(".debug_frame", d.ldr.SymPkg(fn), fdeLength+uint64(lengthFieldSize)) 1493 } 1494 } 1495 1496 return dwarfSecInfo{syms: []loader.Sym{fs}} 1497} 1498 1499/* 1500 * Walk DWarfDebugInfoEntries, and emit .debug_info 1501 */ 1502 1503const ( 1504 COMPUNITHEADERSIZE = 4 + 2 + 4 + 1 1505) 1506 1507func (d *dwctxt) writeUnitInfo(u *sym.CompilationUnit, abbrevsym loader.Sym, infoEpilog loader.Sym) []loader.Sym { 1508 syms := []loader.Sym{} 1509 if len(u.Textp) == 0 && u.DWInfo.Child == nil && len(u.VarDIEs) == 0 { 1510 return syms 1511 } 1512 1513 compunit := u.DWInfo 1514 s := d.dtolsym(compunit.Sym) 1515 su := d.ldr.MakeSymbolUpdater(s) 1516 1517 // Write .debug_info Compilation Unit Header (sec 7.5.1) 1518 // Fields marked with (*) must be changed for 64-bit dwarf 1519 // This must match COMPUNITHEADERSIZE above. 1520 d.createUnitLength(su, 0) // unit_length (*), will be filled in later. 1521 su.AddUint16(d.arch, 4) // dwarf version (appendix F) 1522 1523 // debug_abbrev_offset (*) 1524 d.addDwarfAddrRef(su, abbrevsym) 1525 1526 su.AddUint8(uint8(d.arch.PtrSize)) // address_size 1527 1528 ds := dwSym(s) 1529 dwarf.Uleb128put(d, ds, int64(compunit.Abbrev)) 1530 dwarf.PutAttrs(d, ds, compunit.Abbrev, compunit.Attr) 1531 1532 // This is an under-estimate; more will be needed for type DIEs. 1533 cu := make([]loader.Sym, 0, len(u.AbsFnDIEs)+len(u.FuncDIEs)) 1534 cu = append(cu, s) 1535 cu = append(cu, u.AbsFnDIEs...) 1536 cu = append(cu, u.FuncDIEs...) 1537 if u.Consts != 0 { 1538 cu = append(cu, loader.Sym(u.Consts)) 1539 } 1540 cu = append(cu, u.VarDIEs...) 1541 var cusize int64 1542 for _, child := range cu { 1543 cusize += int64(len(d.ldr.Data(child))) 1544 } 1545 1546 for die := compunit.Child; die != nil; die = die.Link { 1547 l := len(cu) 1548 lastSymSz := int64(len(d.ldr.Data(cu[l-1]))) 1549 cu = d.putdie(cu, die) 1550 if lastSymSz != int64(len(d.ldr.Data(cu[l-1]))) { 1551 // putdie will sometimes append directly to the last symbol of the list 1552 cusize = cusize - lastSymSz + int64(len(d.ldr.Data(cu[l-1]))) 1553 } 1554 for _, child := range cu[l:] { 1555 cusize += int64(len(d.ldr.Data(child))) 1556 } 1557 } 1558 1559 culu := d.ldr.MakeSymbolUpdater(infoEpilog) 1560 culu.AddUint8(0) // closes compilation unit DIE 1561 cu = append(cu, infoEpilog) 1562 cusize++ 1563 1564 // Save size for AIX symbol table. 1565 if d.linkctxt.HeadType == objabi.Haix { 1566 addDwsectCUSize(".debug_info", d.getPkgFromCUSym(s), uint64(cusize)) 1567 } 1568 if isDwarf64(d.linkctxt) { 1569 cusize -= 12 // exclude the length field. 1570 su.SetUint(d.arch, 4, uint64(cusize)) // 4 because of 0XFFFFFFFF 1571 } else { 1572 cusize -= 4 // exclude the length field. 1573 su.SetUint32(d.arch, 0, uint32(cusize)) 1574 } 1575 return append(syms, cu...) 1576} 1577 1578func (d *dwctxt) writegdbscript() dwarfSecInfo { 1579 // TODO (aix): make it available 1580 if d.linkctxt.HeadType == objabi.Haix { 1581 return dwarfSecInfo{} 1582 } 1583 if d.linkctxt.LinkMode == LinkExternal && d.linkctxt.HeadType == objabi.Hwindows && d.linkctxt.BuildMode == BuildModeCArchive { 1584 // gcc on Windows places .debug_gdb_scripts in the wrong location, which 1585 // causes the program not to run. See https://golang.org/issue/20183 1586 // Non c-archives can avoid this issue via a linker script 1587 // (see fix near writeGDBLinkerScript). 1588 // c-archive users would need to specify the linker script manually. 1589 // For UX it's better not to deal with this. 1590 return dwarfSecInfo{} 1591 } 1592 if gdbscript == "" { 1593 return dwarfSecInfo{} 1594 } 1595 1596 gs := d.ldr.CreateSymForUpdate(".debug_gdb_scripts", 0) 1597 gs.SetType(sym.SDWARFSECT) 1598 1599 gs.AddUint8(GdbScriptPythonFileId) 1600 gs.Addstring(gdbscript) 1601 return dwarfSecInfo{syms: []loader.Sym{gs.Sym()}} 1602} 1603 1604// FIXME: might be worth looking replacing this map with a function 1605// that switches based on symbol instead. 1606 1607var prototypedies map[string]*dwarf.DWDie 1608 1609func dwarfEnabled(ctxt *Link) bool { 1610 if *FlagW { // disable dwarf 1611 return false 1612 } 1613 if ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hjs || ctxt.HeadType == objabi.Hwasip1 { 1614 return false 1615 } 1616 1617 if ctxt.LinkMode == LinkExternal { 1618 switch { 1619 case ctxt.IsELF: 1620 case ctxt.HeadType == objabi.Hdarwin: 1621 case ctxt.HeadType == objabi.Hwindows: 1622 case ctxt.HeadType == objabi.Haix: 1623 res, err := dwarf.IsDWARFEnabledOnAIXLd(ctxt.extld()) 1624 if err != nil { 1625 Exitf("%v", err) 1626 } 1627 return res 1628 default: 1629 return false 1630 } 1631 } 1632 1633 return true 1634} 1635 1636// mkBuiltinType populates the dwctxt2 sym lookup maps for the 1637// newly created builtin type DIE 'typeDie'. 1638func (d *dwctxt) mkBuiltinType(ctxt *Link, abrv int, tname string) *dwarf.DWDie { 1639 // create type DIE 1640 die := d.newdie(&dwtypes, abrv, tname) 1641 1642 // Look up type symbol. 1643 gotype := d.lookupOrDiag("type:" + tname) 1644 1645 // Map from die sym to type sym 1646 ds := loader.Sym(die.Sym.(dwSym)) 1647 d.rtmap[ds] = gotype 1648 1649 // Map from type to def sym 1650 d.tdmap[gotype] = ds 1651 1652 return die 1653} 1654 1655// dwarfVisitFunction takes a function (text) symbol and processes the 1656// subprogram DIE for the function and picks up any other DIEs 1657// (absfns, types) that it references. 1658func (d *dwctxt) dwarfVisitFunction(fnSym loader.Sym, unit *sym.CompilationUnit) { 1659 // The DWARF subprogram DIE symbol is listed as an aux sym 1660 // of the text (fcn) symbol, so ask the loader to retrieve it, 1661 // as well as the associated range symbol. 1662 infosym, _, rangesym, _ := d.ldr.GetFuncDwarfAuxSyms(fnSym) 1663 if infosym == 0 { 1664 return 1665 } 1666 d.ldr.SetAttrNotInSymbolTable(infosym, true) 1667 d.ldr.SetAttrReachable(infosym, true) 1668 unit.FuncDIEs = append(unit.FuncDIEs, sym.LoaderSym(infosym)) 1669 if rangesym != 0 { 1670 d.ldr.SetAttrNotInSymbolTable(rangesym, true) 1671 d.ldr.SetAttrReachable(rangesym, true) 1672 unit.RangeSyms = append(unit.RangeSyms, sym.LoaderSym(rangesym)) 1673 } 1674 1675 // Walk the relocations of the subprogram DIE symbol to discover 1676 // references to abstract function DIEs, Go type DIES, and 1677 // (via R_USETYPE relocs) types that were originally assigned to 1678 // locals/params but were optimized away. 1679 drelocs := d.ldr.Relocs(infosym) 1680 for ri := 0; ri < drelocs.Count(); ri++ { 1681 r := drelocs.At(ri) 1682 // Look for "use type" relocs. 1683 if r.Type() == objabi.R_USETYPE { 1684 d.defgotype(r.Sym()) 1685 continue 1686 } 1687 if r.Type() != objabi.R_DWARFSECREF { 1688 continue 1689 } 1690 1691 rsym := r.Sym() 1692 rst := d.ldr.SymType(rsym) 1693 1694 // Look for abstract function references. 1695 if rst == sym.SDWARFABSFCN { 1696 if !d.ldr.AttrOnList(rsym) { 1697 // abstract function 1698 d.ldr.SetAttrOnList(rsym, true) 1699 unit.AbsFnDIEs = append(unit.AbsFnDIEs, sym.LoaderSym(rsym)) 1700 d.importInfoSymbol(rsym) 1701 } 1702 continue 1703 } 1704 1705 // Look for type references. 1706 if rst != sym.SDWARFTYPE && rst != sym.Sxxx { 1707 continue 1708 } 1709 if _, ok := d.rtmap[rsym]; ok { 1710 // type already generated 1711 continue 1712 } 1713 1714 rsn := d.ldr.SymName(rsym) 1715 tn := rsn[len(dwarf.InfoPrefix):] 1716 ts := d.ldr.Lookup("type:"+tn, 0) 1717 d.defgotype(ts) 1718 } 1719} 1720 1721// dwarfGenerateDebugInfo generated debug info entries for all types, 1722// variables and functions in the program. 1723// Along with dwarfGenerateDebugSyms they are the two main entry points into 1724// dwarf generation: dwarfGenerateDebugInfo does all the work that should be 1725// done before symbol names are mangled while dwarfGenerateDebugSyms does 1726// all the work that can only be done after addresses have been assigned to 1727// text symbols. 1728func dwarfGenerateDebugInfo(ctxt *Link) { 1729 if !dwarfEnabled(ctxt) { 1730 return 1731 } 1732 1733 d := &dwctxt{ 1734 linkctxt: ctxt, 1735 ldr: ctxt.loader, 1736 arch: ctxt.Arch, 1737 tmap: make(map[string]loader.Sym), 1738 tdmap: make(map[loader.Sym]loader.Sym), 1739 rtmap: make(map[loader.Sym]loader.Sym), 1740 } 1741 d.typeRuntimeEface = d.lookupOrDiag("type:runtime.eface") 1742 d.typeRuntimeIface = d.lookupOrDiag("type:runtime.iface") 1743 1744 if ctxt.HeadType == objabi.Haix { 1745 // Initial map used to store package size for each DWARF section. 1746 dwsectCUSize = make(map[string]uint64) 1747 } 1748 1749 // For ctxt.Diagnostic messages. 1750 newattr(&dwtypes, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len("dwtypes")), "dwtypes") 1751 1752 // Unspecified type. There are no references to this in the symbol table. 1753 d.newdie(&dwtypes, dwarf.DW_ABRV_NULLTYPE, "<unspecified>") 1754 1755 // Some types that must exist to define other ones (uintptr in particular 1756 // is needed for array size) 1757 unsafeptrDie := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer") 1758 newattr(unsafeptrDie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(d.lookupOrDiag("type:unsafe.Pointer"))) 1759 uintptrDie := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BASETYPE, "uintptr") 1760 newattr(uintptrDie, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0) 1761 newattr(uintptrDie, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(d.arch.PtrSize), 0) 1762 newattr(uintptrDie, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(abi.Uintptr), 0) 1763 newattr(uintptrDie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(d.lookupOrDiag("type:uintptr"))) 1764 1765 d.uintptrInfoSym = d.mustFind("uintptr") 1766 1767 // Prototypes needed for type synthesis. 1768 prototypedies = map[string]*dwarf.DWDie{ 1769 "type:runtime.stringStructDWARF": nil, 1770 "type:runtime.slice": nil, 1771 "type:runtime.hmap": nil, 1772 "type:runtime.bmap": nil, 1773 "type:runtime.sudog": nil, 1774 "type:runtime.waitq": nil, 1775 "type:runtime.hchan": nil, 1776 } 1777 1778 // Needed by the prettyprinter code for interface inspection. 1779 for _, typ := range []string{ 1780 "type:internal/abi.Type", 1781 "type:internal/abi.ArrayType", 1782 "type:internal/abi.ChanType", 1783 "type:internal/abi.FuncType", 1784 "type:internal/abi.MapType", 1785 "type:internal/abi.PtrType", 1786 "type:internal/abi.SliceType", 1787 "type:internal/abi.StructType", 1788 "type:internal/abi.InterfaceType", 1789 "type:internal/abi.ITab", 1790 "type:internal/abi.Imethod"} { 1791 d.defgotype(d.lookupOrDiag(typ)) 1792 } 1793 1794 // fake root DIE for compile unit DIEs 1795 var dwroot dwarf.DWDie 1796 flagVariants := make(map[string]bool) 1797 1798 for _, lib := range ctxt.Library { 1799 1800 consts := d.ldr.Lookup(dwarf.ConstInfoPrefix+lib.Pkg, 0) 1801 for _, unit := range lib.Units { 1802 // We drop the constants into the first CU. 1803 if consts != 0 { 1804 unit.Consts = sym.LoaderSym(consts) 1805 d.importInfoSymbol(consts) 1806 consts = 0 1807 } 1808 ctxt.compUnits = append(ctxt.compUnits, unit) 1809 1810 // We need at least one runtime unit. 1811 if unit.Lib.Pkg == "runtime" { 1812 ctxt.runtimeCU = unit 1813 } 1814 1815 cuabrv := dwarf.DW_ABRV_COMPUNIT 1816 if len(unit.Textp) == 0 { 1817 cuabrv = dwarf.DW_ABRV_COMPUNIT_TEXTLESS 1818 } 1819 unit.DWInfo = d.newdie(&dwroot, cuabrv, unit.Lib.Pkg) 1820 newattr(unit.DWInfo, dwarf.DW_AT_language, dwarf.DW_CLS_CONSTANT, int64(dwarf.DW_LANG_Go), 0) 1821 // OS X linker requires compilation dir or absolute path in comp unit name to output debug info. 1822 compDir := getCompilationDir() 1823 // TODO: Make this be the actual compilation directory, not 1824 // the linker directory. If we move CU construction into the 1825 // compiler, this should happen naturally. 1826 newattr(unit.DWInfo, dwarf.DW_AT_comp_dir, dwarf.DW_CLS_STRING, int64(len(compDir)), compDir) 1827 1828 var peData []byte 1829 if producerExtra := d.ldr.Lookup(dwarf.CUInfoPrefix+"producer."+unit.Lib.Pkg, 0); producerExtra != 0 { 1830 peData = d.ldr.Data(producerExtra) 1831 } 1832 producer := "Go cmd/compile " + buildcfg.Version 1833 if len(peData) > 0 { 1834 // We put a semicolon before the flags to clearly 1835 // separate them from the version, which can be long 1836 // and have lots of weird things in it in development 1837 // versions. We promise not to put a semicolon in the 1838 // version, so it should be safe for readers to scan 1839 // forward to the semicolon. 1840 producer += "; " + string(peData) 1841 flagVariants[string(peData)] = true 1842 } else { 1843 flagVariants[""] = true 1844 } 1845 1846 newattr(unit.DWInfo, dwarf.DW_AT_producer, dwarf.DW_CLS_STRING, int64(len(producer)), producer) 1847 1848 var pkgname string 1849 if pnSymIdx := d.ldr.Lookup(dwarf.CUInfoPrefix+"packagename."+unit.Lib.Pkg, 0); pnSymIdx != 0 { 1850 pnsData := d.ldr.Data(pnSymIdx) 1851 pkgname = string(pnsData) 1852 } 1853 newattr(unit.DWInfo, dwarf.DW_AT_go_package_name, dwarf.DW_CLS_STRING, int64(len(pkgname)), pkgname) 1854 1855 // Scan all functions in this compilation unit, create 1856 // DIEs for all referenced types, find all referenced 1857 // abstract functions, visit range symbols. Note that 1858 // Textp has been dead-code-eliminated already. 1859 for _, s := range unit.Textp { 1860 d.dwarfVisitFunction(loader.Sym(s), unit) 1861 } 1862 } 1863 } 1864 1865 // Fix for 31034: if the objects feeding into this link were compiled 1866 // with different sets of flags, then don't issue an error if 1867 // the -strictdups checks fail. 1868 if checkStrictDups > 1 && len(flagVariants) > 1 { 1869 checkStrictDups = 1 1870 } 1871 1872 // Make a pass through all data symbols, looking for those 1873 // corresponding to reachable, Go-generated, user-visible 1874 // global variables. For each global of this sort, locate 1875 // the corresponding compiler-generated DIE symbol and tack 1876 // it onto the list associated with the unit. 1877 // Also looks for dictionary symbols and generates DIE symbols for each 1878 // type they reference. 1879 for idx := loader.Sym(1); idx < loader.Sym(d.ldr.NDef()); idx++ { 1880 if !d.ldr.AttrReachable(idx) || 1881 d.ldr.AttrNotInSymbolTable(idx) || 1882 d.ldr.SymVersion(idx) >= sym.SymVerStatic { 1883 continue 1884 } 1885 t := d.ldr.SymType(idx) 1886 switch t { 1887 case sym.SRODATA, sym.SDATA, sym.SNOPTRDATA, sym.STYPE, sym.SBSS, sym.SNOPTRBSS, sym.STLSBSS: 1888 // ok 1889 default: 1890 continue 1891 } 1892 // Skip things with no type, unless it's a dictionary 1893 gt := d.ldr.SymGoType(idx) 1894 if gt == 0 { 1895 if t == sym.SRODATA { 1896 if d.ldr.IsDict(idx) { 1897 // This is a dictionary, make sure that all types referenced by this dictionary are reachable 1898 relocs := d.ldr.Relocs(idx) 1899 for i := 0; i < relocs.Count(); i++ { 1900 reloc := relocs.At(i) 1901 if reloc.Type() == objabi.R_USEIFACE { 1902 d.defgotype(reloc.Sym()) 1903 } 1904 } 1905 } 1906 } 1907 continue 1908 } 1909 // Skip file local symbols (this includes static tmps, stack 1910 // object symbols, and local symbols in assembler src files). 1911 if d.ldr.IsFileLocal(idx) { 1912 continue 1913 } 1914 1915 // Find compiler-generated DWARF info sym for global in question, 1916 // and tack it onto the appropriate unit. Note that there are 1917 // circumstances under which we can't find the compiler-generated 1918 // symbol-- this typically happens as a result of compiler options 1919 // (e.g. compile package X with "-dwarf=0"). 1920 varDIE := d.ldr.GetVarDwarfAuxSym(idx) 1921 if varDIE != 0 { 1922 unit := d.ldr.SymUnit(idx) 1923 d.defgotype(gt) 1924 unit.VarDIEs = append(unit.VarDIEs, sym.LoaderSym(varDIE)) 1925 } 1926 } 1927 1928 d.synthesizestringtypes(ctxt, dwtypes.Child) 1929 d.synthesizeslicetypes(ctxt, dwtypes.Child) 1930 d.synthesizemaptypes(ctxt, dwtypes.Child) 1931 d.synthesizechantypes(ctxt, dwtypes.Child) 1932} 1933 1934// dwarfGenerateDebugSyms constructs debug_line, debug_frame, and 1935// debug_loc. It also writes out the debug_info section using symbols 1936// generated in dwarfGenerateDebugInfo2. 1937func dwarfGenerateDebugSyms(ctxt *Link) { 1938 if !dwarfEnabled(ctxt) { 1939 return 1940 } 1941 d := &dwctxt{ 1942 linkctxt: ctxt, 1943 ldr: ctxt.loader, 1944 arch: ctxt.Arch, 1945 dwmu: new(sync.Mutex), 1946 } 1947 d.dwarfGenerateDebugSyms() 1948} 1949 1950// dwUnitSyms stores input and output symbols for DWARF generation 1951// for a given compilation unit. 1952type dwUnitSyms struct { 1953 // Inputs for a given unit. 1954 lineProlog loader.Sym 1955 rangeProlog loader.Sym 1956 infoEpilog loader.Sym 1957 1958 // Outputs for a given unit. 1959 linesyms []loader.Sym 1960 infosyms []loader.Sym 1961 locsyms []loader.Sym 1962 rangessyms []loader.Sym 1963} 1964 1965// dwUnitPortion assembles the DWARF content for a given compilation 1966// unit: debug_info, debug_lines, debug_ranges, debug_loc (debug_frame 1967// is handled elsewhere). Order is important; the calls to writelines 1968// and writepcranges below make updates to the compilation unit DIE, 1969// hence they have to happen before the call to writeUnitInfo. 1970func (d *dwctxt) dwUnitPortion(u *sym.CompilationUnit, abbrevsym loader.Sym, us *dwUnitSyms) { 1971 if u.DWInfo.Abbrev != dwarf.DW_ABRV_COMPUNIT_TEXTLESS { 1972 us.linesyms = d.writelines(u, us.lineProlog) 1973 base := loader.Sym(u.Textp[0]) 1974 us.rangessyms = d.writepcranges(u, base, u.PCs, us.rangeProlog) 1975 us.locsyms = d.collectUnitLocs(u) 1976 } 1977 us.infosyms = d.writeUnitInfo(u, abbrevsym, us.infoEpilog) 1978} 1979 1980func (d *dwctxt) dwarfGenerateDebugSyms() { 1981 abbrevSec := d.writeabbrev() 1982 dwarfp = append(dwarfp, abbrevSec) 1983 d.calcCompUnitRanges() 1984 sort.Sort(compilationUnitByStartPC(d.linkctxt.compUnits)) 1985 1986 // newdie adds DIEs to the *beginning* of the parent's DIE list. 1987 // Now that we're done creating DIEs, reverse the trees so DIEs 1988 // appear in the order they were created. 1989 for _, u := range d.linkctxt.compUnits { 1990 reversetree(&u.DWInfo.Child) 1991 } 1992 reversetree(&dwtypes.Child) 1993 movetomodule(d.linkctxt, &dwtypes) 1994 1995 mkSecSym := func(name string) loader.Sym { 1996 s := d.ldr.CreateSymForUpdate(name, 0) 1997 s.SetType(sym.SDWARFSECT) 1998 s.SetReachable(true) 1999 return s.Sym() 2000 } 2001 mkAnonSym := func(kind sym.SymKind) loader.Sym { 2002 s := d.ldr.MakeSymbolUpdater(d.ldr.CreateExtSym("", 0)) 2003 s.SetType(kind) 2004 s.SetReachable(true) 2005 return s.Sym() 2006 } 2007 2008 // Create the section symbols. 2009 frameSym := mkSecSym(".debug_frame") 2010 locSym := mkSecSym(".debug_loc") 2011 lineSym := mkSecSym(".debug_line") 2012 rangesSym := mkSecSym(".debug_ranges") 2013 infoSym := mkSecSym(".debug_info") 2014 2015 // Create the section objects 2016 lineSec := dwarfSecInfo{syms: []loader.Sym{lineSym}} 2017 locSec := dwarfSecInfo{syms: []loader.Sym{locSym}} 2018 rangesSec := dwarfSecInfo{syms: []loader.Sym{rangesSym}} 2019 frameSec := dwarfSecInfo{syms: []loader.Sym{frameSym}} 2020 infoSec := dwarfSecInfo{syms: []loader.Sym{infoSym}} 2021 2022 // Create any new symbols that will be needed during the 2023 // parallel portion below. 2024 ncu := len(d.linkctxt.compUnits) 2025 unitSyms := make([]dwUnitSyms, ncu) 2026 for i := 0; i < ncu; i++ { 2027 us := &unitSyms[i] 2028 us.lineProlog = mkAnonSym(sym.SDWARFLINES) 2029 us.rangeProlog = mkAnonSym(sym.SDWARFRANGE) 2030 us.infoEpilog = mkAnonSym(sym.SDWARFFCN) 2031 } 2032 2033 var wg sync.WaitGroup 2034 sema := make(chan struct{}, runtime.GOMAXPROCS(0)) 2035 2036 // Kick off generation of .debug_frame, since it doesn't have 2037 // any entanglements and can be started right away. 2038 wg.Add(1) 2039 go func() { 2040 sema <- struct{}{} 2041 defer func() { 2042 <-sema 2043 wg.Done() 2044 }() 2045 frameSec = d.writeframes(frameSym) 2046 }() 2047 2048 // Create a goroutine per comp unit to handle the generation that 2049 // unit's portion of .debug_line, .debug_loc, .debug_ranges, and 2050 // .debug_info. 2051 wg.Add(len(d.linkctxt.compUnits)) 2052 for i := 0; i < ncu; i++ { 2053 go func(u *sym.CompilationUnit, us *dwUnitSyms) { 2054 sema <- struct{}{} 2055 defer func() { 2056 <-sema 2057 wg.Done() 2058 }() 2059 d.dwUnitPortion(u, abbrevSec.secSym(), us) 2060 }(d.linkctxt.compUnits[i], &unitSyms[i]) 2061 } 2062 wg.Wait() 2063 2064 markReachable := func(syms []loader.Sym) []loader.Sym { 2065 for _, s := range syms { 2066 d.ldr.SetAttrNotInSymbolTable(s, true) 2067 d.ldr.SetAttrReachable(s, true) 2068 } 2069 return syms 2070 } 2071 2072 // Stitch together the results. 2073 for i := 0; i < ncu; i++ { 2074 r := &unitSyms[i] 2075 lineSec.syms = append(lineSec.syms, markReachable(r.linesyms)...) 2076 infoSec.syms = append(infoSec.syms, markReachable(r.infosyms)...) 2077 locSec.syms = append(locSec.syms, markReachable(r.locsyms)...) 2078 rangesSec.syms = append(rangesSec.syms, markReachable(r.rangessyms)...) 2079 } 2080 dwarfp = append(dwarfp, lineSec) 2081 dwarfp = append(dwarfp, frameSec) 2082 gdbScriptSec := d.writegdbscript() 2083 if gdbScriptSec.secSym() != 0 { 2084 dwarfp = append(dwarfp, gdbScriptSec) 2085 } 2086 dwarfp = append(dwarfp, infoSec) 2087 if len(locSec.syms) > 1 { 2088 dwarfp = append(dwarfp, locSec) 2089 } 2090 dwarfp = append(dwarfp, rangesSec) 2091 2092 // Check to make sure we haven't listed any symbols more than once 2093 // in the info section. This used to be done by setting and 2094 // checking the OnList attribute in "putdie", but that strategy 2095 // was not friendly for concurrency. 2096 seen := loader.MakeBitmap(d.ldr.NSym()) 2097 for _, s := range infoSec.syms { 2098 if seen.Has(s) { 2099 log.Fatalf("symbol %s listed multiple times", d.ldr.SymName(s)) 2100 } 2101 seen.Set(s) 2102 } 2103} 2104 2105func (d *dwctxt) collectUnitLocs(u *sym.CompilationUnit) []loader.Sym { 2106 syms := []loader.Sym{} 2107 for _, fn := range u.FuncDIEs { 2108 relocs := d.ldr.Relocs(loader.Sym(fn)) 2109 for i := 0; i < relocs.Count(); i++ { 2110 reloc := relocs.At(i) 2111 if reloc.Type() != objabi.R_DWARFSECREF { 2112 continue 2113 } 2114 rsym := reloc.Sym() 2115 if d.ldr.SymType(rsym) == sym.SDWARFLOC { 2116 syms = append(syms, rsym) 2117 // One location list entry per function, but many relocations to it. Don't duplicate. 2118 break 2119 } 2120 } 2121 } 2122 return syms 2123} 2124 2125// Add DWARF section names to the section header string table, by calling add 2126// on each name. ELF only. 2127func dwarfaddshstrings(ctxt *Link, add func(string)) { 2128 if *FlagW { // disable dwarf 2129 return 2130 } 2131 2132 secs := []string{"abbrev", "frame", "info", "loc", "line", "gdb_scripts", "ranges"} 2133 for _, sec := range secs { 2134 add(".debug_" + sec) 2135 if ctxt.IsExternal() { 2136 add(elfRelType + ".debug_" + sec) 2137 } 2138 } 2139} 2140 2141func dwarfaddelfsectionsyms(ctxt *Link) { 2142 if *FlagW { // disable dwarf 2143 return 2144 } 2145 if ctxt.LinkMode != LinkExternal { 2146 return 2147 } 2148 2149 ldr := ctxt.loader 2150 for _, si := range dwarfp { 2151 s := si.secSym() 2152 sect := ldr.SymSect(si.secSym()) 2153 putelfsectionsym(ctxt, ctxt.Out, s, sect.Elfsect.(*ElfShdr).shnum) 2154 } 2155} 2156 2157// dwarfcompress compresses the DWARF sections. Relocations are applied 2158// on the fly. After this, dwarfp will contain a different (new) set of 2159// symbols, and sections may have been replaced. 2160func dwarfcompress(ctxt *Link) { 2161 // compressedSect is a helper type for parallelizing compression. 2162 type compressedSect struct { 2163 index int 2164 compressed []byte 2165 syms []loader.Sym 2166 } 2167 2168 supported := ctxt.IsELF || ctxt.IsWindows() || ctxt.IsDarwin() 2169 if !ctxt.compressDWARF || !supported || ctxt.IsExternal() { 2170 return 2171 } 2172 2173 var compressedCount int 2174 resChannel := make(chan compressedSect) 2175 for i := range dwarfp { 2176 go func(resIndex int, syms []loader.Sym) { 2177 resChannel <- compressedSect{resIndex, compressSyms(ctxt, syms), syms} 2178 }(compressedCount, dwarfp[i].syms) 2179 compressedCount++ 2180 } 2181 res := make([]compressedSect, compressedCount) 2182 for ; compressedCount > 0; compressedCount-- { 2183 r := <-resChannel 2184 res[r.index] = r 2185 } 2186 2187 ldr := ctxt.loader 2188 var newDwarfp []dwarfSecInfo 2189 Segdwarf.Sections = Segdwarf.Sections[:0] 2190 for _, z := range res { 2191 s := z.syms[0] 2192 if z.compressed == nil { 2193 // Compression didn't help. 2194 ds := dwarfSecInfo{syms: z.syms} 2195 newDwarfp = append(newDwarfp, ds) 2196 Segdwarf.Sections = append(Segdwarf.Sections, ldr.SymSect(s)) 2197 } else { 2198 var compressedSegName string 2199 if ctxt.IsELF { 2200 compressedSegName = ldr.SymSect(s).Name 2201 } else { 2202 compressedSegName = ".zdebug_" + ldr.SymSect(s).Name[len(".debug_"):] 2203 } 2204 sect := addsection(ctxt.loader, ctxt.Arch, &Segdwarf, compressedSegName, 04) 2205 sect.Align = int32(ctxt.Arch.Alignment) 2206 sect.Length = uint64(len(z.compressed)) 2207 sect.Compressed = true 2208 newSym := ldr.MakeSymbolBuilder(compressedSegName) 2209 ldr.SetAttrReachable(s, true) 2210 newSym.SetData(z.compressed) 2211 newSym.SetSize(int64(len(z.compressed))) 2212 ldr.SetSymSect(newSym.Sym(), sect) 2213 ds := dwarfSecInfo{syms: []loader.Sym{newSym.Sym()}} 2214 newDwarfp = append(newDwarfp, ds) 2215 2216 // compressed symbols are no longer needed. 2217 for _, s := range z.syms { 2218 ldr.SetAttrReachable(s, false) 2219 ldr.FreeSym(s) 2220 } 2221 } 2222 } 2223 dwarfp = newDwarfp 2224 2225 // Re-compute the locations of the compressed DWARF symbols 2226 // and sections, since the layout of these within the file is 2227 // based on Section.Vaddr and Symbol.Value. 2228 pos := Segdwarf.Vaddr 2229 var prevSect *sym.Section 2230 for _, si := range dwarfp { 2231 for _, s := range si.syms { 2232 ldr.SetSymValue(s, int64(pos)) 2233 sect := ldr.SymSect(s) 2234 if sect != prevSect { 2235 sect.Vaddr = uint64(pos) 2236 prevSect = sect 2237 } 2238 if ldr.SubSym(s) != 0 { 2239 log.Fatalf("%s: unexpected sub-symbols", ldr.SymName(s)) 2240 } 2241 pos += uint64(ldr.SymSize(s)) 2242 if ctxt.IsWindows() { 2243 pos = uint64(Rnd(int64(pos), PEFILEALIGN)) 2244 } 2245 } 2246 } 2247 Segdwarf.Length = pos - Segdwarf.Vaddr 2248} 2249 2250type compilationUnitByStartPC []*sym.CompilationUnit 2251 2252func (v compilationUnitByStartPC) Len() int { return len(v) } 2253func (v compilationUnitByStartPC) Swap(i, j int) { v[i], v[j] = v[j], v[i] } 2254 2255func (v compilationUnitByStartPC) Less(i, j int) bool { 2256 switch { 2257 case len(v[i].Textp) == 0 && len(v[j].Textp) == 0: 2258 return v[i].Lib.Pkg < v[j].Lib.Pkg 2259 case len(v[i].Textp) != 0 && len(v[j].Textp) == 0: 2260 return true 2261 case len(v[i].Textp) == 0 && len(v[j].Textp) != 0: 2262 return false 2263 default: 2264 return v[i].PCs[0].Start < v[j].PCs[0].Start 2265 } 2266} 2267 2268// getPkgFromCUSym returns the package name for the compilation unit 2269// represented by s. 2270// The prefix dwarf.InfoPrefix+".pkg." needs to be removed in order to get 2271// the package name. 2272func (d *dwctxt) getPkgFromCUSym(s loader.Sym) string { 2273 return strings.TrimPrefix(d.ldr.SymName(s), dwarf.InfoPrefix+".pkg.") 2274} 2275 2276// On AIX, the symbol table needs to know where are the compilation units parts 2277// for a specific package in each .dw section. 2278// dwsectCUSize map will save the size of a compilation unit for 2279// the corresponding .dw section. 2280// This size can later be retrieved with the index "sectionName.pkgName". 2281var dwsectCUSizeMu sync.Mutex 2282var dwsectCUSize map[string]uint64 2283 2284// getDwsectCUSize retrieves the corresponding package size inside the current section. 2285func getDwsectCUSize(sname string, pkgname string) uint64 { 2286 return dwsectCUSize[sname+"."+pkgname] 2287} 2288 2289func addDwsectCUSize(sname string, pkgname string, size uint64) { 2290 dwsectCUSizeMu.Lock() 2291 defer dwsectCUSizeMu.Unlock() 2292 dwsectCUSize[sname+"."+pkgname] += size 2293} 2294