xref: /aosp_15_r20/external/eigen/test/packetmath.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "packetmath_test_shared.h"
12 #include "random_without_cast_overflow.h"
13 
14 template <typename T>
REF_ADD(const T & a,const T & b)15 inline T REF_ADD(const T& a, const T& b) {
16   return a + b;
17 }
18 template <typename T>
REF_SUB(const T & a,const T & b)19 inline T REF_SUB(const T& a, const T& b) {
20   return a - b;
21 }
22 template <typename T>
REF_MUL(const T & a,const T & b)23 inline T REF_MUL(const T& a, const T& b) {
24   return a * b;
25 }
26 template <typename T>
REF_DIV(const T & a,const T & b)27 inline T REF_DIV(const T& a, const T& b) {
28   return a / b;
29 }
30 template <typename T>
REF_ABS_DIFF(const T & a,const T & b)31 inline T REF_ABS_DIFF(const T& a, const T& b) {
32   return a > b ? a - b : b - a;
33 }
34 
35 // Specializations for bool.
36 template <>
REF_ADD(const bool & a,const bool & b)37 inline bool REF_ADD(const bool& a, const bool& b) {
38   return a || b;
39 }
40 template <>
REF_SUB(const bool & a,const bool & b)41 inline bool REF_SUB(const bool& a, const bool& b) {
42   return a ^ b;
43 }
44 template <>
REF_MUL(const bool & a,const bool & b)45 inline bool REF_MUL(const bool& a, const bool& b) {
46   return a && b;
47 }
48 
49 template <typename T>
REF_FREXP(const T & x,T & exp)50 inline T REF_FREXP(const T& x, T& exp) {
51   int iexp;
52   EIGEN_USING_STD(frexp)
53   const T out = static_cast<T>(frexp(x, &iexp));
54   exp = static_cast<T>(iexp);
55   return out;
56 }
57 
58 template <typename T>
REF_LDEXP(const T & x,const T & exp)59 inline T REF_LDEXP(const T& x, const T& exp) {
60   EIGEN_USING_STD(ldexp)
61   return static_cast<T>(ldexp(x, static_cast<int>(exp)));
62 }
63 
64 // Uses pcast to cast from one array to another.
65 template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
66 struct pcast_array;
67 
68 template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio>
69 struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> {
70   typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
71   typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
castpcast_array72   static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) {
73     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
74     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
75     size_t i;
76     for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) {
77       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i)));
78     }
79     // Leftovers that cannot be loaded into a packet.
80     for (; i < size; ++i) {
81       dst[i] = static_cast<TgtScalar>(src[i]);
82     }
83   }
84 };
85 
86 template <typename SrcPacket, typename TgtPacket>
87 struct pcast_array<SrcPacket, TgtPacket, 2, 1> {
castpcast_array88   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
89                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
90     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
91     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
92     for (size_t i = 0; i < size; i += TgtPacketSize) {
93       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
94       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
95       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b));
96     }
97   }
98 };
99 
100 template <typename SrcPacket, typename TgtPacket>
101 struct pcast_array<SrcPacket, TgtPacket, 4, 1> {
castpcast_array102   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
103                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
104     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
105     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
106     for (size_t i = 0; i < size; i += TgtPacketSize) {
107       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
108       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
109       SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
110       SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
111       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d));
112     }
113   }
114 };
115 
116 template <typename SrcPacket, typename TgtPacket>
117 struct pcast_array<SrcPacket, TgtPacket, 8, 1> {
castpcast_array118   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
119                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
120     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
121     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
122     for (size_t i = 0; i < size; i += TgtPacketSize) {
123       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
124       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
125       SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
126       SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
127       SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize);
128       SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize);
129       SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize);
130       SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize);
131       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h));
132     }
133   }
134 };
135 
136 template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio, bool CanCast = false>
137 struct test_cast_helper;
138 
139 template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
140 struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, false> {
runtest_cast_helper141   static void run() {}
142 };
143 
144 template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
145 struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> {
runtest_cast_helper146   static void run() {
147     typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
148     typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
149     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
150     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
151     static const int BlockSize = SrcPacketSize * SrcCoeffRatio;
152     eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched.");
153 
154     static const int DataSize = 10 * BlockSize;
155     EIGEN_ALIGN_MAX SrcScalar data1[DataSize];
156     EIGEN_ALIGN_MAX TgtScalar data2[DataSize];
157     EIGEN_ALIGN_MAX TgtScalar ref[DataSize];
158 
159     // Construct a packet of scalars that will not overflow when casting
160     for (int i = 0; i < DataSize; ++i) {
161       data1[i] = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value();
162     }
163 
164     for (int i = 0; i < DataSize; ++i) {
165       ref[i] = static_cast<const TgtScalar>(data1[i]);
166     }
167 
168     pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2);
169 
170     VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>");
171   }
172 };
173 
174 template <typename SrcPacket, typename TgtPacket>
175 struct test_cast {
runtest_cast176   static void run() {
177     typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
178     typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
179     typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits;
180     static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio;
181     static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio;
182     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
183     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
184     static const bool HasCast =
185         internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable &&
186         TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio);
187     test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run();
188   }
189 };
190 
191 template <typename SrcPacket, typename TgtScalar,
192           typename TgtPacket = typename internal::packet_traits<TgtScalar>::type,
193           bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable,
194           bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value>
195 struct test_cast_runner;
196 
197 template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
198 struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> {
runtest_cast_runner199   static void run() { test_cast<SrcPacket, TgtPacket>::run(); }
200 };
201 
202 template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
203 struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> {
runtest_cast_runner204   static void run() {
205     test_cast<SrcPacket, TgtPacket>::run();
206     test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run();
207   }
208 };
209 
210 template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
211 struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> {
runtest_cast_runner212   static void run() {}
213 };
214 
215 template <typename Scalar, typename Packet, typename EnableIf = void>
216 struct packetmath_pcast_ops_runner {
runpacketmath_pcast_ops_runner217   static void run() {
218     test_cast_runner<Packet, float>::run();
219     test_cast_runner<Packet, double>::run();
220     test_cast_runner<Packet, int8_t>::run();
221     test_cast_runner<Packet, uint8_t>::run();
222     test_cast_runner<Packet, int16_t>::run();
223     test_cast_runner<Packet, uint16_t>::run();
224     test_cast_runner<Packet, int32_t>::run();
225     test_cast_runner<Packet, uint32_t>::run();
226     test_cast_runner<Packet, int64_t>::run();
227     test_cast_runner<Packet, uint64_t>::run();
228     test_cast_runner<Packet, bool>::run();
229     test_cast_runner<Packet, std::complex<float> >::run();
230     test_cast_runner<Packet, std::complex<double> >::run();
231     test_cast_runner<Packet, half>::run();
232     test_cast_runner<Packet, bfloat16>::run();
233   }
234 };
235 
236 // Only some types support cast from std::complex<>.
237 template <typename Scalar, typename Packet>
238 struct packetmath_pcast_ops_runner<Scalar, Packet, typename internal::enable_if<NumTraits<Scalar>::IsComplex>::type> {
runpacketmath_pcast_ops_runner239   static void run() {
240     test_cast_runner<Packet, std::complex<float> >::run();
241     test_cast_runner<Packet, std::complex<double> >::run();
242     test_cast_runner<Packet, half>::run();
243     test_cast_runner<Packet, bfloat16>::run();
244   }
245 };
246 
247 template <typename Scalar, typename Packet>
packetmath_boolean_mask_ops()248 void packetmath_boolean_mask_ops() {
249   const int PacketSize = internal::unpacket_traits<Packet>::size;
250   const int size = 2 * PacketSize;
251   EIGEN_ALIGN_MAX Scalar data1[size];
252   EIGEN_ALIGN_MAX Scalar data2[size];
253   EIGEN_ALIGN_MAX Scalar ref[size];
254 
255   for (int i = 0; i < size; ++i) {
256     data1[i] = internal::random<Scalar>();
257   }
258   CHECK_CWISE1(internal::ptrue, internal::ptrue);
259   CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot);
260   for (int i = 0; i < PacketSize; ++i) {
261     data1[i] = Scalar(i);
262     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
263   }
264 
265   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
266 
267   //Test (-0) == (0) for signed operations
268   for (int i = 0; i < PacketSize; ++i) {
269     data1[i] = Scalar(-0.0);
270     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
271   }
272   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
273 
274   //Test NaN
275   for (int i = 0; i < PacketSize; ++i) {
276     data1[i] = NumTraits<Scalar>::quiet_NaN();
277     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
278   }
279   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
280 }
281 
282 template <typename Scalar, typename Packet>
packetmath_boolean_mask_ops_real()283 void packetmath_boolean_mask_ops_real() {
284   const int PacketSize = internal::unpacket_traits<Packet>::size;
285   const int size = 2 * PacketSize;
286   EIGEN_ALIGN_MAX Scalar data1[size];
287   EIGEN_ALIGN_MAX Scalar data2[size];
288   EIGEN_ALIGN_MAX Scalar ref[size];
289 
290   for (int i = 0; i < PacketSize; ++i) {
291     data1[i] = internal::random<Scalar>();
292     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
293   }
294 
295   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
296 
297   //Test (-0) <=/< (0) for signed operations
298   for (int i = 0; i < PacketSize; ++i) {
299     data1[i] = Scalar(-0.0);
300     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
301   }
302   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
303 
304   //Test NaN
305   for (int i = 0; i < PacketSize; ++i) {
306     data1[i] = NumTraits<Scalar>::quiet_NaN();
307     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
308   }
309   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
310 }
311 
312 template <typename Scalar, typename Packet>
packetmath_boolean_mask_ops_notcomplex()313 void packetmath_boolean_mask_ops_notcomplex() {
314   const int PacketSize = internal::unpacket_traits<Packet>::size;
315   const int size = 2 * PacketSize;
316   EIGEN_ALIGN_MAX Scalar data1[size];
317   EIGEN_ALIGN_MAX Scalar data2[size];
318   EIGEN_ALIGN_MAX Scalar ref[size];
319 
320   for (int i = 0; i < PacketSize; ++i) {
321     data1[i] = internal::random<Scalar>();
322     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
323   }
324 
325   CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
326   CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
327 
328   //Test (-0) <=/< (0) for signed operations
329   for (int i = 0; i < PacketSize; ++i) {
330     data1[i] = Scalar(-0.0);
331     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
332   }
333   CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
334   CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
335 
336   //Test NaN
337   for (int i = 0; i < PacketSize; ++i) {
338     data1[i] = NumTraits<Scalar>::quiet_NaN();
339     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
340   }
341   CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
342   CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
343 }
344 
345 // Packet16b representing bool does not support ptrue, pandnot or pcmp_eq, since the scalar path
346 // (for some compilers) compute the bitwise and with 0x1 of the results to keep the value in [0,1].
347 template<>
packetmath_boolean_mask_ops()348 void packetmath_boolean_mask_ops<bool, internal::packet_traits<bool>::type>() {}
349 template<>
packetmath_boolean_mask_ops_notcomplex()350 void packetmath_boolean_mask_ops_notcomplex<bool, internal::packet_traits<bool>::type>() {}
351 
352 template <typename Scalar, typename Packet>
packetmath_minus_zero_add()353 void packetmath_minus_zero_add() {
354   const int PacketSize = internal::unpacket_traits<Packet>::size;
355   const int size = 2 * PacketSize;
356   EIGEN_ALIGN_MAX Scalar data1[size];
357   EIGEN_ALIGN_MAX Scalar data2[size];
358   EIGEN_ALIGN_MAX Scalar ref[size];
359 
360   for (int i = 0; i < PacketSize; ++i) {
361     data1[i] = Scalar(-0.0);
362     data1[i + PacketSize] = Scalar(-0.0);
363   }
364   CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd);
365 }
366 
367 // Ensure optimization barrier compiles and doesn't modify contents.
368 // Only applies to raw types, so will not work for std::complex, Eigen::half
369 // or Eigen::bfloat16. For those you would need to refer to an underlying
370 // storage element.
371 template<typename Packet, typename EnableIf = void>
372 struct eigen_optimization_barrier_test {
runeigen_optimization_barrier_test373   static void run() {}
374 };
375 
376 template<typename Packet>
377 struct eigen_optimization_barrier_test<Packet, typename internal::enable_if<
378     !NumTraits<Packet>::IsComplex &&
379     !internal::is_same<Packet, Eigen::half>::value &&
380     !internal::is_same<Packet, Eigen::bfloat16>::value
381   >::type> {
runeigen_optimization_barrier_test382   static void run() {
383     typedef typename internal::unpacket_traits<Packet>::type Scalar;
384     Scalar s = internal::random<Scalar>();
385     Packet barrier = internal::pset1<Packet>(s);
386     EIGEN_OPTIMIZATION_BARRIER(barrier);
387     eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER");
388   }
389 };
390 
391 template <typename Scalar, typename Packet>
packetmath()392 void packetmath() {
393   typedef internal::packet_traits<Scalar> PacketTraits;
394   const int PacketSize = internal::unpacket_traits<Packet>::size;
395   typedef typename NumTraits<Scalar>::Real RealScalar;
396 
397   if (g_first_pass)
398     std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '"
399               << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n";
400 
401   const int max_size = PacketSize > 4 ? PacketSize : 4;
402   const int size = PacketSize * max_size;
403   EIGEN_ALIGN_MAX Scalar data1[size];
404   EIGEN_ALIGN_MAX Scalar data2[size];
405   EIGEN_ALIGN_MAX Scalar data3[size];
406   EIGEN_ALIGN_MAX Scalar ref[size];
407   RealScalar refvalue = RealScalar(0);
408 
409   eigen_optimization_barrier_test<Packet>::run();
410   eigen_optimization_barrier_test<Scalar>::run();
411 
412   for (int i = 0; i < size; ++i) {
413     data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
414     data2[i] = internal::random<Scalar>() / RealScalar(PacketSize);
415     refvalue = (std::max)(refvalue, numext::abs(data1[i]));
416   }
417 
418   internal::pstore(data2, internal::pload<Packet>(data1));
419   VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store");
420 
421   for (int offset = 0; offset < PacketSize; ++offset) {
422     internal::pstore(data2, internal::ploadu<Packet>(data1 + offset));
423     VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu");
424   }
425 
426   for (int offset = 0; offset < PacketSize; ++offset) {
427     internal::pstoreu(data2 + offset, internal::pload<Packet>(data1));
428     VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu");
429   }
430 
431   if (internal::unpacket_traits<Packet>::masked_load_available) {
432     test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
433     unsigned long long max_umask = (0x1ull << PacketSize);
434 
435     for (int offset = 0; offset < PacketSize; ++offset) {
436       for (unsigned long long umask = 0; umask < max_umask; ++umask) {
437         h.store(data2, h.load(data1 + offset, umask));
438         for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
439         VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
440       }
441     }
442   }
443 
444   if (internal::unpacket_traits<Packet>::masked_store_available) {
445     test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
446     unsigned long long max_umask = (0x1ull << PacketSize);
447 
448     for (int offset = 0; offset < PacketSize; ++offset) {
449       for (unsigned long long umask = 0; umask < max_umask; ++umask) {
450         internal::pstore(data2, internal::pset1<Packet>(Scalar(0)));
451         h.store(data2, h.loadu(data1 + offset), umask);
452         for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
453         VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
454       }
455     }
456   }
457 
458   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd);
459   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub);
460   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul);
461 
462   CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd);
463   CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub);
464   CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
465   CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
466 
467   if (PacketTraits::HasNegate) CHECK_CWISE1(internal::negate, internal::pnegate);
468   CHECK_CWISE1(numext::conj, internal::pconj);
469 
470   for (int offset = 0; offset < 3; ++offset) {
471     for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset];
472     internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
473     VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1");
474   }
475 
476   {
477     for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize];
478     Packet A0, A1, A2, A3;
479     internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
480     internal::pstore(data2 + 0 * PacketSize, A0);
481     internal::pstore(data2 + 1 * PacketSize, A1);
482     internal::pstore(data2 + 2 * PacketSize, A2);
483     internal::pstore(data2 + 3 * PacketSize, A3);
484     VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4");
485   }
486 
487   {
488     for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize];
489     Packet A0, A1;
490     internal::pbroadcast2<Packet>(data1, A0, A1);
491     internal::pstore(data2 + 0 * PacketSize, A0);
492     internal::pstore(data2 + 1 * PacketSize, A1);
493     VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2");
494   }
495 
496   VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
497 
498   if (PacketSize > 1) {
499     // apply different offsets to check that ploaddup is robust to unaligned inputs
500     for (int offset = 0; offset < 4; ++offset) {
501       for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i];
502       internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset));
503       VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup");
504     }
505   }
506 
507   if (PacketSize > 2) {
508     // apply different offsets to check that ploadquad is robust to unaligned inputs
509     for (int offset = 0; offset < 4; ++offset) {
510       for (int i = 0; i < PacketSize / 4; ++i)
511         ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i];
512       internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset));
513       VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad");
514     }
515   }
516 
517   ref[0] = Scalar(0);
518   for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i];
519   VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
520 
521   if (!internal::is_same<Packet, typename internal::unpacket_traits<Packet>::half>::value) {
522     int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize;
523     for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0);
524     for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i];
525     internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
526     VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
527   }
528 
529   ref[0] = Scalar(1);
530   for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]);
531   VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
532 
533   for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1];
534   internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
535   VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse");
536 
537   internal::PacketBlock<Packet> kernel;
538   for (int i = 0; i < PacketSize; ++i) {
539     kernel.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
540   }
541   ptranspose(kernel);
542   for (int i = 0; i < PacketSize; ++i) {
543     internal::pstore(data2, kernel.packet[i]);
544     for (int j = 0; j < PacketSize; ++j) {
545       VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose");
546     }
547   }
548 
549   // GeneralBlockPanelKernel also checks PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize>;
550   if (PacketSize > 4 && PacketSize % 4 == 0) {
551     internal::PacketBlock<Packet, PacketSize%4==0?4:PacketSize> kernel2;
552     for (int i = 0; i < 4; ++i) {
553       kernel2.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
554     }
555     ptranspose(kernel2);
556     int data_counter = 0;
557     for (int i = 0; i < PacketSize; ++i) {
558       for (int j = 0; j < 4; ++j) {
559         data2[data_counter++] = data1[j*PacketSize + i];
560       }
561     }
562     for (int i = 0; i < 4; ++i) {
563       internal::pstore(data3, kernel2.packet[i]);
564       for (int j = 0; j < PacketSize; ++j) {
565         VERIFY(test::isApproxAbs(data3[j], data2[i*PacketSize + j], refvalue) && "ptranspose");
566       }
567     }
568   }
569 
570   if (PacketTraits::HasBlend) {
571     Packet thenPacket = internal::pload<Packet>(data1);
572     Packet elsePacket = internal::pload<Packet>(data2);
573     EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector;
574     for (int i = 0; i < PacketSize; ++i) {
575       selector.select[i] = i;
576     }
577 
578     Packet blend = internal::pblend(selector, thenPacket, elsePacket);
579     EIGEN_ALIGN_MAX Scalar result[size];
580     internal::pstore(result, blend);
581     for (int i = 0; i < PacketSize; ++i) {
582       VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
583     }
584   }
585 
586   {
587     for (int i = 0; i < PacketSize; ++i) {
588       // "if" mask
589       unsigned char v = internal::random<bool>() ? 0xff : 0;
590       char* bytes = (char*)(data1 + i);
591       for (int k = 0; k < int(sizeof(Scalar)); ++k) {
592         bytes[k] = v;
593       }
594       // "then" packet
595       data1[i + PacketSize] = internal::random<Scalar>();
596       // "else" packet
597       data1[i + 2 * PacketSize] = internal::random<Scalar>();
598     }
599     CHECK_CWISE3_IF(true, internal::pselect, internal::pselect);
600   }
601 
602   for (int i = 0; i < size; ++i) {
603     data1[i] = internal::random<Scalar>();
604   }
605   CHECK_CWISE1(internal::pzero, internal::pzero);
606   CHECK_CWISE2_IF(true, internal::por, internal::por);
607   CHECK_CWISE2_IF(true, internal::pxor, internal::pxor);
608   CHECK_CWISE2_IF(true, internal::pand, internal::pand);
609 
610   packetmath_boolean_mask_ops<Scalar, Packet>();
611   packetmath_pcast_ops_runner<Scalar, Packet>::run();
612   packetmath_minus_zero_add<Scalar, Packet>();
613 
614   for (int i = 0; i < size; ++i) {
615     data1[i] = numext::abs(internal::random<Scalar>());
616   }
617   CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt);
618   CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
619 }
620 
621 // Notice that this definition works for complex types as well.
622 // c++11 has std::log2 for real, but not for complex types.
623 template <typename Scalar>
log2(Scalar x)624 Scalar log2(Scalar x) {
625   return Scalar(EIGEN_LOG2E) * std::log(x);
626 }
627 
628 template <typename Scalar, typename Packet>
packetmath_real()629 void packetmath_real() {
630   typedef internal::packet_traits<Scalar> PacketTraits;
631   const int PacketSize = internal::unpacket_traits<Packet>::size;
632 
633   const int size = PacketSize * 4;
634   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
635   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
636   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
637 
638   for (int i = 0; i < size; ++i) {
639     data1[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
640     data2[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
641   }
642 
643   if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = Scalar(0);
644 
645   CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
646   CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2);
647   CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
648 
649   for (int i = 0; i < size; ++i) {
650     data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
651     data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
652   }
653   CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin);
654   CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
655   CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
656 
657   CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
658   CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
659   CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
660   CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
661 
662   packetmath_boolean_mask_ops_real<Scalar,Packet>();
663 
664   // Rounding edge cases.
665   if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) {
666     typedef typename internal::make_integer<Scalar>::type IntType;
667     // Start with values that cannot fit inside an integer, work down to less than one.
668     Scalar val = numext::mini(
669         Scalar(2) * static_cast<Scalar>(NumTraits<IntType>::highest()),
670         NumTraits<Scalar>::highest());
671     std::vector<Scalar> values;
672     while (val > Scalar(0.25)) {
673       // Cover both even and odd, positive and negative cases.
674       values.push_back(val);
675       values.push_back(val + Scalar(0.3));
676       values.push_back(val + Scalar(0.5));
677       values.push_back(val + Scalar(0.8));
678       values.push_back(val + Scalar(1));
679       values.push_back(val + Scalar(1.3));
680       values.push_back(val + Scalar(1.5));
681       values.push_back(val + Scalar(1.8));
682       values.push_back(-val);
683       values.push_back(-val - Scalar(0.3));
684       values.push_back(-val - Scalar(0.5));
685       values.push_back(-val - Scalar(0.8));
686       values.push_back(-val - Scalar(1));
687       values.push_back(-val - Scalar(1.3));
688       values.push_back(-val - Scalar(1.5));
689       values.push_back(-val - Scalar(1.8));
690       values.push_back(Scalar(-1.5) + val);  // Bug 1785.
691       val = val / Scalar(2);
692     }
693     values.push_back(NumTraits<Scalar>::infinity());
694     values.push_back(-NumTraits<Scalar>::infinity());
695     values.push_back(NumTraits<Scalar>::quiet_NaN());
696 
697     for (size_t k=0; k<values.size(); ++k) {
698       data1[0] = values[k];
699       CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
700       CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
701       CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
702       CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
703     }
704   }
705 
706   for (int i = 0; i < size; ++i) {
707     data1[i] = Scalar(internal::random<double>(-1, 1));
708     data2[i] = Scalar(internal::random<double>(-1, 1));
709   }
710   CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
711   CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
712 
713   for (int i = 0; i < size; ++i) {
714     data1[i] = Scalar(internal::random<double>(-87, 88));
715     data2[i] = Scalar(internal::random<double>(-87, 88));
716   }
717   CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
718 
719   CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
720   if (PacketTraits::HasExp) {
721     // Check denormals:
722     for (int j=0; j<3; ++j) {
723       data1[0] = Scalar(std::ldexp(1, NumTraits<Scalar>::min_exponent()-j));
724       CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
725       data1[0] = -data1[0];
726       CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
727     }
728 
729     // zero
730     data1[0] = Scalar(0);
731     CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
732 
733     // inf and NaN only compare output fraction, not exponent.
734     test::packet_helper<PacketTraits::HasExp,Packet> h;
735     Packet pout;
736     Scalar sout;
737     Scalar special[] = { NumTraits<Scalar>::infinity(),
738                         -NumTraits<Scalar>::infinity(),
739                          NumTraits<Scalar>::quiet_NaN()};
740     for (int i=0; i<3; ++i) {
741       data1[0] = special[i];
742       ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize]));
743       h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout)));
744       VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp");
745     }
746   }
747 
748   for (int i = 0; i < PacketSize; ++i) {
749     data1[i] = Scalar(internal::random<double>(-1, 1));
750     data2[i] = Scalar(internal::random<double>(-1, 1));
751   }
752   for (int i = 0; i < PacketSize; ++i) {
753     data1[i+PacketSize] = Scalar(internal::random<int>(-4, 4));
754     data2[i+PacketSize] = Scalar(internal::random<double>(-4, 4));
755   }
756   CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
757   if (PacketTraits::HasExp) {
758     data1[0] = Scalar(-1);
759     // underflow to zero
760     data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent()-55);
761     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
762     // overflow to inf
763     data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent()+10);
764     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
765     // NaN stays NaN
766     data1[0] = NumTraits<Scalar>::quiet_NaN();
767     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
768     VERIFY((numext::isnan)(data2[0]));
769     // inf stays inf
770     data1[0] = NumTraits<Scalar>::infinity();
771     data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent()-10);
772     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
773     // zero stays zero
774     data1[0] = Scalar(0);
775     data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent()+10);
776     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
777     // Small number big exponent.
778     data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::min_exponent()-1));
779     data1[PacketSize] = Scalar(-NumTraits<Scalar>::min_exponent()
780                                +NumTraits<Scalar>::max_exponent());
781     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
782     // Big number small exponent.
783     data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::max_exponent()-1));
784     data1[PacketSize] = Scalar(+NumTraits<Scalar>::min_exponent()
785                                -NumTraits<Scalar>::max_exponent());
786     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
787   }
788 
789   for (int i = 0; i < size; ++i) {
790     data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
791     data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
792   }
793   data1[0] = Scalar(1e-20);
794   CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
795   if (PacketTraits::HasExp && PacketSize >= 2) {
796     const Scalar small = NumTraits<Scalar>::epsilon();
797     data1[0] = NumTraits<Scalar>::quiet_NaN();
798     data1[1] = small;
799     test::packet_helper<PacketTraits::HasExp, Packet> h;
800     h.store(data2, internal::pexp(h.load(data1)));
801     VERIFY((numext::isnan)(data2[0]));
802     // TODO(rmlarsen): Re-enable for bfloat16.
803     if (!internal::is_same<Scalar, bfloat16>::value) {
804       VERIFY_IS_APPROX(std::exp(small), data2[1]);
805     }
806 
807     data1[0] = -small;
808     data1[1] = Scalar(0);
809     h.store(data2, internal::pexp(h.load(data1)));
810     // TODO(rmlarsen): Re-enable for bfloat16.
811     if (!internal::is_same<Scalar, bfloat16>::value) {
812       VERIFY_IS_APPROX(std::exp(-small), data2[0]);
813     }
814     VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
815 
816     data1[0] = (std::numeric_limits<Scalar>::min)();
817     data1[1] = -(std::numeric_limits<Scalar>::min)();
818     h.store(data2, internal::pexp(h.load(data1)));
819     VERIFY_IS_APPROX(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]);
820     VERIFY_IS_APPROX(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
821 
822     data1[0] = std::numeric_limits<Scalar>::denorm_min();
823     data1[1] = -std::numeric_limits<Scalar>::denorm_min();
824     h.store(data2, internal::pexp(h.load(data1)));
825     VERIFY_IS_APPROX(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
826     VERIFY_IS_APPROX(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]);
827   }
828 
829   if (PacketTraits::HasTanh) {
830     // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
831     data1[0] = NumTraits<Scalar>::quiet_NaN();
832     test::packet_helper<internal::packet_traits<Scalar>::HasTanh, Packet> h;
833     h.store(data2, internal::ptanh(h.load(data1)));
834     VERIFY((numext::isnan)(data2[0]));
835   }
836 
837   if (PacketTraits::HasExp) {
838     internal::scalar_logistic_op<Scalar> logistic;
839     for (int i = 0; i < size; ++i) {
840       data1[i] = Scalar(internal::random<double>(-20, 20));
841     }
842 
843     test::packet_helper<PacketTraits::HasExp, Packet> h;
844     h.store(data2, logistic.packetOp(h.load(data1)));
845     for (int i = 0; i < PacketSize; ++i) {
846       VERIFY_IS_APPROX(data2[i], logistic(data1[i]));
847     }
848   }
849 
850 #if EIGEN_HAS_C99_MATH && (EIGEN_COMP_CXXVER >= 11)
851   data1[0] = NumTraits<Scalar>::infinity();
852   data1[1] = Scalar(-1);
853   CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
854   data1[0] = NumTraits<Scalar>::infinity();
855   data1[1] = -NumTraits<Scalar>::infinity();
856   CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1);
857 #endif
858 
859   if (PacketSize >= 2) {
860     data1[0] = NumTraits<Scalar>::quiet_NaN();
861     data1[1] = NumTraits<Scalar>::epsilon();
862     if (PacketTraits::HasLog) {
863       test::packet_helper<PacketTraits::HasLog, Packet> h;
864       h.store(data2, internal::plog(h.load(data1)));
865       VERIFY((numext::isnan)(data2[0]));
866       // TODO(cantonios): Re-enable for bfloat16.
867       if (!internal::is_same<Scalar, bfloat16>::value) {
868         VERIFY_IS_APPROX(std::log(data1[1]), data2[1]);
869       }
870 
871       data1[0] = -NumTraits<Scalar>::epsilon();
872       data1[1] = Scalar(0);
873       h.store(data2, internal::plog(h.load(data1)));
874       VERIFY((numext::isnan)(data2[0]));
875       VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
876 
877       data1[0] = (std::numeric_limits<Scalar>::min)();
878       data1[1] = -(std::numeric_limits<Scalar>::min)();
879       h.store(data2, internal::plog(h.load(data1)));
880       // TODO(cantonios): Re-enable for bfloat16.
881       if (!internal::is_same<Scalar, bfloat16>::value) {
882         VERIFY_IS_APPROX(std::log((std::numeric_limits<Scalar>::min)()), data2[0]);
883       }
884       VERIFY((numext::isnan)(data2[1]));
885 
886       // Note: 32-bit arm always flushes denorms to zero.
887 #if !EIGEN_ARCH_ARM
888       if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) {
889         data1[0] = std::numeric_limits<Scalar>::denorm_min();
890         data1[1] = -std::numeric_limits<Scalar>::denorm_min();
891         h.store(data2, internal::plog(h.load(data1)));
892         // TODO(rmlarsen): Reenable.
893         //        VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
894         VERIFY((numext::isnan)(data2[1]));
895       }
896 #endif
897 
898       data1[0] = Scalar(-1.0f);
899       h.store(data2, internal::plog(h.load(data1)));
900       VERIFY((numext::isnan)(data2[0]));
901 
902       data1[0] = NumTraits<Scalar>::infinity();
903       h.store(data2, internal::plog(h.load(data1)));
904       VERIFY((numext::isinf)(data2[0]));
905     }
906     if (PacketTraits::HasLog1p) {
907       test::packet_helper<PacketTraits::HasLog1p, Packet> h;
908       data1[0] = Scalar(-2);
909       data1[1] = -NumTraits<Scalar>::infinity();
910       h.store(data2, internal::plog1p(h.load(data1)));
911       VERIFY((numext::isnan)(data2[0]));
912       VERIFY((numext::isnan)(data2[1]));
913     }
914     if (PacketTraits::HasSqrt) {
915       test::packet_helper<PacketTraits::HasSqrt, Packet> h;
916       data1[0] = Scalar(-1.0f);
917       if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) {
918         data1[1] = -std::numeric_limits<Scalar>::denorm_min();
919       } else {
920         data1[1] = -NumTraits<Scalar>::epsilon();
921       }
922       h.store(data2, internal::psqrt(h.load(data1)));
923       VERIFY((numext::isnan)(data2[0]));
924       VERIFY((numext::isnan)(data2[1]));
925     }
926     // TODO(rmlarsen): Re-enable for half and bfloat16.
927     if (PacketTraits::HasCos
928         && !internal::is_same<Scalar, half>::value
929         && !internal::is_same<Scalar, bfloat16>::value) {
930       test::packet_helper<PacketTraits::HasCos, Packet> h;
931       for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits<Scalar>::epsilon(); k *= Scalar(2)) {
932         for (int k1 = 0; k1 <= 1; ++k1) {
933           data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
934           data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
935           h.store(data2, internal::pcos(h.load(data1)));
936           h.store(data2 + PacketSize, internal::psin(h.load(data1)));
937           VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.));
938           VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.));
939           VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.));
940           VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.));
941 
942           VERIFY_IS_APPROX(data2[0], std::cos(data1[0]));
943           VERIFY_IS_APPROX(data2[1], std::cos(data1[1]));
944           VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0]));
945           VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1]));
946 
947           VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1));
948           VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1));
949         }
950       }
951 
952       data1[0] = NumTraits<Scalar>::infinity();
953       data1[1] = -NumTraits<Scalar>::infinity();
954       h.store(data2, internal::psin(h.load(data1)));
955       VERIFY((numext::isnan)(data2[0]));
956       VERIFY((numext::isnan)(data2[1]));
957 
958       h.store(data2, internal::pcos(h.load(data1)));
959       VERIFY((numext::isnan)(data2[0]));
960       VERIFY((numext::isnan)(data2[1]));
961 
962       data1[0] = NumTraits<Scalar>::quiet_NaN();
963       h.store(data2, internal::psin(h.load(data1)));
964       VERIFY((numext::isnan)(data2[0]));
965       h.store(data2, internal::pcos(h.load(data1)));
966       VERIFY((numext::isnan)(data2[0]));
967 
968       data1[0] = -Scalar(0.);
969       h.store(data2, internal::psin(h.load(data1)));
970       VERIFY(internal::biteq(data2[0], data1[0]));
971       h.store(data2, internal::pcos(h.load(data1)));
972       VERIFY_IS_EQUAL(data2[0], Scalar(1));
973     }
974   }
975 }
976 
977 #define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE) if(COND) { \
978   test::packet_helper<COND,Packet> h; \
979   for (int i=0; i<PacketSize; ++i) \
980     ref[i] = SCALAR(REFOP(static_cast<REFTYPE>(data1[i]))); \
981   h.store(data2, POP(h.load(data1))); \
982   VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
983 }
984 
985 template <typename Scalar>
propagate_nan_max(const Scalar & a,const Scalar & b)986 Scalar propagate_nan_max(const Scalar& a, const Scalar& b) {
987   if ((numext::isnan)(a)) return a;
988   if ((numext::isnan)(b)) return b;
989   return (numext::maxi)(a,b);
990 }
991 
992 template <typename Scalar>
propagate_nan_min(const Scalar & a,const Scalar & b)993 Scalar propagate_nan_min(const Scalar& a, const Scalar& b) {
994   if ((numext::isnan)(a)) return a;
995   if ((numext::isnan)(b)) return b;
996   return (numext::mini)(a,b);
997 }
998 
999 template <typename Scalar>
propagate_number_max(const Scalar & a,const Scalar & b)1000 Scalar propagate_number_max(const Scalar& a, const Scalar& b) {
1001   if ((numext::isnan)(a)) return b;
1002   if ((numext::isnan)(b)) return a;
1003   return (numext::maxi)(a,b);
1004 }
1005 
1006 template <typename Scalar>
propagate_number_min(const Scalar & a,const Scalar & b)1007 Scalar propagate_number_min(const Scalar& a, const Scalar& b) {
1008   if ((numext::isnan)(a)) return b;
1009   if ((numext::isnan)(b)) return a;
1010   return (numext::mini)(a,b);
1011 }
1012 
1013 template <typename Scalar, typename Packet>
packetmath_notcomplex()1014 void packetmath_notcomplex() {
1015   typedef internal::packet_traits<Scalar> PacketTraits;
1016   const int PacketSize = internal::unpacket_traits<Packet>::size;
1017 
1018   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
1019   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
1020   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
1021 
1022   Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom();
1023 
1024   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
1025   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
1026 
1027   CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin);
1028   CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax);
1029 
1030   CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin<PropagateNumbers>);
1031   CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
1032   CHECK_CWISE1(numext::abs, internal::pabs);
1033   CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff);
1034 
1035   ref[0] = data1[0];
1036   for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]);
1037   VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
1038   ref[0] = data1[0];
1039   for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]);
1040   VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
1041 
1042   for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i);
1043   internal::pstore(data2, internal::plset<Packet>(data1[0]));
1044   VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset");
1045 
1046   {
1047     unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1);
1048     // predux_all - not needed yet
1049     // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff;
1050     // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)");
1051     // for(int k=0; k<PacketSize; ++k)
1052     // {
1053     //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0;
1054     //   VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)");
1055     //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff;
1056     // }
1057 
1058     // predux_any
1059     for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0;
1060     VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)");
1061     for (int k = 0; k < PacketSize; ++k) {
1062       for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff;
1063       VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)");
1064       for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00;
1065     }
1066   }
1067 
1068 
1069   // Test NaN propagation.
1070   if (!NumTraits<Scalar>::IsInteger) {
1071     // Test reductions with no NaNs.
1072     ref[0] = data1[0];
1073     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNumbers>(ref[0], data1[i]);
1074     VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))) && "internal::predux_min<PropagateNumbers>");
1075     ref[0] = data1[0];
1076     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNaN>(ref[0], data1[i]);
1077     VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))) && "internal::predux_min<PropagateNaN>");
1078     ref[0] = data1[0];
1079     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNumbers>(ref[0], data1[i]);
1080     VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))) && "internal::predux_max<PropagateNumbers>");
1081     ref[0] = data1[0];
1082     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNaN>(ref[0], data1[i]);
1083     VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))) && "internal::predux_max<PropagateNumbers>");
1084     // A single NaN.
1085     const size_t index = std::numeric_limits<size_t>::quiet_NaN() % PacketSize;
1086     data1[index] = NumTraits<Scalar>::quiet_NaN();
1087     VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
1088     VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
1089     VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
1090     VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
1091     // All NaNs.
1092     for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits<Scalar>::quiet_NaN();
1093     VERIFY((numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
1094     VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
1095     VERIFY((numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
1096     VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
1097 
1098     // Test NaN propagation for coefficient-wise min and max.
1099     for (int i = 0; i < PacketSize; ++i) {
1100       data1[i] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
1101       data1[i + PacketSize] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
1102     }
1103     // Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here.
1104     CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin<PropagateNumbers>));
1105     CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
1106     CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin<PropagateNaN>));
1107     CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax<PropagateNaN>);
1108   }
1109 
1110   packetmath_boolean_mask_ops_notcomplex<Scalar, Packet>();
1111 }
1112 
1113 template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs>
test_conj_helper(Scalar * data1,Scalar * data2,Scalar * ref,Scalar * pval)1114 void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) {
1115   const int PacketSize = internal::unpacket_traits<Packet>::size;
1116 
1117   internal::conj_if<ConjLhs> cj0;
1118   internal::conj_if<ConjRhs> cj1;
1119   internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj;
1120   internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj;
1121 
1122   for (int i = 0; i < PacketSize; ++i) {
1123     ref[i] = cj0(data1[i]) * cj1(data2[i]);
1124     VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul");
1125   }
1126   internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2)));
1127   VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul");
1128 
1129   for (int i = 0; i < PacketSize; ++i) {
1130     Scalar tmp = ref[i];
1131     ref[i] += cj0(data1[i]) * cj1(data2[i]);
1132     VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd");
1133   }
1134   internal::pstore(
1135       pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval)));
1136   VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
1137 }
1138 
1139 template <typename Scalar, typename Packet>
packetmath_complex()1140 void packetmath_complex() {
1141   typedef internal::packet_traits<Scalar> PacketTraits;
1142   typedef typename Scalar::value_type RealScalar;
1143   const int PacketSize = internal::unpacket_traits<Packet>::size;
1144 
1145   const int size = PacketSize * 4;
1146   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
1147   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
1148   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
1149   EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4];
1150 
1151   for (int i = 0; i < size; ++i) {
1152     data1[i] = internal::random<Scalar>() * Scalar(1e2);
1153     data2[i] = internal::random<Scalar>() * Scalar(1e2);
1154   }
1155 
1156   test_conj_helper<Scalar, Packet, false, false>(data1, data2, ref, pval);
1157   test_conj_helper<Scalar, Packet, false, true>(data1, data2, ref, pval);
1158   test_conj_helper<Scalar, Packet, true, false>(data1, data2, ref, pval);
1159   test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval);
1160 
1161   // Test pcplxflip.
1162   {
1163     for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i]));
1164     internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1)));
1165     VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip");
1166   }
1167 
1168   if (PacketTraits::HasSqrt) {
1169     for (int i = 0; i < size; ++i) {
1170       data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>());
1171     }
1172     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size);
1173 
1174     // Test misc. corner cases.
1175     const RealScalar zero = RealScalar(0);
1176     const RealScalar one = RealScalar(1);
1177     const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
1178     const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN();
1179     data1[0] = Scalar(zero, zero);
1180     data1[1] = Scalar(-zero, zero);
1181     data1[2] = Scalar(one, zero);
1182     data1[3] = Scalar(zero, one);
1183     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1184     data1[0] = Scalar(-one, zero);
1185     data1[1] = Scalar(zero, -one);
1186     data1[2] = Scalar(one, one);
1187     data1[3] = Scalar(-one, -one);
1188     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1189     data1[0] = Scalar(inf, zero);
1190     data1[1] = Scalar(zero, inf);
1191     data1[2] = Scalar(-inf, zero);
1192     data1[3] = Scalar(zero, -inf);
1193     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1194     data1[0] = Scalar(inf, inf);
1195     data1[1] = Scalar(-inf, inf);
1196     data1[2] = Scalar(inf, -inf);
1197     data1[3] = Scalar(-inf, -inf);
1198     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1199     data1[0] = Scalar(nan, zero);
1200     data1[1] = Scalar(zero, nan);
1201     data1[2] = Scalar(nan, one);
1202     data1[3] = Scalar(one, nan);
1203     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1204     data1[0] = Scalar(nan, nan);
1205     data1[1] = Scalar(inf, nan);
1206     data1[2] = Scalar(nan, inf);
1207     data1[3] = Scalar(-inf, nan);
1208     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
1209   }
1210 }
1211 
1212 template <typename Scalar, typename Packet>
packetmath_scatter_gather()1213 void packetmath_scatter_gather() {
1214   typedef typename NumTraits<Scalar>::Real RealScalar;
1215   const int PacketSize = internal::unpacket_traits<Packet>::size;
1216   EIGEN_ALIGN_MAX Scalar data1[PacketSize];
1217   RealScalar refvalue = RealScalar(0);
1218   for (int i = 0; i < PacketSize; ++i) {
1219     data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
1220   }
1221 
1222   int stride = internal::random<int>(1, 20);
1223 
1224   // Buffer of zeros.
1225   EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {};
1226 
1227   Packet packet = internal::pload<Packet>(data1);
1228   internal::pscatter<Scalar, Packet>(buffer, packet, stride);
1229 
1230   for (int i = 0; i < PacketSize * 20; ++i) {
1231     if ((i % stride) == 0 && i < stride * PacketSize) {
1232       VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter");
1233     } else {
1234       VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
1235     }
1236   }
1237 
1238   for (int i = 0; i < PacketSize * 7; ++i) {
1239     buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize);
1240   }
1241   packet = internal::pgather<Scalar, Packet>(buffer, 7);
1242   internal::pstore(data1, packet);
1243   for (int i = 0; i < PacketSize; ++i) {
1244     VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather");
1245   }
1246 }
1247 
1248 namespace Eigen {
1249 namespace test {
1250 
1251 template <typename Scalar, typename PacketType>
1252 struct runall<Scalar, PacketType, false, false> {  // i.e. float or double
runEigen::test::runall1253   static void run() {
1254     packetmath<Scalar, PacketType>();
1255     packetmath_scatter_gather<Scalar, PacketType>();
1256     packetmath_notcomplex<Scalar, PacketType>();
1257     packetmath_real<Scalar, PacketType>();
1258   }
1259 };
1260 
1261 template <typename Scalar, typename PacketType>
1262 struct runall<Scalar, PacketType, false, true> {  // i.e. int
runEigen::test::runall1263   static void run() {
1264     packetmath<Scalar, PacketType>();
1265     packetmath_scatter_gather<Scalar, PacketType>();
1266     packetmath_notcomplex<Scalar, PacketType>();
1267   }
1268 };
1269 
1270 template <typename Scalar, typename PacketType>
1271 struct runall<Scalar, PacketType, true, false> {  // i.e. complex
runEigen::test::runall1272   static void run() {
1273     packetmath<Scalar, PacketType>();
1274     packetmath_scatter_gather<Scalar, PacketType>();
1275     packetmath_complex<Scalar, PacketType>();
1276   }
1277 };
1278 
1279 }  // namespace test
1280 }  // namespace Eigen
1281 
EIGEN_DECLARE_TEST(packetmath)1282 EIGEN_DECLARE_TEST(packetmath) {
1283   g_first_pass = true;
1284   for (int i = 0; i < g_repeat; i++) {
1285     CALL_SUBTEST_1(test::runner<float>::run());
1286     CALL_SUBTEST_2(test::runner<double>::run());
1287     CALL_SUBTEST_3(test::runner<int8_t>::run());
1288     CALL_SUBTEST_4(test::runner<uint8_t>::run());
1289     CALL_SUBTEST_5(test::runner<int16_t>::run());
1290     CALL_SUBTEST_6(test::runner<uint16_t>::run());
1291     CALL_SUBTEST_7(test::runner<int32_t>::run());
1292     CALL_SUBTEST_8(test::runner<uint32_t>::run());
1293     CALL_SUBTEST_9(test::runner<int64_t>::run());
1294     CALL_SUBTEST_10(test::runner<uint64_t>::run());
1295     CALL_SUBTEST_11(test::runner<std::complex<float> >::run());
1296     CALL_SUBTEST_12(test::runner<std::complex<double> >::run());
1297     CALL_SUBTEST_13(test::runner<half>::run());
1298     CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>()));
1299     CALL_SUBTEST_15(test::runner<bfloat16>::run());
1300     g_first_pass = false;
1301   }
1302 }
1303