1// Copyright 2019 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Writes dwarf information to object files.
6
7package obj
8
9import (
10	"cmd/internal/dwarf"
11	"cmd/internal/objabi"
12	"cmd/internal/src"
13	"fmt"
14	"sort"
15	"sync"
16)
17
18// Generate a sequence of opcodes that is as short as possible.
19// See section 6.2.5
20const (
21	LINE_BASE   = -4
22	LINE_RANGE  = 10
23	PC_RANGE    = (255 - OPCODE_BASE) / LINE_RANGE
24	OPCODE_BASE = 11
25)
26
27// generateDebugLinesSymbol fills the debug lines symbol of a given function.
28//
29// It's worth noting that this function doesn't generate the full debug_lines
30// DWARF section, saving that for the linker. This function just generates the
31// state machine part of debug_lines. The full table is generated by the
32// linker.  Also, we use the file numbers from the full package (not just the
33// function in question) when generating the state machine. We do this so we
34// don't have to do a fixup on the indices when writing the full section.
35func (ctxt *Link) generateDebugLinesSymbol(s, lines *LSym) {
36	dctxt := dwCtxt{ctxt}
37
38	// Emit a LNE_set_address extended opcode, so as to establish the
39	// starting text address of this function.
40	dctxt.AddUint8(lines, 0)
41	dwarf.Uleb128put(dctxt, lines, 1+int64(ctxt.Arch.PtrSize))
42	dctxt.AddUint8(lines, dwarf.DW_LNE_set_address)
43	dctxt.AddAddress(lines, s, 0)
44
45	// Set up the debug_lines state machine to the default values
46	// we expect at the start of a new sequence.
47	stmt := true
48	line := int64(1)
49	pc := s.Func().Text.Pc
50	var lastpc int64 // last PC written to line table, not last PC in func
51	fileIndex := 1
52	prologue, wrotePrologue := false, false
53	// Walk the progs, generating the DWARF table.
54	for p := s.Func().Text; p != nil; p = p.Link {
55		prologue = prologue || (p.Pos.Xlogue() == src.PosPrologueEnd)
56		// If we're not at a real instruction, keep looping!
57		if p.Pos.Line() == 0 || (p.Link != nil && p.Link.Pc == p.Pc) {
58			continue
59		}
60		newStmt := p.Pos.IsStmt() != src.PosNotStmt
61		newFileIndex, newLine := ctxt.getFileIndexAndLine(p.Pos)
62		newFileIndex++ // 1 indexing for the table
63
64		// Output debug info.
65		wrote := false
66		if newFileIndex != fileIndex {
67			dctxt.AddUint8(lines, dwarf.DW_LNS_set_file)
68			dwarf.Uleb128put(dctxt, lines, int64(newFileIndex))
69			fileIndex = newFileIndex
70			wrote = true
71		}
72		if prologue && !wrotePrologue {
73			dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_set_prologue_end))
74			wrotePrologue = true
75			wrote = true
76		}
77		if stmt != newStmt {
78			dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_negate_stmt))
79			stmt = newStmt
80			wrote = true
81		}
82
83		if line != int64(newLine) || wrote {
84			pcdelta := p.Pc - pc
85			lastpc = p.Pc
86			putpclcdelta(ctxt, dctxt, lines, uint64(pcdelta), int64(newLine)-line)
87			line, pc = int64(newLine), p.Pc
88		}
89	}
90
91	// Because these symbols will be concatenated together by the
92	// linker, we need to reset the state machine that controls the
93	// debug symbols. Do this using an end-of-sequence operator.
94	//
95	// Note: at one point in time, Delve did not support multiple end
96	// sequence ops within a compilation unit (bug for this:
97	// https://github.com/go-delve/delve/issues/1694), however the bug
98	// has since been fixed (Oct 2019).
99	//
100	// Issue 38192: the DWARF standard specifies that when you issue
101	// an end-sequence op, the PC value should be one past the last
102	// text address in the translation unit, so apply a delta to the
103	// text address before the end sequence op. If this isn't done,
104	// GDB will assign a line number of zero the last row in the line
105	// table, which we don't want.
106	lastlen := uint64(s.Size - (lastpc - s.Func().Text.Pc))
107	dctxt.AddUint8(lines, dwarf.DW_LNS_advance_pc)
108	dwarf.Uleb128put(dctxt, lines, int64(lastlen))
109	dctxt.AddUint8(lines, 0) // start extended opcode
110	dwarf.Uleb128put(dctxt, lines, 1)
111	dctxt.AddUint8(lines, dwarf.DW_LNE_end_sequence)
112}
113
114func putpclcdelta(linkctxt *Link, dctxt dwCtxt, s *LSym, deltaPC uint64, deltaLC int64) {
115	// Choose a special opcode that minimizes the number of bytes needed to
116	// encode the remaining PC delta and LC delta.
117	var opcode int64
118	if deltaLC < LINE_BASE {
119		if deltaPC >= PC_RANGE {
120			opcode = OPCODE_BASE + (LINE_RANGE * PC_RANGE)
121		} else {
122			opcode = OPCODE_BASE + (LINE_RANGE * int64(deltaPC))
123		}
124	} else if deltaLC < LINE_BASE+LINE_RANGE {
125		if deltaPC >= PC_RANGE {
126			opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * PC_RANGE)
127			if opcode > 255 {
128				opcode -= LINE_RANGE
129			}
130		} else {
131			opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * int64(deltaPC))
132		}
133	} else {
134		if deltaPC <= PC_RANGE {
135			opcode = OPCODE_BASE + (LINE_RANGE - 1) + (LINE_RANGE * int64(deltaPC))
136			if opcode > 255 {
137				opcode = 255
138			}
139		} else {
140			// Use opcode 249 (pc+=23, lc+=5) or 255 (pc+=24, lc+=1).
141			//
142			// Let x=deltaPC-PC_RANGE.  If we use opcode 255, x will be the remaining
143			// deltaPC that we need to encode separately before emitting 255.  If we
144			// use opcode 249, we will need to encode x+1.  If x+1 takes one more
145			// byte to encode than x, then we use opcode 255.
146			//
147			// In all other cases x and x+1 take the same number of bytes to encode,
148			// so we use opcode 249, which may save us a byte in encoding deltaLC,
149			// for similar reasons.
150			switch deltaPC - PC_RANGE {
151			// PC_RANGE is the largest deltaPC we can encode in one byte, using
152			// DW_LNS_const_add_pc.
153			//
154			// (1<<16)-1 is the largest deltaPC we can encode in three bytes, using
155			// DW_LNS_fixed_advance_pc.
156			//
157			// (1<<(7n))-1 is the largest deltaPC we can encode in n+1 bytes for
158			// n=1,3,4,5,..., using DW_LNS_advance_pc.
159			case PC_RANGE, (1 << 7) - 1, (1 << 16) - 1, (1 << 21) - 1, (1 << 28) - 1,
160				(1 << 35) - 1, (1 << 42) - 1, (1 << 49) - 1, (1 << 56) - 1, (1 << 63) - 1:
161				opcode = 255
162			default:
163				opcode = OPCODE_BASE + LINE_RANGE*PC_RANGE - 1 // 249
164			}
165		}
166	}
167	if opcode < OPCODE_BASE || opcode > 255 {
168		panic(fmt.Sprintf("produced invalid special opcode %d", opcode))
169	}
170
171	// Subtract from deltaPC and deltaLC the amounts that the opcode will add.
172	deltaPC -= uint64((opcode - OPCODE_BASE) / LINE_RANGE)
173	deltaLC -= (opcode-OPCODE_BASE)%LINE_RANGE + LINE_BASE
174
175	// Encode deltaPC.
176	if deltaPC != 0 {
177		if deltaPC <= PC_RANGE {
178			// Adjust the opcode so that we can use the 1-byte DW_LNS_const_add_pc
179			// instruction.
180			opcode -= LINE_RANGE * int64(PC_RANGE-deltaPC)
181			if opcode < OPCODE_BASE {
182				panic(fmt.Sprintf("produced invalid special opcode %d", opcode))
183			}
184			dctxt.AddUint8(s, dwarf.DW_LNS_const_add_pc)
185		} else if (1<<14) <= deltaPC && deltaPC < (1<<16) {
186			dctxt.AddUint8(s, dwarf.DW_LNS_fixed_advance_pc)
187			dctxt.AddUint16(s, uint16(deltaPC))
188		} else {
189			dctxt.AddUint8(s, dwarf.DW_LNS_advance_pc)
190			dwarf.Uleb128put(dctxt, s, int64(deltaPC))
191		}
192	}
193
194	// Encode deltaLC.
195	if deltaLC != 0 {
196		dctxt.AddUint8(s, dwarf.DW_LNS_advance_line)
197		dwarf.Sleb128put(dctxt, s, deltaLC)
198	}
199
200	// Output the special opcode.
201	dctxt.AddUint8(s, uint8(opcode))
202}
203
204// implement dwarf.Context
205type dwCtxt struct{ *Link }
206
207func (c dwCtxt) PtrSize() int {
208	return c.Arch.PtrSize
209}
210func (c dwCtxt) Size(s dwarf.Sym) int64 {
211	return s.(*LSym).Size
212}
213func (c dwCtxt) AddInt(s dwarf.Sym, size int, i int64) {
214	ls := s.(*LSym)
215	ls.WriteInt(c.Link, ls.Size, size, i)
216}
217func (c dwCtxt) AddUint16(s dwarf.Sym, i uint16) {
218	c.AddInt(s, 2, int64(i))
219}
220func (c dwCtxt) AddUint8(s dwarf.Sym, i uint8) {
221	b := []byte{byte(i)}
222	c.AddBytes(s, b)
223}
224func (c dwCtxt) AddBytes(s dwarf.Sym, b []byte) {
225	ls := s.(*LSym)
226	ls.WriteBytes(c.Link, ls.Size, b)
227}
228func (c dwCtxt) AddString(s dwarf.Sym, v string) {
229	ls := s.(*LSym)
230	ls.WriteString(c.Link, ls.Size, len(v), v)
231	ls.WriteInt(c.Link, ls.Size, 1, 0)
232}
233func (c dwCtxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
234	ls := s.(*LSym)
235	size := c.PtrSize()
236	if data != nil {
237		rsym := data.(*LSym)
238		ls.WriteAddr(c.Link, ls.Size, size, rsym, value)
239	} else {
240		ls.WriteInt(c.Link, ls.Size, size, value)
241	}
242}
243func (c dwCtxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
244	ls := s.(*LSym)
245	rsym := data.(*LSym)
246	ls.WriteCURelativeAddr(c.Link, ls.Size, rsym, value)
247}
248func (c dwCtxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
249	panic("should be used only in the linker")
250}
251func (c dwCtxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
252	size := 4
253	if isDwarf64(c.Link) {
254		size = 8
255	}
256
257	ls := s.(*LSym)
258	rsym := t.(*LSym)
259	ls.WriteAddr(c.Link, ls.Size, size, rsym, ofs)
260	r := &ls.R[len(ls.R)-1]
261	r.Type = objabi.R_DWARFSECREF
262}
263
264func (c dwCtxt) CurrentOffset(s dwarf.Sym) int64 {
265	ls := s.(*LSym)
266	return ls.Size
267}
268
269// Here "from" is a symbol corresponding to an inlined or concrete
270// function, "to" is the symbol for the corresponding abstract
271// function, and "dclIdx" is the index of the symbol of interest with
272// respect to the Dcl slice of the original pre-optimization version
273// of the inlined function.
274func (c dwCtxt) RecordDclReference(from dwarf.Sym, to dwarf.Sym, dclIdx int, inlIndex int) {
275	ls := from.(*LSym)
276	tls := to.(*LSym)
277	ridx := len(ls.R) - 1
278	c.Link.DwFixups.ReferenceChildDIE(ls, ridx, tls, dclIdx, inlIndex)
279}
280
281func (c dwCtxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
282	ls := s.(*LSym)
283	c.Link.DwFixups.RegisterChildDIEOffsets(ls, vars, offsets)
284}
285
286func (c dwCtxt) Logf(format string, args ...interface{}) {
287	c.Link.Logf(format, args...)
288}
289
290func isDwarf64(ctxt *Link) bool {
291	return ctxt.Headtype == objabi.Haix
292}
293
294func (ctxt *Link) dwarfSym(s *LSym) (dwarfInfoSym, dwarfLocSym, dwarfRangesSym, dwarfAbsFnSym, dwarfDebugLines *LSym) {
295	if s.Type != objabi.STEXT {
296		ctxt.Diag("dwarfSym of non-TEXT %v", s)
297	}
298	fn := s.Func()
299	if fn.dwarfInfoSym == nil {
300		fn.dwarfInfoSym = &LSym{
301			Type: objabi.SDWARFFCN,
302		}
303		if ctxt.Flag_locationlists {
304			fn.dwarfLocSym = &LSym{
305				Type: objabi.SDWARFLOC,
306			}
307		}
308		fn.dwarfRangesSym = &LSym{
309			Type: objabi.SDWARFRANGE,
310		}
311		fn.dwarfDebugLinesSym = &LSym{
312			Type: objabi.SDWARFLINES,
313		}
314		if s.WasInlined() {
315			fn.dwarfAbsFnSym = ctxt.DwFixups.AbsFuncDwarfSym(s)
316		}
317	}
318	return fn.dwarfInfoSym, fn.dwarfLocSym, fn.dwarfRangesSym, fn.dwarfAbsFnSym, fn.dwarfDebugLinesSym
319}
320
321// textPos returns the source position of the first instruction (prog)
322// of the specified function.
323func textPos(fn *LSym) src.XPos {
324	if p := fn.Func().Text; p != nil {
325		return p.Pos
326	}
327	return src.NoXPos
328}
329
330// populateDWARF fills in the DWARF Debugging Information Entries for
331// TEXT symbol 's'. The various DWARF symbols must already have been
332// initialized in InitTextSym.
333func (ctxt *Link) populateDWARF(curfn Func, s *LSym) {
334	myimportpath := ctxt.Pkgpath
335	if myimportpath == "" {
336		return
337	}
338
339	info, loc, ranges, absfunc, lines := ctxt.dwarfSym(s)
340	if info.Size != 0 {
341		ctxt.Diag("makeFuncDebugEntry double process %v", s)
342	}
343	var scopes []dwarf.Scope
344	var inlcalls dwarf.InlCalls
345	if ctxt.DebugInfo != nil {
346		scopes, inlcalls = ctxt.DebugInfo(s, info, curfn)
347	}
348	var err error
349	dwctxt := dwCtxt{ctxt}
350	startPos := ctxt.InnermostPos(textPos(s))
351	if !startPos.IsKnown() || startPos.RelLine() != uint(s.Func().StartLine) {
352		panic("bad startPos")
353	}
354	fnstate := &dwarf.FnState{
355		Name:          s.Name,
356		Info:          info,
357		Loc:           loc,
358		Ranges:        ranges,
359		Absfn:         absfunc,
360		StartPC:       s,
361		Size:          s.Size,
362		StartPos:      startPos,
363		External:      !s.Static(),
364		Scopes:        scopes,
365		InlCalls:      inlcalls,
366		UseBASEntries: ctxt.UseBASEntries,
367	}
368	if absfunc != nil {
369		err = dwarf.PutAbstractFunc(dwctxt, fnstate)
370		if err != nil {
371			ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
372		}
373		err = dwarf.PutConcreteFunc(dwctxt, fnstate, s.Wrapper())
374	} else {
375		err = dwarf.PutDefaultFunc(dwctxt, fnstate, s.Wrapper())
376	}
377	if err != nil {
378		ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
379	}
380	// Fill in the debug lines symbol.
381	ctxt.generateDebugLinesSymbol(s, lines)
382}
383
384// DwarfIntConst creates a link symbol for an integer constant with the
385// given name, type and value.
386func (ctxt *Link) DwarfIntConst(name, typename string, val int64) {
387	myimportpath := ctxt.Pkgpath
388	if myimportpath == "" {
389		return
390	}
391	s := ctxt.LookupInit(dwarf.ConstInfoPrefix+myimportpath, func(s *LSym) {
392		s.Type = objabi.SDWARFCONST
393		ctxt.Data = append(ctxt.Data, s)
394	})
395	dwarf.PutIntConst(dwCtxt{ctxt}, s, ctxt.Lookup(dwarf.InfoPrefix+typename), myimportpath+"."+name, val)
396}
397
398// DwarfGlobal creates a link symbol containing a DWARF entry for
399// a global variable.
400func (ctxt *Link) DwarfGlobal(typename string, varSym *LSym) {
401	myimportpath := ctxt.Pkgpath
402	if myimportpath == "" || varSym.Local() {
403		return
404	}
405	varname := varSym.Name
406	dieSym := &LSym{
407		Type: objabi.SDWARFVAR,
408	}
409	varSym.NewVarInfo().dwarfInfoSym = dieSym
410	ctxt.Data = append(ctxt.Data, dieSym)
411	typeSym := ctxt.Lookup(dwarf.InfoPrefix + typename)
412	dwarf.PutGlobal(dwCtxt{ctxt}, dieSym, typeSym, varSym, varname)
413}
414
415func (ctxt *Link) DwarfAbstractFunc(curfn Func, s *LSym) {
416	absfn := ctxt.DwFixups.AbsFuncDwarfSym(s)
417	if absfn.Size != 0 {
418		ctxt.Diag("internal error: DwarfAbstractFunc double process %v", s)
419	}
420	if s.Func() == nil {
421		s.NewFuncInfo()
422	}
423	scopes, _ := ctxt.DebugInfo(s, absfn, curfn)
424	dwctxt := dwCtxt{ctxt}
425	fnstate := dwarf.FnState{
426		Name:          s.Name,
427		Info:          absfn,
428		Absfn:         absfn,
429		StartPos:      ctxt.InnermostPos(curfn.Pos()),
430		External:      !s.Static(),
431		Scopes:        scopes,
432		UseBASEntries: ctxt.UseBASEntries,
433	}
434	if err := dwarf.PutAbstractFunc(dwctxt, &fnstate); err != nil {
435		ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
436	}
437}
438
439// This table is designed to aid in the creation of references between
440// DWARF subprogram DIEs.
441//
442// In most cases when one DWARF DIE has to refer to another DWARF DIE,
443// the target of the reference has an LSym, which makes it easy to use
444// the existing relocation mechanism. For DWARF inlined routine DIEs,
445// however, the subprogram DIE has to refer to a child
446// parameter/variable DIE of the abstract subprogram. This child DIE
447// doesn't have an LSym, and also of interest is the fact that when
448// DWARF generation is happening for inlined function F within caller
449// G, it's possible that DWARF generation hasn't happened yet for F,
450// so there is no way to know the offset of a child DIE within F's
451// abstract function. Making matters more complex, each inlined
452// instance of F may refer to a subset of the original F's variables
453// (depending on what happens with optimization, some vars may be
454// eliminated).
455//
456// The fixup table below helps overcome this hurdle. At the point
457// where a parameter/variable reference is made (via a call to
458// "ReferenceChildDIE"), a fixup record is generate that records
459// the relocation that is targeting that child variable. At a later
460// point when the abstract function DIE is emitted, there will be
461// a call to "RegisterChildDIEOffsets", at which point the offsets
462// needed to apply fixups are captured. Finally, once the parallel
463// portion of the compilation is done, fixups can actually be applied
464// during the "Finalize" method (this can't be done during the
465// parallel portion of the compile due to the possibility of data
466// races).
467//
468// This table is also used to record the "precursor" function node for
469// each function that is the target of an inline -- child DIE references
470// have to be made with respect to the original pre-optimization
471// version of the function (to allow for the fact that each inlined
472// body may be optimized differently).
473type DwarfFixupTable struct {
474	ctxt      *Link
475	mu        sync.Mutex
476	symtab    map[*LSym]int // maps abstract fn LSYM to index in svec
477	svec      []symFixups
478	precursor map[*LSym]fnState // maps fn Lsym to precursor Node, absfn sym
479}
480
481type symFixups struct {
482	fixups   []relFixup
483	doffsets []declOffset
484	inlIndex int32
485	defseen  bool
486}
487
488type declOffset struct {
489	// Index of variable within DCL list of pre-optimization function
490	dclIdx int32
491	// Offset of var's child DIE with respect to containing subprogram DIE
492	offset int32
493}
494
495type relFixup struct {
496	refsym *LSym
497	relidx int32
498	dclidx int32
499}
500
501type fnState struct {
502	// precursor function
503	precursor Func
504	// abstract function symbol
505	absfn *LSym
506}
507
508func NewDwarfFixupTable(ctxt *Link) *DwarfFixupTable {
509	return &DwarfFixupTable{
510		ctxt:      ctxt,
511		symtab:    make(map[*LSym]int),
512		precursor: make(map[*LSym]fnState),
513	}
514}
515
516func (ft *DwarfFixupTable) GetPrecursorFunc(s *LSym) Func {
517	if fnstate, found := ft.precursor[s]; found {
518		return fnstate.precursor
519	}
520	return nil
521}
522
523func (ft *DwarfFixupTable) SetPrecursorFunc(s *LSym, fn Func) {
524	if _, found := ft.precursor[s]; found {
525		ft.ctxt.Diag("internal error: DwarfFixupTable.SetPrecursorFunc double call on %v", s)
526	}
527
528	// initialize abstract function symbol now. This is done here so
529	// as to avoid data races later on during the parallel portion of
530	// the back end.
531	absfn := ft.ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name+dwarf.AbstractFuncSuffix)
532	absfn.Set(AttrDuplicateOK, true)
533	absfn.Type = objabi.SDWARFABSFCN
534	ft.ctxt.Data = append(ft.ctxt.Data, absfn)
535
536	// In the case of "late" inlining (inlines that happen during
537	// wrapper generation as opposed to the main inlining phase) it's
538	// possible that we didn't cache the abstract function sym for the
539	// text symbol -- do so now if needed. See issue 38068.
540	if fn := s.Func(); fn != nil && fn.dwarfAbsFnSym == nil {
541		fn.dwarfAbsFnSym = absfn
542	}
543
544	ft.precursor[s] = fnState{precursor: fn, absfn: absfn}
545}
546
547// Make a note of a child DIE reference: relocation 'ridx' within symbol 's'
548// is targeting child 'c' of DIE with symbol 'tgt'.
549func (ft *DwarfFixupTable) ReferenceChildDIE(s *LSym, ridx int, tgt *LSym, dclidx int, inlIndex int) {
550	// Protect against concurrent access if multiple backend workers
551	ft.mu.Lock()
552	defer ft.mu.Unlock()
553
554	// Create entry for symbol if not already present.
555	idx, found := ft.symtab[tgt]
556	if !found {
557		ft.svec = append(ft.svec, symFixups{inlIndex: int32(inlIndex)})
558		idx = len(ft.svec) - 1
559		ft.symtab[tgt] = idx
560	}
561
562	// Do we have child DIE offsets available? If so, then apply them,
563	// otherwise create a fixup record.
564	sf := &ft.svec[idx]
565	if len(sf.doffsets) > 0 {
566		found := false
567		for _, do := range sf.doffsets {
568			if do.dclIdx == int32(dclidx) {
569				off := do.offset
570				s.R[ridx].Add += int64(off)
571				found = true
572				break
573			}
574		}
575		if !found {
576			ft.ctxt.Diag("internal error: DwarfFixupTable.ReferenceChildDIE unable to locate child DIE offset for dclIdx=%d src=%v tgt=%v", dclidx, s, tgt)
577		}
578	} else {
579		sf.fixups = append(sf.fixups, relFixup{s, int32(ridx), int32(dclidx)})
580	}
581}
582
583// Called once DWARF generation is complete for a given abstract function,
584// whose children might have been referenced via a call above. Stores
585// the offsets for any child DIEs (vars, params) so that they can be
586// consumed later in on DwarfFixupTable.Finalize, which applies any
587// outstanding fixups.
588func (ft *DwarfFixupTable) RegisterChildDIEOffsets(s *LSym, vars []*dwarf.Var, coffsets []int32) {
589	// Length of these two slices should agree
590	if len(vars) != len(coffsets) {
591		ft.ctxt.Diag("internal error: RegisterChildDIEOffsets vars/offsets length mismatch")
592		return
593	}
594
595	// Generate the slice of declOffset's based in vars/coffsets
596	doffsets := make([]declOffset, len(coffsets))
597	for i := range coffsets {
598		doffsets[i].dclIdx = vars[i].ChildIndex
599		doffsets[i].offset = coffsets[i]
600	}
601
602	ft.mu.Lock()
603	defer ft.mu.Unlock()
604
605	// Store offsets for this symbol.
606	idx, found := ft.symtab[s]
607	if !found {
608		sf := symFixups{inlIndex: -1, defseen: true, doffsets: doffsets}
609		ft.svec = append(ft.svec, sf)
610		ft.symtab[s] = len(ft.svec) - 1
611	} else {
612		sf := &ft.svec[idx]
613		sf.doffsets = doffsets
614		sf.defseen = true
615	}
616}
617
618func (ft *DwarfFixupTable) processFixups(slot int, s *LSym) {
619	sf := &ft.svec[slot]
620	for _, f := range sf.fixups {
621		dfound := false
622		for _, doffset := range sf.doffsets {
623			if doffset.dclIdx == f.dclidx {
624				f.refsym.R[f.relidx].Add += int64(doffset.offset)
625				dfound = true
626				break
627			}
628		}
629		if !dfound {
630			ft.ctxt.Diag("internal error: DwarfFixupTable has orphaned fixup on %v targeting %v relidx=%d dclidx=%d", f.refsym, s, f.relidx, f.dclidx)
631		}
632	}
633}
634
635// return the LSym corresponding to the 'abstract subprogram' DWARF
636// info entry for a function.
637func (ft *DwarfFixupTable) AbsFuncDwarfSym(fnsym *LSym) *LSym {
638	// Protect against concurrent access if multiple backend workers
639	ft.mu.Lock()
640	defer ft.mu.Unlock()
641
642	if fnstate, found := ft.precursor[fnsym]; found {
643		return fnstate.absfn
644	}
645	ft.ctxt.Diag("internal error: AbsFuncDwarfSym requested for %v, not seen during inlining", fnsym)
646	return nil
647}
648
649// Called after all functions have been compiled; the main job of this
650// function is to identify cases where there are outstanding fixups.
651// This scenario crops up when we have references to variables of an
652// inlined routine, but that routine is defined in some other package.
653// This helper walks through and locate these fixups, then invokes a
654// helper to create an abstract subprogram DIE for each one.
655func (ft *DwarfFixupTable) Finalize(myimportpath string, trace bool) {
656	if trace {
657		ft.ctxt.Logf("DwarfFixupTable.Finalize invoked for %s\n", myimportpath)
658	}
659
660	// Collect up the keys from the precursor map, then sort the
661	// resulting list (don't want to rely on map ordering here).
662	fns := make([]*LSym, len(ft.precursor))
663	idx := 0
664	for fn := range ft.precursor {
665		fns[idx] = fn
666		idx++
667	}
668	sort.Sort(BySymName(fns))
669
670	// Should not be called during parallel portion of compilation.
671	if ft.ctxt.InParallel {
672		ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize call during parallel backend")
673	}
674
675	// Generate any missing abstract functions.
676	for _, s := range fns {
677		absfn := ft.AbsFuncDwarfSym(s)
678		slot, found := ft.symtab[absfn]
679		if !found || !ft.svec[slot].defseen {
680			ft.ctxt.GenAbstractFunc(s)
681		}
682	}
683
684	// Apply fixups.
685	for _, s := range fns {
686		absfn := ft.AbsFuncDwarfSym(s)
687		slot, found := ft.symtab[absfn]
688		if !found {
689			ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize orphan abstract function for %v", s)
690		} else {
691			ft.processFixups(slot, s)
692		}
693	}
694}
695
696type BySymName []*LSym
697
698func (s BySymName) Len() int           { return len(s) }
699func (s BySymName) Less(i, j int) bool { return s[i].Name < s[j].Name }
700func (s BySymName) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
701